


www.DataSheet4U.com

## Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage                       | 7V              |
|--------------------------------------|-----------------|
| Input Voltage                        | 7V              |
| Operating Free Air Temperature Range |                 |
| DM54LS                               | -55°C to +125°C |
| DM74LS                               | 0°C to +70°C    |
| Storage Temperature Range            | -65°C to +150°C |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions** $v_{CC} = +5.0V$ , $T_A = +25^{\circ}C$

| Symbol                                   | Parameter                                             |          | DM54LS95 |      |          | DM74LS9 | 5    | Units |
|------------------------------------------|-------------------------------------------------------|----------|----------|------|----------|---------|------|-------|
| Symbol                                   | Falantetei                                            | Min      | Nom      | Max  | Min      | Nom     | Max  |       |
| V <sub>CC</sub>                          | Supply Voltage                                        | 4.5      | 5        | 5.5  | 4.75     | 5       | 5.25 | V     |
| V <sub>IH</sub>                          | High Level Input Voltage                              | 2        |          |      | 2        |         |      | v     |
| V <sub>IL</sub>                          | Low Level Input Voltage                               |          |          | 0.7  |          |         | 0.8  | V     |
| I <sub>OH</sub>                          | High Level Output Current                             |          |          | -0.4 |          |         | -0.4 | mA    |
| I <sub>OL</sub>                          | Low Level Output Current                              |          |          | 4    |          |         | 8    | mA    |
| T <sub>A</sub>                           | Free Air Operating Temperature                        | -55      |          | 125  | 0        |         | 70   | °C    |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup Time HIGH or LOW<br>D <sub>S</sub> or Pn to CPn | 20<br>20 |          |      | 20<br>20 |         |      | ns    |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold Time HIGH or LOW<br>D <sub>S</sub> or Pn to CPn  | 10<br>10 |          |      | 10<br>10 |         |      | ns    |
| t <sub>w</sub> (H)                       | CPn Pulse Width HIGH                                  | 20       |          |      | 20       |         |      | ns    |
| t <sub>en</sub> (L)                      | Enable Time LOW, PE to $\overline{CP}1$               | 25       |          |      | 25       |         |      | ns    |
| t <sub>inh</sub> (H)                     | Inhibit Time HIGH, PE to CP1                          | 20       |          |      | 20       |         |      | ns    |
| t <sub>en</sub> (H)                      | Enable Time HIGH, PE to $\overline{CP}2$              | 25       |          |      | 25       |         |      | ns    |
| t <sub>inh</sub> (L)                     | Inhibit Time LOW, PE to $\overline{CP}2$              | 20       |          |      | 20       |         |      | ns    |

2

www.DataSheet4U.com

| Symbol          | Parameter                                           | Conditions                              | Min  | Typ<br>(Note 1) | Мах  | Units |      |
|-----------------|-----------------------------------------------------|-----------------------------------------|------|-----------------|------|-------|------|
| VI              | Input Clamp Voltage                                 | $V_{CC} = Min$ , $I_I = -18 \text{ mA}$ |      |                 | -1.5 | V     |      |
| V <sub>OH</sub> | High Level Output Voltage                           | $V_{CC} = Min, I_{OH} = Max,$           | DM54 | 2.5             | 3.4  |       | - v  |
|                 |                                                     | V <sub>IL</sub> = Max                   | DM74 | 2.7             | 3.4  |       |      |
| V <sub>OL</sub> | Low Level Output Voltage                            | $V_{CC} = Min, I_{OL} = Max,$           | DM54 |                 | 0.25 | 0.4   | v    |
|                 |                                                     | V <sub>IH</sub> = Min                   | DM74 |                 | 0.35 | 0.5   |      |
|                 |                                                     | $I_{OL} = 4 \text{ mA}, V_{CC} = Min$   | DM74 |                 | 0.25 | 0.4   |      |
| lı              | Input Current @ Max<br>Input Voltage                | $V_{CC} = Max, V_I = 7V$                | DM74 |                 |      | 0.1   | mA   |
|                 |                                                     | $V_{I} = 10V$                           | DM54 |                 |      | 0.1   |      |
|                 | PE Input                                            | $V_{CC} = Max, V_I = 7V$                | DM74 |                 |      | 200   | μΑ   |
|                 |                                                     | $V_{I} = 10V$                           | DM54 |                 |      | 200   |      |
| IIH             | High Level Input Current $V_{CC} = Max, V_I = 2.7V$ |                                         |      |                 |      | 20    | μΑ   |
|                 | PE Input                                            | $V_{CC} = Max, V_I = 2.7V$              |      |                 |      | 40    | μΑ   |
| Ι <sub>ΙL</sub> | Low Level Input Current                             | $V_{CC} = Max, V_I = 0.4V$              |      |                 |      | -0.4  | mA   |
|                 | PE Input                                            | $V_{CC} = Max, V_I = 0.4V$              |      |                 |      | -0.8  | mA   |
| los             | Short Circuit<br>Output Current                     | V <sub>CC</sub> = Max                   | DM54 | -20             |      | -100  | - mA |
|                 |                                                     | (Note 2)                                | DM74 | -20             |      | -100  |      |
| Icc             | Supply Current                                      | V <sub>CC</sub> = Max                   |      |                 |      | 21    | mA   |

## Switching Characteristics $V_{CC} = +5.0V$ , $T_A = +25^{\circ}C$

| Symbol           | Parameter                                          | RL<br>CL ⁼ | Units |     |  |
|------------------|----------------------------------------------------|------------|-------|-----|--|
|                  |                                                    | Min        | Мах   |     |  |
| t <sub>PLH</sub> | Propagation Delay Time<br>Low to High Level Output |            | 27    | ns  |  |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output |            | 27    | ns  |  |
| f <sub>max</sub> | Maximum Shift Frequency                            | 30         |       | MHz |  |

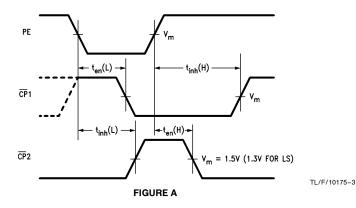
## **Functional Description**

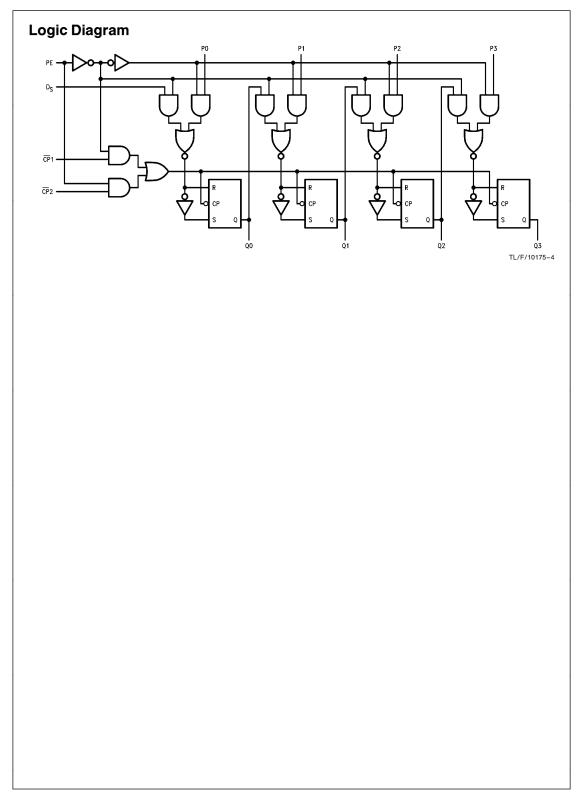
The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (D<sub>S</sub>) and four Parallel (P0–P3) Data inputs and four Parallel Data outputs (Q0–Q3). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs,  $\overline{CP1}$  and  $\overline{CP2}$ . The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOW transition of the selected clock input.

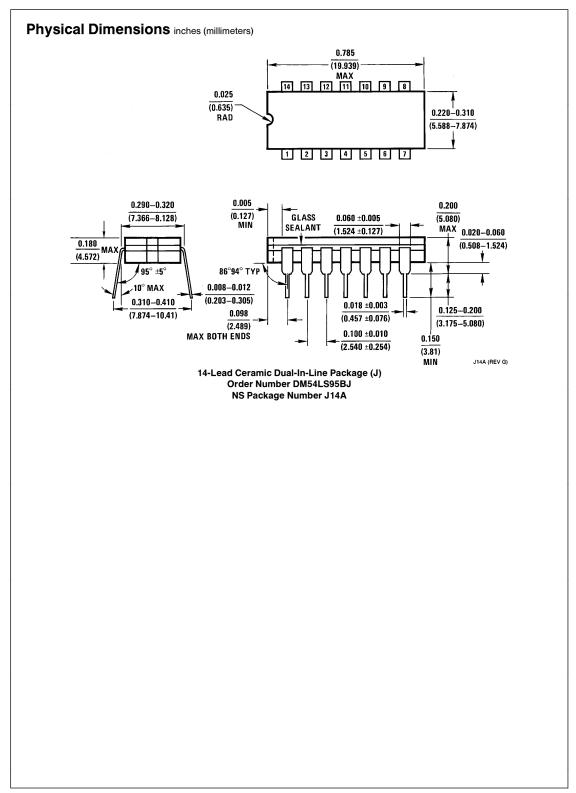
When PE is HIGH,  $\overline{CP2}$  is enabled. A HIGH-to-LOW transition on enabled  $\overline{CP2}$  transfers parallel data from the P0– P3 inputs to the Q0–Q3 outputs. When PE is LOW,  $\overline{CP1}$  is enabled. A HIGH-to-LOW transition on enabled  $\overline{CP}1$  transfers the data from Serial input (D<sub>S</sub>) to Q0 and shifts the data in Q0 to Q1, Q1 to Q2, and Q2 to Q3 respectively (right-shift). A left-shift is accomplished by externally connecting Q3 to P2, Q2 to P1, and Q1 to P0, and operating the '95 in the parallel mode (PE = HIGH). For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PE from LOW to HIGH while  $\overline{CP}2$  is HIGH, or changing PE from HIGH to LOW while  $\overline{CP}1$  is HIGH and  $\overline{CP}2$  is LOW will not cause any changes on the register outputs.

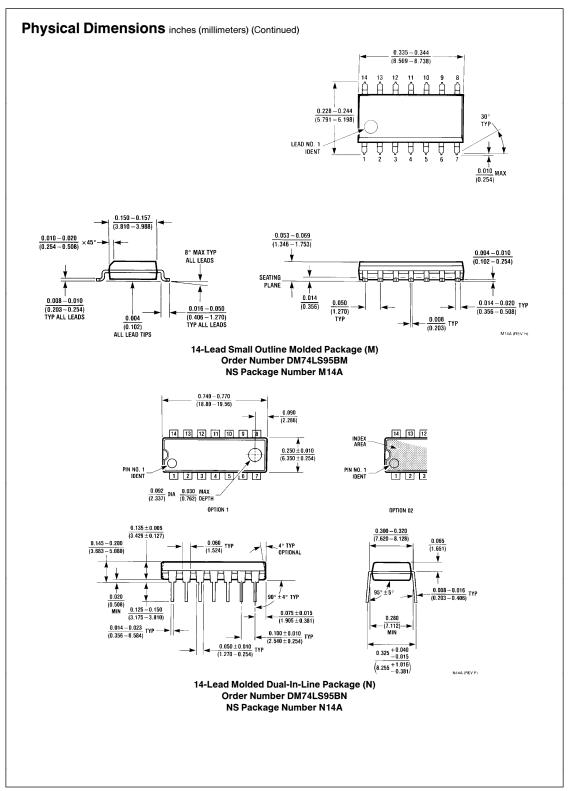
| Mode Select Table |          |        |        |    |    |              |        |    |    |  |
|-------------------|----------|--------|--------|----|----|--------------|--------|----|----|--|
| Operating         | Inputs   |        |        |    |    | Outputs      |        |    |    |  |
| Mode              | PE       | CP1    | CP2    | DS | Pn | Q0           | Q1     | Q2 | Q3 |  |
| Shift             | L        | $\sim$ | Х      | Ι  | Х  | L            | q0     | q1 | q2 |  |
| Simt              | L        | $\sim$ | Х      | h  | Х  | н            | q0     | q1 | q2 |  |
| Parallel Load     | н        | Х      | $\sim$ | х  | pn | p0           | p1     | p2 | р3 |  |
|                   | $\sim$   | L      | L      | Х  | Х  | No Change    |        |    |    |  |
|                   |          | L      | L      | Х  | Х  | No Change    |        |    |    |  |
|                   | $\sim$   | н      | L      | Х  | Х  | No Change    |        |    |    |  |
| Mode Change       |          | н      |        | Х  | Х  | Undetermined |        |    |    |  |
| Wode Onlange      |          | L      | н      | Х  | Х  | Undetermined |        |    |    |  |
|                   |          | L      | н      | Х  | Х  | No Change    |        |    |    |  |
|                   |          | н      | н      | Х  | Х  | Undetermined |        |    |    |  |
|                   | <u> </u> | Н      | Н      | Х  | Х  | No C         | Change |    |    |  |

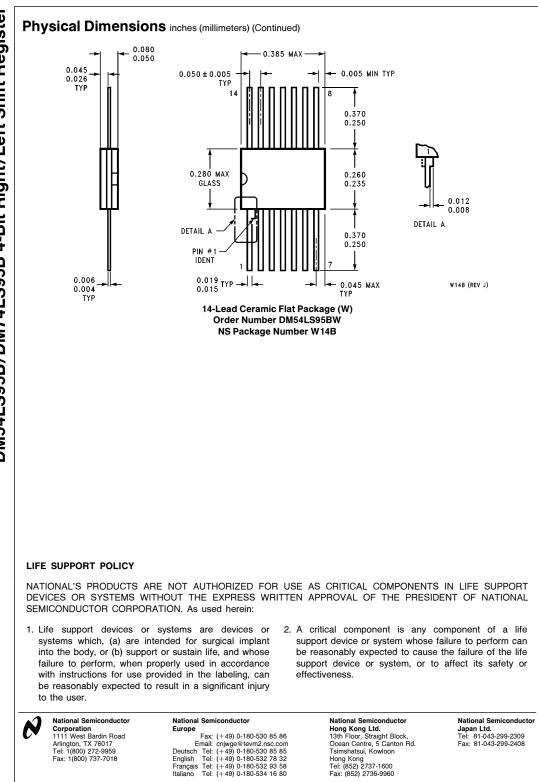
I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.


h = HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.


 ${\sf pn}={\sf Lower}$  case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.


H = HIGH Voltage Level


L = LOW Voltage Level


X = Immaterial











National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications