Green Mode Power Switch

FSDM0265RNB, FSDM0365RNB

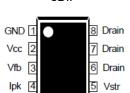
Description

The FSDM0x65RNB of integrated Pulse Width Modulator (PWM) and SENSEFET® are specifically designed for high performance offline Switch Mode Power Supplies (SMPS) with minimal external components. This devices is an integrated high voltage power switching regulator which combines an avalanche rugged SENSEFET with a current mode PWM control block. The integrated PWM controller features include: a fixed oscillator with frequency modulation for reduced EMI, Under Voltage Lock Out (UVLO) protection, Leading Edge Blanking (LEB), an optimized gate turn-on/turn-off driver, Thermal Shut Down (TSD) protection and temperature compensated precision current sources for loop compensation and fault protection circuitry. The FSDM0x65RNB offers better performance in Soft Start than FSDM0265RN. When compared to a discrete MOSFET and controller or RCC switching converter solution, the FSDM0x65RNB reduces total component count, design size, weight while increasing efficiency, productivity and system reliability. This device provides a basic platform that is well suited for the design of cost-effective flyback converters.

Features

- Internal Avalanche Rugged SENSEFET
- Consumes only 0.65 W at 240 VAC & 0.3 W load with Advanced Burst-Mode Operation
- Frequency Modulation for EMI Reduction
- Precision Fixed Operating Frequency
- Internal Start-up Circuit
- Pulse-by-Pulse Current Limiting
- Over Voltage Protection (OVP)
- Over Load Protection (OLP)
- Internal Thermal Shutdown Function (TSD)
- Auto-Restart Mode
- Under Voltage Lockout (UVLO)
- Low Operating Current (3 mA)
- Adjustable Peak Current Limit
- Built-in Soft Start

Applications


- SMPS for VCR, SVR, STB, DVD & DVCD
- SMPS for Printer, Facsimile & Scanner
- Adapter for Camcorder

ON Semiconductor®

www.onsemi.com

8DIP

PIN CONFIGURATION

PDIP8 (9.42x6.38, 2.54P) CASE 646CM

MARKING DIAGRAM

Z = Assembly Code
XY = 2-digit Year & Week Code
KK = 2-digit Die-Run Code
DM0x65RB = Specific Device Code
x = Device Option (2 or 3)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

Product Number	Package	Marking Code	BV _{DSS}	fosc	R _{DS(ON)}
FSDM0265RNB	8DIP	DM0265R	650 V	67 KHz	5.0 Ω
FSDM0365RNB	8DIP	DM0365R	650 V	67 KHz	3.6 Ω

Table 1. OUTPUT POWER TABLE

	230VA (Not		85–26	5VAC
Product	Adapter (Note 1) Open Frame (Note 2)		Adapter (Note 1)	Open Frame (Note 2)
FSDM0265RNB	16 W	27 W	13 W	20 W
FSDM0365RNB	19 W	30 W	16 W	24 W

- 1. Typical continuous power in a non-ventilated enclosed adapter with sufficient drain pattern as a heat sinker, at 50_C ambient.
- Maximum practical continuous power in an open frame design with sufficient drain pattern as a heat sinker, at 50_C ambient.
- 3. 230 VAC or 100/115 VAC with doubler.

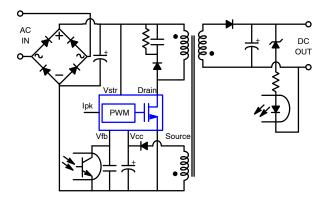


Figure 1. Typical Flyback Application

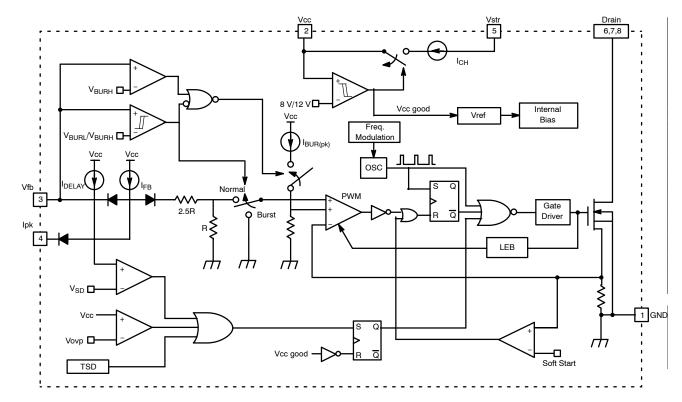


Figure 2. Functional Block Diagram of FSDM0265RNB

Table 2. PIN DEFINITIONS

Pin#	Pin Name	Pin Function Description
1	GND	SENSEFET source terminal on primary side and internal control ground.
2	Vcc	Positive supply voltage input. Although connected to an auxiliary transformer winding, current is supplied from pin 5 (Vstr) via an internal switch during startup (see Internal Block Diagram section). It is not until Vcc reaches the UVLO upper threshold (12 V) that the internal start-up switch opens and devicepower is supplied via the auxiliary transformer winding.
3	Vfb	The feedback voltage pin is the non-inverting input to the PWM comparator. It has a 0.9mA current source connected internally while a capacitor and optocoupler are typically connected externally. A feedback voltage of 6V triggers over load protection (OLP). There is a time delay while charging external capacitor Cfb from 3 V to 6 V using an internal 5uA current source. This time delay prevents false triggering under transient conditions, but still allows the protection mechanism to operate under true overload conditions.
4	lpk	This pin adjusts the peak current limit of the SENSEFET. The feedback 0.9 mA current source is diverted to the parallel combination of an internal 2.8kW resistor and any external resistor to GND on this pin to determine the peak current limit. If this pin is tied to Vcc or left floating, the typical peak current limit will be 1.5 A.
5	Vstr	This pin connects directly to the rectified AC line voltage source. At start up the internal switch supplies internal bias and charges an external storage capacitor placed between the Vcc pin and ground. Once the Vcc reaches 12 V, the internal switch is opened.
6	Drain	The drain pins are designed to connect directly to the primary lead of the transformer and are capable of switching a maximum of 650V. Minimizing the length of the trace connecting these pins to the transformer will decrease leakage inductance.

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise specified)

Symbol	Parameter		Ratings	Unit
V _{DRAIN}	Drain Pin Voltage	Drain Pin Voltage		V
V _{STR}	Vstr Pin Voltage		650	V
I _{DM}	Drain Current Pulsed (Note 4)	FDSM0265RNB FDSM0365RNB	8.0 12	А
E _{AS}	Single Pulse Avalanche Energy (Note 5)	FDSM0265RNB FDSM0365RNB	68 127	mJ
V _{CC}	Supply Voltage		20	V
V _{FB}	Feedback Voltage Range		-0.3 to V _{CC}	V
P_{D}	Total Power Dissipation		1.56	W
T_J	Operating Junction Temperature		Internally limited	°C
T _A	Operating Ambient Temperature		−25 to +85	°C
T _{STG}	Storage Temperature		−55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Ta = 25°C, unless otherwise specified)

Symbol	Parameter	Parameter		Unit
8DIP				
$\theta_{\sf JA}$	Junction-to-Ambient Thermal (Note 6)	FDSM0265RNB FDSM0365RNB	79.64 85.74	°C/W
θ _{JC}	Junction-to-Case Thermal (Note 7) Junction-to-Case Thermal (Note 8)	FDSM0265RNB FDSM0365RNB	18.20 30.38	°C/W
ΨЈТ	Junction-to-Top Thermal (Note 9)	FDSM0265RNB	34.30	°C/W

- 6. Free standing with no heatsink; without copper clad
- 7. Measured on the DRAIN pin close to plastic interface
- 8. Measured on the GND pin close to plastic interface
- 9. Measured on the PKG top surface

NOTE: All items are tested with the standards JESD 51-2 and 51-10 (DIP).

^{4.} Repetitive rating: Pulse width is limited by maximum junction temperature

^{5.} L = 51 mH, T_J = 25°C.

ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
SENSEFET S	SECTION	•				
I _{DSS}	Zero-Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	_	_	50	μΑ
		V _{DS} = 520 V, V _{GS} = 0 V, T _C = 125°C	-	_	200	μΑ
R _{DS(ON)}	Drain-Source On-State Resistance (Note 10)	V _{GS} = 10 V, I _D = 0.5 A FDSM0265RNB FDSM0365RNB	-	5.0 3.6	6.0 4.5	Ω
C _{ISS}	Input Capacitance	FDSM0265RNB	-	550	-	pF
C _{OSS}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	-	38	-	pF
C _{RSS}	Reverse Transfer Capacitance	1	-	17	-	pF
C _{ISS}	Input Capacitance	FDSM0365RNB	-	315	-	pF
C _{OSS}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	-	47	-	pF
C _{RSS}	Reverse Transfer Capacitance	1	-	9.0	-	pF
t _{d(on)}	Turn-On Delay Time	FDSM0265RNB	-	20	-	ns
t _r	Rise Time	$V_{DS} = 325 \text{ V}, I_D = 1.0 \text{ A}$	-	15	-	ns
t _{d(off)}	Turn-Off Delay Time	1	-	55	-	ns
t _f	Fall Time		-	25	-	ns
t _{d(on)}	Turn-On Delay Time	FDSM0365RNB	-	11.2	-	ns
t _r	Rise Time	$V_{DS} = 325 \text{ V}, I_D = 1.0 \text{ A}$	-	34	-	ns
t _{d(off)}	Turn-Off Delay Time	1	-	28.2	-	ns
t _f	Fall Time	1	-	32	-	ns
CONTROL S	ECTION	•		I		ı
f _{OSC}	Switching Frequency		61	67	73	KHz
Δf_{MOD}	Switching Frequency Modulation		±1.5	±2.0	±2.5	KHz
Δf_{OSC}	Switching Frequency Variation (Note 11)	-25°C ≤ T _A ≤ 85°C	-	±5	±10	%
D_{MAX}	Maximum Duty Cycle	FDSM0265RNB FDSM0365RNB	62 71	67 77	72 83	%
D _{MIN}	Minimum Duty Cycle		0	0	0	%
V _{START}	UVLO Threshold Voltage	V _{FB} = GND	11	12	13	V
V _{STOP}	1	V _{FB} = GND	7	8	9	V
I _{FB}	Feedback Source Current	V _{FB} = GND	0.7	0.9	1.1	mA
t _{S/S}	Internal Soft Start Time	V _{FB} = 4 V	10	15	20	ms
BURST MOD	DE SECTION					
V _{BURH}	Burst Mode Voltage	-	0.4	0.5	0.6	V
V _{BURL}]	-	0.25	0.35	0.45	V
PROTECTIO	N SECTION			•		•
I _{LIM}	Peak Current Limit	Max. inductor current FDSM0265RNB FDSM0365RNB	1.3 1.89	1.5 2.15	1.7 2.41	Α
t _{CLD}	Current Limit Delay Time (Note 12)		-	500	-	ns
T _{SD}	Thermal Shutdown Temperature	-	125	140	_	°C
V _{SD}	Shutdown Feedback Voltage		5.5	6.0	6.5	V
V _{OVP}	Over Voltage Protection	V _{FB} = 4 V	18	19	-	V
I _{DELAY}	Shutdown Delay Current		3.5	5.0	6.5	μΑ
t _{LEB}	Leading Edge Blanking Time		200	_	_	ns

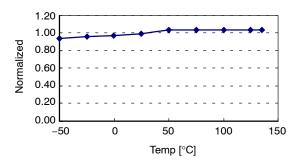
ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
TOTAL DEVICE SECTION						
I _{OP}	Operating Supply Current (control part only)	V _{CC} = 14 V	1	3	5	mA
I _{CH}	Start-Up Charging Current	V _{CC} = 0 V	0.7	0.85	1.0	mA
V _{STR}	Vstr Supply Voltage	V _{CC} = 0 V	35	_	_	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 3. COMPARISON BETWEEN KA5x0265RN AND FSDM0265RNB

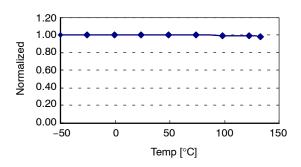
Function	KA5x0265RN, KA5x0365RN	FSDM0x65RNB	FSDM0265RNB Advantage
Soft-Start	not applicable	15 ms	Gradually increasing current limit during soft-start further reduces peak current and voltage stresses Eliminates external components used for soft-start in most applications
			Reduces or eliminates output overshoot
External Current Limit	not applicable	Programmable of default current limit	Smaller transformer Allows power limiting (constant over– load power) Allows use of larger device for lower losses an higher efficiency
Frequency Modulation	not applicable	±2.0 KHz @67 KHz	Reduces conducted EMI
Burst Mode Operation	not applicable	Built into controller	Improves light load efficiency Reduces power consumption at no-load Transformer audible noise reduction
Drain Creepage at Package	1.02 mm	7.62 mm	Greater immunity to arcing provoked by dust, debris and other contaminants


^{10.} Pulse test: Pulse width ≤ 300us, duty ≤ 2%

^{11.} These parameters, although guaranteed, are tested in EDS (wafer test) process

^{12.} These parameters, although guaranteed, are not 100% tested in production

Typical Performance Characteristics (Control Part)


(These characteristic graphs are normalized at Ta = 25°C)

1.20 1.00 0.80 0.80 0.40 0.20 0.00 -50 0 50 100 150 Temp [°C]

Figure 3. Operating Frequency (Fosc) vs. Ta

Figure 4. Frequency Modulation (ΔF_{MOD}) vs. Ta

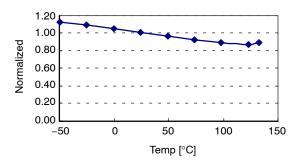
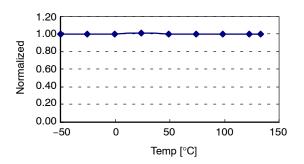
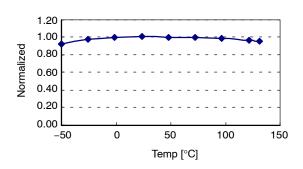



Figure 5. Maximum Duty Cycle (D_{MAX}) vs. Ta

Figure 6. Operating Supply Current (IOP) vs. Ta

Typical Performance Characteristics (Control Part) (continued)


(These characteristic graphs are normalized at Ta = 25°C)

1.20 1.00 0.80 0.60 0.40 0.20 0.00 -50 0 50 100 150 Temp [°C]

Figure 7. Start Threshold Voltage (V_{START}) vs. Ta

Figure 8. Stop Threshold Voltage (V_{STOP}) vs. Ta

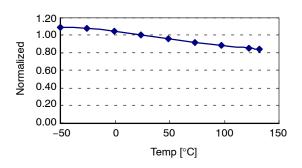
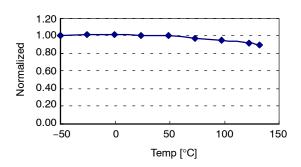



Figure 9. Feedback Source Current (IFB) vs. Ta

Figure 10. Start Up Charging Current (I_{CH}) vs. Ta

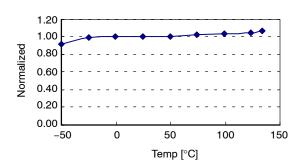


Figure 11. Peak Current Limit (I_{LIM}) vs. Ta

Figure 12. Burst Peak Current (I_{BUR(pk)}) vs. Ta

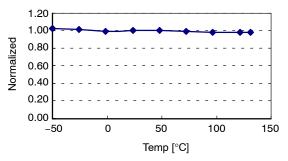


Figure 13. Over Voltage Protection (V_{OVP}) vs. Ta

FUNCTIONAL DESCRIPTION

Startup

In previous generations of Power Switches the Vstr pin had an external resistor to the DC input voltage line. In this generation the startup resistor is replaced by an internal high voltage current source and a switch that shuts off when 15 ms goes by after the supply voltage, Vcc, gets above 12 V. The source turns back on if Vcc drops below 8 V.

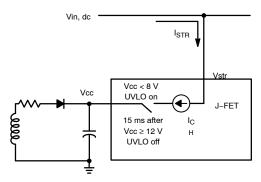


Figure 14. High Voltage Current Source

Feedback Control

The FSDM0x65RNB employs current mode control, as shown in Figure 15. An opto-coupler (such as the H11A817A) and shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor plus an offset voltage makes it possible to control the switching duty cycle. When the KA431 reference pin voltage exceeds the internal reference voltage of 2.5 V, the optocoupler LED current increases, the feedback voltage Vfb is pulled down and it reduces the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased.

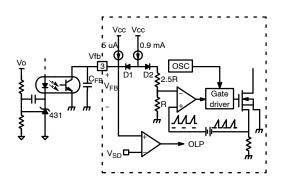


Figure 15. Pulse Width Modulation (PWM) Circuit

Leading Edge Blanking (LEB)

At the instant the internal SENSEFET is turned on, the primary side capacitance and secondary side rectifier diode reverse recovery typically cause a high current spike through the SENSEFET. Excessive voltage across the Rsense resistor leads to incorrect feedback operation in the current mode PWM control. To counter this effect, the power switch employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (t_{LEB}) after the SENSEFET is turned on.

Protection Circuits

The power switch has several protective functions such as over load protection (OLP), over voltage protection (OVP), under voltage lock out (UVLO) and thermal shutdown (TSD). Because these protection circuits are fully integrated inside the IC without external components, the reliability is improved without increasing cost. Once a fault condition occurs, switching is terminated and the SENSEFET remains off. This causes Vcc to fall. When Vcc reaches the UVLO stop voltage V_{STOP} (8 V), the protection is reset and the internal high voltage current source charges the Vcc capacitor via the Vstr pin. When Vcc reaches the UVLO start voltage V_{START} (12 V), the power switch resumes its normal operation. In this manner, the auto–restart can alternately enable and disable the switching of the power SENSEFET until the fault condition is eliminated.

Over Load Protection (OLP)

Overload is defined as the load current exceeding a pre-set level due to an unexpected event. In this situation, the protection circuit should be activated in order to protect the SMPS. However, even when the SMPS is operating normally, the over load protection (OLP) circuit can be activated during the load transition. In order to avoid this undesired operation, the OLP circuit is designed to be activated after a specified time to determine whether it is a transient situation or an overload situation. In conjunction with the Ipk current limit pin (if used) the current mode feedback path would limit the current in the SENSEFET when the maximum PWM duty cycle is attained. If the output consumes more than this maximum power, the output voltage (Vo) decreases below its rating voltage. This reduces the current through the opto-coupler LED, which also reduces the opto-coupler transistor current, thus increasing the feedback voltage (V_{FB}). If V_{FB} exceeds 3 V, the feedback input diode is blocked and the 5 uA current source (I_{DELAY}) starts to charge Cfb slowly up to Vcc. In this condition, V_{FB} increases until it reaches 6 V, when the switching operation is terminated as shown in Figure 16. The shutdown delay time is the time required to charge Cfb from 3 V to 6 V with 5 uA current source.

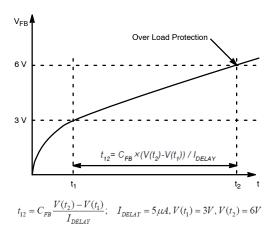


Figure 16. Over Load Protection (OLP)

Thermal Shutdown (TSD)

The SENSEFET and the control IC are integrated, making it easier for the control IC to detect the temperature of the SENSEFET. When the temperature exceeds approximately 140°C, thermal shutdown is activated.

Over Voltage Protection (OVP)

In the event of a malfunction in the secondary side feedback circuit, or an open feedback loop caused by a soldering defect, the current through the opto-coupler transistor becomes almost zero (refer to Figure 15). Then, VFB climbs up in a similar manner to the over load situation, forcing the preset maximum current to be supplied to the SMPS until the over load protection is activated. Because excess energy is provided to the output, the output voltage may exceed the rated voltage before the over load protection is activated, resulting in the breakdown of the devices in the secondary side. In order to prevent this situation, an over voltage protection (OVP) circuit is employed. In general, Vcc is proportional to the output voltage and the power switch uses Vcc instead of directly monitoring the output voltage. If VCC exceeds 19 V, OVP circuit is activated resulting in termination of the switching operation. In order to avoid undesired activation of OVP during normal operation, Vcc should be properly designed to be below 19 V.

Soft Start

The power switch has an internal soft start circuit that slowly increases the feedback voltage together with the SENSEFET current after it starts up. The typical soft start time is 15msec, as shown in Figure 17, where progressive increments of the SENSEFET current are allowed during the start—up phase. The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. The voltage on the output capacitors is progressively increased with the intention of smoothly establishing the required output voltage. It also helps to prevent transformer saturation and reduce the stress on the secondary diode.

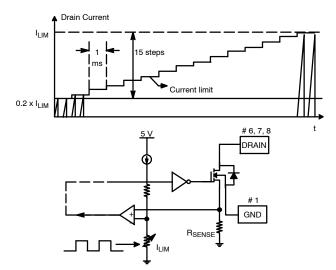
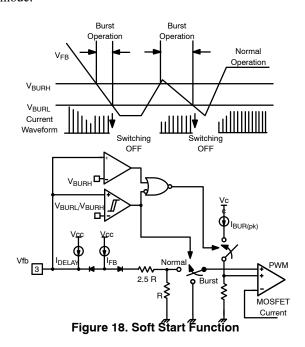



Figure 17. Soft Start Function

Burst Operation

In order to minimize power dissipation in standby mode. the power switch enters burst mode operation. As the load decreases, the feedback voltage decreases. As shown in Figure 18, the device automatically enters burst mode when the feedback voltage drops below V_{BURH} (500 mV). Switching still continues but the current limit is set to a fixed limit internally to minimize flux density in the transformer. The fixed current limit is larger than that defined by V_{FB} = V_{BURH} and therefore, V_{FB} is driven down further. Switching continues until the feedback voltage drops below V_{BURL} (350 mV). At this point switching stops and the output voltages start to drop at a rate dependent on the standby current load. This causes the feedback voltage to rise. Once it passes V_{BURH}, switching resumes. The feedback voltage then falls and the process repeats. Burst mode operation alternately enables and disables switching of the SENSEFET and reduces switching loss in Standby mode.

Frequency Modulation

Modulating the switching frequency of a switched power supply can reduce EMI. Frequency modulation can reduce EMI by spreading the energy over a wider frequency range than the bandwidth measured by the EMI test equipment. The amount of EMI reduction is directly related to the depth of the reference frequency. As can be seen in Figure 19, the frequency changes from 65 KHz to 69 KHz in 4 ms for the FSDM0x65RNB. Frequency modulation allows the use of a cost effective inductor instead of an AC input mode choke to satisfy the requirements of world wide EMI limits.

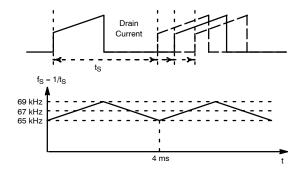


Figure 19. Frequency Modulation Waveform

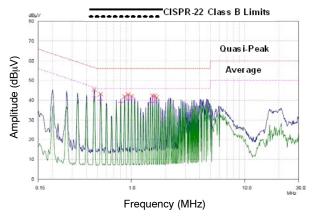


Figure 20. KA5-series Power Switch Full Range EMI scan (67 KHz, no Frequency Modulation) with DVD Player SET

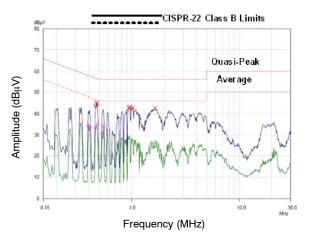


Figure 21. FSDM-series Power Switch Full Range EMI Scan (67 KHz, with Frequency Modulation) with DVD Player SET

Adjusting Peak Current Limit

As shown in Figure 22, a combined 2.8 k Ω internal resistance is connected to the non-inverting lead on the PWM comparator. A external resistance of Rx on the current limit pin forms a parallel resistance with the 2.8 k Ω when the internal diodes are biased by the main current source of 900 uA.

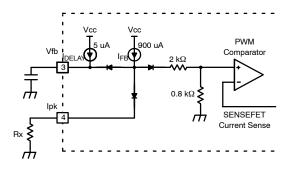


Figure 22. Peak Current Limit Adjustment

For example, FSDM0265RNB has a typical SENSEFET peak current limit (I_{LIM}) of 1.5 A. I_{LIM} can be adjusted to 1 A by inserting Rx between the Ipk pin and the ground. The value of the Rx can be estimated by the following equations:

$$1.5 \text{ A} : 1 \text{ A} = 2.8 \text{ k}\Omega : X \text{ k}\Omega$$
 (eq. 1)

$$X = Rx \parallel 2.8 \text{ k}\Omega$$
 (eq. 2)

(X represents the resistance of the parallel network)

TYPICAL APPLICATION CIRCUIT

Table 4. ELECTRICAL SPECIFICATION

Application	Output Power	Input Voltage	Output Voltage (Max Current)
DVD Player	13 W	Universal Input (85–265 Vac)	3.3 V (0.8 A) 5.1 V (0.4 A) 12 V (0.3 A) 16 V (0.3 A)

Features

- High efficiency (> 76% at universal input)
- Low standby mode power consumption (< 1 W at 230 Vac input and 0.5 W load)
- Low component count
- Enhanced system reliability through various protection functions
- Low EMI through frequency modulation
- Internal soft-start (15 ms)

Key Design Notes

- The delay time for over load protection is designed to be about 30 ms with C106 of 47 nF. If faster/slower triggering of OLP is required, C106 can be changed to a smaller/larger value (eg. 100 nF for about 60 ms).
- Using a resistor R104 (3.3 Ω) on Ipk pin (#4), the pule-by-pulse peak current limit level(I_{LIM}) is adjusted to about 0.8 A.
- The branch formed by D103, C108 and R106 provides another I_{LIM} adjustment having a negative slope to the input voltage. The I_{LIM} value decreases as the input voltage level increases.

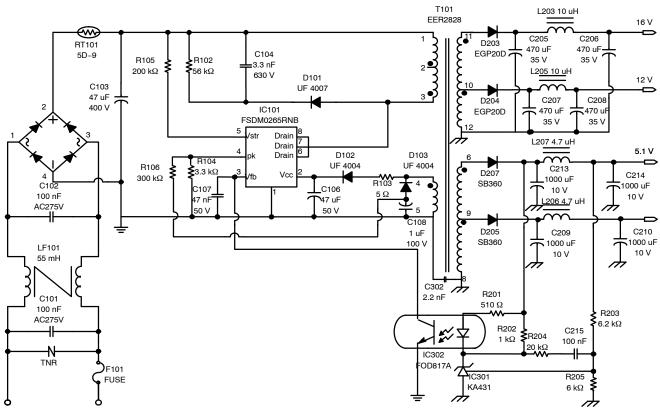


Figure 23. Schematic

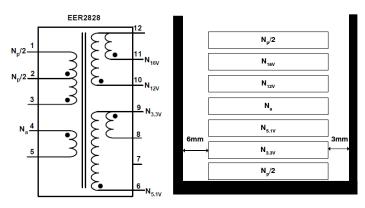


Figure 24. Transformer Schematic Diagram

Table 5. WINDING SPECIFICATION

	Pin (S→F)	Wire	Turns	Winding Method
N _p /2	3→2	0.25 φ×1	50	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			
N _{3.3V}	9→8	0.33 φ×2	4	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			
N _{5.1V}	6→9	0.33 φ×1	2	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			
Na	4→5	0.25 φ×1	16	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			
N _{12V}	10→12	0.33 φ×1	14	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 3 Layers			
N _{16V}	11→12	0.33 φ×1	18	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			
N _p /2	2→1	0.25 φ×1	50	Center Solenoid Winding
Insulation: Polyester Ta	pe t = 0.050 mm, 2 Layers			•

Table 6. ELECTRICAL CHARACTERISTICS

	Pin	Spec.	Remark
Inductance	1–3	1.4 mH ± 10%	100 kHz, 1 V
Leakage	1–3	25 uH Max.	Short all other pins

Core & Bobbin

Core: EER2828 (Ae = 86.66 mm^2)

Bobbin: EER2828

Table 7. DEMO CIRCUIT PART LIST

Part	Value	Note	Part	Value	Note
	Resistor			Inductor	•
R102	56 K	1 W	L203	10 uH	_
R103	5	1/4 W	L205	10 uH	_
R104	3.3 K	1/4 W	L206	4.7 uH	_
R105	200 K	1/4 W	L207	4.7 uH	_
R106	300 K	1/4 W		Diode	•
R201	510	1/4 W	D101	UF4007	PN Ultra Fast
R202	1 K	1/4 W	D102	UF4004	PN Ultra Fast
R203	6.2 K	1/4 W	D103	UF4004	PN Ultra Fast
R204	20 K	1/4 W	D203	EGP20D	PN Ultra Fast
R205	6 K	1/4 W	D204	EGP20D	PN Ultra Fast
	Capacitor		D205	SB360	Schottky
C101	100 nF/275 AC	Box	D207	SB360	Schottky
C102	100 nF/275 AC	Box		IC	•
C103	47 uF/400 V	Electrolytic	IC101	FSDM0265RNB	Power Switch
C104	3.3 nF/630 V	Film	IC301	KA431 (TL431)	Voltage reference
C106	47 uF/50 V	Electrolytic	IC302	FOD817A	Opto-Coupler
C107	47 nF/50 V	Ceramic			
C108	1 uF/100 V	Electrolytic		Fuse	
C205	470 uF/35 V	Electrolytic	FUSE	2 A/250 V	
C206	470 uF/35 V	Electrolytic			
C207	470 uF/35 V	Electrolytic		NTC	•
C208	470 uF/35 V	Electrolytic	RT101	5D-9	
C209	1000 uF/10 V	Electrolytic			
C210	1000 uF/10 V	Electrolytic		Bridge Diode	•
C213	1000 uF/10 V	Electrolytic	BD101	2KBP06M 2N257	Bridge Diode
C214	1000 uF/10 V	Electrolytic			
C215	100 nF/50 V	Ceramic		Line Filter	
C302	2.2 nF	AC Ceramic	LF101	55 mH	_

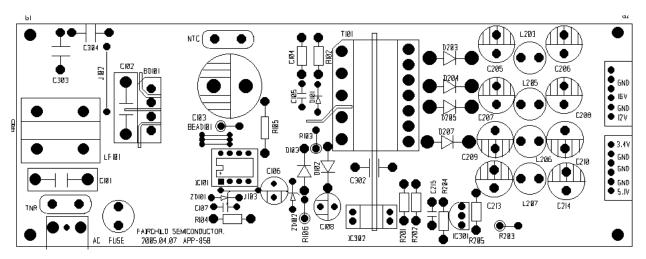


Figure 25. Top Image of PCB

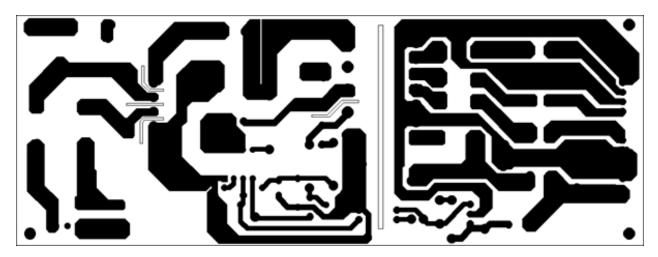
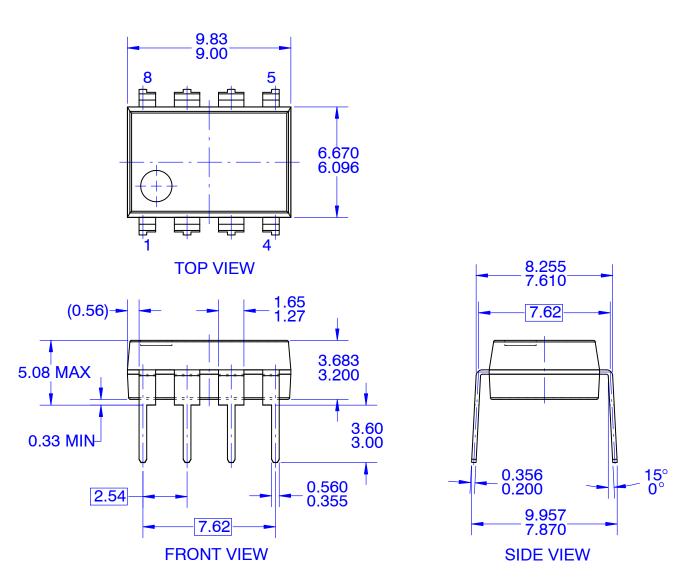



Figure 26. Bottom Image of PCB

PACKAGE DIMENSIONS

PDIP8 9.42x6.38, 2.54P CASE 646CM ISSUE O

NOTES:

- A. CONFORMS TO JEDEC MS-001, VARIATION BA B. ALL DIMENSIONS ARE IN MILLIMETERS C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-2009

SENSEFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative