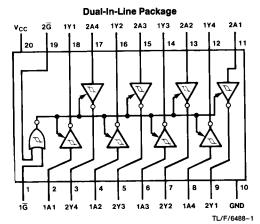


DM54S940/DM74S940, DM54S941/DM74S941 Octal TRI-STATE® Buffers/Line Drivers/Line Receivers

General Description


These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs, and can be used to drive terminated lines down to $133\Omega.$

Features

- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins

- Typical I_{OL} (sink current) 54S 48 mA 74S 64 mA
- Typical I_{OH} (source current) 54S −12 mA 74S −15 mA
- Typical propagation delay times Inverting 4.5 ns Noninverting 6 ns
- Typical enable/disable times 9 ns
- Typical power dissipation (enabled) Inverting 450 mW
 Noninverting 538 mW

Connection Diagrams

Order Number DM54S940J or 74S940N See NS Package Number J20A or N20A

Dual-In-Line Package V_{CC} 2\overline{G} 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 20 19 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 9 10 1\overline{G} 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND

Order Number DM54S941J or 74S941N See NS Package Number J20A or N20A

TL/F/6488-2

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
lcc	Supply Current	Outputs High	DM54S940		80	123	
			DM74S940		80	135	
			DM54S941		95	147	
			DM74S941		95	160	
		Outputs Low	DM54S940		100	145	1
			DM74S940		100	150	
			DM54S941	-	120	170	mA
			DM74S941		120	180	
		Outputs Disabled	DM54S940		100	145	
			DM74S940		100	150]
			DM54S941		120	170	
			DM74S941		120	180	1

Note 1: All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time and duration should not exceed one second.

Switching Characteristics V_{CC} = 5V, T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Con	Min	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 45 pF	DM54/74S940	2	7	
	Low to High Level Output	$R_L = 90\Omega$	DM54/74S941	2	9	ns
t _{PHL}	Propagation Delay Time	$C_L = 45 pF$ $R_L = 90 \Omega$	DM54/74S940	2	7	ns
	High to Low Level Output		DM54/74S941	2	9	
t _{PZL}	Output Enable Time to	$C_L = 45 pF$ $R_L = 90\Omega$	DM54/74S940	3	15	ns
	Low Level		DM54/74S941	3	15	
^t PZH	Output Enable Time to	$C_L = 45 pF$ $R_L = 90 \Omega$	DM54/74S940	2	10	ns
	High Level		DM54/74S941	3	12	
t _{PLZ}	Output Disable Time	C _L = 5 pF	DM54/74S940	4	15	ns
	from Low Level	$R_L = 90\Omega$	DM54/74S941	2	15	
t _{PHZ}	Output Disable Time	$C_{L} = 5pF$	DM54/74S940	2	9	ns
	from High Level	$R_L = 90\Omega$	DM54/74S941	2	9	
t _{PLH}	Propagation Delay Time	C _L = 150 pF	DM54/74S940	3	10	ns
	Low to High Level Output	$R_L = 90\Omega$	DM54/74S941	4	12	115
t _{PHL}	Propagation Delay Time	$C_L = 150 \text{ pF}$ $R_L = 90\Omega$	DM54/74S940	3	10	ns
	High to Low Level Output		DM54/74S941	4	12	
^t PZL	Output Enable Time to	$C_L = 150 pF$ $R_L = 90\Omega$	DM54/74S940	6	21	ns
	Low Level		DM54/74S941	6	21	
^t PZH	Output Enable Time to	C _L = 150 pF	DM54/74S940	4	12	
	High Level	$R_L = 90\Omega$	DM54/74S941	4	15	ns