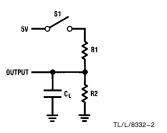


DM54LS491/74LS491 10-Bit Counter

General Description

The ten-bit counter can count up, count down, set, and load 2 LSB's, 2 MSB's and 6 middle bits high or low as a group. All operations are synchronous with the clock. SET overrides LOAD, COUNT and HOLD. LOAD overrides COUNT. COUNT is conditional on $C_{\mbox{\footnotesize{IN}}}$, otherwise it holds.

All outputs are enabled when $\overline{\text{OE}}$ is low, otherwise HIGH-Z. The 24 mA I_{OL} outputs are suitable for driving RAM/PROM address lines in video graphics systems.


Features/Benefits

- CRT vertical and horizontal timing generation
- Bus-structured pinout
- 24-pin SKINNYDIP saves space
- TRI-STATE® outputs drive bus lines
- Low current PNP inputs reduce loading

Connection Diagram

Standard Test Load

TL/L/8332-1

Order Number DM54LS491J, DM74LS491J or DM74LS491N See NS Package Number J24F or N24C

Function Table

ΟE	СК	SET	LD	CNT	CIN	UP	D9-D0	Q9-Q0	Operation	
Н	Х	Х	Χ	Х	Х	х	Х	Z	Hi-Z	
L	1	Н	Х	Х	Χ	Х	X	Н	Set all HIGH	
L	1	L	L	Х	Χ	Х	D	D	LOAD D	
L	1	L	Н	Н	Χ	Х	Х	Q	HOLD	
L	1	L	Н	L	Н	Х	X	Q	HOLD	
L	1	L	Н	L	L	L	X	Q plus 1	Count UP	
L	1	L	Н	L	L	Н	X	Q minus 1	Count DN	

TRI-STATE® is a registered trademark of National Semiconductor Corp.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{cc} \text{Supply Voltage V}_{\text{CC}} & \text{7V} \\ \text{Input Voltage} & 5.5\text{V} \end{array}$

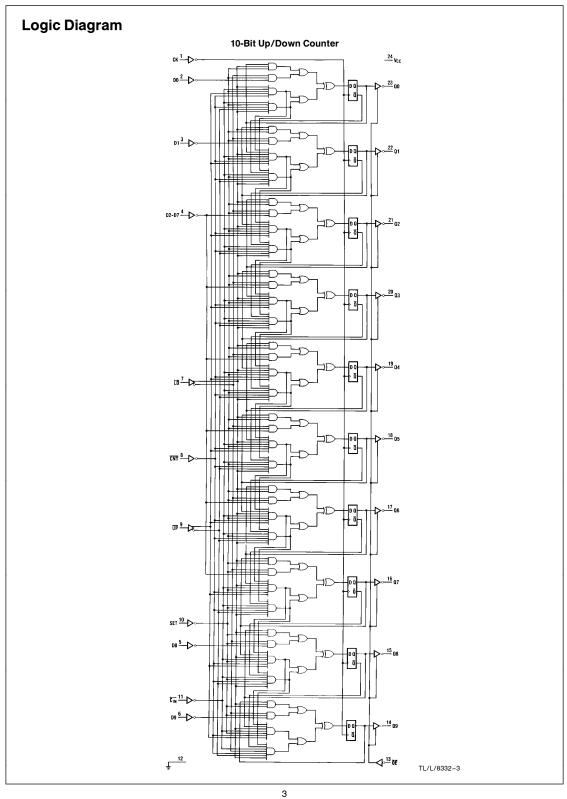
 $\begin{array}{ll} \mbox{Off-State Output Voltage} & 5.5 \mbox{V} \\ \mbox{Storage Temperature} & -65 \mbox{° to} & +150 \mbox{° C} \end{array}$

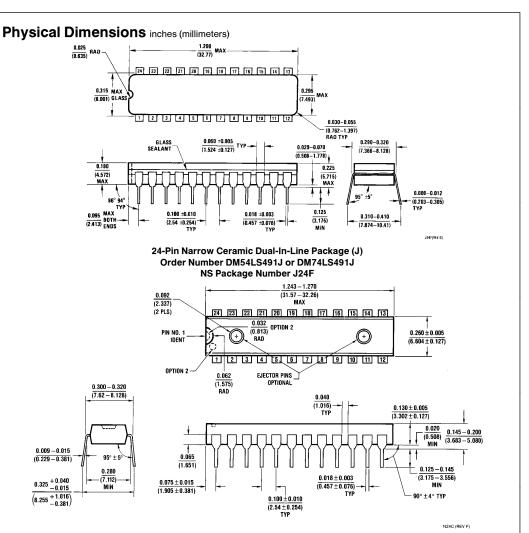
Operating Conditions

Symbol	Parameter	Military			Commercial			Units	
	Taramotor	Min	Тур	Max	Min	Тур	Max	- Cilito	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
T_A	Operating Free-Air Temperature	-55		125*	0		75	°C	
t _w	Width of Clock	High	40			40			ns
	Width of Glook	Low	35			35			
t _{SU}	Set-Up Time		60			50			ns
t _h	Hold Time		0	-15		0	-15		113

^{*} Case temperature

Electrical Characteristics Over Operating Conditions


Symbol	Parameter	Test Conditions				Тур†	Max	Units
V _{IL}	Low-Level Input Voltage						0.8	V
V _{IH}	High-Level Input Voltage				2			٧
V _{IC}	Input Clamp Voltage	V _{CC} =MIN	I_{l} = -18 mA				-1.5	٧
I _{IL}	Low-Level Input Current	V _{CC} =MAX	$V_I = 0.4V$				-0.25	mA
I _{IH}	High-Level Input Current	V _{CC} =MAX	$V_1 = 2.4V$				25	μΑ
II	Maximum Input Current	V _{CC} =MAX	V _I =5.5V				1	mA
V _{OL}	Low-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$	MIL	$I_{OL} = 12 \text{ mA}$			0.5	V
		V _{IH} =2V	СОМ	I _{OL} =24 mA				
V _{OH}	High-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$ $V_{IH} = 2V$	MIL	$I_{OH} = -2 \text{ mA}$	2.4			V
			СОМ	I _{OH} =3.2 mA				
l _{OZL}	Off-State Output Current	V _{CC} =MAX V _{IL} =0.8V		V _O =0.4V			-100	μА
lozh		V _{IH} =2V		V _O =2.4V			100	μΑ
I _{OS}	Output Short-Circuit Current*	V _{CC} =5.0V	<u> </u>	V _O =0V	-30		-130	mA
Icc	Supply Current	V _{CC} =MAX				120	180	mA


^{*} No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Switching Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions	Military			Commercial			Units
	rarameter	(See Test Load)	Min	Тур	Max	Min	Тур	Max	Office
f _{MAX}	Maximum Clock Frequency	$C_L = 50 \text{ pF}$ $R_1 = 200\Omega$	10.5			12.5			MHz
t _{PD}	Clock to Q			20	35		20	30	ns
t _{PZX}	Output Enable Delay	$R_2 = 390\Omega$		35	55		35	45	ns
t _{PXZ}	Output Disable Delay	112 33012		35	55		35	45	ns

 $[\]dagger$ All typical values are at $V_{CC}\!=\!5V,\,T_{A}\!=\!25^{\circ}C$

24-Pin Narrow Plastic Dual-In-Line Package (N) Order Number DM74LS491N **NS Package Number N24C**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408