

DM8606BF 6-Port Fast Ethernet Single Chip Switch Controller

DAVICOM Semiconductor, Inc.

DM8606BF

6-Port Fast Ethernet

Single Chip Switch Controller

DATA SHEET

Preliminary Version: DM8606BF-DS-P01 Dec. 07, 2005

Preliminary Version: DM8606BF-DS-P01 Dec, 07, 2005

6-Port Fast Ethernet Single Chip Switch Controller

Table of Contents

Chapter 1 Product Overview	.1-1
1.1 Overview	. 1-1
1.2 Features	. 1-2
1.3 Applications	. 1-3
1.4 Block Diagram	. 1-3
1.5 Abbreviations	. 1-4
1.6 Conventions	. 1-5
1.6.1 Data Lengths	. 1-5
1.6.2 Pin Types	. 1-5
1.6.3 Register Types	. 1-5
Chapter 2 Interface Description	.2-1
2.1 Pin Diagram	.2-1
2.2 Pin Description by Function	.2-2
2.2.1 Network Media Connection	. 2-2
2.2.2 Port 4 MII Interface	. 2-2
2.2.3 Port 5 MII Interface	. 2-5
2.2.4 LED Interface	.2-8
2.2.5 EEPROM Interface	.2-9
2.2.6 Power/Ground, 48 pins	2-10
2.2.7 Miscellaneous	2-10
Chapter 3 Function Description	.3-1
3.1 Switch Functional Description	. 3-1
3.1.1 Basic Operation	. 3-1
3.1.2 Buffers and Queues	. 3-1
3.1.3 Full Duplex Flow Control	. 3-1
3.1.4 Half Duplex Flow Control	. 3-1
3.1.5 Back-Off Algorithm	
3.1.6 Inter-Packet Gap (IPG)	. 3-1
3.1.7 Trunking Function	. 3-2
3.1.8 Illegal Frames	. 3-2
3.1.9 Broadcast Storm	
3.1.10 Bandwidth Control	. 3-2
3.1.11 Smart Discard	. 3-3
3.1.12 LED Display	
3.1.13 Packet Identification	
3.1.14 Tagged VLAN or Port VLAN	.3-7
3.1.15 Priority Queue	
3.1.16 Address Learning	
3.1.17 Address Aging	
3.1.18 Hardware based IGMP Snooping	
3.1.19 Source Violation	
3.1.20 Packet Forwarding	3-17

6-Port Fast Ethernet Single Chip Switch Controller

3.1.21 Special TAG	
3.2 10/100M PHY Block	
3.2.1 Auto Negotiation	
3.2.2 Speed/Duplex Configuration	
3.3 Hardware, EEPROM and SMI Interface for Configuration	
3.3.1 Hardware Setting	
3.3.2 EEPROM Interface	
3.3.3 SMI Interface	
Chapter 4 Register Description	
4.1 EEPROM Content	
4.1.1 Memory Map	
4.2 EEPROM Basic Register Map	
4.2.1 Signature Register	
4.2.2 P0, P1, P2, P3, P4 and P5 Basic Control Registers	
4.2.3 P0, P1, P2, P3, P4, P5 Extended Control Registers	
4.2.4 System Control Register 0	
4.2.5 System Control Register 1	
4.2.6 Multicast Snooping Register	
4.2.7 ARP/RARP Register	
4.2.8 VLAN Priority Map Register	
4.2.9 TOS Priority Map Register	
4.2.10 System Control Register 2	
4.2.11 System Control Register 3	
4.2.12 System Control Register 4	
4.2.13 Port Security Option, Port Spanning Tree State and Forward Group	
Мар 4-37	
4.2.14 Unicast Portmap and Forward Group Port Map	
4.2.15 Broadcast Portmap and Forward Group Port Map	
4.2.16 Multicast Portmap and Forward Group Port Map	
4.2.17 Reserve Portmap and Forward Group Port Map	
4.2.18 Packet Identification Option, Forward Group Port Map	
4.2.19 VLAN Priority Enable and Forward Group Port Map	
4.2.20 Service Priority Enable and Forward Group Port Map	
4.2.21 Input Force No Tag and Forward Group Port Map	
4.2.22 Ingress Filter and Forward Group Port Map	
4.2.23 VLAN Security Disable and Forward Group Port Map	
4.2.24 Buffer Threshold Register 0	
4.2.25 Buffer Threshold Register 1	4-44
4.2.26 IGMP/MLD TRAP Enable, and Input Jam Threshold Register	4-44
4.2.27 Queue 2 Weight, VID Exist Check, and PPPOE Port Only	
4.2.28 Queue 3 Weight, Back to Port VLAN, and Admit Only VLAN-Tagge	
4.2.29 Input Double Tag Enable, and POVID[11:4]	
4.2.30 Output Double Tag Enable, and P1VID[11:4]	
4.2.31 Output Tag Bypass, and P2VID[11:4]	
4.2.32 P3VID[11:4], and P4VID[11:4]	

6-Port Fast Ethernet Single Chip Switch Controller 4-45

o Ton Tust Emerner Single Chip Switch Co	nironer
4.2.33 Reserved Address Control, and P5VID[11:4]	4-45
4.2.34 PHY Control Register	4-46
4.2.35 DM TAG Ether Type	4-46
4.2.36 PHY Restart Register	4-46
4.2.37 Miscellaneous Register	4-46
4.2.38 Basic Bandwidth Control Register 0	4-47
4.2.39 Basic Bandwidth Control Register 1	4-47
4.2.40 Bandwidth Control Enable Register	4-48
4.2.41 Extended Bandwidth Control Register 0	4-49
4.2.42 Extended Bandwidth Control Register 1	4-49
4.2.43 Extended Bandwidth Control Register 2	4-49
4.2.44 Extended Bandwidth Control Register 3	4-49
4.2.45 Extended Bandwidth Control Register 4	4-49
4.2.46 Extended Bandwidth Control Register 5	4-50
4.2.47 Default VLAN Member and Extended Bandwidth Control Register 6	4-50
4.2.48 New Storm Register 0	
4.2.49 New Storm Register 1	
4.2.50 New Reserve Address Control Register 0	4-51
4.2.51 New Reserve Address Control Register 1	
4.2.52 Hardware IGMP Control Register	
4.3 EEPROM Extended Register Map	
4.3.1 VLAN Filter 0 ~ 15 Low	
4.3.2 VLAN Filter 0 ~ 15 High	4-55
4.3.3 Type Filter 0 ~ 7	
4.3.4 Protocol Filter 0 ~ 7	
4.3.5 Service Priority Mapping	
4.3.6 Service Priority Mapping	
4.3.7 Service Priority Mapping	
4.3.8 Service Priority Mapping	
4.3.9 Service Priority Mapping	
4.3.10 Service Priority Mapping	
4.3.11 Service Priority Mapping	
4.3.12 Service Priority Mapping	
4.3.13 Reserve Action	
4.3.14 TCP/UDP Filter 0 ~ 7	4-60
4.3.15 Type Filter Action	4-60
4.3.16 Protocol Filter Action	
4.3.17 TCP/UDP Action 0	
4.3.18 TCP/UDP Action 1	
4.3.19 TCP/UDP Action 2	
4.3.20 Extended IGMP Control/Special Tag Insert Control	
4.3.21 Interrupt Enable Register	
4.3.22 Interrupt Status Register	
4.3.23 Security Control Register (Reserved)	
4.4 Counter and Status Register Map	

DAVICOM	DM8606BF
	t Ethernet Single Chip Switch Controller
4.4.1 Chip Identifier 0, offset: 0xa0h	
4.4.2 Chip Identifier 1, offset: 0xa1h	
4.4.3 Port Status 0, offset: 0xa2h	
4.4.4 Port Status 1, offset: 0xa3h	
4.4.5 Port Status 2, offset: 0xa4h	
4.4.6 Port Status 3, offset: 0xa5h	
4.4.7 Reserved Register, offset: 0xa6h	
4.4.8 Reserved Register, offset: 0xa7h	
4.4.9 Counter Low, offset: 0x0a8h ~ 0x113	
4.4.10 Counter High, offset: 0x0a8h ~ 0x11	
4.4.11 Over-Flow Flag 0, offset: 0x114h	
4.4.12 Over-Flow Flag 1, offset: 0x115h	
4.4.13 Over-Flow Flag 2, offset: 0x116h	
4.4.14 Over-Flow Flag 3: Register 0x117h	
4.4.15 Over-Flow Flag 4, offset: 0x118h	
4.4.16 Over-Flow Flag 5: Register 0x119h	
4.4.17 Hardware Setting Low: Register 0x1	
4.4.18 Hardware Setting High: Register 0x	
4.4.19 Assign Address [15:0]: Register 0x1	
4.4.20 Assign Address [31:16]: Register 0x	
4.4.21 Assign Address [47:32]: Register 0x	
4.4.22 Assign Option Register: 0x135h	
4.4.23 Mirror Register 0: 0x136h	
4.4.24 Mirror Register 1: 0x137h 4.4.25 Security Violation Port: 0x138h	
4.4.25 Security Violation Fort: 0x158h 4.4.26 Security Status 0: 0x139h	
4.4.20 Security Status 0: 0x139h 4.4.27 Security Status 1: 0x13ah	
4.4.28 First Lock Address Search: 0x13bh.	
4.4.29 First Lock Address [15:0]: 0x13ch	
4.4.30 First Lock Address [31:16]: 0x13dh	
4.4.31 First Lock Address [51:10]: 0x13di 0x13eh	
4.4.32 First Lock FID: 0x13fh	
4.4.33 Counter Control Low: Register 0x14	
4.4.34 Counter Control High: Register 0x14	
4.4.35 Counter Status Low: Register 0x142	
4.4.36 Counter Status High: Register 0x14	
4.5 PHY Register Map	
4.5.1 PHY Control Register of Port0 ~ 4	
4.5.2 PHY Status Register of Port0 ~ 4	
4.5.3 PHY Identifier Register of Port0 ~ 4.	
4.5.4 PHY Identifier Register of Port0 ~ 4.	
4.5.5 Auto Negotiation Advertisement Regi	
4.5.6 Auto Negotiation Link Partner Ability	
4.5.7 Auto Negotiation Expansion Register	
4.5.8 Next Page Transmit Register of Port0	~ 4

6-Port Fast Ethernet Single Chip Switch Controller

4.5.9 Link Partner Next Page Register of Port0 ~ 4	
Chapter 5 Electrical Specification	
5.1 TX/FX Interface	
5.1.1 TP Interface	5-1
5.1.2 FX Interface	
5.2 DC Characteristics	
5.2.1 Power Consumption	5-3
5.2.2 Absolute Maximum Rating	5-3
5.2.3 Recommended Operating Conditions	
5.2.4 DC Electrical Characteristics for 3.3V Operation	
5.3 AC Characteristics	
5.3.1 XTAL/OSC Timing	5-5
5.3.2 Power On Reset	5-6
5.3.3 EEPROM Interface Timing	5-6
5.3.4 10Base-TX MII Input Timing	5-7
5.3.5 10Base-TX MII Output Timing	
5.3.6 100Base-TX MII Input Timing	
5.3.7 100Base-TX MII Output Timing	5-9
5.3.8 GPSI (7-wire) Input Timing	
5.3.9 GPSI (7-wire) Output Timing	
5.3.10 SDC/SDIO Timing	
5.3.11 MDC/MDIO Timing	5-13
Chapter 6 Packaging and Ordering	6-1
128 Pin QFP Outside Dimension	
Ordering Information	

6-Port Fast Ethernet Single Chip Switch Controller

List of Figures

Figure 1-1 DM8606BF Block Diagram
Figure 2-1 4 TP/FX PORT + 2 MII PORT 128 Pin Diagram
Figure 3-1 Circuit for single color LED mode
Figure 3-2 Circuit for dual color LED mode
Figure 3-4 Interconnection between DM8606BF, EEPROM and CPU
Figure 5-1 TX Interface
Figure 5-2 FX Interface
Figure 5-3 XTAL/OSC Timing
Figure 5-4 Power On Reset Timing
Figure 5-5 EEPROM Interface Timing
Figure 5-6 10Base-TX MII Input Timing
Figure 5-7 10Base-TX MII Output Timing
Figure 5-8 100Base-TX MII Input Timing
Figure 5-9 100Base-TX MII Output Timing
Figure 5-10 GPSI (7-wire) Input Timing
Figure 5-11 GPSI (7-wire) Output Timing
Figure 5-12 SDC/SDIO Timing
Figure 5-13 MDC/MDIO Timing
Figure 6-6-1 128 Pin QFP Outside Dimension

6-Port Fast Ethernet Single Chip Switch Controller

List of Tables

Table 3-1 Speed/Duplex Configuration	
Table 5-1 Power Consumption	
Table 5-2 Electrical Absolute Maximum Rating	
Table 5-3 Recommended Operating Conditions	
Table 5-4 DC Electrical Characteristics for 3.3V Operation	
Table 5-5 XTAL/OSC Timing	
Table 5-6 Power on reset timing	
Table 5-7 EEPROM Interface Timing	
Table 5-8 10Base-TX MII Input Timing	
Table 5-9 10Base-TX MII Output Timing	
Table 5-10 100Base-TX MII Input Timing	
Table 5-11 100Base-TX MII Output Timing	
Table 5-12 GPSI (7-wire) Input Timing	
Table 5-13 GPSI (7-wire) Output Timing	
Table 5-14 SDC/SDIO Timing	
Table 5-15 MDC/MDIO Timing	

6-Port Fast Ethernet Single Chip Switch Controller

Chapter 1 Product Overview

1.1 Overview

The DM8606BF is a high performance, low cost, highly integrated (Controller, PHY and Memory) fourport 10/100 Mbps TX/FX plus two 10/100 MAC port Ethernet switch controller with all ports supporting 10/100 Mbps Full/Half duplex. The DM8606BF is intended for applications to stand alone bridge for low cost SOHO markets such as 5Port, Router applications. The 2nd MAC can be configured as PCS type MII with 10/100 PHY integrated.

DM8606BF provides the most advance functions such as: 802.1p(Q.O.S.), 802.1q(VLAN), Port MAC address Locking, Management, Port Status, TP Auto-MDIX, 25M Crystal & Extra MII port functions to meet customer requests on Switch demand.

The DM8606BF also supports Back Pressure in Half-Duplex mode and 802.3x Flow Control Pause packet in Full-Duplex mode to prevent packet loss when buffers are full. When Back Pressure is enabled, and there is no receive buffer available for the incoming packet, the DM8606BF will issue a JAM pattern on the receiving port in Half Duplex mode and transmit the 802.3x Pause packet back to receiving end in Full Duplex mode.

The built-in SRAM used for the packet buffer and address learning table is divided into 256 bytes/block to achieve the optimized memory utilization through complicated link list on packets with various lengths.

DM8606BF also supports priority features by Port-Base, VLAN and IP TOS field checking. Users can easily set different priority modes in individual ports, through a small low-cost micro controller to initialize or on-the-fly to configure. Each output port supports four queues in the way of fixed N: 1 fairness queuing to fit the bandwidth demand on various types of packet such as Voice, Video and data. 802.1Q, Tag/Untag, and up to 16 groups of VLAN are also supported.

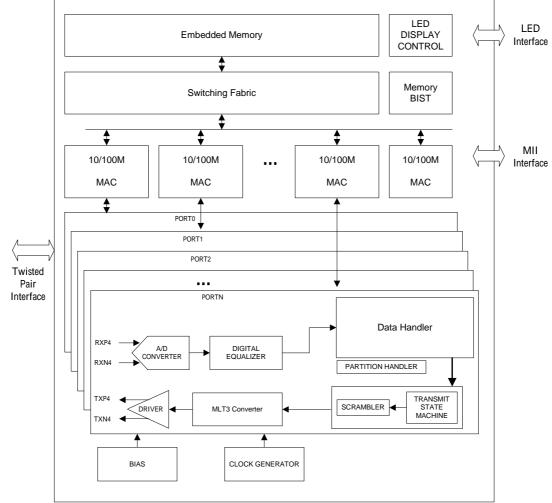
An intelligent address recognition algorithm allows DM8606BF to recognize up to 2048 different MAC addresses and enables filtering and forwarding at full wire speed.

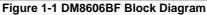
Port MAC address Locking function is also supported by DM8606BF to use on Building Internet access to prevent multiple users sharing one port traffic.

6-Port Fast Ethernet Single Chip Switch Controller

1.2 Features

- Supports five 10M/100M auto-detect Half/Full duplex switch ports with **TX/FX** interfaces and one MII/GPSI/RMII port.
- Supports 2K MAC addresses table with 4-ways associative hash algorithm.
- Supports four queue for QoS
- Supports priority features by Port-Based, Application-Based, Diffserv, 802.1p VLAN, IP TOS of packets.
- Supports Store & Forward architecture and performs forwarding and filtering at non-blocking full wire speed.
- Supports per port Single/Dual color mode with Power On auto diagnostic. Collision/Duplex LED can be separate by register setting.
- Supports 802.3x Flow Control pause packet for Full Duplex in case buffer is full.
- Supports Back Pressure function for Half Duplex operation in case buffer is full.
- Supports packet length up to 1518/1522 (Default)/1536/>1536 bytes.
- Scalable Per Port Bandwidth Control (Both Ingress and Egress) .(Step = 64K, up to 100M)
- Broadcast Storming Filter function.
- Supports 802.1Q VLAN. Up to 16 VLAN groups is implemented by full 12 bits VID matching.
- Support MAC clone function to enable multiple WAN application
- Supports TP interface Auto MDIX function for auto TX/RX swap by strapping-pin.
- Interrupt pin , Interrupt Register and Interrupt Mask Register. Programmable interrupt polarity (Default active low)
- Easy Management 32bits smart counter for per port RX/TX byte/packet count, error count and collision count.
- Support 32 hardware IGMP Table (Multicast Table)
- MAC Address Table is Accessible.
- Support 802.1x.
- Support Spanning Tree Protocol
- Support internal counter/PHY status output for management system.
- 25M Crystal only for the whole system.
- 128 QFP package with 0.18um technology. 1.8V/3.3V power supply.
- 1.0w low power consumption.


6-Port Fast Ethernet Single Chip Switch Controller


1.3 Applications

DM8606BF in 128-pin PQFP:

SOHO 5-port switch 5-port switch + Router with MII CPU interface.

1.4 Block Diagram

6-Port Fast Ethernet Single Chip Switch Controller

1.5 Abbreviations

BER	Bit Error Rate
CFI	Canonical Format Indicator
COL	Collision
CRC	Cyclic Redundancy Check
CRS	Carrier Sense
CS	Chip Select
DA	Destination Address
DA DI	
DO	Data Input Data Output
EDI	EEPROM Data Input
EDO	EEPROM Data Input EEPROM Data Output
EECS	EEPROM Chip Select
EESK	EEPROM Clock
ESD	End of Stream Delimiter
FEFI	Far End Fault Indication
FET	Field Effect Transistor
FLP	Fast Link Pulse
GND	Ground Constal Durmage Seriel Interface
GPSI	General Purpose Serial Interface
IPG	Inter-Packet Gap
LFSR	Linear Feedback Shift Register
MAC	Media Access Controller
MDIX	MDI Crossover
MII	Media Independent Interface
NRZI	Non Return to Zero Inverter
NRZ	Non Return to Zero
PCS	Physical Coding Sub-layer
PHY	Physical Layer
PLL	Phase Lock Loop
PMA	Physical Medium Attachment
PMD	Physical Medium Dependent
QoS	Quality of Service
QFP	Quad Flat Package
RST	Reset
RXCLK	Receive Clock
RXD	Receive Data
RXDV	Receive Data Valid
RXER	Receive Data Errors
RXN	Receive Negative (Analog receive differential signal)
RXP	Receive Positive (Analog receive differential signal)
SA	Source Address
SOHO	Small Office Home Office
SSD	Start of Stream Delimiter

6-Port Fast Ethernet Single Chip Switch Controller

Signal Quality Error
Type of Service
Twisted Pair
Transistor Transistor Logic
Transmission Clock
Transmission Data
Transmission Enable
Transmission Negative
Transmission Positive

1.6 Conventions

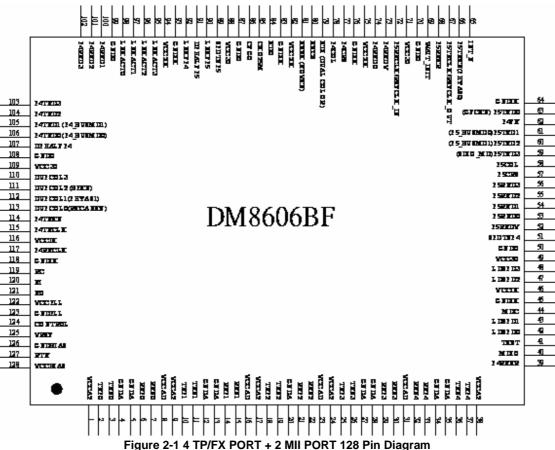
1.6.1 Data Lengths

qword	64-bits
dword	32-bits
word	16-bits
byte	8 bits
nibble	4 bits

1.6.2 Pin Types

Pin Type	Description
Ι	Input
0	Output
I/O	Bi-directional
OD	Open drain
SCHE	Schmitt Trigger
PD	internal pull-down
PU	internal pull-up

1.6.3 Register Types


Register Type	Description
RO	Read-only
WO	Write-only
RW	Read/Write

6-Port Fast Ethernet Single Chip Switch Controller

Chapter 2 Interface Description

2.1 Pin Diagram

6-Port Fast Ethernet Single Chip Switch Controller

2.2 Pin Description by Function

DM8606BF pins are categorized into one of the following groups:

- Section <u>2.2.1 Network Media Connection</u>
- Section 2.2.2 Port 4 MII Interface
- Section <u>2.2.3 Port 5 MII Interface</u>
- Section <u>2.2.4 LED Interface</u>
- Section <u>2.2.5 EEPROM Interface</u>
- Section <u>2.2.6 Power/Ground</u>, <u>48 pins</u>
- Section <u>2.2.7 Miscellaneous</u>

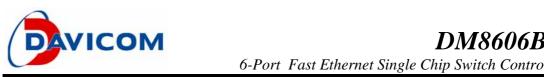
Note:

"Section 1.6.2 Pin Types" can be used for reference.

2.2.1 Network Media Connection

Pad Name	Pad#	Туре	Descriptions
RXP[4:0]	6, 14, 21, 29, 33	IO	
KAI [4.0]		ANA	Receive Pair. Differential data is received on this pin.
RXN[4:0]	7, 15, 22, 30, 32	10	
		ANA	
TXP[4:0]	2, 10, 18, 25, 37	IO	
1 /1 [4.0]		ANA	Transmit Pair. Differential data is transmitted on this pin.
TXN[4:0]	3, 11, 19, 26, 36	IO	
1711[4.0]		ANA	

2.2.2 Port 4 MII Interface


Pad Name	Pad#	Туре	Descriptions
MMII_P4RXD0	74	I, LVTTL	Port 4 MII Port Receive Data bit 0. In MAC MII mode, the bit is the LSB of MII receive data, synchronous to the rising edge of MMII_P4RXCLK.
HDLC_P4RXD			HDLC Receive Data. When port 4 is operating in HDLC mode, this pin is acts as Receive Data Input and synchronous to the rising edge of HDLC_P4RXCLK.
PMII_P4RXD0		0, 8mA	Port 4 MII Port Receive Data bit 0. When port 4 is operating in PCS MII mode, the bit is the LSB of MII receive data output and synchronous to the rising edge of PMII_P4RXCLK.

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
MMII_P4RXD[3: 1]	102,101,100	I,	Port 4 MII Port Receive Data bit $3 \sim 1$. In MAC MII mode, these pins are bit[3:1] of MII receive data, and synchronous to the rising edge of MMII P4RXCLK.
PMII_P4RXD[3:1]			Port 4 MII Port Receive Data bit $3 \sim 1$. When port 4 is operating in PCS MII mode, these pins are bit[3:1] of MII receive data output and synchronous to the rising edge of PMII P4RXCLK.
MMII_P4RXDV	73	I, LVTTL	Port 4 MII Port Receive Data Valid. Active high to indicate that the data on MMII_P4RXD[3:0] is valid. Synchronous to the rising edge of MMII_P4RXCLK.
PMII_P4RXDV			Port 4 MII Port Receive Data Valid. When port 4 is operating in PCS MII mode, this pin is an active high output signal to indicate PMII_P4RXD[3:0] is valid. Synchronous to the rising edge of PMII_P4RXCLK.
MII_P4RXER	39	I, LVTTL	Port 4 MII Receive Error. Active high to indicate that there is error on the MII_P4RXD[3:0]. Upon receiving this signal, DM8606BF will send Error Symbol onto the medium. Only valid in 100M operation.
MMII_P4CRS	77	I, LVTTL	Port 4 MII Port Carrier Sense. In full duplex mode, CRS_P4 reflects the receive carrier sense situation on medium only; In Half Duplex, CRS will be high both in receive and transmit condition.
PMII_P4CRS		0, 8mA	Port 4 MII Port Carrier Sense. When port 4 is operating in PCS MII mode, this pin is used to output Carrier Sense status.
MMII_P4COL	78	I,	Port 4 MII Port Collision input. Active high to indicate that there is collision on the medium. Stay low in full duplex operation.
PMII_P4COL			Port 4 MII Port Collision input. When port 4 is operating in PCS MII mode, this pin is used to output collision status.
Power On Setting P4_BUSMD0	106	I,PD,	Port 4 Bus Type Configuration 0. Value on this pin will be latched by DM8606BF at the rising edge of RESETL for Port 4 Configuration Bit 0. Combined with CFG and P4_BUSMD1, DM8606BF provides 4 bus type for port 4. See CFG pin description for more detail.
MMII_P4TXD0		0, 8mA	Port 4 MII Transmit Data bit 0. The LSB bit of MAC MII Transmit data of port 4. Synchronous to the rising edge of MMII_P4TXCLK.
HDLC_P4TXD			Port 4 HDLC Transmit Data. When port 4 is operating in HDLC mode, this pin acts as HDLC Transmit Data. Synchronous to the rising edge of HDLC_P4TXCLK.
PMII_P4TXD0			Port 4 MII Transmit Data bit 0. When port 4 is operating in PCS MII mode, this pin is the LSB of MII transmit data input and synchronous to the rising edge of PMII_P4TXCLK.

Pad Name	Pad#		
	1 aut		Descriptions
Power On Setting P4_BUSMD1	105	I,PD, LVTTL	Port 4 Bus Type Configuration 1. Value on this pin will be latched by DM8606BF at the rising edge of RESETL for Port 4 Configuration Bit 1. Combined with CFG and P4_BUSMD0, DM8606BF provides 4 bus type for port 4, See CFG for more detail
MMII_P4TXD1		8mA	Port 4 MII Transmit Data bit 1. The second bit of MAC MII Transmit data of port 4. Synchronous to the rising edge of MMII_P4TXCLK.
PMII_P4TXD1		LVTTL	Port 4 MII Transmit Data bit 1. When port 4 is operating in PCS MII mode, this pin is second bit of MII transmit data input and synchronous to the rising edge of PMII_P4TXCLK.
MMII_P4TXD[3: 2]	103,104		Port 4 MII Transmit Data bit 3 ~ 2. The bit [3:2] of MAC MII Transmit data of port 4. Synchronous to the rising edge of MMII_P4TXCLK.
PMII_P4TXD[3:2]		LVTTL	Port 4 MII Transmit Data bit 3 ~ 2. When port 4 is operating in PCS MII mode, these pins are bit[3:2] of MII transmit data input and synchronous to the rising edge of PMII_P4TXCLK.
MMII_P4TXEN	114	8mA	Port 4 MII Transmit Enable. Output by DM8606BF at the rising edge of MMII_P4TXCLK when DM8606BF is programmed to MAC Type MII;
PMII_P4TXEN			Port 4 MII Transmit Enable. It is input to DM8606BF when programmed to PCS Type MII.
MMII_P4RXCLK	117	I,	Port 4 MII Port Receive Clock. 25M Free Running clock in 100M Mode and 2.5M free running clock in 10M Mode. MMII_P4RXDV and MMII_P4RXD[3:0] should synchronous to the rising edge of this clock
HDLC_P4RXCL K			Port 4 MII Port/HDLC Receive Clock Input.
PMII_P4RXCLK		8mA	Port 4 MII Port Receive Clock. 25M Free Running clock in 100M Mode and 2.5M free running clock in 10M Mode. PMII_P4RXDV and PMII_P4RXD[3:0] should synchronous to the rising edge of this clock
MMII_P4TXCLK	115	I,	Port 4 MII Port Receive Clock. 25M Free Running clock in 100M Mode and 2.5M free running clock in 10M Mode. MMII_P4TXEN and MMII_P4TXD[3:0] should synchronous to the rising edge of this clock
HDLC_P4TXCL K			Port 4 HDLC Transmit clock Input.
PMII_P4TXCLK		8mA	Port 4 MII Port Receive Clock. 25M Free Running clock in 100M Mode and 2.5M free running clock in 10M Mode. PMII_P4TXEN and PMII_P4TXD[3:0] should synchronous to
			the rising edge of this clock

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
LNKFP4	92	I,PD,	Port 4 Link Fail Status Input.
		LVTTL	0 : Link Up
			1 : Link Failed
DPHALFP4	107	I,PD,	Port 4 Duplex status Input.
		LVTTL	0 : Full Duplex
			1 : Half Duplex
P4FX	62	I,PD,	Port 4 Fiber Selection. During power on reset, value will be
		LVTTL	latched by DM8606BF at the rising edge of RESETL as P4
			Fiber select.
			0 : Twisted Pair Mode
			1 : Fiber Mode

2.2.3 Port 5 MII Interface

Pad Name	Pad#	Type	Descriptions
Power On Setting	63		Global Flow Control Enable. Value on this pin will be latched
GFCEN		LVTTL	by DM8606BF at the rising edge of RESETL as Flow control
			enable.
			0 : Flow Control Capability is depended upon the register
			setting in corresponding EEPROM register
			1 : All ports flow control capability is enabled.
MII_P5TXD0			Port 5 MII Transmit Data bit 0. The LSB bit of MII Transmit
			data of port 5. Synchronous to the rising edge of MII_P5TXCLK.
GPSI_P5TXD		0,	In GPSI Mode, Transmit Data
		4mA	When port 5 is operating in GPSI mode, this pin acts as GPSI
			Transmit Data. Synchronous to the rising edge of
			GPSI_P5TXCLK.
RMII P5TXD0		О,	Port 5 RMII Transmit Data bit 0
		4mA	When port 5 is operating in RMII mode, this pin acts as RMII
			Transmit Data Bit [0]. Synchronous to the rising edge of
			REFCLK_IN.
Power On Setting	61		Port 5 bus mode selection bit 0. Value on this pin will be
P5_BUSMD[0]			latched by DM8606BF at the rising edge of RESETL as port 5 bus mode selection bit 0.
			P5_BUSMD[1:0] Interface
			00 MII
			01 GPSI
			10 RMII
			11 Reserved and Not Allowed.
MII P5TXD1		О,	Port 5 MII Transmit Data bit 1. The Second bit of MII
_		4mA	Transmit data of port 5. Synchronous to the rising edge of
			MII_P5TXCLK.
RMII_P5TXD1			Port 5 RMII Transmit Data bit 1. The Second bit of RMII
			Transmit data of port 5. Synchronous to the rising edge of
			REFCLK_IN.

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#		Descriptions
Power On Setting P5_BUSMD[1]	60		Port 5 bus mode selection bit 1. Value on this pin will be latched by DM8606BF at the rising edge of RESETL as port 5 bus mode selection bit 1.
MII_P5TXD2		4mA	Port 5 MII Transmit Data bit 2. The Third bit of MII Transmit data of port 5. Synchronous to the rising edge of MII_P5TXCLK.
Power On Setting SDIO_MD	59		SDC/SDIO mode selection. Value on this pin will be latched by DM8606BF at the rising edge of RESETL as SDC/SDIO control signal which is used to select 16 bits or 32 bits mode. 0 : 32 bits mode 1 :.16 bits mode
MII_P5TXD3		4mA	Port 5 MII Transmit Data bit 3. The MSB bit of MII Transmit data of port 5. Synchronous to the rising edge of MII_P5TXCLK.
Power On Setting PHYAS0	66	LVTTL	PHY Address MSB bit 0. During power on reset, value will be latched by DM8606BF at the rising edge of RESETL as PHY start address select. PHYAD E2PRM Master
MII_P5TXEN		8mA	Port 5 MII Transmit Enable TXEN. Active high to indicate that the data on MII_P5TXD[3:0] is valid. Synchronous to the rising edge of MII_P5TXCLK.
GPSI_P5TXEN		8mA	Port 5 GPSI Transmit Enable TXEN. Active high to indicate that the data on GPSI_P5TXD is valid. Synchronous to the rising edge of GPSI_P5TXCLK.
RMII_P5TXEN		8mA	Port 5 RMII Transmit Enable TXEN. Active high to indicate that the data on RMII_P5TXD[1:0] is valid. Synchronous to the rising edge of REFCLK_IN.
MII_P5RXD0	53	I,	Port 5 MII Receive Data bit 0. In MII mode, the bit is the LSB of MII receive data, synchronous to the rising edge of MII_P5RXCLK.
GPSI_P5RXD			Port 5 GPSI Receive Data. In GPSI Mode, this acts as Receive Data Input, synchronous to the rising edge of GPSI_P5RXCLK.
RMII_P5RXD0			Port 5 RMII Receive Data bit 0. In RMII mode, the bit is the LSB of RMII receive data, synchronous to the rising edge of REFCLK_IN.
MII_P5RXD1	54	LVTTL	Port 5 MII Port Receive Data bit 1. In MII mode, the bit is the LSB of MII receive data, synchronous to the rising edge of MII_P5RXCLK.
RMII_P5RXD1			Port 5 RMII eceive Data bit 1. In RMII mode, the bit is the MSB of RMII receive data, synchronous to the rising edge of REFCLK IN.

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
MII_P5RXD[3:2]	56,55		Port 5 MII Receive Data bit 2 ~ 1. Combined with MII_P5RXD[1:0] to form MII Receive Data. Synchronous to the rising edge of MII_P5RXCLK.
MII_P5RXDV	52		Port 5 MII receive Data Valid. Active high to indicate that the data on MII_P5RXD[3:0] is valid. Synchronous to the rising edge of MII_P5RXCLK.
RMII_P5CRSDV			Port 5 RMII Carrier Sense and Receive Data Valid. Active high to indicate that the data on RMII_P5RXD[1:0] is valid. Synchronous to the rising edge of REFCLK_IN.
MII_P5RXER	68		Port 5 MII Receive Error. Active high to indicate that there is error on the MII_P5RXD[3:0]. Upon receiving this signal, DM8606BF will send Error Symbol onto the medium. Only valid in 100M operation.
RMII_P5RXER			Port 5 RMII Receive Error. Active high to indicate that there is error on the RMII_P5RXD[1:0]. Upon receiving this signal, DM8606BF will send Error Symbol onto the medium. Only valid in 100M operation.
MII_P5CRS	57		Port 5 MII Carrier Sense. In full duplex mode, MII_P5CRS reflects the receive carrier sense situation on medium only; In Half Duplex, MII_P5CRS will be high both in receive and transmit condition.
GPSI_P5CRS			Port 5 GPSI Carrier Sense. In full duplex mode, GPSI_P5CRS reflects the receive carrier sense situation on medium only; In Half Duplex, GPSI_P5CRS will be high both in receive and transmit condition.
MII_P5COL	58	I,	Port 5 MII Collision input. Active high to indicate that there is collision on the medium. Stay low in full duplex operation.
GPSI_P5COL			Port 5 GPSI Collision input. Active high to indicate that there is collision on the medium. Stay low in full duplex operation.
MII_P5RXCLK	72		Port 5 MII Port Receive Clock Input. MII_P5RXDV and MII_P5RXD[3:0] are synchronous to the rising edge of this clock. It is free running 25M clock in 100M mode and 2.5M clock in 10M mode.
GPSI_P5RXCLK			Port 5 GPSI Port Receive Clock Input. GPSI_P5RXD are synchronous to the rising edge of this clock. It is non-continuous 10M Clock input.
REFCLK_IN			50M Reference Clock Input. RMII_P5RXD[1:0], RMII_P5TXD[1:0], RMII_P5TXEN and RMII_P5CRSDV are synchronous to the rising edge of this clock.

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
MII_P5TXCLK	67	I, LVTTL	Port 5 MII Port Transmit clock Input. MII_P5TXEN and MII_P5TXD[3:0] are output at the rising edge of this clock. It is free running 25M clock in 100M mode and 2.5M clock in 10M mode.
GPSI_P5TXCLK			Port 5 GPSI Port Transmit Clock Input. GPSI_P5TXEN and GPSI_P5TXD are synchronous to the rising edge of this clock. It is continuous 10M Clock input.
RMII_REFCLK_		О,	50M Reference Clock Output.
OUT		8mA	
SPDTNP5	89	I,PD,	Port 5 Speed Input:
		LVTTL	0 : 100M
			1:10M
LNKFP5	90	I,PD,	Port 5 Link Fail Status Input.
			0 : Link Up
			1 : Link Failed
DPHALFP5	91	I,PD,	Port 5 Duplex status Input.
			0 : Full Duplex
			1 : Half Duplex

2.2.4 LED Interface

Pad Name	Pad#	Туре	Descriptions
DUPCOL3	110	O,PD,	Port 3 Duplex/Collision LED. In Full duplex mode, this pin acts as DUPLEX LED for port 3, respectively; in half duplex mode, it is collision LED for each port. See Table 3 for mode detail. Note that DUPLEX and Collision can be separated by the register definition in PHY register.
Power On Setting BPEN	111		Recommend Back-Pressure in half-duplex. Value on this pin will be latched by DM8606BF during power on reset as the beck-pressure enable in half-duplex mode. 0 : Disable Back-Pressure. 1 : Enable Back-Pressure
DUPCOL2			Port 2 Duplex-collision LED. In Full duplex mode, this pin acts as port 2 DUPLEX LED; in half duplex mode, it is collision LED for port 2. See Table 3 for mode detail.
Power On Setting PHYAS1	112		Recommend PHY Address Bit 1. Value on this pin will be latched by DM8606BF during power on reset as the PHY address recommend value bit 1. See PHYAS0 description for more detail.
DUPCOL1		O 8mA	Port 1 Duplex-collision LED. In Full duplex mode, this pin acts as port 1 DUPLEX LED; in half duplex mode, it is collision LED for port 1. See Table 3 for mode detail.

DAVI	СОМ		DM8606BF 6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
Power On Setting RECANEN	113	LVTTL	Recommend Auto Negotiation Enable. Only valid for Twisted pair interface. Programmed this bit to 1 has no effect to Fiber port. 0 : Disable all TP port auto negotiation capability 1 : Enable all TP port auto negotiation capability
DUPCOL0		8mA	Port 0 Duplex-collision LED. In Full duplex mode, this pin acts as port 1 DUPLEX LED; in half duplex mode, it is collision LED for port 1. See Table 3 for mode detail.
LNKACT[3:0]	95,96,97,98	8mA	LINK/Activity LED of port 3 to 0. When Link is stable, LNKACT will be low in 100M mode and high in 10M mode for the relevant port. When receiving data, LNKACT of the relevant port will be off for 100ms and on for 100ms.
LDSPD[3:0]	48,47,43,42	O,PD,	Port 3 to port 0 Speed LED. Used to indicate corresponding port's speed status, see Table 2 for more detail.

2.2.5 EEPROM Interface

Pad Name	Pad#	Туре	Descriptions
EEDO	84	I,PU,	EEPROM Data Output. This pin is used to input EEPROM data when reading EEPROM. During DM8606BF initialize itself, DM8606BF will drive EEPROM interface signal to read settings from EEPROM. Any other devices attach to EEPROM interface SHOULD drive Hi- Z or keep tri-state during this period. The initialization process needs about 500ms to complete.
IFSEL	80		Interface selection. After DM8606BF initialization process is done, this pin is used to select using EEPROM interface or SDC/SDIO interface. EECS/IFSEL interface 0 SDC/SDIO interface 1 EEPROM interface
EECS		O, 4mA	 EEPROM Chip Select. During DM8606BF initialize itself, this pin is used as EEPROM chip select signal. During DM8606BF initialize itself, DM8606BF will drive EEPROM interface signal to read settings from EEPROM. Any other devices attach to EEPROM interface SHOULD drive Hi-Z or keep tri-state during this period. The initialization process needs about 500ms to complete.

			6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Туре	Descriptions
Power On Setting XOVEN	81		Cross Over Enable. Value on this pin (active low) will be latched by DM8606BF at the rising edge of RESETL for port 4~0 crossover auto detect (Only available in TP interface) 1 : Enable 0 : Disable
EESK			EEPROM Serial Clock. During DM8606BF initialize itself, this pin is used to output clock to EEPROM. After DM8606BF initialization process is done, this pin is used as EEPROM interface clock input if IFSEL = 1 .
SDC			Serial management interface clock input. If IFSEL = 0, this pin is used as serial management interface clock input.
Power On Setting	79		Enable Mac to choose LED Display Mode.
LED_MODE		LVTTL	DM8606BF at the rising edge of RESETL as recommend operation described in EEPROM Reg0X11 with Bit[14].
EDI			EEPROM Serial Data Input. During DM8606BF initialize itself, this pin is used to output address and command to access EEPROM. After the initialization process is done, this pin becomes an input pin to monitor EEPROM data if IFSEL = 1.
MDIO		I/O, 8mA	Serial management interface data input/output. If IFSEL = 0, this pin is used as data input/output pin of serial management interface

2.2.6 Power/Ground, 48 pins

Pad Name	Pad#	Туре	Descriptions
GNDA	4,5,12, 13, 20, 27,	Ι	Ground Used by AD Block.
	28, 34, 35		
VCCA2	1, 9, 17, 24, 38	Ι	1.8V, Power Used by TX Line Driver.
VCCAD	8, 16, 23, 31	Ι	3.3V, Power Used by AD Block.
GNDBIAS	126	Ι	Ground Used by Bias Block
VCCBIAS	128	Ι	3.3V, Power Used by Bias Block.
GNDPLL	123	Ι	Ground used by PLL
VCCPLL	122	Ι	1.8V, Power used by PLL
GNDIK	45, 64, 76, 83, 93,	Ι	Ground Used by Digital Core
	118		
VCCIK	46, 75, 82, 94, 116	Ι	1.8V, Power Used by Digital Core
GNDO	50, 70, 87, 99, 108	Ι	Ground Used by Digital Pad
VCC3O	49, 71, 88, 109	Ι	3.3V, Power Used by Digital Pad.

2.2.7 Miscellaneous

Pad Name	Pad#	Туре	Descriptions
TEST	41	I,PD,	Test Mode. Reserved and should keep 0 when normal
		LVTTL	operation.

		ť	6-Port Fast Ethernet Single Chip Switch Controller
Pad Name	Pad#	Type	Descriptions
CFG0	86		Configuration 0. Reserved and should keep 0 when normal
		LVTTL	operation.
WAIT_INIT	69		Wait Initialization. This pin will be used to pause all activities
			after power up until loading EEPROM successful and done or CPU initialization done.
			0 : pause until loading EEPROM done.
			1 : pause until loading EEPROM successful and done or CPU
			initialization done
INT_N	65		Interrupt. Active low interrupt signal to indicate the status
			change in the interrupt status register. Interrupt signal will
			keep active until host read the status of ISR register.
			1 : Not interrupt
MDIO	40		0 : Interrupt
MDIO	40		Management Data. MDIO transfers management data in and
		8mA PU	out of the device synchronous to MDC.
MDC	44		Managamant Data Dafaranga Clask, A nan aantinusuus alaak
MDC	44		Management Data Reference Clock. A non-continuous clock input for management usage. DM8606BF will use this clock to
			sample data input on MDIO and drive data onto MDIO
			according to rising edge of this clock.
CKO25M	85		25M Clock Output. Free Running 25M Clock output (Even
CROZUM	05		during power on reset)
RC	119		RC Input For Power On reset. Active low signal to reset
			DM8606BF. Minimum during is 200 ms.
XI	120		25M Crystal/Oscillator Input. 25M Crystal or Oscillator Input.
			Variation is limited to +/- 50ppm.
XO	121		25M Crystal Output. When connected to oscillator, this pin
			should left unconnected.
RTX	127		Constant Voltage Reference.
			External 1.1k Ω 1% resistor connection to ground.
VREF	125		Analog Reference Voltage. Used by Internal Bias Circuit for
			voltage reference.
CONTROL	124		FET Control Signal. The pin is used to control FET for 3.3V to
		Analog	1.8V regulator.

6-Port Fast Ethernet Single Chip Switch Controller

Chapter 3 Function Description

3.1 Switch Functional Description

The DM8606BF uses a "store & forward" switching approach for the following reasons: Store & forward switches allow switching between different speed media (e.g. 10BaseX and 100BaseX). Such switches require the large elastic buffers, especially bridging between a server on a 100Mbps network and clients on a 10Mbps segment.

Store & forward switches improve overall network performance by acting as a "network cache". Store & forward switches prevent the forwarding of corrupted packets by the frame check sequence (FCS) before forwarding to the destination port

3.1.1 Basic Operation

The DM8606BF receives incoming packets from one of its ports, uses the source address (SA) and FID to update the address table, and then forwards the packet to the output ports determined by the destination address (DA) and FID.

If the DA and FID are not found in the address table, the DM8606BF treats the packet as a broadcast packet and forwards the packet to the other ports within the same group.

The DM8606BF could automatically learn the port number of attached network devices together with the SA and FID of all the incoming packets. If the SA and FID are not found in the address table, the DM8606BF adds it to the table.

3.1.2 Buffers and Queues

The DM8606BF incorporates 6 transmit queues and receive buffer area for the 6 Ethernet ports. The receive buffers as well as the transmit queues are located within theDM8606BF along with the switch fabric. The buffers are divided into 192 blocks of 256 bytes each. The queues of each port are managed according to each port's read/write pointer.

Input buffers and output queues are maintained through proprietary patent pending UNIQUE (Universal Queue management) scheme.

3.1.3 Full Duplex Flow Control

When full duplex port runs out of its receive buffers, a PAUSE command will be issued by DM8606BF to notice the packet sender to pause transmission. This frame based flow control is totally compliant to IEEE 802.3x. When flow control hardware pin (GFCEN) is set to high during power on reset and per port PAUSE is enabled, DM8606BF will output and accept 802.3x flow control packet.

3.1.4 Half Duplex Flow Control

Back-pressure is supported for half-duplex operation. When the DM8606BF cannot allocate a receive buffer for an incoming packet (buffer full), the device will transmit a jam pattern on the port, thus forcing a collision.

3.1.5 Back-Off Algorithm

The DM8606BF implements the truncated exponential back off algorithm compliant to the 802.3 standard. DM8606BF will restart the back off algorithm by choosing 0-9 collision count. After 16 consecutive retransmit trials, the DM8606BF resets the collision counter. Users could set Back Off (see 0x0010) to disable this function.

3.1.6 Inter-Packet Gap (IPG)

IPG is the idle time between any two successive packets from the same port. The value is 9.6us for 10Mbps ETHERNET and 960ns for 100Mbps fast Ethernet. For the receive end, DM8606BF is designed to be able

6-Port Fast Ethernet Single Chip Switch Controller

to tolerate IPG gap greater than 64 bits. For the transmit end, DM8606BF will always transmit packets with the minimum IPG gap equal to 96-bits time. If users want to shorten the transmission IPG gap, they can enable the Short IPG function (see 0x000bh). Then DM8606BF will instruct its output MAC to transmit packets with IPG equal to 88-bits and 96-bits in order.

3.1.7 Trunking Function

DM8606BF supports only one trunking port. If Port 3 and Port 4 Trunk (see 0x000bh) function is enabled, DM8606BF will see Port 3 and Port 4 as the same port to make the bandwidth equal to 200M. When any of these two ports link fail, the DM8606BF will automatically change the transmit path from the failed link. Output port based load balancing is implemented in DM8606BF, so users don't set anything.

3.1.8 Illegal Frames

The DM8606BF will discard all illegal packets. These packets are

1. Undersize packets. The packets received with a length of less than 64 bytes are discarded.

2. Oversize packets. The packets received with a length of more than "MAXPKTLEN" bytes are discarded. See 0x0011h to see how to decide the MAXPKTLEN value.

3. CRC packets. The packets received with a wrong FCS value are discarded.

4. Symbol error packets. The packets received with symbol error are discarded.

5. Source violation packets. The packets received with a source violation could be discarded in some cases. See Source Violation Description.

6. VLAN violation packets. The frames received with a VLAN violation could be discarded in some cases. See VLAN violation Description.

3.1.9 Broadcast Storm

1. Time Scale. DM8606BF uses 50ms as a scale to meter the storm packets.

	Rising Threshold	Falling Threshold
All link ports are 100M	100M Threshold (See 0x003bh)	1/2 100M Threshold
All link ports are not all 100M	10M Threshold (See 0x003ch)	1/2 10M Threshold

2. Storm keeps on at least 1.6 seconds if any of the ports meets the rising threshold in the 4 consecutive 50ms intervals. In these 1.6 seconds, the ports meeting the rising threshold will start to discard the broadcast or multicast packets until the 50ms interval expires. Users could also disable Input Filter (see 0x000b) function to forward above packets to the un-congested port instead of discarding directly. Note that if the packet received is a management packet, it will not be discarded even in the above case.
3. Storm finishes. After the 1.6-second storm period, DM8606BF will check the port that makes the storm on. If all of these ports meet the falling threshold in the 2 consecutive 50ms intervals and no other ports satisfy the rising threshold at the same time, the storm will finish.

3.1.10 Bandwidth Control

DM8606BF supports hardware-based bandwidth control for both ingress and egress traffic. Ingress and egress rate could be limited independently on a per port base. The DM8606BF uses 8ms as the scale, and the minimum bandwidth control unit is 64kbps so users could configure the rate equal to K * 64kbps, $1 \le K \le 2048$. DM8606BF maintains two counters (input and output) for each port. For example, if users want to limit rate equal to 64Kbps, they should configure the bandwidth control threshold equal to 1. At each time unit, DM8606BF will add 64 to the counter and decrease the byte length when receiving a packet in this period. When the counter is decreased to zero, we can divide the control behavior into two parts: For the ingress control, the ingress port will not receive packets any more. If flow control is enabled, Pause packets will be transmitted, if Back Pressure is enabled, Jam packet will be transmitted, and if the above functions are not enabled, the packet will be discarded.

6-Port Fast Ethernet Single Chip Switch Controller

For the egress control, the egress port will not transmit any packets, so the egress bandwidth is controlled. DM8606BF allows users to control the ingress and egress bandwidth at the same time (see 0x0033h).

3.1.11 Smart Discard

The DM8606BF supports a smart mechanism to discard packets early according to their priority to prevent the resource blocked by the low priority. The discard ratio is as follows:

Discard Mode Utilization	00	01	10	11
00	0%	0%	0%	0%
01	0%	0%	25%	50%
11	0%	25%	50%	75%

3.1.12 LED Display

Three LEDs per port are provided by DM8606BF: Link/Act, Duplex/Col and Speed. The dual-color LED mode is also supported by DM8606BF. For easy production purpose, the test signal is sent to each LED at power on reset stage. The LED display mode is controlled by:

1. DUAL-COLOE-EE: It is an EEPROM register to control the dual or single color mode. See 0x0012h. It is useless when the value (wait_init) on the pin WAIT_INIT is low.

2. DUAL-COLOR-HW: It is the value latched on the EDI pin during the power on reset. It's also used to control the dual or single color mode and is useless when the value wait_init is high.

3. LED Enable (see 0x0012h): When CPU is attached and this CPU has no ability to pull the EDI to high or low, users could set the wait_init to high to delay the led test, write the correct value to the DUAL-

COLOR_EE, write 1'b1 into LED Enable register, and then the LED test starts.

4. Duplex and Col Separate (see 0x0012h): Dupcol LEDs indicate the duplex status only.

5. COL_LED (See 0x0030h): When enabled, pin DUPCOL0 shows col_10m status and pin DUPCOL1

shows col_100m status. These two LEDs are necessary in the dual-speed hub.

Pin Name	Status
LNKACT4/LNKACT3/ LNKACDM8606BF/L NKACT1/ LNKACT0	 These pins have no power on reset values on them, and DM8606BF uses active low value to drive the led. So the output values of these pins after the power on reset are shown as follows: 1. First Period: This period lasts 1.28s for LED on test. DM8606BF drives value 0 to open the LED. 2. Second Period: This period lasts 0.48s for LED off test. DM8606BF drives value 1 to close the LED. 3. Normal Period: This period indicates the link status. 0 = Port links up and LED is ON. 1 = Port links down and LED is OFF. 0/1= Port links up and is transmitting or receiving. The LED flashes at 10hz.
LDSPD4/LDSPD3/ LDSPD2/LDSPD1/ LDSPD0	The behavior of these pins is the same as the LNKACT, except the normal period. Normal Period: This period indicates the speed status. 0 = Port links up and its speed is 100M. LED is ON. 1 = Port links down or its speed is 10M. LED is OFF.
DUPCOL2/DUPCOL1/ DUPCOL0	 These 3 pins have power on reset values on them. DM8606BF needs to consider these values to drive the correct value. If the power on reset value is value_power_on, then the display is as follows: 1. First Period: This period lasts 1.28s for LED on test. DM8606BF drives ~value_power_on to open the LED. 2. Second Period: This period lasts 0.48s for LED off test. DM8606BF drives value_power_on to close the LED. 3. Normal Period: This period indicates the duplex/collision status. ~value_power_on = Port links up in the full-duplex mode. LED is ON. value power on = Port links down. LED is OFF.

3.1.12.1 Single Color LED Display

6-Port Fast Ethernet Single Chip Switch Controller

Pin Name	Status
	0/1 = Port links up and collision is detected. LED flashes at 10hz.
	If Duplex and Col Separate is enabled, the normal period changes its way to display.
	~value_power_on = Port links up in the duplex mode. LED is ON.
	value_power_on = Port links down or links up in the half-duplex mode. LED is
	OFF.
	0/1 = This value is cancelled. LED doesn't blink.
	If COL_LED is enabled, the display in the normal period is as follows:
	DUPCOL0: 10m collision indicator.
	0/1 = One of the ports links up in 10M half-duplex mode and detects
	a collision event. LED flashes at 20hz.
	value_power_on = When the above event is not satisfied, the LED is OFF.
	DUPCOL1: 100m collision indicator.
	0/1 = One of the ports links up in 100M half-duplex mode and detects
	a collision event. LED flashes at 20hz.
	Value_power_on = The above event is not satisfied. LED is OFF.
	The behavior of these pins is the same as the LNKACT, except the normal period.
	Normal Period: This period indicates the duplex/collision status.
	\sim value_power_on = Port links up in the full-duplex mode. LED is ON.
DUPCOL4/DUPCOL3	value_power_on = Port links down. LED is OFF.
	0/1 = Port links up and collision is detected. LED flashes at 10hz.
	If Duplex and Col Separate is enabled, the normal period changes its way to display.
	\sim value_power_on = Port links up in the duplex mode. LED is ON.
	value_power_on = Port links down or links up in the half-duplex mode. LED is
	OFF.
	0/1 = This value is cancelled. LED doesn't blink.

3.1.12.2 Dual Color LED Display Users should be careful that DUPCOL LED only supports the single color mode. The only difference between single and dual color for DUPCOL LED is the self-test time.

Pin Name	Status
(LNKACT4, LDSPD4)/ (LNKACT3, LDSPD3) (LNKACDM8606BF, LDSPD2) (LNKACT1, LDSPD1) (LNKACT0, LDSPD0)	 First Period: Test LED on with green color. It lasts 1.28s. 0, 1 = LED is on with green color. Second Period: Test LED on with yellow color. It lasts 1.28s. 1, 0 = LED is on with yellow color. Third Period: Test LED off. 0, 0 = LED is off. Normal Period: This period shows the status of the link and speed at the same time. 0, 0 = Port links down. LED is off. 1, 1 = Port links down. LED is off. 0, 1 = Port Links up in 100M. LED glows green. 1, 0 = Port Links up in 100M and is receiving or transmitting. LED blinks with green color at 10hz. 0/1, 0 = Port links up in 10M and is receiving or transmitting. LED blinks with yellow color at 10hz.
DUPCOL2/DUPCOL1	The behavior of these pins is the same as the single mode, except the self-test period. The LED on test period is 2.56s instead of 1.28s.
DUPCOL0	

6-Port Fast Ethernet Single Chip Switch Controller

3.1.12.3 Circuit for Single LED Mode

Figure 3-1 Circuit for single color LED mode

3.1.12.4 Circuit for Dual Led Mode

Figure 3-2 Circuit for dual color LED mode DUPCOL1/ DUPCOL0/

3.1.13 Packet Identification

Packets are classified to determine if they should be passed to the CPU port or another entity for special handling.

nandling.		
Packets Ide	ntified by	Comments
DM8606BF	7	
BPDU		The Ethernet destination address is 01-80-C2-00-00-00.
PAUSE		The Ethernet destination address is 01-80-C2-00-00-01. Ether-Type field is
PAUSE		8808. OPCODE is 0001.
SLOW		The Ethernet destination address is 01-80-C2-00-00-02.
PAE		The Ethernet destination address is 01-80-C2-00-00-03.
RESER RO)	The Ethernet destination address ranges between 01-80-C2-00-00-04 and 01-80-
		C2-00-0F.
RESER_R1		The Ethernet destination address ranges between 01-80-C2-00-00-10 and 01-80-
		C2-00-00-1F.
GXRP		The Ethernet destination address ranges between 01-80-C2-00-00-20 and 01-80-
onnu		C2-00-00-22. LDSPD4/LDSPD3/
RESER_R2		The Ethernet destination address ranges the preproperty 1-80-C2-00-00-23 and 01-80-
REDER_R	-	C2-00-00-2F. LDSPDC
RESER_R3	1	The Ethernet destination address ranges between 01-80-C2-00-00-30 and 01-80-
RESER_RS		C2-00-00-FF
RARP		The Ethernet destination address is FF-FF-FF-FF-FF-FF and the Ether-Type
KAKI		field is 0x8035h.
ARP		The Ethernet destination address is FF-FF-FF-FF-FF-FF and the Ether-Type
1 1111		field is 0x0806h.
IGMP_IP		The Ethernet destination address is 01-00-5E-XX-XX-XX. Ether-Type field is
		0x0800h (IP). IP Version is 4 and the Protocol field is 02 (IGMP).
MLD_IP		Ethernet destination address is 33-33-XX-XX-XX-XX. The Ether-Type field is
		0x0800h (IP). IP Version is 6 and the Protocol field is 0x3ah (ICMP).
MLD_IPV6		Ethernet destination address is 33-33-XX-XX-XX-XX. The Ether-Type field is
	,	0x86ddh (IP). IP Version is 6 and the Protocol field is 0x3ah (ICMP).
	TYPE	The Ether-Type field matches one of the type filters.
	PROTOCOL	The Protocol field matches one of the protocol filters.

LNKACT4/LNKA LNKACT2/LNKA LNKACT0

3.3V

	6-Port Fast Ethernet Single Chip Switch Controller		
TCPUDP	The TCP/UDP port number matches one of the TCP/UDP filters.		
MAC_CT	RL The Ether-Type field is 0x8808h, but OPCODE is not 0x0001h.		
For learning purpose,	DM8606BF sometimes divide Ethernet address into three groups.		
Packets Identified by	Comments		
DM8606BF			
MULTICAST	The first bit of the Ethernet destination address is 1, but not all 1.		
BROADCAST	The Ethernet destination address is FF-FF-FF-FF-FF-FF.		
UNICAST	The first bit of the Ethernet destination address is 0.		
3.1.13.1 Span Pac	ket		
The span packet is de	fined in DM8606BF to support spanning tree protocol.		
Packet Type	Description		
BPDU/SLOW/	The span packet is determined in priority order by:		
PAE/RESER_R0/	1. Span bit defined in the Special TAG, when Span_Valid is set.		
RESER_R1/	2. Span bit defined in the learning table when there is a match for DA+FID.		
GXRP/	B. Span bit defined in the control table when there is a match for DA.		
RESER_R2/	. Span bit in register 0x003eh.		
RESER_R3			
	The span packet is determined in priority order by:		
ARP/RARP	1. Span bit defined in the Special TAG, when Span_Valid is set.		
	2. Span bit in register 0x000dh.		
IGMP IP/MLD IP/	The span packet is determined in priority order by:		
MLD IPV6	1. Span bit defined in the Special TAG, when Span_Valid is set.		
	2. Span bit in register 0x000ch.		
	The span packet is determined in priority order by:		
	1. Span bit defined in the Special TAG, when Span_Valid is set.		

3.1.13.2 Management Packet

packets.

Others

DM8606BF reserves some buffers for these packets, so they are not dropped because of traffic congestion. Management packets are never limited by the bandwidth control, stormed by the storming control, or dropped due to smart discard function.

2. Span bit defined in the learning table when there is a match for DA+FID.

If the first and second conditions are not satisfied, the frame is classified as non-span

Packet Type	Description
BPDU/SLOW/	The management packet is determined in priority order by:
PAE/RESER_R0/	1. Management bit defined in the Special TAG, when Management_Valid is set.
RESER_R1/	2. Management bit defined in the learning table when there is a match for DA+FID.
GXRP/	3. Management bit defined in the control table when there is a match for DA.
RESER_R2/	4. Management bit in register 0x003eh.
RESER_R3	
	The management packet is determined in priority order by:
ARP/RARP	1. Management bit defined in the Special TAG, when Management_Valid is set.
	2. Management bit in register 0x000dh.
IGMP IP/MLD IP/	The management packet is determined in priority order by:
MLD IPV6	1. Management bit defined in the Special TAG, when Management_Valid is set.
MLD_IFV0	2. Management bit in register 0x000ch.
	The management packet is determined in priority order by:
	1. Management bit defined in the Special TAG, when Management_Valid is set.
Others	2. Management bit defined in the learning table when there is a match for DA+FID.
	If the first and second conditions are not satisfied, the frame is classified as non-
	management packets.

3.1.13.3 Cross_VLAN Packet

Cross-VLAN packets are defined to cross VLAN boundary or bypass the VLAN violation.

6-Port Fast Ethernet Single Chip Switch Controller

Packet Type	Description			
BPDU/SLOW/	The cross-VLAN packet is determined in priority order by:			
PAE/RESER_R0/	1. Cross_VALN bit defined in the Special TAG, when Cross_VLAN_Valid is set			
RESER_R1/	2. Cross_VLAN bit defined in the learning table when there is a match for DA+FID.			
GXRP/	3. Cross_VLAN bit defined in the control table when there is a match for DA.			
RESER_R2/	4. Cross_VLAN bit in register 0x003eh.			
RESER_R3				
	The cross_VLAN packet is determined in priority order by:			
ARP/RARP	1. Cross_VLAN bit defined in the Special TAG, when Cross_VLAN_Valid is set.			
	2. Cross-VLAN bit in register 0x000dh.			
IGMP IP/MLD IP/	The cross_VLAN packet is determined in priority order by:			
MLD IPV6	1. Cross-VLAN bit defined in the Special TAG, when Cross_VLAN_Valid is set.			
	2. Cross-VLAN bit in register 0x000ch.			
	The Cross_VLAN packet is determined in priority order by:			
Others	1. Cross_VLAN bit defined in the Special TAG, when Cross_VLAN_Valid is set			
	2. Cross_VLAN bit defined in the learning table when there is a match for DA+FID.			
	If the first and second conditions are not satisfied, the frame is classified as non-			
	cross_VLAN packets.			

3.1.14 Tagged VLAN or Port VLAN

The difference between two VLAN rules is the way to search the VLAN boundary. Users could enable "TAG Base VLAN" (see 0x0011h) bit to instruct DM8606BF to operate in the Tagged VLAN mode.

3.1.14.1 VLAN Filters

DM8606BF supports 16 VLAN filters, each specifying a Valid bit, a TAG PRI, a VID, a FID, a Tagged Member, and a Member.

VLAN Filter 0	VLAN_Valid	VLAN_PRI[2:0]	VID[11:0]	FID[3:0]	Tagged Member[5:0]	Member[5:0]
~						
VLAN Filter						
15						

3.1.14.2 Port VLAN

Port VLANs are created by grouping individual physical ports together. In this mode, only 6 VLAN filters (VLAN filter $0 \sim 5$) are used. By the time examining the received frame, the source port is used as an index to search the VLAN filter. If the source port is port 0, then Member in the filter 0 is the VLAN group that port 0 joins.

3.1.14.3 Tagged VLAN

Tagged VLAN is created with the aids of the VID in the packet or VID assigned by the source port. This VID is compared with 16 VIDs in the VLAN filters to check if any match exists. The Member in this matched filter is the VLAN boundary for the packet.

3.1.14.4 VID for Comparison and Carried through DM8606BF

VID for comparison and carried through DM8606BF (as egress VID) depends on the VLAN configuration. VID0 The incoming packet is tagged with VID = 12'h0. Enable "Replace VID0" (see 0x000ah) to replace the Null VID with PVID (see basic control registers) if necessary.

VID1 The incoming packet is tagged with VID = 12'h1. Enable "Replace VID1" (see 0x000ah) to replace VID1 with PVID (see basic control registers) if necessary.

VIDFFF The incoming packet is tagged with VID = 12'hfff. Enable "Replace VIDFFF" (see 0x000ah) to replace VIDFFF with PVID (see basic control registers) if necessary.

VLAN Security DM8606BF ignores packet's VID and always uses PVID to see if there is a match and transfers it to the output ports. Disable the "VLAN Security Disable" (See0x0022h) to achieve this goal. Input Force No Tag When enabled (see 0x0020h), DM8606BF assumes all the packets are untagged and PVID is used. Input Force No Tag and VLAN Security are different in some situations.

Tagged Frame with $VID = 12$ 'hfff	Packet Transmitted Tagged

6-Port Fast Ethernet Single Chip Switch Controller

Security	The frame is recorded as a VLAN violation and discarded if VIDFFF is not replaced.	Output packets have only one VLAN tag.
Input	The frame is recognized as an untagged	Output packets may have double tags, because the
Force No	frame. PVID is carried with this packet	packet is transmitted with an additional tag with PVID.
Tag	to the output port.	

3.1.14.5 Admit Only VLAN-Tagged Packets

DM8606BF supports a function to check if the packet is VLAN-Tagged, and any packets received on that port that carries no VID (untagged packets or packets with VID = 0) are discarded and recorded as a VLAN violation. This feature is implemented by programming the "Admit Only VLAN-Tagged" (see 0x0027). DM8606BF assumes all the packets are untagged in the "Input Force No Tag" mode and users should care that in this situation, "Admit Only VLAN Tagged" is of no effect.

3.1.14.6 VID Check

In Tagged VLAN, the VID for comparison must be contained in the VLAN filters, or the packet received on the port will be dropped and recorded as a VLAN violation. This feature is disabled by programming the "VID CHECK" bit to 0 (see 0x0026h) to forward these packets instead of dropping them.

3.1.14.7 FID and VLAN Boundary

In DM8606BF, every incoming packet is associated with a FID group. DM8606BF searches the learning table for the FID + DA, FID + SA. VLAN boundary restricts the allowable destination ports.

FID Search Algorithm					
Port VLAN	The source port number is the VLAN filter index. We can find FID in this filter.				
	VID	Fid is contained in the matched filter. We can find FID in this filter.			
	match				
		VID check	The frame is dropped.		
Tagged	VID un- match		Default FID is the FID (see 0x000ah). If users configure		
VLAN			DM8606BF to back to port VLAN (see 0x0027), we can find the		
		VID uncheck	FID in the same way as the Port VLAN. When this feature is		
			enabled, VLAN filter $0 \sim 5$ are for Port VLAN purpose and VLAN		
			filter 6 ~15 are for VID comparison.		

VLAN Boundary Search Algorithm					
Port VLAN	The source	The source port number is the VLAN filter index. We can find the boundary in this filter.			
	VID	Member is contained in the matched filter. We can find the boundary in this filter			
	match				
		VID check	The frame is dropped.		
Tagged VLAN	VID un- match	VID uncheck	DM8606BF uses Default VLAN Portmap as the boundary (see $0x003ah$). If users configure DM8606BF to "Back to Port VLAN" (see $0x0027$), we can back to find the boundary in the same way as the Port VLAN. When this feature is enabled, VLAN filter $0 \sim 5$ are for Port VLAN purpose and VLAN filter $6 \sim 15$ are for VID comparison.		

3.1.14.8 Ingress Filter

If the source port is not contained in the VLAN boundary associated with the incoming packet, then this frame is dropped and recorded as a VLAN violation. This feature is disabled by setting the "Ingress Filter" (see 0x0021h) bit to 1'b0.

3.1.14.9 VLAN Violation

When packets are recoded as a VLAN violation packet, DM8606BF will drop them. The only way to ignore these violations is to classify these packets as cross_VLAN packets.

3.1.14.10 TXTAG Carried through DM8606BF

Each packet during receive is assigned 2-bit TXTAG value. This value is carried by DM8606BF to the output ports to help to determine if egress tagged is necessary.

Packet Type Description

6-Port Fast Ethernet Single Chip Switch Controller

BPDU/SLOW/	The TXTAG is determined in priority order by:				
PAE/RESER_R0/	1. TXTAG in Special Tag with TXTAG Valid enabled.				
RESER_R1/	2. TXTXG in the learning table when there is a match for DA+FID in the learning				
GXRP/	table.				
RESER_R2/	3. TXTXG in the control table when there is a match for DA in the control table.				
RESER_R3	4. TXTAG defined in register 0x003eh.				
	The TXTAG is determined in priority order by:				
ARP/RARP	1. TXTAG in Special Tag with TXTAG_Valid enabled.				
	2. TXTAG is defined in 0x000dh.				
IGMP IP/MLD IP/	The TXTAG is determined in priority order by:				
MLD IPV6	1. TXTAG in Special Tag with TXTAG_Valid enabled.				
WILD_IF VO	2. TXTAG is defined in 0x000ch.				
Other	The TXTAG is determined in priority order by:				
	1. TXTAG in Special Tag with TXTAG_Valid enabled.				
	2. The DA + FID matches an entry in the learning table with TXTXG defined.				
	If the first and second conditions are not satisfied, TXTAG is 2'b00.				
A 1 1 4 1 1 T 1					

3.1.14.11 Tagged Member Carried through DM8606BF

If the output port is a tagged port is determined by the port or the VID. Ports in the tagged members should egress packets tagged.

First way: Ne	First way: New Transmit Tag Disable (see 0x000ah)				
The "Output	Packet Tag	ging" bit in the	basic control registers determines the tagged members.		
Second way:	New Trans	mit Tag Enable	(see 0x000ah)		
Port VLAN The source port number is the VLAN filter index. We can find the tagged member of the source port number is the VLAN filter index.					
FOIL VLAIN	filter.				
	VID	Tagged member	Tagged members are contained in the matched VLAN filter. We can find the		
	match	tagged member	agged members in this filter		
Tagged	VID un- match	VID check	The frame is dropped.		
VLAN			DM8606BF uses the first way to determine the tagged members. If		
			users configure DM8606BF to "Back to Port VLAN" (see		
			0x0027), we can back to find the tagged members in the same way		
			as the Port VLAN.		

Users should note that when the Special Tag with Tagged Member Valid = 1'b1 is incoming, the DM8606BF always uses Tagged Member in the Special Tag as the Tagged Member.

3.1.14.12 Egress Tag Rule

The tagged member is transferred from the source to the destination port where the decision whether the transmitted frame is tagged is made.

Egress Tag Result		
	Output port is in the tagged	TXTAG Description
Untagged packets are received (If Input Force	members carried with the	00 = System Default Tag. Packets are
	packet.	transmitted tagged.
No Tag is enabled,		01 = Unmodified. Packets are transmitted
DM8606BF assumes all the received packets are untagged.)		untagged.
		10 = Always Tagged. Packets are transmitted
		tagged.
		11 = Always Untagged. Packets are transmitted
		untagged.

	6-Port Fa	st Ethernet Single Chip Switch Controller
	Output port is not in the tagged members carried with the packet.	 TXTAG Description 00 = System Default Tag. Packets are transmitted untagged. 01 = Unmodified. Packets are transmitted untagged. 10 = Always Tagged. Packets are transmitted tagged. 11 = Always Untagged. Packets are transmitted untagged.
	Output port is configured to operate in the bypass mode. See 0x002ah.	 TXTAG Description 00 = System Default Tag. Packets are transmitted untagged. 01 = Unmodified. Packets are transmitted untagged. 10 = Always Tagged. Packets are transmitted tagged. 11 = Always Untagged. Packets are transmitted untagged.
	Output port is in the tagged members carried with the packet.	TXTAG Description 00 = System Default Tag. Packets are transmitted tagged. 01 = Unmodified. Packets are transmitted tagged. 10 = Always Tagged. Packets are transmitted tagged. 11 = Always Untagged. Packets are transmitted untagged.
Tagged packets are received.	Output port is not in the tagged members carried with the packet.	TXTAG Description 00 = System Default Tag. Packets are transmitted untagged. 01 = Unmodified. Packets are transmitted tagged. 10 = Always Tagged. Packets are transmitted tagged. 11 = Always Untagged. Packets are transmitted untagged.
	Output port is configured to operate in the bypass mode. See 0x002ah.	TXTAG Description 00 = System Default Tag. Packets are transmitted tagged. 01 = Unmodified. Packets are transmitted tagged. 10 = Always Tagged. Packets are transmitted tagged. 11 = Always Untagged. Packets are transmitted untagged.

3.1.14.13: Tagged PRI Carried through DM8606BF Tagged PRI Carried

ragged i Ki Callieu		
Untagged packets are		Change Priority Enable (see 0x000a)
received (If Input Force		Change Rule
No Tag is enabled,	Port	0 = VLAN_PRI field in the matched VLAN filter.
DM8606BF assumes all	VLAN	1 = Reverse PRI
the received packets are		Change Priority Disable
untagged.)		Reverse PRI

			6-Port Fast Ethernet Single Chip Switch Controller
		VID	Reverse PRI
		unmatch	
			Change Priority Enable (see 0x000a)
	Tagged		Change Rule
	VLAN	VID	$0 = VLAN_PRI$ field in the matched VLAN filter.
		match	1 = Reverse PRI
			Change Priority Disable
T		Classin	Reverse PRI
Tagged packets are			riority Enable (see 0x000a)
received.	Port	Change R 0 = VI	N PRI field in the matched VLAN filter.
	VLAN	1 = Rever	_
	VLAIN		riority Disable
			RI = The 3-bit user priority in the tag header.
		14550411	Change Priority Enable (see 0x000a)
		VID un-	Reverse PRI
		match	Change Priority Disable
			Tagged PRI = The 3-bit user priority in the tag header.
	Tagged		Change Priority Enable (see 0x000a)
	VLAN		Change Rule
		VID	$0 = VLAN_PRI$ field in the matched VLAN filter.
		match	1 = Reverse PRI
			Change Priority Disable
			Tagged PRI = The 3-bit user priority in the tag header.
			eue the packet is switched through.
Compare = {queue, $queue$, $queue$, $queue$, $queue$	eue, queue	e, queue, qu	ueue, queue, queue, queue} XOR VLAN Priority MAP in
Then we get Tagged PR	т		
Compare Tagged PRI	d.		
xxxx xxx0 = 3'b000			
xxxx xx01 = 3'b001			
$xxxx_x011 = 3'b010$			
xxxx 0111 = 3'b011			
xxx0 1111 = 3'b100			
$xx01^{-}1111 = 3'b101$			
$x011^{-1111} = 3'b110$			
$0111_{1111} = 3$ 'b111			
$1111_{1111} = 3'b000$			
3.1.14.14: CFI Carr	ied throu	ugh DM8	606BF
CFI Carried			
Untagged frames receiv	red (If Inp	ut Force No	o Tag is CFI Carried = 1'b0
enabled, DM8606BF as	sumes all	the receive	od land
packets are untagged.)			
Tagged frame received			CFI Carried = Original CFI in the tag header.
3.1.14.15 Egress TA	AG		
Egrada tag contains Egr	and DDI E	aross CEL	and Egrass VID. When packets are transmitted tagged, this

Egress tag contains Egress PRI, Egress CFI, and Egress VID. When packets are transmitted tagged, this egress tag associated with Ethernet-Type = 0x8100h is inserted following the Ethernet source address. Egress PRI: Egress PRI is Tagged PRI carried through DM8606BF from the source port. Egress CFI: Egress CFI is CFI carried through DM8606BF from the source port. Egress VID: Egress VID is VID carried through DM8606BF from the source port.

3.1.15 Priority Queue

DM8606BF supports 4 priority queues and each is assigned a weight.

6-Port Fast Ethernet Single Chip Switch Controller

Queue	Weight	
Queue 0	Weight $= 1$.	
Queue 1	Weight = "Queue 1 Weight" bits in 0x0025h.	
Queue 2	Weight = "Queue 2 Weight" bits in 0x0026h.	
Queue 3	Weight = "Queue 3 Weight" bits in 0x0027h.	

3.1.15.1 System PRI

The system PRI is determined in the order as follows:

1. (DA+FID) was found in the learning table, then LRN_PRI field (when LRN_PRIEN is set) in this entry indicates the priority queue.

2. Port PRI in basic control register indicates the priority queue, when Port_PRIEN is enabled on that port. 3. The user priority field in the tag header is used for a tagged packet ("Input Force No Tag" doesn't effect DM8606BF to extract the PRI in the tag header), when "VLAN Priority" is enabled. The user priority in the tag header is a 3-bits field, DM8606BF uses "VLAN Priority MAP" to map the priority queue.

4. For IP packets with no tag header, IP PRI is used when "Service Priority" (see 0x001fh) is enabled. Even for a tagged packet with IP header, we can set "IP over VLAN" (see basic control registers) bit to 1 to force using IP PRI. Three kinds of IP PRI are available.

(1) For IPV6 packets with IP Version = 4'h6, the most significant 6-bits of the traffic class in the IPV6 header is used to map the priority queue by the service mapping registers.

(2) For IPV4 packets with IP Version = 4'h4, the most significant 3-bits of the TOS field in the IPV4 header is used to map the priority queue by the TOS Priority Map register.

(3) If "TOS Using" (see 0x000ah) is disabled, even for IPV4 packets, DM8606BF uses the most significant 6-bits of the TOS field to map the priority queue by the service mapping registers.

5. If the packet matches the TCP/UDP filters, the PRI associated with this filter indicates the priority queue when "TCP/UDP PRIEN" is set to 1 (see 0x0098h). Users could enable "TCPUDP over IP" to force using the TCPUDP PRI when there is a match.

3.1.15.2	Oueue	Assig	med
J.I.IJ.4	Queue	110016	nou

3.1.15.2 Queue Assigned			
Packets Identified by	The Order of Priority Assigned		
DM8606BF			
BPDU/SLOW/	1. The PRI field with PRI_Valid = 1 in the Special TAG indicates the priority		
PAE/RESER_R0/	queue.		
RESER_R1/	2. If (DA+FID) matches an entry in the learning table, then LRN_PRI field with		
GXRP/	LRN_PRIEN enabled in this entry indicates the priority queue.		
RESER_R2/	3. Use PRI in 0x003dh to indicate the queue the frame was switched.		
RESER_R3			
	1. The PRI field with PRI_Valid = 1 in the Special TAG indicates the priority		
ARP/RARP	queue.		
	2. Use PRI in 0x000dh to indicate the priority queue when enabled.		
	3. Use System PRI.		
	1. The PRI field with PRI_Valid = 1 in the Special TAG indicates the priority		
IGMP_IP/MLD_IP/	queue.		
MLD_IPV6	2. Use PRI in 0x000ch to indicate the priority queue when enabled.		
	3. Use System PRI.		
	1. The PRI field with PRI_Valid = 1 in the Special TAG indicates the priority		
Others	queue.		
	2. Use System PRI.		

3.1.16 Address Learning

DM8606BF provides two ways to create the entry in the address table: dynamic learning and manual learning. A four-way hash algorithm is implemented to allow the maximum of 4 different addresses with the same hash key to be stored at the same time. Up to 2k entries can be created and all entries are stored in the internal SSRAM. DM8606BF searches the learning table for the SA+FID of the incoming packet or the instruction from CPU. When both fields (a single SA may exist in different FID) are matched, there is a match.

6-Port Fast Ethernet Single Chip Switch Controller

3.1.16.1 Dynamic Learning

The DM8606BF searches for SA and FID of an incoming packet in the address table and takes dynamic learning action as follows:

1. If (SA+FID) was not found in the learning table, create a new entry with SA, FID, and the incoming port. 2. If (SA+FID) was found in the learning table, and the incoming port and the Portmap don't match, create a new entry with SA, FID, and the incoming port.

Dynamic learning will be disabled in the following condition:

1. Security violation exists on the port.

2. VLAN violation exists on the port.

3. The packet is a PAUSE packet.

4. The number of the addresses that port has learned has reached its maximum.

5. The port disables its learning function (see extended control registers).

6. The packet is an illegal packet (too long, too short or FCS error).

7. A packet with Special Tag is received and the LRN bit is 0 and LRN_Valid = 1'b1.

8. The port is in the Disabled state in the Spanning Tree Protocol.

10. The port is in the Blocking/Listening state in the Spanning Tree Protocol.

11. All the four entries in the same hash address are occupied and all of them are static addresses.

3.1.16.2 Manual Learning

The DM8606BF implements the manual learning through the CPU's help. The CPU can create or remove any entry in the address table. Each entry could be static or not. "Static" means the entry will not be aged forever. When the entry is static, then the definition in some fields is modified to make DM8606BF work more flexibly.

3.1.16.3 Learning Table

3.1.16.3.1 Entry Format in the Learning Table

69	68	67	66	58	57	52	51	48	47	0
Bad	Info_Type	Occupy	Info_Ctrl/Age Tin	ner	Portmap		FID		Address	

Field	Descr	iption						
Bad		ntry is marked to show if it is failed during the learning table memory bist time.						
		0 = Doesn't fail.						
	1 = Fa	= Fail.						
Info_Type	~	Address.						
	0 = The entry is not static.							
		he entry is static.						
Occupy	The en	ntry is marked to show the status if the entry is occupied.						
	$0 = D_0$	on't occupy.						
	1 = O(1 = Occupy.						
Info_Ctrl/	Info_(Info_Ctrl is used when the entry is static.						
Age Timer	Bit	Description						
	8	Source Intrusion. $0 =$ It isn't a violated source address. $1 =$ It is a violated source						
		address.						
	7	Span. 0 = Not span packet. 1 = A span packet.						
	6	Management. $0 = Not$ a management packet. $1 = A$ management packet.						
	5	Cross VLAN. 0 = Not a cross VLAN packet. 1 = A cross VLAN packet.						
	4:3	TXTXG. It is used as an option for inserting Tag on the transmission port.						
		00 = System Default Tag.						
		01 = Unmodified.						
		10 = Always Tagged.						
		11 = Always Untagged.						
	2	LRN_PRIEN. 0 = LRN_PRI is not used. 1 = LRN_PRI is used.						

6-Port Fast Ethernet Single Chip Switch Controller

	1:0	LRN_PRI. It identified the address priority.				
		00 = Queue $0.$				
		01 = Queue 1.				
		10 = Queue 2.				
		11 = Queue 3.				
	Age	Age Timer is used when the entry is not static.				
	Bit	it Description				
	8:0	0 Age Timer. This timer is used to control the ageing time.				
Portmap	The field is used as the output ports associated with the FID+MAC Address.					
FID	The f	The field is used as the FID group associated with the MAC address.				
Address	The N	MAC Address in the learning table.				

3.1.16.3.2 The Registers Accessing the Learning Table

12 registers are provided by DM8606BF to support the customer to access the address table. These 12 registers are Address Table Control Register $0 \sim 5$ and Address Table Status Register $0 \sim 5$ in 0x011ah \sim 0x0125h.

Control Regis	Control Register Description							
Command	Access	Info_Type	Info_Ctrl/	Portmap	FID	Address		
	Control		Age Timer	_				
Control 5	Control 5	Control 4[12]	Control 4	Control 3	Control 3	{Control 2,		
[6:4]	[3:0]		[8:0]	[9:4]	[3:0]	Control 1,		
						Control 0}		

The Address, FID, Portmap, Info_Ctrl/Age Timer and Info_Type in the Control Register have the same meaning as those in the entry format. The Command and Access Control is described as follows:

Description	Description for Command and Access Control.					
Command	Access Control	Description				
3'b000	4'b0111	Create a new address				
3'b000	4'b1111	Overwrite an existed address				
3'b001	4'b1111	Erase an existed address				

Status Register Description								
Busy	Result	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Status 5 [31]	Status 5 [30:28]	Status 5 [2]	Status 5[1]	Status 5[0]	Status 4 [8:0]	Status 3 [9:4]	Status 3 [3:0]	{Status 2, Status 1, Status 0}

Description for the Status Register

Result	This field tells us the status for not only the search operation but also the creating operation. 000 = Command OK
	001 = All Entry Used. This result happens only for the create operation. DM8606BF uses the 4- way address lookup engine so it allows 4 different addresses stored at each hash location. If these 4 entries are all static, then CPU will not successfully create 5th different address hashed to the same location and 001 will be returned. The only way to create 5th different address is to remove one of early addresses.
	101 = Command Error.
Busy	This bit indicates if the table engine for access is available.
-	1 = The engine is busy and it will not accept the command from the CPU.
	0 = The engine is available.

3.1.16.3.3 Rules to Access the Learning Table

(1) Check the Busy Bit in the status register to see if the access engine is available. If the engine is busy, wait until the engine is free. If the engine is available, go to the following step.

6-Port Fast Ethernet Single Chip Switch Controller

(2) Write the MAC address[15:0] into the control register 0.

- (3) Write the MAC address[31:16] into the control register 1.
- (4) Write the MAC address[47:32] into the control register 2.
- (5) Write the Portmap and FID into the control register 3.
- (6) Write the Info_Ctrl/Age Timer and Info_Type into the control register 4.
- (7) Write the Access Control and Command into the control register 5 to define the operation.
- (8) Wait for the engine to complete (Check the Busy Bit).
- (9) Read the desired result returned in the status register.

3.1.16.3.4 Example	
--------------------	--

Example	Rule
The user needs	(1) Check the Busy bit. If Busy = 1'b0, go to the next step. If Busy = 1'b1, wait.
DM8606BF to	(2) Write 16'h789A into control register 0.
forward the	(3) Write 16'h3456 into control register 1
specified unicast	(4) Write 16'h0012 into control register 2.
packet (DA =	(5) Write 16'h0082 into control register 3.
48'h0012-3456-	(6) Write 16'h1000 into control register 4.
789A and FID = 2)	(7) Write 16'h0007 into control register 5.
to port 3 forever.	(8) Read the status register 5 to check the busy bit. If
	Busy = 1'b0, check the Command Result to see if the create operation is successful. If
	Busy = 1'b1, wait
The user needs	(1) Check the Busy bit. If Busy = 1'b0, go to the next step. If Busy = 1'b1, wait.
DM8606BF to	(2) Write 16'h89AB into control register 0.
forward the	(3) Write 16'h4567 into control register 1
specified multicast	(4) Write 16'h0123 into control register 2.
packet (DA =	(5) Write 16'h0033 into control register 3.
48'h0123-4567-	(6) Write 16'h0000 into control register 4.
89AB and FID = 3)	(7) Write 16'h0007 into control register 5.
to port 0, and port 1	(8) Read the status register 5 to check the busy bit. If
both. This address	Busy = 1'b0, check the Command Result to see if the create operation is successful. If
could be aged.	Busy = 1'b1, wait

3.1.17 Address Aging

DM8606BF maintains an age timer for each address. The aging timer is reset to 0 when the packet is received. When aging time counts up to 300 seconds, it means that this station didn't transmit packets for this period and the address can be removed from the table. This could help to prevent a station leaves the network and occupies a table space for a long time. Aging function can be disabled from the EEPROM (see extend control registers). If the address is static, DM8606BF doesn't age it out also. The default aging timer is 300 seconds. User could change Aging Timer Select (0x0011h) to shorten the aging time.

3.1.18 Hardware based IGMP Snooping

DM8606BF support IGMP v1/v2 Snooping without any software effort. DM8606BF will monitor the IGMP traffic and update its embedded IGMP membership table if hardware based IGMP snooping function enabled. IP multicast frames can be forwarded according to the Port-Map information of the membership table. The data of the membership can also be accessed by CPU via SDC/SDIO interface. The following registers could be used to configure the IGMP Snooping behavior.

- 1. EEPROM register 0x00b bit [13:12], Additional Snooping Control register.
- 2. EEPROM register 0x00b bit [2], Source Violation Over Snooping.
- 3. EEPROM register 0x00b bit [1], Source Violation Over Default.
- 4. EEPROM register 0x00c bit [13:6], various Snooping Control registers.
- 5. EEPROM register 0x00c bit [2], Hardware IGMP Packet Ignore CPU Port.
- 6. EEPROM register 0x00c bit [1], Hardware IGMP Snooping Enable.
- 7. EEPROM register 0x00c bit [0], Hardware IGMP Default Router Enable.
- 8. EEPROM register 0x00d bit [14], IP Multicast Packet Treated as Cross VLAN packet.

6-Port Fast Ethernet Single Chip Switch Controller

- 9. EEPROM register 0x01b bit [14:9], Multicast Port-Map.
- 10. EEPROM register 0x03f bit [15:8], Query Interval.
- EEPROM register 0x03f bit [7:6], Robust Variable.
 EEPROM register 0x03f bit [5:0], Default Router Port-Map.
- 3.1.18.1 Entry Format of IGMP membership Table

57	56	55 48	47 42	41	30	29		22	0
Bad	Occupy	Response	Response Flag	N	o Response	Report Mask	Port-Map	Group ID	
		Timer		Co	ounter				

Field	Description
Bad	The entry is marked to show if it is failed during the learning table memory bist time.
	0 = Doesn't fail.
	1 = Fail.
Occupy	The entry is marked to show the status if the entry is occupied.
	0 = Don't occupy.
	1 = Occupy.
Response	Response Timer
Timer	The timer will be set according to maximum response time field in General Query frame or
	Group Specific Query frame and count down every 100ms.
Response Flag	A flag is used to record any IGMP REPORT frame is received for each port before
	Response Timer count to 0.
	0 : No IGMP REPORT frame is received.
	1. : IGMP REPORT frame is received
No Response	A counter for each port is used to count the consecutive occurrence times of no IGMP
Counter	REPORT frame received before Response Timer count to 0.
Report Mask	A flag is used to record any IGMP REPORT frame of this Group is received before
	Response Timer count to 0.
	0 : No IGMP REPORT frame of this Group is received.
	1 : IGMP REPORT frame is received.
Port-Map	A flag is used to denote weather the port is the member of this Group or not.
	0 : The port is not the member of this Group.
	1 : The port is the member of this Group.
Group ID	IP Multicast Group ID

3.1.18.2 The Registers Accessing the IGMP membership table

The registers for accessing the IGMP membership table are the same with accessing MAC address filtering table, but the data format are re-defined as below.

Control Reg	Control Register Description					
Command	Command Entry Address Entry Data		Entry Data			
Control5[6:	:4]	Control4[4:0]	{Control3[9:0], Control2, Control1, Control0}			
The Comm	The Command used to access IGMP membership table is defined as below.:					
Description	Description for Command					
Command	Command Description					
3'b100	write data into internal IGMP table					
3'b101	Read data from internal IGMP table					

Status Register Description							
Busy	Result	Entry Address	Entry Data				
Status5[15]	Status5[14:12]	Status4[4:0]	{Status3[9:0], Status2, Status1, Status0}				

6-Port Fast Ethernet Single Chip Switch Controller

3.1.19 Source Violation

Source violation is defined in DM8606BF to support flexible security modes. See Security Option in the EEPROM Basic Register and the Src_Violation bit in the Learning Table.

Security Mode	Ster and the Src_Violation bit in the Learning Table.
Security Mode	DM8606BF locks the first SA+FID of packets received on the port. After the first
	(SA+FID) was locked, DM8606BF starts to check packets with different
	(SA+FID).
	1. If the packets are not assigned as management, drop it (modify the forwarding
	algorithm) and record as a source violation.
	2. If the packets are management packets, and Source Violation (see 0x000bh) is
First Lock	configured to 1'b1 for different kinds of packets, then DM8606BF modifies the
	forwarding algorithm to drop these packets. They are also recorded as a source
	violation.
	3. If the packets are management packets and Source Violation is configured to
	1'b0, then DM8606BF doesn't modify the forwarding algorithm. In this situation,
	we don't record this case as a source violation.
	The first received packets will be locked as First Lock. The difference is that the
	receiving port will not receive and learn packets any more after the port links
First Link Lock	down even if it links up again. A source violation is recorded as the First Lock. If
	DM8606BF modifies the forwarding algorithm is still as the First Lock.
	DM8606BF allows users to assign the locked SA+FID through CPU's help
Assign Lock	instead of the first SA+FID. A source violation is recorded as the First Lock. If
A 1991 Eller	DM8606BF modifies the forwarding algorithm is still as the First Lock.
	DM8606BF allows users to assign the locked SA+FID through CPU's help
Assign Link Lock	instead of the first SA+FID. The others are the same as First Link Lock.
	The "unknown source address" means that (SA+FID) is not found in the learning
	table or even is found but Portmap doesn't match the incoming port. If
Discard Unknown	"unknown" packets are received, DM8606BF records the source violation as the
	First Lock. The rule to modify the forwarding algorithm is still as the First Lock.
	This option is the same as "Discard Unknown" except that if DM8606BF decides
Unknown to CPU	to modify the forwarding algorithm, it will forward the packets to the CPU port
	instead of dropping them.
	If the incoming port receives the packets with SA is marked as Source Intrusion,
	we handle these packets in the following rule:
	1. Enable Source Intrusion Must (see 0x000bh) to instruct DM8606BF to modify
	the forwarding algorithm and record the source violation always.
	2. If Source Intrusion Must is not enabled, DM8606BF also modifies the
	forwarding algorithm and records the source violation when any non-
	management packets are received.
а т. ·	3. If Source Intrusion Must is not enabled, DM8606BF also modifies the
Source Intrusion	forwarding algorithm and records the source violation when amanagement
	packets are received but Source Violation is configured to 1'b1.
	4. If Source Intrusion Must is not enabled, DM8606BF doesn't modify the
	forwarding algorithm and records the source violation when management packets
	are received and Source Violation is configured to 1'b0.
	DM8606BF allows the users to redirect the packets to the CPU port instead of
	dropping it when they violate the source intrusion (see Source Intrusion Action in
	0x000bh).
DM8606BE supports	stricter security protection. The port is disabled when there is a source violation.

DM8606BF supports stricter security protection. The port is disabled when there is a source violation. Enable Security Option[3] to enable this feature.

3.1.20 Packet Forwarding

DM8606BF identifies packet headers and transfers it from the incoming port to the destination ports.

6-Port Fast Ethernet Single Chip Switch Controller

3.1.20.1 Control Table

DM8606BF provides a control table for user to control the forwarding algorithm of the DA = $01-80-C2-00-00-00 \sim DA = 01-80-C2-00-00-2f$ easily. This control table is defined in 0x0074h ~0x008bh.

3.1.20.2 Default Output Ports

The default output ports that a packet is transferred to are determined in the following order.

1. The Portmap in the Special Tag with Portmap_Valid = 1 is used as the output ports.

2. The Portmap in the learning table is used as the output ports, when (DA+FID) matches an entry in the learning table.

3. The Portmap in the hardware IGMP table is used as the output ports, when DA matches an entry in the hardware IGMP table and "Hardware IGMP Snooping" (see 0x000bh) is enabled.

4. "Broadcast Portmap" (see 0x001ah) is used as the output ports, when the incoming packet is a broadcast packet.

5, "Multicast Portmap" (see 0x001bh) is used as the output ports, when the incoming packet is a multicast packet.

6. "Unicast Portmap" (see 0x0019h) is used as the output ports, when the incoming packet is a unicast packet.

3.1.20.3 Forwarding Algorithm

Packets Identified by	Algorithm
DM8606BF	IF (Determs Malialized), Considering in the True Network in the
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
BPDU/SLOW/	Seacial Tag as the output ports.
PAE/RESER R0/	ELSE IF ((DA+FID) matches an entry in the learning table)), THEN use
RESER R1/	the Portmap in the learning table as the output ports.
GXRP/	ELSE IF (DA matches an entry in the control table), THEN the output
RESER R2/	ports are the Portmap in the table.
RESER_R3	ELSE the output ports are the intersection of the Pass Portmap (see
—	0x003dh and 0x003eh) and the "Reserve Portmap" in the EEPROM (see
	0x001c)
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
	Special Tag as the output ports.
ARP/RARP	ELSE IF (ARP/RARP is trapped), THEN use ARP/RARP Portmap as the
	output ports.
	ELSE use "Default Output Ports" as the output ports.
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
	Special Tag as the output ports.
	ELSE IF (Hardware IGMP Snooping is enabled),
	IF (Hardware IGMP Packet Ignore CPU Port is enabled),
IGMP_IP/MLD_IP/	THEN forwards packets to Multicast Portmap but doesn't
MLD_IPV6	forward to the CPU port.
	Else forwards packets to Multicast Portmap.
	ELSE IF (IGMP_IP/MLD_IP/MLD_IPV6 is trapped), THEN use
	IGMP/IGMP_IP/MLD_IP/MLD_IPV6 Portmap as the output ports.
	ELSE use "Default Output Ports" as the output ports.
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
TYPE	Special Tag as the output ports.
	ELSE use Type Portmap as the output ports.
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
PROTOCOL	Special Tag as the output ports.
	ELSE use Protocol Portmap as the output ports.
	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the
TCPUDP	Special Tag as the output ports.
	ELSE use TCPUDP Portmap as the output ports.
MAC_CTRL	IF (Portmap_Valid in the Special Tag is 1), THEN use Portmap in the

6-Port Fast Ethernet Single Chip Switch Controller

	Special Tag as the output ports.		
	ELSE use MAC CTRL Portmap as the output ports.		
Others	Use "Default Output Ports" as the output ports		

3.1.21 Special TAG

Special Tag is inserted after the Ethernet SA field to allow the CPU to tell the switch how to handle the packets it sends or to know the source port when the CPU receives a packet.

8 Bytes	Preamble
6 Bytes	DA
6 Bytes	SA
Byte 0	Special Tag 0
Byte 1	Special Tag 1
Byte 2	Special Tag 2
Byte 3	Special Tag 3
Byte 4	Special Tag 4
Byte 5	Special Tag 5
4 Bytes	VLAN Tag
6 Bytes	SNAP
2 Bytes	Type/Length
	Data
4 Bytes	CRC

3.1.21.1 Special Tag for the Receive

Users are allowed to enable Special TAG Receive (0x0011h) function to instruct DM8606BF to check the Special Tag to see if this field contains any commands when packets are received on the CPU port.

Special TAG	Description
Byte 0	DM Prefix 0.
Byte 1	DM Prefix 1. When Special TAG Receive is enabled, DM8606BF will compare {DM Prefix -, DM Prefix 1} with DM TAG Ether Type (see 0x002eh). If they are different, Special Tag is ignored. If they are the same, DM8606BF uses the Special Tag to make switching decisions.
Byte 2	Bit [7]: Don't care. Bit [6]: Portmap_Valid. 1 = Vaild. 0 = Not Valid. Bit [5:0]: Portmap in the Special Tag.
Byte 3	Bit [7]: Span_Valid. 1 = Valid. 0 = Not Valid. Bit [6]: Span. 1 = Span packet. 0 = Not span packet. Bit [5]: Management_Valid. 1 = Valid. 0 = Not Valid. Bit [4]: Management. 1 = Management packet. 0 = Not management packet. Bit [3]: Cross_VLAN_Valid. 1 = Valid. 0 = Not Valid. Bit [2]: Cross_VLAN. 1 = Cross_Vlan packet. 0 = Not Cross_VLAN packet. Bit [1]: LRN_Valid. 1 = Valid. 0 = Not Valid. Bit [0]: LRN. 1 = Learn. 0 = Not Learn,
Byte 4	Bit[7]: Ignore. Bit[6]: PRI_Valid. 1= Valid. 0 = Not Valid. Bit[5:4]: PRI. 00 = Queue 0. 01 = Queue 1. 10 = Queue 2. 11 = Queue 3. Bit [3]: Ignore. Bit [2]: TXTAG_Valid. 1 = Valid. 0 = Not Valid. Bit [1:0]: TXTAG.
Byte 5	Bit [6]: Tagged Member Valid. 1 = Valid. 0 = Not Valid. Bit [5:0]: Tagged Member. Bit[X] = 1: Port is in the tagged member.

6-Port Fast Ethernet Single Chip Switch Controller

3.1.21.2 Special Tag for the Transmit

Users are allowed to enable Special TAG Transmit (0x0011h) function to instruct DM8606BF to insert the Special Tag followed SA in the packets transmitted from the CPU port. DM8606BF also allows users to choose what kinds of packets they don't want to insert this Special Tag even when Special TAG Transmit (0x0011h) function is enabled.

Packets Identified by DM8606BF	Condition	Result
BPDU/SLOW/ PAE/RESER_R0/ RESER_R1/	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert Reserve} = 2'b10.	Don't insert Special Tag on the CPU port.
GXRP/ [–] RESER_R2/ RESER_R3	{Special TAG Transmit, Insert Reserve} = 2'b11.	Insert Special Tag on the CPU port.
ARP/RARP	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert ARP/RARP} = 2'b10.	Don't insert Special Tag on the CPU port.
	{Special TAG Transmit, Insert ARP/RARP} = 2'b11.	Insert Special Tag on the CPU port.
IGMP_IP/MLD_IP/ MLD_IPV6	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert Snoop} = 2'b10.	Don't insert Special Tag on the CPU port.
MLD_IP VO	{Special TAG Transmit, Insert Snoop} = 2'b11.	Insert Special Tag on the CPU port.
ТҮРЕ	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert Type} = 2'b10.	Don't insert Special Tag on the CPU port.
	{Special TAG Transmit, Insert Type} = 2'b11.	Insert Special Tag on the CPU port.
PROTOCOL	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert Protocol} = 2'b10.	Don't insert Special Tag on the CPU port.
	{Special TAG Transmit, Insert Protocol} = 2'b11.	Insert Special Tag on the CPU port.
TCPUDP	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert TCP/UDP} = 2'b10.	Don't insert Special Tag on the CPU port.
	{Special TAG Transmit, Insert TCP/UDP} = 2'b11.	Insert Special Tag on the CPU port.
MAC CTRL	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert MAC CTRL} = 2'b10.	Don't insert Special Tag on the CPU port.
_	{Special TAG Transmit, Insert MAC CTRL} = 2'b11.	Insert Special Tag on the CPU port.
	Special TAG Transmit = 1'b0. or {Special TAG Transmit, Insert Default, Source Violation} = 2'b100.	Don't insert Special Tag on the CPU port.
Others	{Special TAG Transmit, Insert Default, Source Violation} = 2'b110. or {Special TAG Transmit, Insert Default, Source Violation} = 2'b101.	Insert Special Tag
	{Special TAG Transmit, Insert Default, Source Violation} = 2'b111.	

6-Port Fast Ethernet Single Chip Switch Controller

Special TAG	Description
Byte 0	DM Prefix 0.
Byte 1	DM Prefix 1.
Byte 2	Bit [7]: Source Violation.
	1 = This packet is a source violated packet and it was modified its forwarding algorithm to
	the CPU port.
	0 = This packet is not a source violated packet.
	Bit [6]: Mirror. $1 =$ This is a mirrored packet. $0 =$ This is not a mirrored packet.
	Bit [5]: Span. $1 =$ This is a span packet. $0 =$ This is not a span packet.
	Bit [4]: Management. $1 =$ This is a management packet. $0 =$ This is not a management
	packet.
	Bit [3]: Ignore.
	Bit [2:0]: Source Port. 000 = Port 0. 001 = Port 1. 010 = Port 2. 011 = Port 3. 100 = Port 4.
	101 = Port 5.
Byte 3	Egress TAG[15:8].
Byte 4	Egress TAG[7:0].
Byte 5	Ignore.

3.2 10/100M PHY Block

The 100Base-X section of the device implements the following functional blocks: 100Base-X physical coding sub-layer (PCS) 100Base-X physical medium attachment (PMA) 100Base-X physical medium dependent (PMD)

The 10Base-T section of the device implements the following functional blocks: 10Base-T physical layer signaling (PLS) 10Base-T physical medium attachment (PMA)

The 100Base-X and 10Base-T sections share the following functional blocks: Clock synthesizer module MII Registers IEEE 802.3u auto negotiation

The interfaces used for communication between PHY block and switch core is MII interface.

Auto MDIX function is supported. This function can be Enable/Disable by the hardware pin. Digital approach for the integrated PHY of DM8606BF has been adopted.

3.2.1 Auto Negotiation

The Auto Negotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest performance mode of operation supported by both devices. Fast Link Pulse (FLP) Bursts provide the signaling used to communicate auto negotiation abilities between two devices at each end of a link segment. For further detail regarding auto negotiation, refer to Clause 28 of the IEEE 802.3u specification. The DM8606BF supports four different Ethernet protocols, so the inclusion of auto negotiation ensures that the highest performance protocol will be selected based on the ability of the link partner.

The auto negotiation function within the DM8606BF can be controlled either by internal register access or by the use of configuration pins are sampled. If disabled, auto negotiation will not occur until software

6-Port Fast Ethernet Single Chip Switch Controller

enables bit 12 in MII register 0. If auto negotiation is enabled, the negotiation process will commence immediately.

When auto negotiation is enabled, the DM8606BF transmits the abilities programmed into the auto negotiation advertisement register at address 04h via FLP bursts. Any combination of 10 Mbps, 100 Mbps, half duplex, and full duplex modes may be selected. Auto negotiation controls the exchange of configuration information. Upon successfully auto negotiation, the abilities reported by the link partner are stored in the auto negotiation link partner ability register at address 05h.

The contents of the "auto negotiation link partner ability register" are used to automatically configure to the highest performance protocol between the local and far-end nodes. Software can determine which mode has been configured by auto negotiation by comparing the contents of register 04h and 05h and then selecting the technology whose bit is set in both registers of highest priority relative to the following list. 100Base-TX full duplex (highest priority)

100Base-TX half duplex 10Base-T full duplex

10Base-T half duplex (lowest priority)

The basic mode control register at address 0h provides control of enabling, disabling, and restarting of the auto negotiation function. When auto negotiation is disabled, the speed selection bit (bit 13) controls switching between 10 Mbps or 100 Mbps operation, while the duplex mode bit (bit 8) controls switching between full duplex operation and half duplex operation. The speed selection and duplex mode bits have no effect on the mode of operation when the auto negotiation enable bit (bit 12) is set.

The basic mode status register at address 1h indicates the set of available abilities for technology types (bit 15 to bit 11), auto negotiation ability (bit 3), and extended register capability (bit 0). These bits are hardwired to indicate the full functionality of the DM8606BF. The BMSR also provides status on: Whether auto negotiation is complete (bit 5)

Whether the Link Partner is advertising that a remote fault has occurred (bit 4) Whether a valid link has been established (bit 2)

The auto negotiation advertisement register at address 4h indicates the auto negotiation abilities to be advertised by the DM8606BF. All available abilities are transmitted by default, but writing to this register or configuring external pins can suppress any ability.

The auto negotiation link partner ability register at address 05h indicates the abilities of the Link Partner as indicated by auto negotiation communication. The contents of this register are considered valid when the auto negotiation complete bit (bit 5, register address 1h) is set.

3.2.2 Speed/Duplex Configuration

The twelve sets of four pins listed in Table 3-1 configure the speed/duplex capability of each channel of DM8606BF. The logic states of these pins are latched into the advertisement register (register address 4h) for auto negotiation purpose. These pins are also used for evaluating the default value in the base mode control register (register 0h) according to Table 3-1.

In order to make these pins have the same Read/Write priority as software, they should be programmed to 111111111 b in case user likes to update the advertisement register through software.

Auto	Speed	peed Duplex		Advertise Capability				Parallel Detect Capability			
Negotiation (Pin & EEPROM)	(Pin & EEPROM)	$(P_{1n} X_{r})$	Auto Negotiation	100F	100H	10F	10H	100F	100H	10F	10H
1	1	1	1	1	1	1	1	0	1	0	1
1	1	0	1	0	1	0	1	0	1	0	1

6-Port Fast Ethernet Single Chip Switch Controller

Auto	Speed D	Duplex	Auto	Advertise Capability				Parallel Detect Capability			
Negotiation (Pin & EEPROM)	(Pin & EEPROM)	(Pin & EEPROM)		100F	100H	10F	10H	100F	100H	10F	10H
1	0	1	1	0	0	1	1	0	0	0	1
1	0	0	1	0	0	0	1	0	0	0	1
0	1	1	0	1	—	—	—	—	_		
0	1	0	0	—	1	—	_	—	—	—	—
0	0	1	0	—	—	1	—	—	—	—	—
0	0	0	0	—	—		1				—

Table 3-1 Speed/Duplex Configuration

3.3 Hardware, EEPROM and SMI Interface for Configuration

Three ways are supported to configure the setting in the DM8606BF: (1) Hardware Setting (2) EERPROM Interface (3) SMI Interface. Users could use EEPROM and SMI interfaces combined with the CPU port to provide proprietary functions. Four pins are needed when using these two interfaces. See the following figure as a description.

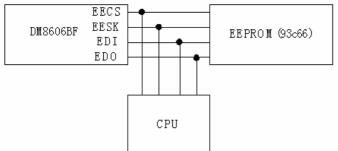


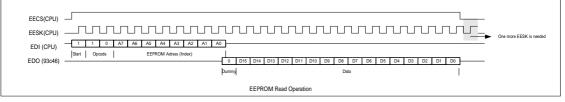
Figure 3-3 Interconnection between DM8606BF, EEPROM and CPU

3.3.1 Hardware Setting

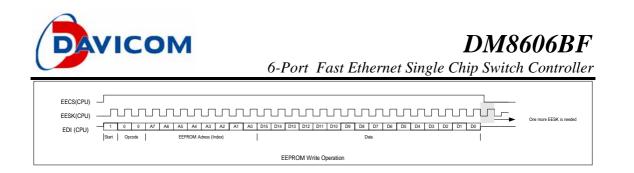
The DM8606BF provides some hardware pins where values reside on during power on or reset will be strapped for the default setting.

Setting Name	Description
GFCEN	 Global Flow Control Enable. 0 : Flow Control Capability is depended upon the register setting in corresponding EEPROM register 1 : All ports flow control capability is enabled.
SDIO_MD	SDC/SDIO mode selection. 0 : 32 bits mode 1 :.16 bits mode

6-Port Fast Ethernet Single Chip Switch Controller


Setting Name	Description						
	Port 5 bus mode selection bit 0.						
	P5_BUSMD[1:0] Interface						
P5 BUSMD[1:0]	00 MII						
	01 GPSI						
	10 RMII						
	11 Reserved and Not Allowed.						
	Recommend Back-Pressure in half-duplex.						
BPEN	0 : Disable Back-Pressure.						
	1 : Enable Back-Pressure						
RECANEN	Recommend Auto Negotiation Enable. Only valid for Twisted pair interface.						
	Programmed this bit to 1 has no effect to Fiber port.						
	0 : Disable all TP port auto negotiation capability						
	1 : Enable all TP port auto negotiation capability						
XOVEN	Cross Over Enable. Only available in TP interface.						
	1 : Enable						
	0 : Disable						
LED_MODE	Enable Mac to choose LED Display Mode.						
	0 : Single color LED						
	1 : Dual color LED						

3.3.2 EEPROM Interface


The EEPROM Interface is provided so the users could easily configure the setting without CPU's help. Because the EEPROM Interface is the same as the 93c66, it also allows the CPU to write the EEPROM register and renew the 93c66 at the same time. After the power up or reset (default value from the hardware pins fetched in this stage), the DM8606BF will automatically detect the presence of the EEPROM by reading the address 0 in the 96c66. If the value = 16'h4154, it will read all the data in the 93c66. If not, the DM8606BF will stop loading the 93c66. The user also could pull down the EDO to force the DM8606BF not to load the 93c66. The 93c66 loading time is around 30ms. Then CPU should give the high-z value in the EECS, EESK and EDI pins in this period if we really want to use CPU to read or write the registers in the DM8606BF.

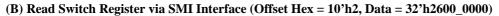
The EEPROM Interface needs only one Write command to complete a writing operation. If updating the 93c66 at the same time is necessary, three commands Write Enable, Write, and Write Disable are needed to complete this job (See 93c66 Spec. for a reference). Users should note that the EERPOM interface only allows the CPU to write the EEPROM register in the DM8606BF and doesn't support the READ command. If CPU gives the Read Command, DM8606BF will not respond and 93c66 will respond with the value. Users should also note that one additional EESK cycle is needed between any continuous commands (Read or Write).

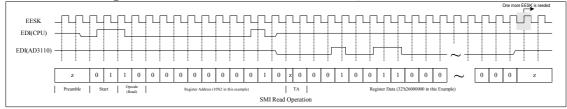
(1) Read 93c66 via the EEPROM Interface (Index = 2, Data = 16'h1111).

(2) Write EEPROM registers in the DM8606BF (Index = 2, Data =16'h2222).

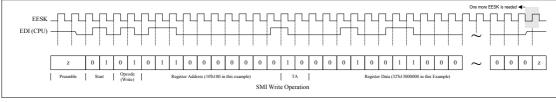
3.3.3 SMI Interface

The SMI consists of two pins, management data clock (EESK) and management data input/output (EDI). The DM8606BF is designed to support an EESK frequency up to 25 MHz. The EDI pin is bi-directional and may be shared with other devices. EECS pin may be needed (pulled to low) if EEPROM interface is also used.


The EDI pin requires a 1.5 K Ω pull-up which, during idle and turnaround periods, will pull EDI to a logic one state. DM8606BF requires a single initialization sequence of 32 bits of preamble following powerup/hardware reset. The first 32 bits are preamble consisting of 32 contiguous logic one bits on EDI and 32 corresponding cycles on EESK. Following preamble is the start-of-frame field indicated by a <01> pattern. The next field signals the operation code (OP): <10> indicates read from management register operation, and <01> indicates write to management register operation. The next field is management register address. It is 10 bits wide and the most significant bit is transferred first.


During Read operation, a 2-bit turn around (TA) time spacing between the register address field and data field is provided for the EDI to avoid contention. Following the turnaround time, a 32-bit data stream is read from or written into the management registers of the DM8606BF.

(A) Preamble Suppression


The SMI of DM8606BF supports a preamble suppression mode. The DM8606BF requires a single initialization sequence of 32 bits of preamble following power-up/hardware reset. This requirement is generally met by pulling-up the resistor of EDI While the DM8606BF will respond to management accesses without preamble, a minimum of one idle bit between management transactions is required.

When DM8606BF detects that there is address match, then it will enable Read/Write capability for external access. When address is mismatched, then DM8606BF will tri-state the EDI pin.

(C) Write Switch Register via SMI Interface (Offset Hex = 10'h180, Data = 32'h1300_0000)

6-Port Fast Ethernet Single Chip Switch Controller

(D	(D) The pin type of EECS, EESK, EDI and EDO during the operation.						
Pin Name	Reset Operation	Load EEPROM	Write Operation	Read Operation			
EECS	Input	Output	Input	Input			
EESK	Input	Output	Input	Input			
EDI	Input	Output	Input	Input/Output			
EDO	Input	Input	Input	Input			

6-Port Fast Ethernet Single Chip Switch Controller

Chapter 4 Register Description

4.1 EEPROM Content

EEPROM provides DM8606BF many options setting such as:

Port Configuration: Speed, Duplex, Flow Control Capability and Tag/ Untag. VLAN & TOS Priority Mapping Broadcast Storming rate and Trunk. Fiber Select, Auto MDIX select VLAN Mapping Per Port Buffer number

4.1.1 Memory Map

Register	Definition
0x0000h~0x003fh	EEPROM BAISC Register Map
0x0040h~0x009bh	EEPROM Extended Register Map
0x00a0h~0x0143h	Counter and Switch Status Map
0x0200h~0x02ffh	PHY Register Map

4.2 EEPROM Basic Register Map

Register		Bit	15-0	Default Value
0x00h	Signature Register			0x4154h
0x01h		P0 Basic Co	ntrol Register	0x040fh
0x02h	P1 Extended Control	Register	P0 Extended Control Register	0x0000h
0x03h			ntrol Register	0x040fh
0x04h	P3 Extended Control	Register	P2 Extended Control Register	0x0000h
0x05h		P2 Basic Cor	ntrol Register	0x040fh
0x06h	P5 Extended Control		P4 Extended Control Register	0x0000h
0x07h		P3 Basic Cor	ntrol Register	0x040fh
0x08h		P4 Basic Cor	ntrol Register	0x040fh
0x09h		P5 Basic Cor	ntrol Register	0x040fh
0x0ah		System Cont	rol Register 0	0x5902h
0x0bh			rol Register 1	0x8001h
0x0ch		Multicast Sno	oping Register	0x0000h
0x0dh		ARP/RAR	P Register	0x0000h
0x0eh			iority Map	0xfa50h
0x0fh		TOS Prie	prity Map	0xfa50h
0x10h		System Cont	rol Register 2	0x0040h
0x11h		System Cont	rol Register 3	0xe300h
0x12h		System Cont	rol Register 4	0x3600h
0x13h	P0 Security Option	STP P0	Forward Group 0 Port Map	0x01d5h
0x14h	P1 Security Option	STP P1	Forward Group 1 Port Map	0x01d5h
0x15h	P2 Security Option	STP P2	Forward Group 2 Port Map	0x01d5h
0x16h	P3 Security Option	STP P3	Forward Group 3 Port Map	0x01d5h
0x17h	P4 Security Option	STP P4	Forward Group 4 Port Map	0x01d5h
0x18h	P5 Security Option	STP P5	Forward Group 5 Port Map	0x01d5h
0x19h	Unicast Portma		Forward Group 6 Port Map	0xffd5h
0x1ah	Broadcast Portm	ap	Forward Group 7 Port Map	0xffd5h

6-Port Fast Ethernet Single Chip Switch Controller

Register		Bit	15-0	0 1	Default Value
0x1bh	Multicast	Portmap	Forwa	ard Group 8 Port Map	0xffd5h
0x1ch	Reserve	Portmap		ard Group 9 Port Map	0xffd5h
0x1dh	Packet Identifi			rd Group 10 Port Map	0xffd5h
0x1eh	VLAN Prio	rity Enable	Forwa	rd Group 11 Port Map	0xffd5h
0x1fh	Service Pric	rity Enable	Forwa	rd Group 12 Port Map	0xffd5h
0x20h	Input Forc	e No Tag	Forwa	rd Group 13 Port Map	0xffd5h
0x21h	Ingress	Filter	Forwa	rd Group 14 Port Map	0xffd5h
0x22h	VLAN Secu	rity Disable	Forwa	rd Group 15 Port Map	0xffd5h
0x23h		Input Buffer Thr	eshold Register	0	0x0000h
0x24h		Input Buffer Thr	eshold Register	1	0x0000h
0x25h	Queue 1 Weight	IGMP/MPLD TR	AP Enable	Input Jam Threshold	0x1000h
0x26h	Queue 2 Weight	VID Che	ck	PPPOE Port Only	0x1000h
0x27h	Queue 3 Weight	Back to Port VLAN	N Adr	nit Only VLAN-Tagged	0x1000h
0x28h	R	eserve		P0VID [11:4]	0x0000h
0x29h	Re	eserve		P1VID [11:4]	0x0000h
0x2ah	Outpu	t Tag Pass		P2VID [11:4]	0x3f00h
0x2bh	P4V	D [11:4]		P3VID [11:4]	0x0000h
0x2ch	Reserved Address	Control TAG Shi	ift	P5VID [11:4]	0xd000h
0x2dh		PHY Contr	ol Register		0x4442h
0x2eh		DM TAG	Ether Type		0x0000h
0x2fh		PHY Resta	art Register		0x0000h
0x30h		Miscellaneo	ous Register		0x0987h
0x31h		Basic Bandwidth	Control Regist	ter	0x0000h
0x32h		Basic Bandwidth	Control Regist	ter	0x0000h
0x33h		Bandwidth Contro	ol Enable Regis	ster	0x0000h
0x34h		Expansion Bandwid	th Control Regi	ster 0	0x0000h
0x35h		Expansion Bandwid	th Control Regi	ster 1	0x0000h
0x36h		Expansion Bandwid	th Control Regi	ster 2	0x0000h
0x37h		Expansion Bandwid			0x0000h
0x38h		Expansion Bandwid			0x0000h
0x39h		Expansion Bandwid			0x0000h
0x3ah				andwidth Control Register 6	0x0fc0h
0x3bh	New Storm Register 0			0x0000h	
0x3ch	New Storm Register 1			0x0000h	
0x3dh		New Reserved Addre			0x00fdh
0x3eh		New Reserved Addre			0x0000h
0x3fh		Hardware IGMP	Control Regist	er	0x7c80h

4.2.1 Signature Register

offset: 0x00h

Bits	Туре	Description	Initial value
15:0		The value must be 16'h4154. DM8606BF uses this value to check if the EEPROM is attached. If the value in the EEPROM doesn't equal to 16'h4154h, DM8606BF will stop loading the EEPROM even if the EEPROM is attached. DM8606BF will use the default value in section 4.2 to initialize.	0x4154h

4.2.2 P0, P1, P2, P3, P4 and P5 Basic Control Registers

offset: 0x01h, 0x03h, 0x 05h, 0x07, 0x 08, 0x09h Bits Type Description

Initial value

		DAVICOM DM860	6BF
	C	6-Port Fast Ethernet Single Chip Switch Co	
15	R/W	Crossover Auto Detect Enable (cross_ee). This bit is used together with the value (cross_hw) on the pin EESK/SDC during the power on reset and the value (wait_init) on the pin WAIT_INIT during the normal mode to decide if PHY enables this function. This bit is useless in Port 5. {wait_init, cross_hw, cross_ee} Description 1x1 = This port will enable Crossover Auto Detect Enable function. 1x0 = This port will disable Crossover Auto Detect Enable function. 01x = This port will enable Crossover Auto Detect Enable function. 01x = This port will enable Crossover Auto Detect Enable function. 000 = This port will disable Crossover Auto Detect Enable function. 001 = This port will enable Crossover Auto Detect Enable function.	1'b0
14	R/W	Select FX (selfx_ee). This bit is used together with the value (p4fx_hw) on the pin P4FX during the power on reset to decide if the PHY operates on the fiber mode. This bit is useless in Port 5. Port 0, 1, 2, 3: selfx_ee Description 0 = Port will operate in the Twisted Pair Mode. 1 = Port will operate in the Fiber Mode. Port 4: {p4fx_hw, selfx_ee} Description 1x = Port 4 will operate in the fiber mode. 00 = Port 4 will operate in the twisted mode. 01 = Port 4 will operate in the fiber mode.	1'b0
13:10	R/W	PVID[3:0]. See 0x0028h ~ 0x002ch to find the other $PVID[11:4]$	4'b1
9:8	R/W	Port Priority. 00 = Assign packets to Queue 0. 01 = Assign packets to Queue 1. 10 = Assign packets to Queue 2. 11 = Assign packets to Queue 3.	2'b0
7	R/W	Port Priority Enable 0 = The port priority is disabled. 1 = The port priority is enabled.	1'b0
5	R/W	IP over VLAN PRI. 0 = Use the priority bits in the tag header to assign the priority queue. 1 = Use the IP PRI to assign the priority queue.	1'b0
5	R/W	Port Disable. Port 0, 1, 2, 3, 4: 0 = PHY works normally. 1 = PHY is disabled. Port 5: 0 = Port 5 works normally. 1 = Port 5 is forced to link down.	1'b0
4	R/W	Output Packet Tagging Enable. 0 = Untagged packets are transmitted. 1 = Tagged packets are transmitted.	1'b0
3	R/W	Duplex Ability. It is useless in Port 5. 0 = Recommend PHY to work in the half duplex mode. 1 = Recommend PHY to work in the full duplex mode.	1'b1
2	R/W	Speed Ability. 0 = Recommend PHY to work in the 10M mode. 1 = Recommend PHY to work in the 100M mode.	1'b1
1	R/W	Auto Negotiation Enable. 0 = Recommend PHY to work without Auto Negotiation. 1 = Recommend PHY to work with Auto Negotiation, when the value on the pin DUPCOL0 during the power on reset is 1.	1'b1

6-Port Fast Ethernet Single Chip Switch Controller

0	Flow Control Enable.	1'b1
	0 = Recommend MAC to work without Pause or Back Pressure.	
	1 = In full duplex, recommend MAC to work with Pause when the value on the TXD0	
	during the power on reset is 1. In half duplex, recommend MAC to work with Back	
	Pressure when the value on the DUPCOL2 during the power on reset is 1.	

4.2.3 P0, P1, P2, P3, P4, P5 Extended Control Registers

offset: 0x02h, 0x04h, 0x06h

Bits	Туре	Description	Initial value
15	R	Reserve	1'b0
14	R/W	Aging Disable (P1, P3, and P5).	1'b0
		0 = Aging function is enabled.	
		1 = Aging function is disabled.	
13	R/W	Learning Disable (P1, P3, and P5).	1'b0
		0 = Learning function is enabled.	
		1 = Learning function is disabled.	
12:8	R/W	The maximum number of addresses learned from the port (P1, P3, and P5).	5'b0
		00000 = Don't constrain the number of addresses learned.	
		others = Constrain the number of addresses learned to this value.	
7	R	Reserve	1'b0
6	R/W	Aging Disable (P0, P2, and P4).	1'b0
		0 = Aging function is enabled.	
		1 = Aging function is disabled.	
5	R/W	Learning Disable (P0, P2, and P4).	1'b0
		0 = Learning function is enabled.	
		1 = Learning function is disabled.	
4:0	R/W	The maximum number of addresses learned from the port (P0, P2, and P4).	5'b0
		00000 = Don't constrain the number of addresses learned.	
		others = Constrain the number of addresses learned to this value.	

4.2.4 System Control Register 0

offset: 0x0ah

Bits	Type	Description	
15:12	R/W	ERCMPTH. It means the earlier cycles for transmission used in DM8606BF. It is for the engineer debug purpose.	4'h5
11	R/W	Priority Change Rule 0 = Use VLAN_PRI field in the matched VLAN filter. 1 = Reverse PRI in the same way as untagged packet.	1'b1
10	R/W	Priority Change Enable. 0 = Don't change the priority in the tag header. 1 = Change the priority field in the tag header.	1'b0
9	R/W	Replace VID0. 0 = Don't replace. 1 = Replace.	1'b0
8	R/W	Replace VID1. 0 = Don't replace. 1 = Replace.	1'b1
7	R/W	Replace VIDFFF. 0 = Don't replace. 1 = Replace.	1'b0
6:3	R/W	Default FID. See 3.1.14.7.	4'b0
2	R/W	New Transmit Tag Enable. 0 = Use old. 1 = Use new.	1'b0
1	R/W	TOS Using.	1'b1

		6-Port Fast Ethernet Single Chip Switch Con	ntroller
		0 = Use the most significant 6-bits of the TOS field in the IPV4 header to map the priority queue. 1 = Use the most significant 3-bits of the TOS field in the IPV4 header to map the priority queue	
0	R/W	PPPOE Manage. When the port is configured a PPPOE Only, the port will only transmit the PPPOE packets. But when the packet is a management one, users could configure PPPOE Manage to 1'b1 to transmit this packet on the PPPOE Only port even if it is not a PPPOE packet. DM8606BF identifies packets with Ether-Type = 16'h8863 or 16'h8864 as the PPPOE packet.	1'b0

4.2.5 System Control Register 1

(offset: 0x0bh				
Bits	Туре	Description	Initial value		
5	R/W	Disable Far-End-Fault detection.	1'b1		
		0 = Far-End-Fault detection is enabled.			
		1 = Far-End-Fault detection is disabled			
4	R/W	Input Filter.	1'b0		
		0 = Discard packets directly when storming or the lack of input buffers.			
		1 = Forward packets to the un-congested port when storming or the lack of input buffers.			
13:12	R/W	Additional Snooping Control. These bits are used when the packets on the incoming port	2'b0		
		with the Ethernet destination address = $01-00-5E-XX-XX/33-33-XX-XX-XX$ are not			
		IGMP IP/ MLD IPV/MLD IPV6 packets and not found in the learning table or the			
		hardware IGMP table.			
		00 = As normal multicast packets.			
		01 = Drop.			
		10 = Send to CPU if the receiving port is non-CPU port or send to Multicast Portmap if			
		the receiving is the CPU port.			
		11 = Reserve.			
11	R/W	Source Intrusion Condition.	1'b0		
		0 = Learning table source violation doesn't consider the port match.			
		1 = Learning table source violation takes the port match into consideration.			
10	R/W	Source Intrusion Must.	1'b0		
		0 = Learning table source violation will be effective in the following conditions.			
		1. The packets are not the management packets.			
		2. The packets are the management packets but Source Violation Over Reserve is			
		1'b1.			
		1 = Must follow the learning table source violation rules.			
)	R/W	Source Intrusion Action.	1'b0		
		0 = Discard.			
		1 = Send to the CPU port.			
3	R/W	Carrier Mask Select.	1'b0		
		0 = Mask CRS of 4 Cycles.			
		1 = Mask CRS of 5 Cycles.			
7	R/W	Port 3 and Port 4 Trunk Enable.	1'b0		
		0 = No trunk is enabled.			
		1 = Port 3 and Port 4 are trunked.			
5	R/W	Transmit Short IPG Enable.	1'b0		
		0 = 96-bits time is used.			
		1 = 88/96-bits time is used.			
5	R/W	CPU Port doesn't check CRC for packets with Special Tag.	1'b0		
		0 = Check.			
		1 = Don't Check.			
L	R/W	Source Violation Over Reserve. This bit is used when the management packet with DA =	1'b0		

6-Port Fast Ethernet Single Chip Switch Controller

		01-80-C2-00-00-XX violates the source rule.	
		0 = Source violation doesn't change the forwarding algorithm.	
		1 = Source violation will change the forwarding algorithm.	
3	R/W	Source Violation Over ARP/RARP. This bit is used when the ARP/RARP packet	1'b0
		classified as management violates the source rule.	
		0 = Source violation doesn't change the forwarding algorithm.	
		1 = Source violation will change the forwarding algorithm.	
2	R/W	Source Violation Over Snooping. This bit is used when the	1'b0
		MLD_IPV6/MLD_IP/IGMP/IP packet classified as management violates the source rule.	
		0 = Source violation doesn't change the forwarding algorithm.	
		1 = Source violation will change the forwarding algorithm.	
1	R/W	Source Violation Over Default. This bit is used when the packet that is not the same as	1'b0
		the above and is classified as management violates the source rule.	
		0 = Source violation doesn't change the forwarding algorithm.	
		1 = Source violation will change the forwarding algorithm.	
0	R/W	New EEPROM.	1'b1
		0 = Use old EEPROM functions.	
		1 = New EEPROM function is enabled.	

4.2.6 Multicast Snooping Register

	offset: 0x0ch			
Bits	Туре	Description	Initial value	
15:14	R/W	Snooping Control Packet Action. 00 = IGMP Portmap is 6'b0. 01 = IGMP Portmap is the Multicast Portmap.	2'b0	
		10 = If the incoming port is not the CPU port, then the IGMP Portmap is the CPU port. If the incoming port is the CPU port, then the IGMP Portmap is the Multicast Portmap except the CPU port.		
		11 = If the incoming port is not the CPU port, then the Multicast Portmap is the CPU port. If the incoming port is the CPU port, then the Multicast Portmap is the default output ports except the CPU port.		
13	R/W	Snooping Control Packet Priority Enable 0 = Disable. 1 = Enable.	1'b0	
12:11	R/W	Snooping Control Packet Priority. 00 = Queue 0. 01 = Queue 1. 10 = Queue 2. 11 = Queue 3.	2'b0	
10:9	R/W	Snooping Control Packet Transmission Tag Handle. 00 = System Default Tag. 01 = Unmodified. 10 = Always Tagged. 11 = Always Untagged.	2'b0	
8	R/W	Snooping Control Packet Treated as Cross_VLAN Packet. 0 = Don't identify. 1 = Identify as the cross_VLAN packet.	1'b0	
7	R/W	Snooping Control Packet Treated as Management Packet. 0 = Don't identify. 1 = Identify as the management packet.	1'b0	
6	R/W	Snooping Control Packet Treated as Span Packet. 0 = Don't identify. 1 = Identify as the span packet.	1'b0	

6-Port Fast Ethernet Single Chip Switch Controller

5	R/W	Trap MLD_IPV6 Packet.	1'b0
		0 = Don't trap.	
		1 = Trap.	
4	R/W	Trap MLD_IP Packet.	1'b0
		0 = Don't trap.	
		1 = Trap.	
3	R/W	Trap IGMP_IP Packet.	1'b0
		0 = Don't Trap.	
		1 = Trap.	
2	R/W	Hardware IGMP Packet Ignore CPU Port	1'b0
		0 = IGMP packet forwards to CPU also when Hardware IGMP Snooping is enabled.	
		1= IGMP packet doesn't forward to CPU when Hardware IGMP Snooping is enabled.	
1	R/W	Hardware IGMP Snooping Enable.	1'b0
		0 = Disable Hardware IGMP Snooping.	
		1 = Enable Hardware IGMP Snooping.	
0	R/W	Hardware IGMP Default Router Enable.	1'b0
		0 = Disable.	
		1 = Enable.	

4.2.7 ARP/RARP Register

(offset: 0x0dh			
Bits	Туре	Description	Initial value	
15	R	Reserve	1'b0	
14	R/W	IP Multicast Packet Treated as Cross_VLAN packet.	1'b0	
		0 = Don't identify.		
		1 = Identify as the cross_VLAN packet.		
13	R/W	Unicast packet Treated as Cross_VLAN packet.	1'b0	
		0 = Don't identify.		
		1 = Identify as the cross_VLAN packet when there is a match in the learning table.		
12	R/W	RARP Packet Treated as Cross_VLAN Packet.	1'b0	
		0 = Don't identify.		
		$1 = $ Identify as the cross_VLAN packet.		
11:10	R/W	RARP/ARP Packet Action.	2'b0	
		00 = ARP/RARP Portmap is 6'b0.		
		01 = ARP/RARP Portmap is the Broadcast Portmap.		
		10 = If the incoming port is not the CPU port, then the ARP/RARP Portmap is the CPU		
		port. If the incoming port is the CPU port, then the ARP/RARP Portmap is the Broadcast		
		Portmap except the CPU port.		
		11 = If the incoming port is not the CPU port, then the ARP/RARP Portmap is the CPU		
		port. If the incoming port is the CPU port, then the ARP/RARP Portmap is the default		
		output ports except the CPU port.		
9	R/W	RARP/ARP Packet Priority Enable.	1'b0	
		0 = Disable.		
		1 = Enable.		
8:7	R/W	RARP/ARP Packet Priority.	2'b0	
		00 = Queue $0.$		
		01 = Queue 1.		
		10 = Queue 2.		
		11 = Queue 3.		
6:5	R/W	RARP/ARP Packet Output Tag Handle.	2'b0	
		00 = System Default Tag.		
		01 = Unmodified.		
		10 = Always Tagged.		

6-Port Fast Ethernet Single Chip Switch Controller

		11 = Always Untagged.	
4	R/W	ARP Packet Treated as Cross_VLAN Packet.	1'b0
		0 = Don't identify.	
		$1 = $ Identify as the cross_VLAN packet.	
3	R/W	RARP/ARP Packet Treated as Management Packet.	1'b0
		0 = Don't identify.	
		1 = Identify as the management packet.	
2	R/W	RARP/ARP Packet Treated as Span Packet.	1'b0
		0 = Don't identify.	
		1 = Identify as the span packet.	
1	R/W	Trap ARP Packet.	1'b0
		0 = Don't Trap.	
		1 = Trap.	
0	R/W	Trap RARP Packet.	1'b0
		0 = Don't Trap.	
		1 = Trap.	

4.2.8 VLAN Priority Map Register

(offset: 0x0eh				
Bits	Type	Description	Initial value		
15:14	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority = 3'b111 are received on the port. 00 = Queue 0. 01 = Queue 1. 10 = Queue 2. 11 = Queue 3.	2'b11		
13:12	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b110$ are received on the port.	2'b11		
11:10	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b101$ are received on the port.	2'b10		
9:8	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b100$ are received on the port.	2'b10		
7:6	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b011$ are received on the port.	2'b01		
5:4	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b010$ are received on the port.	2'b01		
3:2	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority $= 3'b001$ are received on the port.	2'b00		
1:0	R/W	These 2 bits are used as the priority queue when the tagged packets with the user priority = 3'b000 are received on the port.	2'b00		

4.2.9 TOS Priority Map Register

c	offset: 0x0fh				
Bits	Туре	Description	Initial value		
15:14	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b111. 00 = Queue 0. 01 = Queue 1. 10 = Queue 2. 11 = Queue 3.	2'b11		
13:12	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b110.	2'b11		

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
11:10	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b101.	2'b10
9:8	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b100.	2'b10
7:6	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b011.	2'b01
5:4	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b010.	2'b01
3:2	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b001.	2'b00
1:0	R/W	These 2 bits are used as the priority queue, when the most significant 3 bits in the TOS field are 3'b000.	2'b00

4.2.10 System Control Register 2

	offset: 0x10h				
Bits	Туре	Description	Initial value		
15:14	R/W	Discard Mode (Drop scheme for Packets Classified as Q3). See Smart Discard.	2'b0		
13:12	R/W	Discard Mode (Drop scheme for Packets Classified as Q2). See Smart Discard.	2'b0		
11:10	R/W	Discard Mode (Drop scheme for Packets Classified as Q1). See Smart Discard.	2'b0		
9:8	R/W	Discard Mode (Drop scheme for Packets Classified as Q0). See Smart Discard.	2'b0		
7	R/W	Aging Disable. (Useless in DM8606BF)	1'b0		
		0 = Age enable.			
		1 = Age disable.			
6	R/W	Rx Clock Change to Tx Clock for GPSI Interface.	1'b1		
		0 = DM8606BF doesn't use Tx clock to replace Rx clock when Rx clock stops.			
		1 = DM8606BF uses Tx clock to replace Rx clock when Rx clock stops			
5	R/W	Multicast Packet Counted into the Storm Counter.	1'b0		
		0 = Only broadcast packets are counted into the storming counter.			
		1 = Multicast and broadcast packets are counted into the storming counter.			
4	R/W	CRC Check Disable.	1'b0		
		0 = Check CRC.			
		1 = Don't check CRC.			
3	R/W	Back Off Disable.	1'b0		
		0 = Back-off is enabled.			
		1 = Back-off is disabled.			
2	R/W	Storming Enable. It is used in old storm control.	1'b0		
		0 = Enable.			
		1 = Discard.			
1:0	R/W	Storming Threshold[1:0]. It is used in old storm control.	1'b0		

4.2.11 System Control Register 3

C	offset: 0x11h				
Bits	Туре	Description	Initial value		
15:13	R/W	CPU Port Number. 000 = The CPU is attached to Port 0. 001 = The CPU is attached to Port 1. 010 = The CPU is attached to Port 2. 011 = The CPU is attached to Port 3. 100 = The CPU is attached to Port 4. 101 = The CPU is attached to Port 5. 110 or 111 = No CPU exists.	3'b111		

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
12	R/W	Special TAG Receive Enable.	1'b0
		0 = DM8606BF doesn't identify the Special TAG for the incoming packets.	
		1 = DM8606BF identifies the Special TAG for the incoming packets.	
11	R/W	Special TAG Transmit Enable.	1'b0
		0 = DM8606BF doesn't insert Special TAG for the packets transmitted to the CPU port.	
		1 = DM8606BF inserts Special TAG for the packets transmitted to the CPU port.	
10	R/W	Pause also adds Special Tag when Special TAG Transmit is enabled.	1'b0
		0 = Don't add Special Tag on the PAUSE packets.	
		1 = Add Special Tag in the PAUSE packets.	
9:7	R/W	Max Packet Length (MAXPKTLEN)	3'b110
		110 = 1522 bytes.	
		000 = 1518 bytes.	
		001 = 1536 bytes.	
		010 = 1664 bytes	
		other = 1784 bytes.	
6	R/W	New Storming Enable.	1'b0
		0 = Use the DM8606F storming control.	
		1 = Use the DM8606BF storming control.	
5	R/W	Tag Base VLAN.	1'b0
		0 = Port VLAN	
		1 = Tagged VLAN.	
4	R/W	MAC Clone Enable.	1'b0
		0 = Mac Clone is disabled.	
		1 = Mac Clone is enabled.	
3	R/W	Queue Option. It's the test for the designer in the queue control.	1'b0
2	R/W	Interrupt Polarity Inverter.	1'b0
		0 = The interrupt signal is active pull low.	
		1 = The interrupt signal is active pull high.	
1:0	R/W	Aging Timer Select.	2'b0
		00 = 300 Seconds.	
		01 = 75 Seconds.	
		10 = 18 Seconds.	
		11 = 1 Seconds	

4.2.12 System Control Register 4

(offset: 0x12h				
Bits	Туре	Description	Initial value		
15	R/W	Drop Packet When Excessive Collision Happen.	1'b0		
		0 = Don't drop.			
		1 = Drop.			
14	R/W	Duplex and Col Separate.	1'b0		
		0 = Indicate the duplex and collision status at the same time.			
		1 = Indicate the duplex status only.			
13:12	R/W	Power Saving Select. 11	2'b11		
11	R/W	Ten Limit Enable. This function works only when Full Flow Control/Half Back Pressure	1'b0		
		is enabled.			
		1 = The switch will forward packets with Multicast, Broadcast, or Unicast but not			
		learned DA addresses from 100Mbps only to 100Mbps ports and ignore the 10M			
		paths when the ten limit reaches. This function allows the switch to balance the high			
		and the low speed.			
		0 = The switch will not ignore 10Mbps paths even when the ten limit reaches.			
10	R/W	Enable Transmit Power Saving. 1	1'b1		

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		0 = Disable	
		1 = Enable	
9	R/W	Enable DRV62MA. 1	1'b1
		0 = Disable	
		1 = Enable	
8	R/W	OLD P5 First Lock.	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	
7	R/W	OLD P4 First Lock.	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	
6	R/W	OLD P3 First Lock	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	
5	R/W	Pause Ignore.	0x0h
		0 = Don't ignore Pause packets.	
		1 = Ignore Pause packets in half duplex or in full duplex when flow control is not	
		enabled.	
4	R/W	OLD P2 First Lock.	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	
3	R/W	Dual Color in SDC/SDIO with CPU. See 3.1.12 LED Display	0x0h
		1 = Dual Color.	
		0 = Single Color.	
2	R/W	OLD P1 First Lock.	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	
1	R/W	LED Enable.	0x0h
		0 = Disable.	
		1 = Enable	
0	R/W	OLD P0 First Lock.	0x0h
		0 = First Lock is disabled.	
		1 = First Lock is enabled.	

4.2.13 Port Security Option, Port Spanning Tree State and Forward Group Port Map

	offset: $0x13h \sim 0x18h$			
Bits	Type	Description	Initial value	
15	R	Reserve	1'b0	
14	R/W	Close Port.	1'b0	
		0 = Don't close the port.		
		1 = When port security exists, the port is closed automatically.		
13:11	R/W	Port Security Option.	3'000	
		011 = First Lock		
		100 = First Link Lock		
		101 = Assign Lock		
		110 = Assign Link Lock		
		010 = Discard Unknown		
		001 = Unknown to CPU		
10:9	R/W	Spanning Tree Port Status. The DM8606BF supports 4 port status to support Spanning	1'b0	
		Tree Protocol.		
		00 = Forwarding State. The port acts as the normal mode.		
		01 = Disabled State. The port entity will not transmit and receive any packets. Learning		

6-Port Fast Ethernet Single Chip Switch Controller

		is disabled in this state.	
		10 = Learning State. The port entity will only transmit and receive span packets.	
		All other packets are discarded. Learning is enabled for all good frames.	
		11 = Blocking/Listening. Only the span packets defined by DM8606BF will be received	
		and transmitted. All other packets are discarded by the port entity. Learning is disabled in	
		this state.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b1
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b1
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b1
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

4.2.14 Unicast Portmap and Forward Group Port Map

offset: 0x19h			
Bits	Type	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Unicast Portmap. See 3.1.19.	6'b111111
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	

6-Port Fast Ethernet Single Chip Switch Controller

1 = Port 0 is a member.

4.2.15 Broadcast Portmap and Forward Group Port Map

	offset: 0x1ah		
Bits	Туре	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Broadcast Portmap. See 3.1.19.	6'b111111
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

4.2.16 Multicast Portmap and Forward Group Port Map

	offset: 0x1bh		
Bits	Type	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Multicast Portmap See 3.1.19.	6'b11111
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member. 1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member. 1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0

6-Port Fast Ethernet Single Chip Switch Controller

(0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
			0 = Port 0 is not a member.	
			1 = Port 0 is a member.	

4.2.17 Reserve Portmap and Forward Group Port Map

offset: 0x1ch Initial value Bits Type Description 15 R Reserve 1'b1 14:9 R/W Reserve Portmap See 3.1.19. 6'b111111 Port 5 is a member of the Forwarding Group 8 R/W 1'b1 0 = Port 5 is not a member. 1 = Port 5 is a member. R/W Port 4 is a member of the Forwarding Group. 1'b1 7 0 = Port 4 is not a member. 1 = Port 4 is a member. Port 3 is a member of the Forwarding Group. R/W 1'b1 6 0 = Port 3 is not a member. 1 = Port 3 is a member. 5 R Reserve 1'b0 Port 2 is a member of the Forwarding Group 4 R/W 1'b1 0 = Port 2 is not a member. 1 = Port 2 is a member. R Reserve 1'b0 3 2 R/W Port 1 is a member of the Forwarding Group. 1'b1 0 = Port 1 is not a member. 1 = Port 1 is a member. Reserve 1'b0 R 1 R/W Port 0 is a member of the Forwarding Group. 0 1'b1 0 = Port 0 is not a member. 1 = Port 0 is a member.

4.2.18 Packet Identification Option, Forward Group Port Map

	offset: 0x1dh		
Bits	Туре	Description	Initial value
15	R/W	MLD Snooping Protocol Header.	1'b1
		0 = Protocol Header is 8'h01.	
		1 = Protocol Header is 8'h3a.	
14	R/W	Don't identify VLAN after SNAP.	1'b1
		0 = Identify.	
		1 = Don't identify.	
13	R/W	Don't identify IPV6 in PPPOE.	1'b1
		0 = Identify.	
		1 = Don't identify.	
12	R/W	Don't identify IP in PPPOE after SNAP.	1'b1
		0 = Identify.	
		1 = Don't identify.	
11	R/W	Don't identify Ether-Type = 16'h0800, IP VER = 6 as IPV6 packets.	1'b1
		0 = Identify.	
		1 = Don't identify.	
10	R/W	Don't identify IP in PPPOE.	1'b1
		0 = Identify.	
		1 = Don't identify.	

6-Port Fast Ethernet Single Chip Switch Controller

9	R/W	Don't Identify SNAP.	1'b1
		0 = Identify.	
		1 = Don't Identidy.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
1		1 = Port 0 is a member.	

4.2.19 VLAN Priority Enable and Forward Group Port Map

offset: 0x1eh

Bits	Type	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	VLAN Priority Enable.	6'b111111
		0 = Don't care the PRI in the tag header	
		1 = PRI in the tag header will be taken into priority determination consideration.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
-	-	1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
_		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
	_	1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

6-Port Fast Ethernet Single Chip Switch Controller

4.2.20 Service Priority Enable and Forward Group Port Map

	offset: 0x	k l fh	
Bits	Type	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Service Priority Enable.	6'b11111
		0 = Don't care IPV4 TOS/IPV6 Traffic Class.	
		1 = Care IPV4 TOS/IPV6 Traffic for priority decision.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

4.2.21 Input Force No Tag and Forward Group Port Map

	offset: 0x		
Bits	Туре	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Input Force No TAG Enable.	6'b111111
		0 = Disabled.	
		1 = Enabled.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	

6-Port Fast Ethernet Single Chip Switch Controller

		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0		Port 0 is a member of the Forwarding Group. 0 = Port 0 is not a member. 1 = Port 0 is a member.	1'b1

4.2.22 Ingress Filter and Forward Group Port Map

	offset: 02	x21h	
Bits	Туре	Description	Initial value
15	R	Reserve	1'b1
14:9	R/W	Ingress Filter Enable.	6'b111111
		0 = Don't filter.	
		1 = Filter.	
8	R/W	Port 5 is a member of the Forwarding Group	1'b1
		0 = Port 5 is not a member.	
		1 = Port 5 is a member.	
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1
		0 = Port 4 is not a member.	
		1 = Port 4 is a member.	
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1
		0 = Port 3 is not a member.	
		1 = Port 3 is a member.	
5	R	Reserve	1'b0
4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

4.2.23 VLAN Security Disable and Forward Group Port Map

	offset: 0x22h				
Bits	Туре	Description	Initial value		
15	R	Reserve	1'b1		
14:9	R/W	VLAN Security Disable.	6'b11111		
		0 = Don't disable.			
		1 = Disable.			
8	R/W	Port 5 is a member of the Forwarding Group	1'b1		
		0 = Port 5 is not a member.			
		1 = Port 5 is a member.			
7	R/W	Port 4 is a member of the Forwarding Group.	1'b1		
		0 = Port 4 is not a member.			
		1 = Port 4 is a member.			
6	R/W	Port 3 is a member of the Forwarding Group.	1'b1		
		0 = Port 3 is not a member.			
		1 = Port 3 is a member.			
5	R	Reserve	1'b0		

6-Port Fast Ethernet Single Chip Switch Controller

4	R/W	Port 2 is a member of the Forwarding Group	1'b1
		0 = Port 2 is not a member.	
		1 = Port 2 is a member.	
3	R	Reserve	1'b0
2	R/W	Port 1 is a member of the Forwarding Group.	1'b1
		0 = Port 1 is not a member.	
		1 = Port 1 is a member.	
1	R	Reserve	1'b0
0	R/W	Port 0 is a member of the Forwarding Group.	1'b1
		0 = Port 0 is not a member.	
		1 = Port 0 is a member.	

4.2.24 Buffer Threshold Register 0

Bits	Туре	Description	Initial value
15:14	R/W	Port Unfull Offset 3	2'b0
13:12	R/W	Port Unfull Offset 2	2'b0
11:10	R/W	Port Unfull Offset 1	2'b0
9:8	R/W	Port Unfull Offset 0	2'b0
7:6	R/W	Port Full Offset 3	2'b0
5:4	R/W	Port Full Offset 2	2'b0
3:2	R/W	Port Full Offset 1	2'b0
1:0	R/W	Port Full Offset 0	2'b0

4.2.25 Buffer Threshold Register 1

	offset: 0x24h		
Bits	Туре	Description	Initial value
15:14	R	Reserve	2'b0
13	R/W	Total Low Add	1'b0
12	R/W	Total High Add	1'b0
11:10	R/W	Total Low Offset	2'b0
9:8	R/W	Total High Offset	2'b0
7:4	R/W	Port Unfull Add	2'b0
3:0	R/W	Port Full Add	2'b0

4.2.26 IGMP/MLD TRAP Enable, and Input Jam Threshold Register

Bits	Туре	Description	Initial value
15:12	R/W	Queue 1 Weight. See 3.1.15.	4'b0001
11:6	R/W	IGMP/MLD Trap Enable. It is a per port function.	6'b0
		0 = The port doesn't enable its multicast snooping function. Trap MLD_IPV6, MLD_IP	
		and IGMP_IP are useless in this port.	
		1 = The port enables its multicast snooping function. Trap MLD_IPV6, MLD_IP and	
		IGMP_IP are useful in this port.	
5:0	R/W	Input Jam Threshold.	6'b0

4.2.27 Queue 2 Weight, VID Exist Check, and PPPOE Port Only

	offset: 0x26h		
Bits	Туре	Description	Initial value
15:12	R/W	Queue 2 Weight. See 3.1.15.	4'b0001

6-Port Fast Ethernet Single Chip Switch Controller

11:6	R/W	VID Check. $0 = \text{Don't check}$. $1 = \text{check}$. $0 = \text{Don't Check}$. It is a per port function.	6'b000000
5:0	R/W	PPPOE Port Only. It's a per port function.	6'b000000
		0 = The port is not a PPPOE Only port.	
		1 = The port is a PPPOE Only port.	

4.2.28 Queue 3 Weight, Back to Port VLAN, and Admit Only VLAN-Tagged

Bits	offset: 0x Type	Description	Initial value
15:12	R/W	Queue 3 Weight. See 3.1.15.	4'b0001
11:6	R/W	Back To Port VLAN. It is a per port function. 0 = Don't back to Port VLAN. 1 = Back to Port VLAN.	6'b000000
5:0	R/W	Admit Only VLAN_Tagged Packet. It is a per port function. 0 = The port don't check if the packets are VLAN-Tagged. 1 = The port drops the packets that carry no VID. (That is Untagged Packets or Priority-Tagged Packets.)	6'Ь000000

4.2.29 Input Double Tag Enable, and P0VID[11:4]

(offset: 0x28h				
Bits	Туре	Description	Initial value		
15:14	R/W	Reserve	2'00		
13:8	R/W	Input Double Tag Enable. (Reserve)	6'b0		
7:0	R/W	P0VID[11:4]	8'b0		

4.2.30 Output Double Tag Enable, and P1VID[11:4]

	offset: 0x29h			
Bits	Туре	Description	Initial value	
15:14	R/W	REC_SELAB for Port1, Port2 and Port3.	2'b0	
		$REC_SELAB = 2'b10$		
13:12	R/W	REC_SELAB for Port0 and Port4.	2'b0	
		REC_SELAB = 2'b01		
11:8	R/W	Output Double Tag Enable. (Reserve)	4'b0	
7:0	R/W	P1VID[11:4]	8'b0	

4.2.31 Output Tag Bypass, and P2VID[11:4]

(offset, 0x	·2ah	
Bits	Туре	Description	Initial value
15:14	R/W	REC_IBSL_SEL	2'b0
		$REC_{IBSL}SEL = 2'b01$	
13:8	R/W	Output Tag Bypass Enable. It's a per port function. See 3.1.14.2.	6'b11_1111
7:0	R/W	P2VID[11:4]	8'b0

4.2.32 P3VID[11:4], and P4VID[11:4]

offset: 0x2bh

Bits	Туре	Description	Initial value
15:8	R/W	P4VID[11:4]	8'b0
7:0	R/W	P3VID[11:4]	8'b0

4.2.33 Reserved Address Control, and P5VID[11:4]

offset: 0x2ch

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
15	R/W	The Action of MAC Address = 0180c2000010~ff	1'b1
14	R/W	The Action of MAC Address = 0180c2000002~0f	1'b1
13	R/W	The Action of MAC Address = 0180c2000001	1'b0
12	R/W	The Action of MAC Address = $0180c2000000$	1'b1
11:8	R/W	Tag Shift	4'b0
7:0	R/W	P5VID[11:4]	8'b0

4.2.34 PHY Control Register

(offset: 0x	2dh	
Bits	Туре	Description	Initial value
15	R/W	Chip ID Check Disable.	1'b0
		0 = Check CHIP ID in 32 bit SDC/SDO.	
		1 = Don't check CHIP ID in 32 bit SDC/SDIO.	
14	R/W	REC_CBDETEN.	1'b1
		1 = Enable	
		0 = Disable	
13	R/W	REC_MCC_AVERAGE.	1'b0
		0 = Enable	
		1 = Disable	
12:11	R/W	LFAILTM.	2'b0
10	R/W	INTCHKEN.	1'b1
9	R/W	FGDLINK.	1'b0
8	R/W	NTH.	1'b0
7	R/W	DISJAB.	1'b0
6	R/W	ENRJAB.	1'b1
5	R/W	APOLDIS.	1'b0
4	R/W	IINSEL.	1'b0
3:2	R/W	ISHSEL.	2'b0
1:0	R/W	FILTSEL.	2'b10

4.2.35 DM TAG Ether Type

	offset: 0x2	eh	
Bits	Туре	Description	Initial value
15:0		DM TAG Ether Type. This value is used by the user to define their Ether-Type. When Special Tag Receive is enabled, DM8606BF checks the packets on the CPU port to see if the two bytes following the SA are the same as DM TAG Ether Type. If they are different, DM8606BF bypasses the Special Tag. If the same, DM8606BF will use the value in the Special Tag to do switching decisions.	16'b0

4.2.36 PHY Restart Register

	offset: 0x2	2fh	
Bits	Туре	Description	Initial value
15:0	R/W	Restart. DM8606BF writes this register to restart all the PHYs in the switch. The value written is not important.	16'b0

4.2.37 Miscellaneous Register

offset: 0x30h

Bits	Туре	Description	Initial value
15	R/W	REC_10MHIGHV. 0	1'b0

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Type	Description	Initial value
14	R/W	REC_SEL09CURRENT.	1'b0
13	R/W	REC_SEL5MA.	1'b0
12	R/W	Port 4 LED Mode.	1'b0
11	R/W	Reserved	1'b1
10	R/W	Reserved	1'b0
9	R/W	Dual Speed Hub COL_LED Enable.	1'b0
8	R/W	Drop packets when the link partner doesn't follow the PAUSE protocol.	1'b1
7	R/W	BYPASS	1'b1
6	R/W	Reserved	1'b0
5	R/W	MAC Clone Enable Bit[1].	1'b0
4	R/W	HOL Congestion Threshold.	1'b0
3	R/W	VOLDM8606BF3_100M. 1	1'b0
2	R/W	Old Interface. 1 = 32 bit interface is the same as DM8606F when SDC/SDIO access speed is not an issue. 0 = 32 bit interface is different from DM8606F when reading eeprom register 0x0012 ~0x0023.	1'b1
1	R/W	VOLDM8606BF3_10M.	1'b1
0	R/W	ROM_CODE25.	1'b1

4.2.38 Basic Bandwidth Control Register 0

(offset: 0x	31h	
Bits	Туре	Description	Initial value
15	R/W	Port 3 Receive Bandwidth Maximum[3] (r3bw_th1).	1'b0
14:12	R/W	Port 3 Receive Bandwidth Configuration Port 3 Receive Bandwidth Maximum[2:0] (r3bw th0).	2°b0
11	R/W	Port 2 Receive Bandwidth Maximum[3] (r2bw th1).	1'b0
10:8	R/W	Port 2 Receive Bandwidth Configuration Port 2 Receive Bandwidth Maximum[2:0] (r2bw th0).	2'b0
7	R/W	Port 1 Receive Bandwidth Maximum[3] (r1bw th1).	1'b0
6:4	R/W	Port 1 Receive Bandwidth Configuration Port 1 Receive Bandwidth Maximum[2:0] (r1bw th0).	2°b0
3	R/W	Port 0 Receive Bandwidth Maximum[3] (r0bw th1).	1'b0
2:0	R/W	Port 0 Receive Bandwidth Configuration Port 0 Receive Bandwidth Maximum[2:0] (r0bw_th0).	2'b0

4.2.39 Basic Bandwidth Control Register 1

offset: 0x32h

Bits	Type	Description	Initial value
15	R/W	Port 1 Transmit Bandwidth Maximum[3] (t1bw_th1).	1'b0
14:12	R/W	Port 1 Transmit Bandwidth Maximum[2:0] (t1bw_th0)	2°b0
11	R/W	Port 0 Transmit Bandwidth Maximum[3] (t0bw_th1).	1'b0
10:8	R/W	Port 0 Transmit Bandwidth Maximum[2:0] (t0bw_th0).	1'b0
7	R/W	Port 5 Receive Bandwidth Maximum[3] (r5bw_th1).	1'b0
6:4	R/W	Port 5 Receive Bandwidth Configuration	2°b0
		Port 5 Receive Bandwidth Maximum[2:0] (r5bw_th0).	
3	R/W	Port 4 Receive Bandwidth Maximum[3] (r4bw_th1).	1'b0
2:0	R/W	Port 4 Receive Bandwidth Configuration	2'b0
		Port 4 Receive Bandwidth Maximum[2:0] (r4bw_th0).	

6-Port Fast Ethernet Single Chip Switch Controller

4.2.40 Bandwidth Control Enable Register

	offset: 0x		
Bits	Туре	Description	Initial value
	R/W	Invert P4 Clock in PCS.	1'b0
15		0 : Disable	
		1 : Enable	
	R/W	Check the length of CRS	1'b0
14		0 : Enable	
		1 : Disable	
13	R/W	Reserved.	1'b0
	R/W	DM8606BF New Bandwidth Control Enable.	1'b0
12		0 = Disable.	
		1 = Enable.	
	R/W	Port 5 Transmit Bandwidth Control Enable.	1'b0
11		0 = Disable.	
11		1 = Enable. The transmit bandwidth is {t5bw_th3, t5bw_th2, t5bw_th1, t5bw_th0, 6'b0}	
		Kbps. K = 1000.	
	R/W	Port 4 Transmit Bandwidth Control Enable.	1'b0
10		0 = Disable.	
10		1 = Enable. The transmit bandwidth is {t4bw_th3, t4bw_th2, t4bw_th1, t4bw_th0, 6'b0}	
		Kbps. K = 1000.	
	R/W	Port 3 Transmit Bandwidth Control Enable.	1'b0
~		0 = Disable.	
9		1 = Enable. The transmit bandwidth is {t3bw_th3, t3bw_th2, t3bw_th1, t3bw_th0, 6'b0}	
		Kbps. K = 1000.	
	R/W	Port 5 Receive Bandwidth Control Enable.	1'b0
		0 = Disable.	
8		1 = Enable. The receive bandwidth is {r5bw_th3, r5bw_th2, r5bw_th1, r5bw_th0, 6'b0}	
		Kbps. $K = 1000$.	
	R/W	Port 4 Receive Bandwidth Control Enable.	1'b0
_		0 = Disable.	1 00
7		1 = Enable. The receive bandwidth is {r4bw_th3, r4bw_th2, r4bw_th1, r4bw_th0, 6'b0}	
		Kbps. $K = 1000$.	
	R/W	Port 3 Receive Bandwidth Control Enable.	1'b0
		0 = Disable.	1 00
6		1 = Enable. The receive bandwidth is {r3bw_th3, r3bw_th2, r3bw_th1, r3bw_th0, 6'b0}	
		Kbps. $K = 1000$.	
	R/W	Port 2 Transmit Bandwidth Control Enable.	1'b0
	10 11	0 = Disable.	1 00
5		1 = Enable. The transmit bandwidth is {t2bw_th3, t2bw_th2, t2bw_th1, t2bw_th0, 6'b0}	
		K = 1000.	
	R/W	Port 2 Receive Bandwidth Control Enable.	1'b0
	17/ 11	0 = Disable.	1.00
1		1 = Enable. The receive bandwidth is {r2bw_th3, r2bw_th2, r2bw_th1, r2bw_th0, 6'b0}	
		K = 1000.	
	R/W	Port 1 Transmit Bandwidth Control Enable.	1'b0
	11/ 11	0 = Disable.	1 00
3		1 = Enable. The transmit bandwidth is {t1bw_th3, t1bw_th2, t1bw_th1, t1bw_th0, 6'b0}	
		$I = Enable.$ The transmit bandwidth is {trow_uis, trow_ui2, trow_ui1, trow_ui0, 0.00} Kbps. K = 1000.	
	R/W	Port 1 Receive Bandwidth Control Enable.	1'b0
	K/ W		1 00
2		0 = Disable. 1 = Exable The receive handwidth is (r1hw th2 r1hw th2 r1hw th1 r1hw th0 6/h0)	
		1 = Enable. The receive bandwidth is {r1bw_th3, r1bw_th2, r1bw_th1, r1bw_th0, 6'b0}	
		Kbps. $K = 1000$.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Type	Description	Initial value
	R/W	Port 0 Transmit Bandwidth Control Enable.	1'b0
1		0 = Disable.	
1		1 = Enable. The transmit bandwidth is {t0bw_th3, t0bw_th2, t0bw_th1, t0bw_th0, 6'b0}	
		Kbps. K = 1000.	
0	R/W	Port 0 Receive Bandwidth Control Enable.	1'b0
		0 = Disable.	
		1 = Enable. The receive bandwidth is {r0bw_th3, r0bw_th2, r0bw_th1, r0bw_th0, 6'b0}	
		Kbps. K = 1000.	

4.2.41 Extended Bandwidth Control Register 0

(offset: 0x34h			
Bits	Туре	Description	Initial value	
15	R/W	Port 5 Transmit Bandwidth Maximum[3] (t5bw_th1).	1'b0	
14:12	R/W	Port 5 Transmit Bandwidth Maximum[2:0] (t5bw_th0).	2'b0	
11	R/W	Port 4 Transmit Bandwidth Maximum[3] (t4bw_th1).	1'b0	
10:8	R/W	Port 4 Transmit Bandwidth Maximum[2:0] (t4bw_th0).	2'b0	
7	R/W	Port 3 Transmit Bandwidth Maximum[3] (t3bw_th1).	1'b0	
5:4	R/W	Port 3 Transmit Bandwidth Maximum[2:0] (t3bw_th0).	2'b0	
3	R/W	Port 2 Transmit Bandwidth Maximum[3] (t2bw_th1).	1'b0	
2:0	R/W	Port 2 Transmit Bandwidth Maximum[2:0] (t2bw_th0).	2'b0	

4.2.42 Extended Bandwidth Control Register 1

offset: 0x35h

Bits	Туре	Description	Initial value
15:12	R/W	Port 3 Receive Bandwidth Maximum[7:4] (r3bw_th2).	4'b0
11:8	R/W	Port 2 Receive Bandwidth Maximum[7:4] (r2bw_th2).	4'b0
7:4	R/W	Port 1 Receive Bandwidth Maximum[7:4] (r1bw_th2).	4'b0
3:0	R/W	Port 0 Receive Bandwidth Maximum[7:4] (r0bw_th2).	4'b0

4.2.43 Extended Bandwidth Control Register 2

Bits	Туре	Description	Initial value
15:10	R/W	Port 1 Transmit Bandwidth Maximum[7:4] (t1bw_th2).	4'b0
11:8	R/W	Port 0 Transmit Bandwidth Maximum[7:4] (t0bw_th2).	4'b0
7:4	R/W	Port 5 Receive Bandwidth Maximum[7:4] (r5bw_th2).	4'b0
3:0	R/W	Port 4 Receive Bandwidth Maximum[7:4] (r4bw th2).	4'b0

4.2.44 Extended Bandwidth Control Register 3

0	offset: 0x37h				
Bits	Туре	Description	Initial value		
15:12	R/W	Port 5 Transmit Bandwidth Maximum[7:4] (t5bw_th2)	4'b0		
11:8	R/W	Port 4 Transmit Bandwidth Maximum[7:4] (t4bw_th2)	4'b0		
7:4	R/W	Port 3 Transmit Bandwidth Maximum[7:4] (t3bw_th2)	4'b0		
3:0	R/W	Port 2 Transmit Bandwidth Maximum[7:4] (t2bw_th2).	4'b0		

4.2.45 Extended Bandwidth Control Register 4

	offset: 0x38h			
Bits	Туре	Description	Initial value	
15	R/W	Port 0 MDIX Control. It is useful when Port 0 Crossover Auto Detect is disabled and 16	1'b0	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		bits management interface (SDC/SDIO) is used.	
		0 = Using MDI	
		1 = Using MDIX	
14:12	R/W	Port 4 Receive Bandwidth Maximum[10:8] (r4bw_th3).	3'b0
11:9	R/W	Port 3 Receive Bandwidth Maximum[10:8] (r3bw_th3).	3'b0
8:6	R/W	Port 2 Receive Bandwidth Maximum[10:8] (r2bw_th3).	3'b0
5:3	R/W	Port 1 Receive Bandwidth Maximum[10:8] (r1bw_th3).	3'b0
2:0	R/W	Port 0 Receive Bandwidth Maximum[10:8] (r0bw_th3).	3'b0

4.2.46 Extended Bandwidth Control Register 5

offset: 0x39h

Bits	Туре	Description	Initial value
15	R/W	Port 1 MDIX Control. It is useful when Port 1 Crossover Auto Detect is disabled and 16 bits management interface (SDC/SDIO) is used. 0 = Using MDI 1 = Using MDIX	1'b0
14:12	R/W	Port 3 Transmit Bandwidth Maximum[10:8] (t3bw_th3).	3'b0
11:9	R/W	Port 2 Transmit Bandwidth Maximum[10:8] (t2bw_th3).	3'b0
8:6	R/W	Port 1 Transmit Bandwidth Maximum[10:8] (t1bw_th3).	3'b0
5:3	R/W	Port 0 Transmit Bandwidth Maximum[10:8] (t0bw_th3).	3'b0
2:0	R/W	Port 5 Receive Bandwidth Maximum[10:8] (r5bw_th3).	3'b0

4.2.47 Default VLAN Member and Extended Bandwidth Control Register 6

offset: 0x3ah

Bits	Туре	Description	Initial value
15:12	R/W	Reserve	4'b0
11:6	R/W	Default VLAN Member.	6'b11_1111
5:3	R/W	Port 5 Transmit Bandwidth Maximum[10:8] (t5bw_th3).	3°b0
2:0	R/W	Port 4 Transmit Bandwidth Maximum[10:8] (t4bw_th3).	3°b0

4.2.48 New Storm Register 0

	offset: 0x3bh				
Bits	Туре	Description	Initial value		
15	R	Reserve	1'b0		
14	R/W	Storm Drop Enable.	1'b0		
		0 = Don't drop in the storming period.			
		1 = Drop in the storming period.			
13	R/W	Storm Enable.	1'b0		
		0 = The storm threshold is of no effect.			
		1 = The storm threshold is in effect.			
12:0	R/W	100M Threshold. It is used when all ports link up in the 100M. The upper bound is	13'b0		
		reached when the number of the packets received during the 50ms is over 100M			
		Threshold.			

4.2.49 New Storm Register 1

	offset: 0x3ch				
Bits	Туре	Description	Initial value		
15	R/W	Port 4 MDIX Control. It is useful when Port 4 Crossover Auto Detect is disabled and 16 bits management interface (SDC/SDIO) is used. 0 = Using MDI	1'b0		

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Type	Description	Initial value
		1 = Using MDIX	
14	R/W	Port 3 MDIX Control. It is useful when Port 3 Crossover Auto Detect is disabled and 16	1'b0
		bits management interface (SDC/SDIO) is used.	
		0 = Using MDI	
		1 = Using MDIX	
13	R/W	Port 2 MDIX Control. It is useful when Port 2 Crossover Auto Detect is disabled and 16	1'b0
		bits management interface (SDC/SDIO) is used.	
		0 = Using MDI	
		1 = Using MDIX	
12:0	R/W	10M Threshold. See function description. It is used when one of ports link up in the 10M.	13'b0
		The upper bound is reached when the number of the packets received during the 50ms is	
		over 10M Threshold.	

4.2.50 New Reserve Address Control Register 0

	offset: 0x	3dh	
Bits	Туре	Description	Initial value
15:14	R/W	New Reserve TXTAG for BPDU.	2'b0
		00 = System Default Tag.	
		01 = Unmodified.	
		10 = Always Tagged.	
		11 = Always Untagged.	
13:12	R/W	PRI for GXRP.	6'b0
		00 = Queue $0.$	
		01 = Queue 1.	
		10 = Queue 2.	
		11 = Queue 3.	
11:10	R/W	PRI for SLOW/PAE/RESER R0/RESER R1/RESER R2/RESER R3.	2'b0
		00 = Queue 0.	
		01 = Queue 1.	
		10 = Queue 2.	
		11 = Queue 3.	
9:8	R/W	PRI for BPDU.	2'b0
		00 = Queue 0.	
		01 = Queue 1.	
		10 = Queue 2.	
		11 = Queue 3.	
7	R/W	RESER R3 Pass Portmap.	1'b1
		$0 = RESER_{R3} Pass Portmap is 6'b00_0000.$	
		$1 = \text{RESER}$ R3 Pass Pormap is 6'b11_1111.	
6	R/W	RESER R2 Pass Portmap.	1'b1
		0 = RESER R2 Pass Portmap is 6'b00 0000.	
		$1 = RESER_{R2} Pass Pormap is 6'b11_1111.$	
5	R/W	GXRP Pass Portmap.	1'b1
		0 = GXRP Pass Portmap is 6'b00 0000.	
		$1 = GXRP Pass Pormpap is 6'b11_1111.$	
4	R/W	RESER R1 Pass Portmap.	1'b1
		$0 = RESER_{R1} Pass Portmap is 6'b00_0000.$	
		$1 = RESER_{R1} Pass Portmap is 6'b11_1111.$	
3	R/W	RESER R0 Pass Portmap.	1'b1
		$0 = RESER_ROPass Portmap is 6'b00_0000.$	
		1 = RESER ROPass Portmap is 6'b11 1111.	
2	R/W	PAE Pass Portmap.	1'b1

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		$0 = PAE Pass Portmap is 6'b00_0000.$	
		$1 = PAE Pass Portpap is 6'b11_1111.$	
1	R/W	Slow Pass Portmap.	1'b0
		$0 = SLOW Pass Portmap is 6'b00_0000.$	
		$1 = SLOW Pass Portpap is 6'b11_1111.$	
0	R/W	BPDU Pass Portmap.	1'b1
		$0 = BPDU Pass Portmap is 6'b00_0000.$	
		$1 = BPDU Pass Portpap is 6'b11_1111.$	

4.2.51 New Reserve Address Control Register 1

offset: 0x3eh

Bits	Туре	Description	Initial value
15	R/W	Mac Control Action for $OPCODE = 8^{\circ}h01$.	1'b0
		0 = The same as Mac Control Action for OPCODE $!= 8$ 'h01.	
		1 = Discard.	
14:13	R/W	Mac Control Action for OPCODE != 8'h01.	2'b0
		00 = Default Output Ports.	
		01 = Discard.	
		10 = If the receiving port is the CPU port, forward it to the default output ports. If the	
		receiving port is not the CPU port, forward it to the CPU port.	
		11 = Forward to the default output ports except the CPU port.	
12	R/W	New Reserve Management for GXRP.	1'b0
		0 = Don't identify as management packets.	
		1 = Identify as management packets.	
11	R/W	New Reserve Management for	1'b0
		SLOW/PAE/RESER R0/RESER R1/RESER R2/RESER R3.	
		0 = Don't identify as management packets.	
		1 = Identify as management packets.	
10	R/W	New Reserve Management for BPDU.	1'b0
		0 = Don't identify as management packets.	
		1 = Identify as management packets.	
9	R/W	New Reserve Span.for GXRP.	1'b0
		0 = Don't identify as management packets.	
		1 = Identify as management packets.	
8	R/W	New Reserve Span for SLOW/PAE/RESER R0/RESER R1/RESER R2/RESER R3.	1'b0
		0 = Don't identify as span packets.	
		1 = Identify as span packets.	
7	R/W	New Reserve SPAN for BPDU.	1'b0
		0 = Don't identify as span packets.	
		1 = Identify as span packets.	
6	R/W	New Reserve Cross_VLAN for GXRP.	1'b0
		0 = Follow VLAN	
		1 = Cross VLAN.	
5	R/W	New Reserve Cross VLAN.for	1'b0
		SLOW/PAE/RESER_R0/RESER_R1/RESER_R2/RESER_R3.	
		0 = Follow VLAN	
		1 = Cross VLAN.	
4	R/W	New Reserve Cross_VLAN for BPDU.	1'b0
		0 = Follow VLAN $$	
		1 = Cross VLAN.	
3:2	R/W	New Reserve TXTAG for GXRP.	2'b0
		00 = System Default Tag.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		01 = Unmodified.	
		10 = Always Tagged.	
		11 = Always Untagged.	
1:0	R/W	New Reserve TXTAG for SLOW/PAE/RESER_R0/RESER_R1/RESER_R2/RESER_R3	2'b0
		00 = System Default Tag.	
		01 = Unmodified.	
		10 = Always Tagged.	
		11 = Always Untagged.	

4.2.52 Hardware IGMP Control Register

Bits	Type	Description	Initial value
15:8	R/W	Query Interval	8'h7c
7:6	R/W	Robust Variable.	2'h2
5:0	R/W	Default Router Portmap	6'h0

4.3 EEPROM Extended Register Map

Register	Bit 15- 0	Default Value
0x040h	VLAN Filter 0 Low	16'h003f
0x041h	VLAN Filter 0 High	16'h8001
0x042h	VLAN Filter 1 Low	16'h003f
0x043h	VLAN Filter 1 High	16'h8001
0x044h	VLAN Filter 2 Low	16'h003f
0x045h	VLAN Filter 2 High	16'h8001
0x046h	VLAN Filter 3 Low	16'h003f
0x047h	VLAN Filter 3 High	16'h8001
0x048h	VLAN Filter 4 Low	16'h003f
0x049h	VLAN Filter 4 High	16'h8001
0x04ah	VLAN Filter 5 Low	16'h003f
0x04bh	VLAN Filter 5 High	16'h8001
0x04ch	VLAN Filter 6 Low	16'h003f
0x04dh	VLAN Filter 6 High	16'h8001
0x04eh	VLAN Filter 7 Low	16'h003f
0x04fh	VLAN Filter 7 High	16'h8001
0x050h	VLAN Filter 8 Low	16'h003f
0x051h	VLAN Filter 8 High	16'h8001
0x052h	VLAN Filter 9 Low	16'h003f
0x053h	VLAN Filter 9 High	16'h8001
0x054h	VLAN Filter 10 Low	16'h003f
0x055h	VLAN Filter 10 High	16'h8001
0x056h	VLAN Filter 11 Low	16'h003f
0x057h	VLAN Filter 11 High	16'h8001
0x058h	VLAN Filter 12 Low	16'h003f
0x059h	VLAN Filter 12 High	16'h8001
0x05ah	VLAN Filter 13 Low	16'h003f
0x05bh	VLAN Filter 13 High	16'h8001
0x05ch	VLAN Filter 14 Low	16'h003f
0x05dh	VLAN Filter 14 High	16'h8001
0x05eh	VLAN Filter 15 Low	16'h003f

6-Port Fast Ethernet Single Chip Switch Controller

Register		17 Tust Eliternet Single Chip Switch (Default Value
0x05fh		ter 15 High	16'h8001
0x060h		Filter 0	16'h0
0x061h	Type I		16 h0
0x062h	21	Filter 2	16 h0
0x062h		Filter 3	16'h0
0x064h		Filter 4	16'h0
0x065h		Filter 5	16'h0
0x066h	71	Filter 6	16'h0
0x067h	Type I		16'h0
0x068h	Protocol Filter 1	Protocol Filter 0	16'h0
0x069h	Protocol Filter 3	Protocol Filter 2	16'h0
0x06ah	Protocol Filter 5	Protocol Filter 4	16'h0
0x06bh	Protocol Filter 7	Protocol Filter 6	16'h0
0x06ch		ity Mapping 0	16'b0
0x06dh	Service Priori		16°b0
0x06eh		ity Mapping 2	16'h0
0x06fh		ity Mapping 3	16'h0
0x070h		ity Mapping 4	16'h0
0x071h		ity Mapping 5	16'h0
0x072h		ity Mapping 6	16'h0
0x073h	Service Priori		16'h0
0x074h	Reserve Action for 01-80-c2-00-00-01	Reserve Action for 01-80-c2-00-00-00	16'h0
0x075h	Reserve Action for 01-80-c2-00-00-03	Reserve Action for 01-80-c2-00-00-02	16'h0
0x076h	Reserve Action for 01-80-c2-00-00-05	Reserve Action for 01-80-c2-00-00-04	16'h0
0x077h	Reserve Action for 01-80-c2-00-00-07	Reserve Action for 01-80-c2-00-00-06	16'h0
0x078h	Reserve Action for 01-80-c2-00-00-09	Reserve Action for 01-80-c2-00-00-08	16'h0
0x079h	Reserve Action for 01-80-c2-00-00-0B	Reserve Action for 01-80-c2-00-00-0A	16'h0
0x07ah	Reserve Action for 01-80-c2-00-00-0D	Reserve Action for 01-80-c2-00-00-0C	16'h0
0x07bh	Reserve Action for 01-80-c2-00-00-0F	Reserve Action for 01-80-c2-00-00-0E	16'h0
0x07ch	Reserve Action for 01-80-c2-00-00-11	Reserve Action for 01-80-c2-00-00-10	16'h0
0x07dh	Reserve Action for 01-80-c2-00-00-13	Reserve Action for 01-80-c2-00-00-12	16'h0
0x07eh	Reserve Action for 01-80-c2-00-00-15	Reserve Action for 01-80-c2-00-00-14	16'h0
0x07fh			16'h0
0x080h			16'h0
0x081h			16'h0
0x082h			16'h0
0x083h			16'h0
0x084h			16'h0
0x085h	Reserve Action for 01-80-c2-00-00-23	Reserve Action for 01-80-c2-00-00-22	16'h0
0x086h	Reserve Action for 01-80-c2-00-00-25	Reserve Action for 01-80-c2-00-00-24	16'h0
0x087h	Reserve Action for 01-80-c2-00-00-27	Reserve Action for 01-80-c2-00-00-26	16'h0
0x088h	Reserve Action for 01-80-c2-00-00-29	Reserve Action for 01-80-c2-00-00-28	16'h0
0x089h	Reserve Action for 01-80-c2-00-00-2B	Reserve Action for 01-80-c2-00-00-2A	16'h0
0x08ah	Reserve Action for 01-80-c2-00-00-2D	Reserve Action for 01-80-c2-00-00-2C	16'h0
0x08bh	Reserve Action for 01-80-c2-00-00-2F	Reserve Action for 01-80-c2-00-00-2E	16'h0
0x08ch			16'h0
0x08dh			16'h0
0x08eh			16'h0
0x08fh			16'h0
0x090h			16'h0
0x091h	Reserve Action for 01-80-c2-00-00-17 Reserve Action for 01-80-c2-00-00-16 Reserve Action for 01-80-c2-00-00-19 Reserve Action for 01-80-c2-00-00-18 Reserve Action for 01-80-c2-00-00-1B Reserve Action for 01-80-c2-00-00-1A Reserve Action for 01-80-c2-00-00-1B Reserve Action for 01-80-c2-00-00-1A Reserve Action for 01-80-c2-00-00-1D Reserve Action for 01-80-c2-00-00-1C Reserve Action for 01-80-c2-00-00-1F Reserve Action for 01-80-c2-00-00-1E Reserve Action for 01-80-c2-00-00-21 Reserve Action for 01-80-c2-00-00-20 Reserve Action for 01-80-c2-00-00-23 Reserve Action for 01-80-c2-00-00-22 Reserve Action for 01-80-c2-00-00-25 Reserve Action for 01-80-c2-00-00-24 Reserve Action for 01-80-c2-00-00-27 Reserve Action for 01-80-c2-00-00-26 Reserve Action for 01-80-c2-00-00-29 Reserve Action for 01-80-c2-00-00-28 Reserve Action for 01-80-c2-00-00-29 Reserve Action for 01-80-c2-00-00-28 Reserve Action for 01-80-c2-00-00-20 Reserve Action for 01-80-c2-00-00-28 Reserve Action for 01-80-c2-00-00-20 Reserve Action for 01-80-c2-00-00-24		16'h0

6-Port Fast Ethernet Single Chip Switch Controller

Register	Bit 15- 0	Default Value
0x092h	TCP/UDP Filter Rule 6	16'h0
0x093h	TCP/UDP Filter Rule 7	16'h0
0x094h	Type Filter Action	16'h0
0x095h	Protocol Filter Action	16'h0
0x096h	TCP/UDP Action 0	16'h0
0x097h	TCP/UDP Action 1	16'h0
0x098h	TCP/UDP Action 2	16'h0
0x099h	Extended IGMP Control/Special Tag Insert Control	16'h01ff
0x09ah	Interrupt Enable Register	16'h0
0x09bh	Interrupt Status Register	16'h0
0x09ch	Security Control	16'h0

4.3.1 VLAN Filter 0 ~ 15 Low

offset: 0x0040h, 0x0042h, 0x0044h, 0x0046h, 0x0048h, 0x004ah 0x004ch, 0x004ch, 0x0050h, 0x0052h, 0x0054h, 0x0056h, 0x0056h, 0x005ch, 0x005ch, 0x005ch

Bits	Туре	Description	Initial value
15:12	R/W	FID. The forwarding or learning group that the VID is assigned.	4'b0
11:6	R/W	Tagged Member. These bits indicate which ports associated with the VID should transmit tagged packets. Tagged Member[x] Description 1 = Port x should transmit tagged packets. 0 = Port x should transmit untagged packets.	6'b0
5:0	R/W	Member. These bits indicate which ports are the members of the VLAN. Member[x] Description 1 = Port x is a VLAN member. 0 = Port x is not a VLAN member.	6'b11_1111

4.3.2 VLAN Filter 0 ~ 15 High

offset: 0x0041h, 0x0043h, 0x0045h, 0x0047h, 0x0049h, 0x004bh 0x004dh, 0x004fh, 0x0051h, 0x0053h, 0x0055h, 0x0057h, 0x0059h, 0x005bh, 0x005dh, 0x005fh

Bits	Туре	Description	Initial value
15	R/W	VLAN_Valid. $1 = VLAN$ Filter is valid. $0 = VLAN$ filter is not valid.	1'b1
14:12	R/W	VLAN PRI. It indicates the VLAN priority associated with VID.	3'b000
11:0	R/W	VID. It indicates the VLAN ID that is associated with FID, Tagged Member, Member and VLAN PRI.	12'b1

4.3.3 Type Filter 0 ~ 7

offset: 0x0060h ~ 0x0067h

Bits	Туре	Description	Initial value
15:0	R/W	Value Compared with Ether-Type.	16'b0

4.3.4 Protocol Filter 0 ~ 7

	offset: 0x0068h, 0x006bh				
Bits	Туре	Description	Initial value		
15:8	R/W	Value Compared with Protocol in IP Header (Protocol Filter 1, 3, 5, 7)	8'b0		
7:0	R/W	Value Compared with Protocol in IP Header (Protocol Filter 0, 2, 4, 6)	8'b0		

4.3.5 Service Priority Mapping

offset: 0x006ch

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h7.	2'b0
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h6.	2'b0
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h5.	2'b0
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h4.	2'b0
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3.	2'b0
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2.	2'b0
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1.	2'b0
1:0	R/W	00 = Queue 0. 01 = Queue 1. 10 = Queue 2. 11 = Queue 3. The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h0.	2'b0

4.3.6 Service Priority Mapping

Bits	Type	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'hf.	2'b0
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'he.	2'b0
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'hd.	2'b0
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'hc.	2'b0
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'hb.	2'b0
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'ha.	2'b0
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h9.	2'b0
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h8.	2'b0

4.3.7 Service Priority Mapping

offset: 0x006eh

Bits	Type	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h17.	2'b01
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h16.	2'b01
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h15.	2'b01
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the	2'b01

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Type	Description	Initial value
		IPV4 TOS/IPV6 Traffic Class are 6'h14.	
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h13.	2'b01
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h12.	2'b01
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h11.	2'b01
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h10.	2'b01

4.3.8 Service Priority Mapping

C	offset: 0x	006fh	
Bits	Туре	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1f.	2'b01
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1e.	2'b01
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1d.	2'b01
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1c.	2'b01
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1b.	2'b01
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h1a.	2'b01
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h19.	2'b01
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h18.	2'b01

4.3.9 Service Priority Mapping

offset: 0x0070h

Bits	Type	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h27.	2'b10
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h26.	2'b10
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h25.	2'b10
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h24.	2'b10
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h23.	2'b10
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h22.	2'b10
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h21.	2'b10
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h20.	2'b10

6-Port Fast Ethernet Single Chip Switch Controller

4.3.10 Service Priority Mapping

	offset: 0x	0071h	
Bits	Туре	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2f.	2'b10
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2e.	2'b10
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2d.	2'b10
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2c.	2'b10
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2b.	2'b10
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h2a.	2'b10
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h29.	2'b10
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h28.	2'b10

4.3.11 Service Priority Mapping

C	offset: 0x	0072h	
Bits	Туре	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h37.	2'b11
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h36.	2'b11
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h35.	2'b11
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h34.	2'b11
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h33.	2'b11
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h32.	2'b11
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h31.	2'b11
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h30.	2'b11

4.3.12 Service Priority Mapping

offset: 0x0073h

Bits	Type	Description	Initial value
15:14	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3f.	2'b11
13:12	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3e.	2'b11
11:10	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3d.	2'b11
9:8	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3c.	2'b11

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
7:6	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3b.	2'b11
5:4	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h3a.	2'b11
3:2	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h39.	2'b11
1:0	R/W	The value in this field is used as the priority queue when the significant 6 bits in the IPV4 TOS/IPV6 Traffic Class are 6'h38.	2'b11

4.3.13 Reserve Action

offset: 0x0074h ~0x008bh

Bits	Туре	Description	Initial value
15	R/W	Valid.	1'b0
		0 = Not Valid.	
		1 = Valid.	
14	R/W	Span.	1'b0
		0 = Don't identify as the span packet.	
		1 = Identify as the span packet.	
13	R/W	Management.	1'b0
		0 = Don't identify as the management packet.	
		1 = Identify as the management packet.	
12	R/W	Cross VLAN.	1'b0
		$0 = \text{Don't identify as the cross_VLAN packet.}$	1 00
		$1 = $ Identify as the cross_VLAN packet.	
11:10	R/W	TXTAG.	2'b0
11.10	10/ 11	00 = System Default Tag.	2 00
		01 = Unmodified.	
		10 = Always Tagged.	
		11 = Always Untagged.	
9:8	R/W	Action.	2'b0
9.0	R/ W	00 = Portmap is 6'b11 1111.	2 00
		$00 = Portmap is 0 011_1111.$ 01 = Portmap is 6'b0.	
		10 = Portmap is the CPU port if the incoming port is not the CPU port. But if the	
		incoming port is the CPU port, then Reserve Portmap contains all the ports, excluding the CPU port.	
7	D/III	11 = Portmap contains all the ports, excluding the CPU port.	121.0
7	R/W	Valid.	1'b0
		0 = Not Valid.	
-	-	1 = Valid.	
6	R/W	Span.	1'b0
		0 = Don't identify as the span packet.	
		1 = Identify as the span packet.	
5	R/W	Management.	1'b0
		0 = Don't identify as the management packet.	
		1 = Identify as the management packet.	
4	R/W	Cross_VLAN.	1'b0
		$0 = \text{Don't identify as the cross_VLAN packet.}$	
		$1 = $ Identify as the cross_VLAN packet.	
3:2	R/W	TXTAG.	2'b0
		00 = System Default Tag.	
		01 = Unmodified.	
		10 = Always Tagged.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		11 = Always Untagged.	
1:0	R/W	Action. 00 = Portmap is 6'b11_1111. 01 = Portmap is 6'b0. 10 = Portmap is the CPU port if the incoming port is not the CPU port. But if the incoming port is the CPU port, then Reserve Portmap contains all the ports, excluding the CPU port. 11 = Portmap contains all the ports, excluding the CPU port	2'b0

4.3.14 TCP/UDP Filter 0 ~ 7

_	offset: 0x008ch, 0x0093h			
Bits	Туре	Description	Initial value	
15:0	R/W	Value Compared with the Destination Port Number in the TCP/UDP Header	16'b0	

4.3.15 Type Filter Action

offset: 0x0094h

Bits	Туре	Description	Initial value
15:14	R/W	Action for Type Filter 7.	2'b0
13:12	R/W	Action for Type Filter 6.	2'b0
11:10	R/W	Action for Type Filter 5.	2'b0
9:8	R/W	Action for Type Filter 4.	2'b0
7:6	R/W	Action for Type Filter 3.	2'b0
5:4	R/W	Action for Type Filter 2.	2'b0
3:2	R/W	Action for Type Filter 1.	2'b0
1:0	R/W	Action for Type Filter 0. 00 = Type Portmap is Default Output Ports. 01 = Type Portmap is 6'b0. 10 = Type Portmap is the CPU port if the incoming port is not the CPU port. But if the incoming port is the CPU port, then Type Portmap contains Default Output Ports, excluding the CPU port. 11 = Type Portmap contains Default Output Ports, excluding the CPU port.	2'b0

4.3.16 Protocol Filter Action

C	offset: 0x	0095h	
Bits	Туре	Description	Initial value
15:14	R/W	Action for Protocol Filter 7.	2'b0
13:12	R/W	Action for Protocol Filter 6.	2'b0
11:10	R/W	Action for Protocol Filter 5.	2'b0
9:8	R/W	Action for Protocol Filter 4.	2'b0
7:6	R/W	Action for Protocol Filter 3.	2'b0
5:4	R/W	Action for Protocol Filter 2.	2'b0
3:2	R/W	Action for Protocol Filter 1.	2'b0
1:0	R/W	Action for Type Filter 0.	2'b0
		00 = Protocol Portmap is Default Output Ports.	
		01 = Protocol Portmap is 6'b0.	
		10 = Protocol Portmap is the CPU port if the incoming port is not the CPU port. But if	
		the incoming port is the CPU port, then Type Portmap contains Default Output Ports,	
		excluding the CPU port.	
		11 = Protocol Portmap contains Default Output Ports, excluding the CPU port.	

6-Port Fast Ethernet Single Chip Switch Controller

4.3.17 TCP/UDP Action 0

0	offset: 0x	0096h	
Bits	Туре	Description	Initial value
15:14	R/W	Action for TCP/UDP Filter 3.	2'b0
13:12	R/W	TCPUDP PRI for TCP/UDP Filter 3.	2'b0
11:10	R/W	Action for TCP/UDP Filter 2.	2'b0
9:8	R/W	TCPUDP PRI for TCP/UDP Filter 2.	2'b0
7:6	R/W	Action for TCP/UDP Filter 1.	2'b0
5:4	R/W	TCPUDP PRI for TCP/UDP Filter 1.	2'b0
3:2	R/W	Action for TCP/UDP Filter 0.	2'b0
		00 = Protocol Portmap is Default Output Ports.	
		01 = Protocol Portmap is 6'b0.	
		10 = Protocol Portmap is the CPU port if the incoming port is not the CPU port. But if	
		the incoming port is the CPU port, then Type Portmap contains Default Output Ports,	
		excluding the CPU port.	
		11 = Protocol Portmap contains Default Output Ports, excluding the CPU port.	
1:0	R/W	TCPUDP PRI for TCP/UDP Filter 0.	2'b0
		00 = Queue 0.	
		01 = Queue 1.	
	1	10 = Queue 2.	
		11 = Queue 3	

4.3.18 TCP/UDP Action 1

	offset: 0x	0097h	
Rite	Type	Description	

Bits	Туре	Description	Initial value
15:14	R/W	Action for TCP/UDP Filter 7.	2'b0
13:12	R/W	TCPUDP PRI for TCP/UDP Filter 7.	2'b0
11:10	R/W	Action for TCP/UDP Filter 6.	2'b0
9:8	R/W	TCPUDP PRI for TCP/UDP Filter 6.	2'b0
7:6	R/W	Action for TCP/UDP Filter 5.	2'b0
5:4	R/W	TCPUDP PRI for TCP/UDP Filter 5.	2'b0
3:2	R/W	Action for TCP/UDP Filter 4.	2'b0
1:0	R/W	TCPUDP PRI for TCP/UDP Filter 4.	2'b0

4.3.19 TCP/UDP Action 2

offset: 0x0098h

Bits	Туре	Description	Initial value
15:14	R	Reserve.	2'b0
13:12	R/W	Compare TCP/UDP Source Port or Destination Port.	2°b0
		00 = Don't Compare	
		01 = Compare DA	
		10 = Compare SA	
		11 = Compare DA or SA	
11	R/W	Port 5 IP over TCP/UPD.	1'b0
		1 = Use IP field when packets contain both TCP/UDP and IP.	
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
10	R/W	Port 4 IP over TCP/UPD	1'b0
		1 = Use IP field when packets contain both TCP/UDP and IP.	
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
9	R/W	Port 3 IP over TCP/UPD.	1'b0
		1 = Use IP field when packets contain both TCP/UDP and IP.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
8	R/W	Port 2 IP over TCP/UPD.	
		1 = Use IP field when packets contain both TCP/UDP and IP.	
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
7	R/W	Port 1 IP over TCP/UPD.	1'b0
		1 = Use IP field when packets contain both TCP/UDP and IP.	
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
6	R/W	Port 0 IP over TCP/UPD.	1'b0
		1 = Use IP field when packets contain both TCP/UDP and IP.	
		0 = Use TCP/UDP field when packets contain both TCP/UDP and IP.	
5	R/W	Port 5 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0
4	R/W	Port 4 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0
3	R/W	Port 3 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0
2	R/W	Port 2 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0
1	R/W	Port 1 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0
0	R/W	Port 0 TCP/UDP PRIEN. 0 = Don't use TCP/UDP priority. 1 = Use TCP/UDP priority.	1'b0

4.3.20 Extended IGMP Control/Special Tag Insert Control

0	offset: 0x099h				
Bits	Туре	Description	Initial value		
15	R/W	Reserved.	1'b0		
14:13	R/W	Reserved.	2'b0		
12	R/W	Reserved.	1'b0		
11:10	R/W	Reserved.	2'b0		
9	R/W	Include Address Change into Port Security Interrupt Source. 0 = Don't include. 1 = Include.	1'b0		
8	R/W	Insert IP (don't in the TYPE/Protocol/TCPUDP). 0 = Don't insert. 1 = Insert.	1'b1		
7	R/W	Insert Reserve. 0 = Don't insert. 1 = Insert.	1'b1		
6	R/W	Insert ARP/RARP. 0 = Don't insert. 1 = Insert.	1'b1		
5	R/W	Insert Snoop. 0 = Don't insert. 1 = Insert.	1'b1		
4	R/W	Insert Type. 0 = Don't insert. 1 = Insert.	1'b1		
3	R/W	Insert Protocol. 0 = Don't insert. 1 = Insert.	1'b1		
2	R/W	Insert TCP/UDP. 0 = Don't insert. 1 = Insert.	1'b1		
1	R/W	Insert Mac Control. 0 = Don't insert. 1 = Insert.	1'b1		

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
0	R/W	Insert Default.	1'b1
		0 = Don't insert.	
		1 = Insert.	

4.3.21 Interrupt Enable Register

offset: 0x09ah Type Description Initial value Bits 15:9 R Reserve 7'b0 R/W Leaning Table Access Done Interrupt Enable. 1'b0 8 0 = Interrupt disable. 1 =Interrupt enable. 7:2 R/W Port Security Interrupt Enable. It's a per port setting. 6'b0 0 = Interrupt disable. 1 = Interrupt enable. R/W 1 Counter Overflow Interrupt Enable. 1'b0 0 = Interrupt disable. 1 = Interrupt enable. R/W 0 Port Status Interrupt Enable. 1'b0 0 = Interrupt disable. 1 = Interrupt enable.

4.3.22 Interrupt Status Register

offset:	0x09bh	l

Bits	Type	Description	Initial value
15:9	R	Reserve	8'b0
8	RC	Leaning Table Access Done.	RC
		0 = Access doesn't end.	
		1 = Access end.	
7:2	RC	Port Security Violation. It's a per port setting.	RC
		0 = Security didn't violate.	
		1 = Security violated.	
1	RC	Counter Overflow.	RC
		0 = Overflow didn't happen.	
		1 = Overflow happened for any of the counters.	
0	RC	Port Status Change.	RC
		0 = No status (link, speed, duplex, flow control) changed for any port.	
		1 = Status changed for any of 6 ports.	

4.3.23 Security Control Register (Reserved)

0	offset: 0x09ch		
Bits	Туре	Description	Initial value
15:13	R	Reserved.	3'h0
12	R/W	Reserved.	1'b0
11:6	R/W	Reserved.	6'b0
5:0	R/W	Reserved.	6'b0

4.4 Counter and Status Register Map

Register	Bit 15-0	Туре	Register	Bit 15-0	Type
0xa0h	Chip Identifier 0	RO	0xf0h	Port 0 Collision Count Low	R/W
0xa1h	Chip Identifier 1	RO	0xf1h	Port 0 Collision Count High	R/W

Register	Bit 15-0	Туре	Register	Bit 15-0	Туре
0xa2h	Port Status 0	RO	0xf2h	Reserve	RO
0xa3h	Port Status 1	RO	0xf3h	Reserve	RO
0xa4h	Port Status 2	RO	0xf4h	Port 1 Collision Count Low	R/W
0xa5h	Port Status 3	RO	0xf5h	Port 1 Collision Count High	R/W
0xa6h	Reserve	RO	0xf6h	Reserve	RO
0xa7h	Reserve	RO	0xf7h	Reserve	RO
0xa8h	Port 0 Receive Packet Count Low	R/W	0xf8h	Port 2 Collision Count Low	R/W
0xa9h	Port 0 Receive Packet Count High	R/W	0xf9h	Port 2 Collision Count High	R/W
0xaah	Reserve	RO	0xfah	Reserve	RO
0xabh	Reserve	RO	0xfbh	Reserve	RO
0xach	Port 1 Receive Packet Count Low	R/W	0xfch	Port 3 Collision Count Low	R/W
0xadh	Port 1 Receive Packet Count High	R/W	0xfdh	Port 3 Collision Count High	R/W
0xaeh	Reserve	RO	0xfeh	Port 4 Collision Count Low	R/W
0xafh	Reserve	RO	0xffh	Port 4 Collision Count High	R/W
0xb0h	Port 2 Receive Packet Count Low	R/W	0x100h	Port 5 Collision Count Low	R/W
0xb1h	Port 2 Receive Packet Count High	R/W	0x101h	Port 5 Collision Count High	R/W
0xb2h	Reserve	RO	0x102h	Port 0 Error Count Low	R/W
0xb3h	Reserve	RO	0x103h	Port 0 Error Count High	R/W
0xb4h	Port 3 Receive Packet Count Low	R/W	0x104h	Reserve	RO
0xb5h	Port 3 Receive Packet Count High	R/W	0x105h	Reserve	RO
0xb6h	Port 4 Receive Packet Count Low	R/W	0x106h	Port 1 Error Count Low	R/W
0xb7h	Port 4 Receive Packet Count high	R/W	0x107h	Port 1 Error Count High	R/W
0xb8h	Port 5 Receive Packet Count Low	R/W	0x108h	Reserve	RO
0xb9h	Port 5 Receive Packet Count High	R/W	0x109h	Reserve	RO
0xbah	Port 0 Receive Packet Byte Count Low	R/W	0x10ah	Port 2 Error Count Low	R/W
0xbbh	Port 0 Receive Packet Byte Count High	R/W	0x10bh	Port 2 Error Count High	R/W
0xbch	Reserve	RO	0x10ch	Reserve	RO
0xbdh	Reserve	RO	0x10dh	Reserve	RO
0xbeh	Port 1 Receive Packet Byte Count Low	R/W	0x10eh	Port 3 Error Count Low	R/W
0xbfh	Port 1 Receive Packet Byte Count High	R/W	0x10fh	Port 3 Error Count high	R/W
0xc0h	Reserve	RO	0x110h	Port 4 Error Count Low	R/W
0xc1h	Reserve	RO	0x111h	Port 4 Error Count High	R/W
0xc2h	Port 2 Receive Packet Byte Count Low	R/W	0x112h	Port 5 Error Count Low	R/W
0xc3h	Port 2 Receive Packet Byte Count High	R/W	0x113h	Port 5 Error Count High	R/W
0xc4h	Reserve	RO	0x114h	Over Flow Flag 0 Low	RC
0xc5h	Reserve	RO	0x115h	Over Flow Flag 0 High	RC
0xc6h	Port 3 Receive Packet Byte Count Low	R/W	0x116h	Over Flow Flag 1 Low	RC
0xc7h	Port 3 Receive Packet Byte Count High	R/W	0x117h	Over Flow Flag 1 High	RC
0xc8h	Port 4 Receive Packet Byte Count Low	R/W	0x118h	Over Flow Flag 2 Low	RC
0xc9h	Port 4 Receive Packet Byte Count High	R/W	0x119h	Over Flow Flag 2 High	RC
0xcah	Port 5 Receive Packet Byte Count Low	R/W	0x11ah	Address Table Control Register 0	R/W
0xcbh	Port 5 Receive Packet Byte Count High	R/W	0x11bh	Address Table Control Register 1	R/W
0xcch	Port 0 Transmit Packet Count Low	R/W	0x11ch	Address Table Control Register 2	R/W
0xcdh	Port 0 Transmit Packet Count High	R/W	0x11dh	Address Table Control Register 3	R/W
0xceh	Reserve	RC	0x11eh	Address Table Control Register 4	R/W
0xcfh	Reserve	RC	0x11fh	Address Table Control Register 5	R/W
0xd0h	Port 1 Transmit Packet Count Low	R/W	0x120h	Address Table Status Register 0	RO
0xd1h	Port 1 Transmit Packet Count High	R/W	0x121h	Address Table Status Register 1	RO
0xd2h	Reserve	RO	0x122h	Address Table Status Register 2	RO
0xd3h	Reserve	RO	0x123h	Address Table Status Register 3	RO
		R/W	0x124h		RO

Register	Bit 15-0	Туре	Register	Bit 15-0	Туре
0xd5h	Port 2 Transmit Packet Count High	R/W	0x125h	Address Table Status Register 5	RO
0xd6h	Reserve	RO	0x126h	Reserve	RO
0xd7h	Reserve	RO	0x127h	Reserve	RO
0xd8h	Port 3 Transmit Packet Count Low	R/W	0x128h	BM Status Register 0	RC
0xd9h	Port 3 Transmit Packet Count High	R/W	0x129h	BM Status Register 1	RC
0xdah	Port 4 Transmit Packet Count Low	R/W	0x12ah	BM Status Register 2	RC
0xdbh	Port 4 Transmit Packet Count High	R/W	0x12bh	BM Status Register 3	RC
0xdch	Port 5 Transmit Packet Count Low	R/W	0x12ch	BM Status Register 4	RC
0xddh	Port 5 Transmit Packet Count High	R/W	0x12dh	BM Status Register 5	RC
0xdeh	Port 0 Transmit Packet Byte Count Low	R/W	0x12eh	BM Status Register 6	RC
0xdfh	Port 0 Transmit Packet Byte Count High	R/W	0x12fh	BM Status Register 7	RC
0xe0h	Reserve	RO	0x130h	Hardware Setting Low	R
0xe1h	Reserve	RO	0x131h	Hardware Setting High	R
0xe2h	Port 1 Transmit Packet Byte Count Low	R/W	0x132h	Assign Address [15:0]	R/W
0xe3h	Port 1 Transmit Packet Byte Count High	R/W	0x133h	Assign Address [31:16]	R/W
0xe4h	Reserve	RO	0x134h	Assign Address [47:32]	R/W
0xe5h	Reserve	RO	0x135h	Port / Fid / Pause SA/ Monitor Assign	R/W
0xe6h	Port 2 Transmit Packet Byte Count Low	R/W	0x136h	Mirror Register 0	R/W
0xe7h	Port 2 Transmit Packet Byte Count High	R/W	0x137h	Mirror Register 1	R/W
0xe8h	Reserve	RO	0x138h	Security Violation Port	RC
0xe9h	Reserve	RO	0x139h	Security Status 0	R
0xeah	Port 3 Transmit Packet Byte Count Low	R/W	0x13ah	Security Status 1	R
0xebh	Port 3 Transmit Packet Byte Count High	R/W	0x13bh	First Lock Address Search	R/W
0xech	Port 4 Transmit Packet Byte Count Low	R/W	0x13ch	First Lock Address [15:0]	R
0xedh	Port 4 Transmit Packet Byte Count High	R/W	0x13dh	First Lock Address [31:16]	R
0xeeh	Port 5 Transmit Packet Byte Count Low	R/W	0x13eh	First Lock Address [47:32]	R
0xefh	Port 5 Transmit Packet Byte Count High	R/W	0x13fh	First Lock FID	R
			0x140h	Counter Control Low	R/W
			0x141h	Counter Control High	R/W
			0x142h	Counter Status Low	RO
			0x143h	Counter Status High	RO

4.4.1 Chip Identifier 0, offset: 0xa0h

Bits	Туре	Description	Initial value
15:4	RO	Product Code[11:0]	0x102h
3:0	RO	Version Number	0x1h

4.4.2 Chip Identifier 1, offset: 0xa1h

Bits	Туре	Description	Initial value
15:4	RO	Reserve	0x0h
3:0	RO	Product Code[15:12]	0x7h

4.4.3 Port Status 0, offset: 0xa2h

Bits	Type	Description	Initial value
15:12	RO	Reserve	1'b0
11	RO	Port 1 Flow Control Status	Real Time
		0 = Port 1 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 1 enabled the Full Flow Control/Half Back Pressure Function.	
10	RO	Port 1 Duplex Status.	Real Time
		0 = Port 1 operates in the Half Duplex.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		1 = Port 1 operates in the Full Duplex.	
9	RO	Port 1 Speed Status:.	Real Time
		1 = Port 1 operates in the 100M.	
		0 = Port 1 operates in the 10M.	
8	RO	Port 1 Link Status:	Real Time
		0 = Port 1 links down.	
		1 = Port 1 links up.	
7:4	RO	Reserve	1'b0
3	RO	Port 0 Flow Control Status.	Real Time
		0 = Port 0 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 0 enabled the Full Flow Control/Half Back Pressure Function.	
2	RO	Port 0 Duplex Status.	Real Time
		0 = Port 0 operates in the Half Duplex.	
		1 = Port 0 operates in the Full Duplex.	
1	RO	Port 0 Speed Status.	Real Time
		1 = Port 0 operates in the 100M.	
		0 = Port 0 operates in the 10M.	
0	RO	Port 0 Link Status.	Real Time
		0 = Port 0 links down.	
		1 = Port 0 links up.	

4.4.4 Port Status 1, offset: 0xa3h

Bits	Туре	Description	Initial value
15	RO	Port 4 Flow Control Status.	Real Time
		0 = Port 4 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 4 enabled the Full Flow Control/Half Back Pressure Function.	
14	RO	Port 4 Duplex Status.	Real Time
		0 = Port 4 operates in the Half Duplex.	
		1 = Port 4 operates in the Full Duplex.	
13	RO	Port 4 Speed Status.	Real Time
		1 = Port 4 operates in the 100M.	
		0 = Port 4 operates in the 10M.	
12	RO	Port 4 Link Status.	Real Time
		0 = Port 4 links down.	
		1 = Port 4 links up.	
11	RO	Port 3 Flow Control Status.	Real Time
		0 = Port 3 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 3 enabled the Full Flow Control/Half Back Pressure Function.	
10	RO	Port 3 Duplex Status.	Real Time
		0 = Port 3 operates in the Half Duplex.	
		1 = Port 3 operates in the Full Duplex.	
9	RO	Port 3 Speed Status.	Real Time
		1 = Port 3 operates in the 100M.	
_		0 = Port 3 operates in the 10M.	
8	RO	Port 3 Link Status.	Real Time
		0 = Port 3 links down.	
		1 = Port 3 links up.	
7:4	RO	Reserve	1'b0
3	RO	Port 2 Flow Control Status.	Real Time
		0 = Port 2 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 2 enabled the Full Flow Control/Half Back Pressure Function.	
2	RO	Port 2 Duplex Status.	Real Time

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Description	Initial value
		0 = Port 2 operates in the Half Duplex.	
		1 = Port 2 operates in the Full Duplex.	
1	RO	Port 2 Speed Status.	Real Time
		1 = Port 2 operates in the 100M.	
		0 = Port 2 operates in the 10M.	
0	RO	Port 2 Link Status.	Real Time
		0 = Port 2 links down.	
		1 = Port 2 links up.	

4.4.5 Port Status 2, offset: 0xa4h

Bits	Туре	Description	Initial value
15:5	RO	Reserve	1'b0
4	RO	Port 5 Flow Control Enable.	Real Time
		0 = Port 5 disables the Full Flow Control/Half Back Pressure Function.	
		1 = Port 5 enabled the Full Flow Control/Half Back Pressure Function.	
3	RO	Port 5 Duplex Status.	Real Time
		0 = Port 5 operates in the Half Duplex.	
		1 = Port 5 operates in the Full Duplex.	
2	RO	Reserve.	1'b0
1	RO	Port 5 Speed Status.	Real Time
		1 = Port 5 operates in the 100M.	
		0 = Port 5 operates in the 10M.	
0	RO	Port 5 Link Status.	Real Time
		0 = Port 5 links down.	
		1 = Port 5 links up.	

4.4.6 Port Status 3, offset: 0xa5h

Bits	Туре	Description	Initial value
15:0	R	Reserve	16'b0

4.4.7 Reserved Register, offset: 0xa6h

Bits	Туре	Description	Initial value
15:0	RO	Reserve.	16'b0

4.4.8 Reserved Register, offset: 0xa7h

Bits	Туре	Description	Initial value
15:0	RO	Reserve	16'b0

4.4.9 Counter Low, offset: 0x0a8h ~ 0x113h

Bits	Туре	Description	Initial value
15:0	RO	Counter[15:0]	16'b0

4.4.10 Counter High, offset: 0x0a8h ~ 0x113h

Bits	Туре	Description	Initial value
15:0	RO	Counter[31:16]	16'b0

4.4.11 Over-Flow Flag 0, offset: 0x114h

Bits Type Description

Initial value

6-Port Fast Ethernet Single Chip Switch Controller

15	RC	Overflow of Port 3 Receive Packet Byte Count	1'b0
-	_	0 = Don't overflow.	
		1 = Overflow.	
14	RO	Reserved	1'b0
13	RC	Overflow of Port 2 Receive Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
12	RO	Reserved	1'b0
11	RC	Overflow of Port 1 Receive Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
10	RO	Reserved	1'b0
9	RC	Overflow of Port 0 Receive Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
8	RC	Overflow of Port 5 Receive Packet Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	4.11.0
7	RC	Overflow of Port 4 Receive Packet Count	1'b0
		0 = Don't overflow.	
	DC	1 = Overflow.	111.0
6	RC	Overflow of Port 3 Receive Packet Count	1'b0
		0 = Don't overflow. 1 = Overflow.	
5	DO		121.0
5	RO	Reserved Overflow of Port 2 Receive Packet Count	1'b0
4	RC		1'b0
		0 = Don't overflow. 1 = Overflow.	
3	RO	Reserved	1'b0
3 2	RC	Overflow of Port 1 Receive Packet Count	1 b0 1'b0
2	ĸĊ	0 = Don't overflow.	1 00
		1 = Overflow.	
1	RO	Reserve	1'b0
$\frac{1}{0}$	RC	Overflow of Port 0 Receive Packet Count	1'b0
0	ĸc	0 = Don't overflow.	1.00
		1 = Overflow.	

4.4.12 Over-Flow Flag 1, offset: 0x115h

Bits	Туре	Description	Initial value
15:2	RO	Reserve	14'b0
1	RC	Overflow of Port 5 Receive Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
0	RC	Overflow of Port 4 Receive Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	

4.4.13 Over-Flow Flag 2, offset: 0x116h

Bits	Туре	Description	Initial value
15	RC	Overflow of Port 3 Transmit Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	

6-Port Fast Ethernet Single Chip Switch Controller

14	RO	Reserve	1'b0
13	RC	Overflow of Port 2 Transmit Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
12	RO	Reserve	1'b0
11	RC	Overflow of Port 1 Transmit Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
10	RO	Reserve	1'b0
9	RC	Overflow of Port 0 Transmit Packet Byte Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
8	RC	Overflow of Port 5 Transmit Packet Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
7	RC	Overflow of Port 4 Transmit Packet Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
6	RC	Overflow of Port 3 Transmit Packet Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
5	RO	Reserve	1'b0
4	RC	Overflow of Port 2 Transmit Packet Count	1'b0
		0 = Don't overflow.	
2		1 = Overflow.	111.0
3	RO	Reserve	1'b0
2	RC	Overflow of Port 1 Transmit Packet Count	1'b0
		0 = Don't overflow.	
1	DO	1 = Overflow.	121.0
1	RO	Reserve	1'b0
0	RC	Overflow of Port 0 Transmit Packet Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	

4.4.14 Over-Flow Flag 3: Register 0x117h

Bits	Type	Description	Initial value
15:2	RO	Reserve	14'b0
1	RC	Overflow of Port 5 Transmit Packet Byte Count 0 = Don't overflow. 1 = Overflow.	1'b0
0	RC	Overflow of Port 4 Transmit Packet Byte Count 0 = Don't overflow. 1 = Overflow.	1'b0

4.4.15 Over-Flow Flag 4, offset: 0x118h

Bits	Туре	Description	Initial value
15	RC	Overflow of Port 3 Error Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
14	RO	Reserve	1'b0
13	RC	Overflow of Port 2 Error Count	1'b0
		0 = Don't overflow.	

6-Port Fast Ethernet Single Chip Switch Controller

		1 = Overflow.	
12	RO	Reserve	1'b0
11	RC	Overflow of Port 1 Error Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
10	RO	Reserve	1'b0
9	RC	Overflow of Port 0 Error Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
8	RC	Overflow of Port 5 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
7	RC	Overflow of Port 4 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
6	RC	Overflow of Port 3 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
5	RO	Reserve	1'b0
4	RC	Overflow of Port 2 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
3	RO	Reserve	1'b0
2	RC	Overflow of Port 1 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	
1	RO	Reserve	1'b0
0	RC	Overflow of Port 0 Collision Count	1'b0
		0 = Don't overflow.	
		1 = Overflow.	

4.4.16 Over-Flow Flag 5: Register 0x119h

Bits	Туре	Description	Initial value
15:2	RO	Reserve	14'b0
1	RC	Overflow of Port 5 Error Count 0 = Don't overflow. 1 = Overflow.	1'b0
0	RC	Overflow of Port 4 Error Count 0 = Don't overflow. 1 = Overflow.	1'b0

4.4.17 Hardware Setting Low: Register 0x130h

Bits	Type	Description	Initial value
15	RO	Reserved	Power on Value
14	RO	Bond	Power on Value
13	RO	Disable DM8606BF function	Power on Value
12	RO	BPEN	Power on Value
11	RO	16/32 Bit Data Bus	Power on Value
10	RO	GPSI Mode	Power on Value
9	RO	RMII Mode	Power on Value
8:7	RO	Port 4 Interface Type	Power on Value
6	RO	Global Flow Control	Power on Value

6-Port Fast Ethernet Single Chip Switch Controller

5	RO	Port 4 Fiber Mode	Power on Value
4	RO	Dual Color	Power on Value
3:2	RO	Chip Address	Power on Value
1	RO	Auto-Crossover	Power on Value
0	RO	Auto-Negotiation	Power on Value

4.4.18 Hardware Setting High: Register 0x131h

Bits	Туре	Description	Initial value
15:10	RO	Reserve	0x0h
9	RO	Learning Table Bist Result.	
		0 = Work.	1'b0
		1 = Don't Work.	
8	RO	Linklist Table Bist Result. (Linklist Table doesn't do bist test in normal mode)	
		0 = Work.	1'b1
		1 = Don't Work.	
7	RO	Control Table Bist Result.	
		0 = Work.	1'b0
		1 = Don't work.	
6	RO	Hardware IGMP Table Bist Result.	
		0 = Work.	1'b0
		1 = Don't work.	
5	RO	Data buffer Bist Result.	
		0 = Work.	1'b0
		1 = Don't work.	
4:3	RO	P5 Mode.	
		00 = GPSI	Power on Value
		01 = RMII	i e vier en varae
		10 = MII	
2:1	RO	Reserved	Power on Value
0	RO	CFG	Power on Value

4.4.19 Assign Address [15:0]: Register 0x132h

Bits	Туре	Description	Initial value
15:0	R/W	Assign Address [15:0]	0x0h

4.4.20 Assign Address [31:16]: Register 0x133h

Bits	Туре	Description	Initial value
15:0	R/W	Assign Address [31:16]	0x0h

4.4.21 Assign Address [47:32]: Register 0x134h

Bits	Туре	Description	Initial value
15:0	R/W	Assign Address [47:32]	0x0h

4.4.22 Assign Option Register: 0x135h

Bits	Туре	Description	Initial value
15:10	R	Reserve	6'b0
9	R/W	Pause Address Change. It is useful only when assign address is used for PAUSE source	1'b0
		address.	
		0 = All the ports use this assign address as the source address of the PAUSE commands.	
		$1 = Port 0$ uses {assign address[47:3], 3'b000} as the source address of the PAUSE	
		commands.	

6-Port Fast Ethernet Single Chip Switch Controller

		0 1	
		Port 1 uses {assign address[47:3], 3'b001} as the source address of the PAUSE	_
		commands.	
		Port 2 uses {assign address[47:3], 3'b010} as the source address of the PAUSE	
		commands.	
		Port 3 uses {assign address[47:3], 3'b011} as the source address of the PAUSE	
		commands.	
		Port 4 uses {assign address[47:3], 3'b100} as the source address of the PAUSE	
		commands.	
		Port 5 uses {assign address[47:3], 3'b101} as the source address of the PAUSE	
		commands.	
8:7	R/W	Assign Address Option.	2'b00
		00 = Assign address is useless.	
		01 = Assign address is used for PAUSE source address.	
		10 = Assign address is used for assign lock address or the monitor address.	
		11 = Assign address is used for PAUSE source address.	
6:3	R/W	Assign Fid. It is used for assign lock FID.	4'b0
2:0	R/W	Assign Port. It is used for the port that the user wants to assign or for the monitor port.	3'b.

4.4.23 Mirror Register 0: 0x136h

Bits	Type	Description	Initial value
14:15	R/W	Port 3 Transmit Mirror Option.	2'b0
13:12	R/W	Port 3 Receive Mirror Option.	2'b0
11:10	R/W	Port 2 Transmit Mirror Option.	2'b0
9:8	R/W	Port 2 Receive Mirror Option.	2'b0
7:6	R/W	Port 1 Transmit Mirror Option.	2'b0
5:4	R/W	Port 1 Receive Mirror Option.	2'b0
3:2	R/W	Port 0 Transmit Mirror Option.	2'b0
		00 = Don't be mirrored.	
		01 = The traffic transmitted from Port 0 is mirrored.	
		10 = The traffic with DA = assign address transmitted from Port 0 is mirrored.	
		11 = The traffic with SA = assign address transmitted from Port 0 is mirrored.	
1:0	R/W	Port 0 Receive Mirror Option.	2'b0
		00 = Don't be mirrored.	
		01 = The traffic received on Port 0 is mirrored.	
		10 = The traffic with DA = assign address received on Port 0 is mirrored.	
		11 = The traffic with SA = assign address received on Port 0 is mirrored.	

4.4.24 Mirror Register 1: 0x137h

Bits	Туре	Description	Initial value
15	R/W	Mirror Enable	1'b0
		0 = Disable.	
		1 = Enable.	
14	R/W	Mirror CRC Also	1'b0
		0 = Don't mirror.	
		1 = Mirror.	
13	R/W	Mirror RXER Also	1'b0
		0 = Don't mirror.	
		1 = Mirror.	
12	R/W	Mirror PAUSE Also	1'b0
		0 = Don't mirror.	
		1 = Mirror.	
11	R/W	Mirror Long Also	1'b0

6-Port Fast Ethernet Single Chip Switch Controller

		0 = Don't mirror.	
		1 = Mirror.	
10	R/W	Mirror Short Also	1'b0
		0 = Don't mirror.	
		1 = Mirror.	
9	R/W	Reserved.	1'b0
8	R/W	Enable Transmit Unmonitored Packet to the Mirror Port.	1'b0
		0 = Mirror port only mirrors the mirrored packets.	
		1 = Mirror port also receives packets that are not mirrored but their output ports also	
		contain the mirror port.	
7:6	R/W	Port 5 Transmit Mirror Option	2'b0
5:4	R/W	Port 5 Receive Mirror Option	2'b0
3:2	R/W	Port 4 Transmit Mirror Option	2'b0
1:0	R/W	Port 4 Receive Mirror Option	2'b0

4.4.25 Security Violation Port: 0x138h

Bits	Type	Description	Initial value
15:12	R	Reserve	4'b0
11:6	RC	Port Source Intrusion.	6'b0
		0 = Source Intrusion didn't happen.	
		1 = Source Intrusion happened.	
5:0	R	Reserve	6'b0

4.4.26 Security Status 0: 0x139h

Bits	Туре	Description	Initial value
15:12	R	Reserve	4'b0
11:6	R	First Lock.	6'b0
		0 = Port didn't lock the address.	
		1 = Port locked the address.	
5:0	R	Port Locked.	6'b0
		0 = Port didn't close.	
		1 = Port closed because of source violation.	

4.4.27 Security Status 1: 0x13ah

Bits	Type	Description	Initial value
15:6	R	Reserve	10'b0
5:0	R	Link Lock.	6'b0
		0 = Link Lock didn't happen.	
		1 = Link Lock happened.	

4.4.28 First Lock Address Search: 0x13bh

Bits	Туре	Description	Initial value
15:3	R	Reserve	13'b0
2:0	R/W	First Lock Search Port.	3'b0
		Users could write this register to get the lock address and the lock FID (returned in the	
		0x13c, 0x13d, 0x13e, 0x13f) associated with the port.	
		000 = Search the address and FID locked on the port 0.	
		001 = Search the address and FID locked on the port 1.	
		010 = Search the address and FID locked on the port 1.	
		011 = Search the address and FID locked on the port 1.	
		100 = Search the address and FID locked on the port 1.	

6-Port Fast Ethernet Single Chip Switch Controller

101 = Search the address and FID locked on the port 1.

4.4.29 First Lock Address [15:0]: 0x13ch

Bits	Туре	Description	Initial value
15:0	R	First Lock Address [15:0]	16'h0

4.4.30 First Lock Address [31:16]: 0x13dh

Bits	Туре	Description	Initial value
15:0	R	First Lock Address [31:16]	16'h0

4.4.31 First Lock Address [47:32]: 0x13eh

Bits	Туре	Description	Initial value
15:0	R	First Lock Address [47:32]	16'h0

4.4.32 First Lock FID: 0x13fh

Bits	Туре	Description	Initial value
15:4	R	Reserve	12'b0
3:0	R	First Lock FID	4'b0

4.4.33 Counter Control Low: Register 0x140h

Bits	Туре	Description	Initial value
15:8	R	Reserve	8'b0
7	R/W	Busy/Access Start.	1'b0
		1 = The counter control is busy, or users should write 1'b1 into this bit to start the access	
		when the engine is free.	
		0 = The counter control is free.	
6	R/W	0 = Indirect Read Counter	1'b0
		1 = Renew Port Counter	
5:0	R/W	Indirect Read Counter: It means the counter address.	6'b0
		Renew Port Counter: It means the counters on each port to renew.	

4.4.34 Counter Control High: Register 0x141h

Bits	Туре	Description	Initial value
15:0	R	Reserve	16'b0

4.4.35 Counter Status Low: Register 0x142h

Bits	Туре	Description	Initial value
15:0	R	Counter [15:0]	16'b0

4.4.36 Counter Status High: Register 0x143h

Bits	Туре	Description	Initial value
15:0	R	Counter [31:16]	16'b0

4.5 PHY Register Map

4.5.1 PHY Control Register of Port0 ~ 4

offset: 0x200, 0x220, 0x240, 0x260, 0x280

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Name	Description	Initial value
15	R/W,	RST	RESET	0x0h
-	SC		1 – PHY Reset	
	50		0 - Normal operation	
			Setting this bit initiates the software reset function that resets the selected	
			port, except for the phase-locked loop circuit. It will re-latch in all	
			hardware configuration pin values The software reset process takes 25us	
			to complete. This bit, which is self-clearing, returns a value of 1 until the	
	D/III	LDDV	reset process is complete.	0.01
4	R/W	LPBK	Loop Back Enable	0x0h
			1 – Enable loopback mode	
			0 – Disable Loopback mode	
			This bit controls the PHY loopback operation that isolates the network	
			transmitter outputs (TXP and TXN) and routes the MII transmit data to	
			the MII receive data path. This function should only be used when auto	
			negotiation is disabled ($bit12 = 0$). The specific PHY (10Base-T or	
			100Base-X) used for this operation is determined by bits 12 and 13 of	
			this register	
3	R/W	SPEED_LSB	Speed Selection LSB	0x1h
		_	0.6, 0.13	
			0 0 10 Mbits/s	
			0 1 100 Mbits/s	
			1 0 1000 Mbits/s	
			1 1 Reserved	
			Link speed is selected by this bit or by auto negotiation if bit 12 of this	
			register is set (in which case, the value of this bit is ignored).	
			If it is fiber mode, 0.13 is always 1. Any write to this bit will have no	
			effect.	
0	D/IU			0.11
2	R/W	ANEN	Auto Negotiation Enable	0x1h
			1 – Enable auto negotiation process	
			0 – Disable Auto negotiation process	
			This bit determines whether the link speed should set up by the auto	
			negotiation process or not. It is set at power up or reset if the RECANEN	
			pin detects a logic 1 input level in Twisted-Pair Mode.	
			If it is set when fiber mode is configured, any write to this bit will be	
			ignored.	
1	R/W	PDN	Power Down Enable	0x0h
			1 – Power Down	
			0 – Normal Operation	
			Ored result with PI PWRDN pin. Setting this bit high or asserting the	
			PI PWRDN puts the D7001 into power down mode. During the power	
			down mode, TXP/TXN and all LED outputs are tri-stated and the MII	
			interfaces are isolated.	
0	R/W	ISO	Isolate D7001 from Network	0x0h
0	1 \ / \\	100	1 – Isolate PHY from MII	0.0011
			0 – Normal Operation	
			Setting this control bit isolates the part from the MII, with the exception	
			of the serial management interface. When this bit is asserted, the D7001	
			does not respond to TXD, TXEN and TXER inputs, and it presents a high	
			impedence on its TXC, RXC, CRSDV, RXER, RXD, COL and CRS	
			outputs.	
)	R/W,	ANEN_RST	Restart Auto Negotiation	0x0h
	SC	_	1 – Restart Auto Negotiation Process	
		1	0 – Normal Operation	1

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Name	Description	Initial value
			Setting this bit while auto negotiation is enabled forces a new auto	
			negotiation process to start. This bit is self-clearing and returns to 0 after	
			the auto negotiation process has commenced.	
8	R/W	DPLX	Duplex Mode	0x1h
			1 – Full Duplex mode	
			0 – Half Duplex mode	
			If auto negotiation is disabled, this bit determines the duplex mode for the	
			link.	
7	R/W	COLTST	Collision Test	0x0h
			1 – Enable COL signal test	
			0 – Disable COL signal test	
			When set, this bit will cause the COL signal of MII interface to be	
			asserted in response to the assertion of TXEN.	
6	RO	SPEED_MSB	Speed Selection MSB	0x0h
			Set to 0 all the time indicate that the D7001 does not support 1000	
			Mbits/s function.	
5:0	RO	Reserved	Not Applicable	0x00h

4.5.2 PHY Status Register of Port0 ~ 4

offset : 0x201, 0x221, 0x241, 0x261, 0x281

Bits	Туре	Name	Description	Initial value
15	RO	CAP_T4	100Base-T4 Capable Set to 0 all the time to indicate that the D7001 does not support 100Base-	0x0h
			T4	
14	RO	CAP_TXF	100Base-X Full Duplex Capable	0x1h
			Set to 1 all the time to indicate that the D7001 does support Full Duplex	
			mode	
13	RO	САР ТХН	100Base-X Half Duplex Capable	0x1h
			Set to 1 all the time to indicate that the D7001 does support Half Duplex mode	
12	RO	CAP_TF	10M Full Duplex Capable	0x1h
		_	TP : Set to 1 all the time to indicate that the D7001 does support 10M	
			Full Duplex mode	0x0h
			FX : Set to 0 all the time to indicate that the D7001 does not support 10M	
			Full Duplex mode	
11	RO	CAP_TH	10M Half Duplex Capable	0x1h
		_	TP : Set to 1 all the time to indicate that the D7001 does support 10M	
			Half Duplex mode	0x0h
			FX : Set to 0 all the time to indicate that the D7001 does not support 10M	
			Half Duplex mode	
10	RO	CAP_T2	100Base-T2 Capable	0x0h
		_	Set to 0 all the time to indicate that the D7001 does not support 100Base-	
			Τ2	
9:7	RO	Reserved	Not Applicable	0x0h
6	RO	CAP_SUPR	MF Preamble Suppression Capable	0x1h
			This bit is hardwired to 1 indicating that the D7001 accepts management	
			frame without preamble. Minimum 32 preamble bits are required	
			following power-on or hardware reset. One idle bit is required between	
			any two management transactions as per IEEE 802.3u specification.	
5	RO	AN_COMP	Auto Negotiation Complete	0x0h
		_	1 – Auto Negotiation process completed	
			0 – Auto Negotiation process not completed	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Name	Description	Initial value
			If auto negotiation is enabled, this bit indicates whether the auto	
			negotiation process has been completed or not.	
			Set to 0 all the time when Fiber Mode is selected.	
4	RO	REM_FLT	Remote Fault Detect	0x0h
		_	1 – Remote Fault detected	
			0 – Remote Fault not detected	
			This bit is latched to 1 if the RF bit in the auto negotiation link partner	
			ability register (bit 13, register address 05h) is set or the receive channel	
			meets the far end fault indication function criteria. It is unlatched when	
			this register is read.	
3	RO	CAP_ANEG	Auto Negotiation Ability	0x1h
		_	1 – Capable of auto negotiation	
			0 – Not capable of auto negotiation	
			TP : This bit is set to 1 all the time, indicating that D7001 is capable of	
			auto negotiation.	0x0h
			FX : This bit is set to 0 all the time, indicating that D7001 is not capable	
			of auto negotiation in Fiber Mode.	
2	RO	LINK	Link Status	0x0h
			1 – Link is up	
			0 – Link is down	
			This bit reflects the current state of the link -test-fail state machine. Loss	
			of a valid link causes a 0 latched into this bit. It remains 0 until this	
			register is read by the serial management interface. Whenever Linkup,	
			this bit should be read twice to get link up status	
1	RO	JAB	Jabber Detect	0x0h
			1 – Jabber condition detected	
			0 – Jabber condition not detected	
0	RO	EXTREG	Extended Capability	0x0h
			1 – Extended register set	
			0 – No extended register set	
			This bit defaults to 1, indicating that the D7001 implements extended	
			registers.	

4.5.3 PHY Identifier Register of Port0 ~ 4

offset : 0x202, 0x222, 0x242, 0x262, 0x282

Bits 7	Туре	Name	Description	Initial value
15:0 H	RO	PHY-ID[15:0]	IEEE Address	0x0302h

4.5.4 PHY Identifier Register of Port0 ~ 4

(offset : 0x					
Bits	Туре	Name	Description	Initial value		
15:10	RO	PHY-ID[5:0]	IEEE Address	0x18h		
9:4	RO	Model-ID[5:0]	IEEE Model No.	0x07h		
3:0	RO	REV-ID[3:0]	IEEE Revision No.	0x01h		
	Note: Pagister $2 - 0xCC10$					

Note: Register $3 = 0 \times CC10$

4.5.5 Auto Negotiation Advertisement Register of Port0 ~ 4

offset : 0x204, 0x224, 0x244, 0x264, 0x284

Bits	Туре	Name	Description	Initial value
15	RO	NP	Next Page	0x0h
			This bit is defaults to 1, indicating that D7001 is next page capable.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Name	Description	Initial value
14	R/W	Reserved	Not Applicable	0x0h
13	RO	RF	Remote Fault	0x0h
			1 – Remote Fault has been detected	
			0 - No remote fault has been detected	
			This bit is written by serial management interface for the purpose of	
			communicating the remote fault condition to the auto negotiation link	
			partner.	
12 11	RO	Reserved	Not Applicable	0x0h
11	R/W	ASM_DIR	Asymmetric Pause Direction.	0x0h
			Bit[11:10] Capability	
			00 No Pause	
			01 Symmetric PAUSE	
			10 Asymmetric PAUSE toward Link Partner	
			11 Both Symmetric PAUSE and Asymmetric PAUSE toward local	
			device	
10	R/W	PAUSE	Pause Operation for Full Duplex	0x1h
			Value on PAUREC will be stored in this bit during power on reset.	
9	RO	T4	Technology Ability for 100Base-T4	0x0h
			Defaults to 0.	
8	R/W	TX_FDX	100Base-TX Full Duplex	0x1h
			1 – Capable of 100M Full duplex operation	
			0 – Not capable of 100M Full duplex operation	
7	R/W	TX HDX	100Base-TX Half Duplex	0x1h
			1 – Capable of 100M operation	
			0 – Not capable of 100M operation	
6	R/W	10 FDX	10BASE-T Full Duplex	0x1h
		_	1 – Capable of 10M Full Duplex operation	
			0 – Not capable of 10M full duplex operation	
5	R/W	10 HDX	10Base-T Half Duplex	0x1h
		-	1 – Capable of 10M operation	
			0 - Not capable of 10M operation	
			Note that bit 8:5 should be combined with REC100, RECFUL pin input	
			to determine the finalized speed and duplex mode.	
4:0	RO	Selector Field	These 5 bits are hardwired to 00001b, indicating that the D7001 supports	0x1h
			IEEE 802.3 CSMA/CD.	

4.5.6 Auto Negotiation Link Partner Ability Register of Port0 ~ 4

offset : 0x205, 0x225, 0x245, 0x265, 0x285

Bits	Туре	Name	Description	Initial value
15	RO	NPAGE	Next Page	0x0h
			1 – Capable of next page function	
			0 – Not capable of next page function	
14	RO	ACK	Acknowledge	0x0h
			1 – Link Partner acknowledges reception of the ability data word	
			0 – Not acknowledged	
13	RO	RF	Remote Fault	0x0h
			1 – Remote Fault has been detected	
			0 - No remote fault has been detected	
12	RO	Reserved	Not Applicable	0x0h
11	RO	LP_DIR	Link Partner Asymmetric Pause Direction.	0x0h
10	RO	LP_PAU	Link Partner Pause Capability	0x0h
		—	Value on PAUREC will be stored in this bit during power on reset.	

6-Port Fast Ethernet Single Chip Switch Controller

Bits	Туре	Name	Description	Initial value
9	RO	LP_T4	Link Partner Technology Ability for 100Base-T4	0x0h
			Defaults to 0.	
8	RO	LP_FDX	100Base-TX Full Duplex	0x0h
			1 – Capable of 100M Full duplex operation	
			0 – Not capable of 100M Full duplex operation	
7	RO	LP_HDX	100Base-TX Half Duplex	0x0h
		_	1 – Capable of 100M operation	
			0 – Not capable of 100M operation	
6	RO	LP_F10	10BASE-T Full Duplex	0x0h
			1 – Capable of 10M Full Duplex operation	
			0 – Not capable of 10M full duplex operation	
5	RO	LP_H10	10Base-T Half Duplex	0x0h
		_	1 – Capable of 10M operation	
			0 – Not capable of 10M operation	
4:0	RO	Selector Field	Encoding Definitions.	0x01h

4.5.7 Auto Negotiation Expansion Register of Port0 ~ 4

Bits	Туре	Name	Description	Initial value
15:5	RO	Reserved	Not Applicable	0x000h
4	RO,	PFAULT	Parallel Detection Fault	0x0h
	LH		1 – Fault has been detected	
			0 – No Fault Detect	
3	RO	LPNPABLE	Link Partner Next Page Able	0x0h
			1 – Link Partner is next page capable	
			0 – Link Partner is not next page capable	
2	RO NPABLE Next Page Able		0x1h	
			Defaults to 1, indicating D7001 is next page able.	
1	RO	PGRCV	Page Received	0x0h
			1 – A new page has been received	
			0 - No new page has been received	
0	RO	LPANABLE	Link Partner Auto Negotiation Able	0x0h
			1 – Link Partner is auto negotiable	
			0 – Link Partner is not auto negotiable	

4.5.8 Next Page Transmit Register of Port0 ~ 4

offset : 0x207, 0x227, 0x247, 0x267, 0x287

Bits	Туре	Name	Description	Initial value
15	RO	TNPAGE	Transmit Next Page	0x0h
			Transmit Code Word Bit 15	
14	RO	Reserved	Reserved	0x0h
			Transmit Code Word Bit 14	
13	R/W	TMSG	Transmit Message Page	0x1h
			Transmit Code Word Bit 13	
12	R/W	TACK2	Transmit Acknowledge 2	0x0h
			Transmit Code Word Bit 12	
11	RO	TTOG	Transmit Toggle	0x0h
			Transmit Code Word Bit 11	
10:0	R/W	TFLD[10:0]	Transmit Message Field	0x001h
			Transmit Code Word Bit 100	

6-Port Fast Ethernet Single Chip Switch Controller

4.5.9 Link Partner Next Page Register of Port0 ~ 4

- ff+ . 0 200	0	0 240	02(0	0 200
offset : 0x208,	UX228,	UX248,	UX268,	UX288

Bits	Туре	Name	Description	Initial value
15	RO	PNPAGE	Link Partner Next Page	0x0h
			Receive Code Word Bit 15	
14	RO	PACK	Link Partner Acknowledge	0x0h
			Receive Code Word Bit 14	
13	RO	PMSGP	Link Partner Message Page	0x0h
			Receive Code Word Bit 13	
12	RO	PACK2	Link Partner Acknowledge 2	0x0h
			Receive Code Word Bit 12	
11	RO	PTOG	Link Partner Toggle	0x0h
			Receive Code Word Bit 11	
10:0	RO	PFLD[10:0]	Link Partner Message Field	0x001h
			Receive Code Word Bit 11	

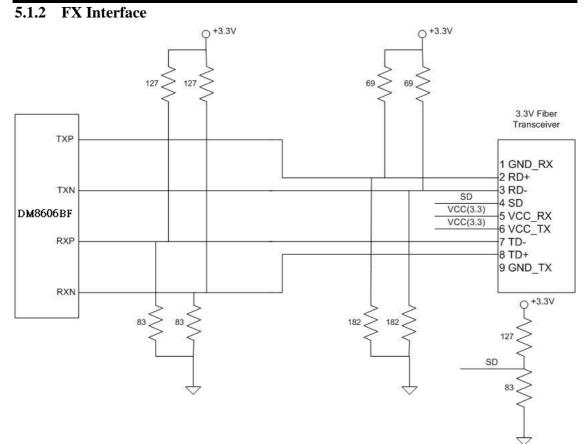
Chapter 5 Electrical Specification

5.1 TX/FX Interface

5.1.1 TP Interface

Figure 5-1 TX Interface

Transformer requirement:


. TX/RX rate 1:1

. TX/RX central tap connect together to VCCA2.

User can change TX/RX pin for easy layout but do not change polarity. DM8606BF supports auto polarity on receiving side.

6-Port Fast Ethernet Single Chip Switch Controller

6-Port Fast Ethernet Single Chip Switch Controller

5.2 DC Characteristics

5.2.1 Power Consumption

(Under EEPROM Register 0x29 = 0xC000, and 0x30 = 0x0985)

Symbol	Parameter	Rating	Units
P _{100M_5TP}	Power consumption when all twisted pair ports	930	mW
	are linked at 100Mbps.		
P _{10M_5TP}	Power consumption when all twisted pair ports	1270	mW
_	are linked at 10Mbps (include transformer).		
P _{DIS_5TP}	Power consumption when all twisted pair ports	450	mW
_	are disconnected.		

Table 5-1 Power Consumption

5.2.2 Absolute Maximum Rating

Symbol	Parameter	Rating	Units
V _{CC30}	3.3V Power Supply for I/O pad	2.97 to 3.63	V
V _{CCBIAS}	3.3V Power Supply for bias circuit	2.97 to 3.63	V
V _{CCAD}	3.3V Power Supply for A/D converter	2.97 to 3.63	V
V _{CCA2}	1.8V Power Supply for line driver	1.62 to 1.98	V
V _{CCPLL}	1.8V Power Supply for PLL	1.62 to 1.98	V
V _{CCIK}	1.8V Power Supply for Digital core	1.62 to 1.98	V
V _{IN}	Input Voltage	-0.3 to $V_{CC3O} + 0.3$	V
V _{OUT}	Output Voltage	-0.3 to $V_{CC3O} + 0.3$	V
I _{3.3VMAX}	Maximum current for 3.3V power supply	100	mA
I _{1.8MAX}	Maximum current for 1.8V power supply	750	mA
	(include transformer)		
T _{STG}	Storage Temperature	-55 to 155	°C
ESD	ESD Rating	1.5	KV

Table 5-2 Electrical Absolute Maximum Rating

5.2.3 Recommended Operating Conditions

Symbol	Parameter	Min	Typical	Max	Units
V _{CC30}	3.3V Power Supply for I/O pad	3.135	3.3	3.465	V
V _{CCBIAS}	3.3V Power Supply for bias circuit	3.135	3.3	3.465	V
V _{CCAD}	3.3V Power Supply for A/D converter	3.135	3.3	3.465	V
V _{CCA2}	1.8V Power Supply for line driver	1.71	1.8	1.89	V
V _{CCPLL}	1.8V Power Supply for PLL	1.71	1.8	1.89	V
V _{CCIK}	1.8V Power Supply for Digital core	1.71	1.8	1.89	V
V _{IN}	Input Voltage	0	-	V _{CC30}	V
T _J	Junction Operating Temperature	0	25	115	°C

Table 5-3 Recommended Operating Conditions

5.2.4 DC Electrical Characteristics for 3.3V Operation

(Under $V_{CC30}=2.97V \sim 3.63V$, $T_J=0^{\circ}C \sim 115^{\circ}C$)

6-Port Fast Ethernet Single Chip Switch Controller

Symbol	Parameter	Conditions	Min	Typical	Max	Units
V _{IL}	Input Low Voltage	TTL			0.8	V
V _{IH}	Input High Voltage	TTL	2.0			V
V _{OL}	Output Low Voltage	TTL			0.4	V
V _{OH}	Output High Voltage	TTL	2.4			V
R _I	Input Pull_up/down Resistance	$V_{IL} = 0V$ or		50		KΩ
		$V_{\rm IH} = V_{\rm CC3O}$				

Table 5-4 DC Electrical Characteristics for 3.3V Operation

6-Port Fast Ethernet Single Chip Switch Controller

5.3 AC Characteristics

5.3.1 XTAL/OSC Timing

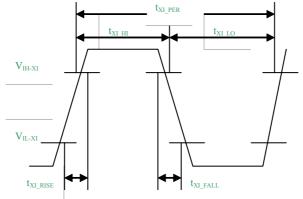


Figure 5-3 XTAL/OSC Timing

Symbol	Parameter	Conditions	Min	Typical	Max	Units
t_XI_PER	XI/OSCI Clock Period		40.0 – 50ppm	40.0	40.0 + 50ppm	ns
T_XI_HI	XI/OSCI Clock High		14	20.0		ns
T_XI_LO	XI/OSCI Clock Low		14	20.0		ns
T_XI_RISE	$\begin{array}{l} XI/OSCI \ Clock \ Rise \ Time \ , \ V_{IL} \\ (max) \ to \ V_{IH} \ (min) \end{array}$				4	ns
T_XI_FALL	XI/OSCI Clock Fall Time , V_{IH} (min) to V_{IL} (max)				4	ns

Table 5-5 XTAL/OSC Timing

6-Port Fast Ethernet Single Chip Switch Controller

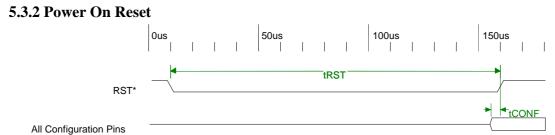
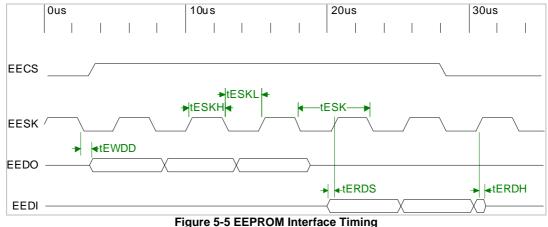



Figure 5-4 Power On Reset Timing

Symbol	Parameter	Conditions	Min	Typical	Max	Units
tRST	RST Low Period		100			ms
tCONF	Start of Idle Pulse Width		100			ns

Table 5-6 Power on reset timing

5.3.3 EEPROM Interface Timing

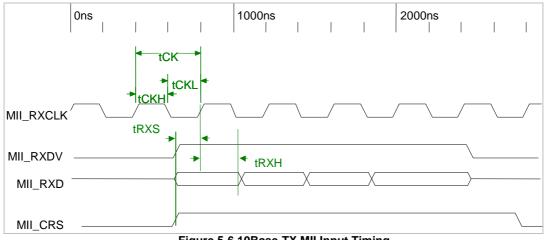

Symbol	Parameter	Conditions	Min	Typical	Max	Units
tESK	EESK Period			5120		ns
tESKL	EESK Low Period		2550		2570	ns
tESKH	EESK High Period		2550		2570	ns
tERDS	EEDI to EESK Rising Setup Time		10			ns
tERDH	EEDI to EESK Rising Hold Time		10			ns
tEWDD	EESK Falling to EEDO Output				20	ns
	Delay Time					

Table 5-7 EEPROM Interface Timing

6-Port Fast Ethernet Single Chip Switch Controller

5.3.4 10Base-TX MII Input Timing

Figure 5-6 10Base-TX MII	Input Timing
--------------------------	--------------

Symbol	Parameter	Conditions	Min	Typical	Max	Units
tCK	MII_RXCLK Period			400		ns
tCKL	MII_RXCLK Low Period		180		220	ns
tCKH	MII_RXCLK High Period		180		220	ns
tRXS	MII_CRS, MII_RXDV and MII_RXD to MII_RXCLK rising setup		10			ns
tRXH	MII_CRS, MII_RXDV and MII_RXD to MII_RXCLK rising hold		10			ns

Table 5-8 10Base-TX MII Input Timing

5.3.5 10Base-TX MII Output Timing

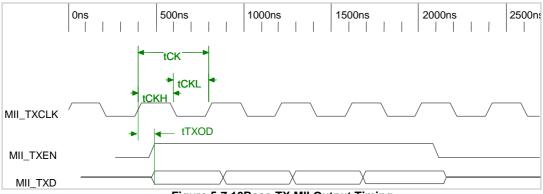
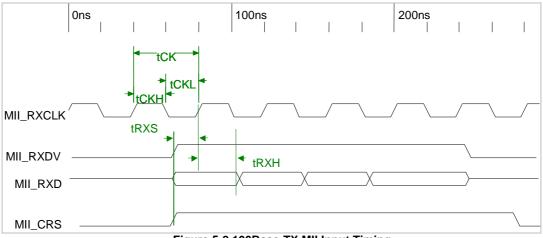


Figure 5-7 10Base-TX MII Output Timing



6-Port Fast Ethernet Single Chip Switch Controller

Symbol	Parameter	Conditions	Min	Typical	Max	Units
tCK	MII_TXCLK Period			400		ns
tCKL	MII_TXCLK Low Period		180		220	ns
tCKH	MII_TXCLK High Period		180		220	ns
tTXOD	MII_TXD, MII_TXEN to MII_TXCLK Rising Output Delay		0		25	ns

Table 5-9 10Base-TX MII Output Timing

5.3.6 100Base-TX MII Input Timing

Figure 5-8 100Base-TX	MII Input Timing
-----------------------	------------------

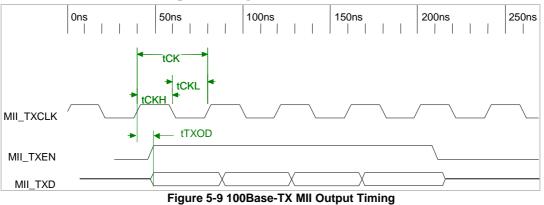

Symbol	Parameter	Conditions	Min	Typical	Max	Units	
tCK	MII_RXCLK Period			40		ns	
tCKL	MII_RXCLK Low Period		18		22	ns	
tCKH	MII_RXCLK High Period		18		22	ns	
tRXS	MII_CRS, MII_RXDV and MII_RXD to MII_RXCLK rising setup		10			ns	
tRXH	MII_CRS, MII_RXDV and MII_RXD to MII_RXCLK rising hold		10			ns	
	Table 5-10 100Base-TX MII Input Timing						

Table 5-10 100Base-TX MII Input Timing
--

6-Port Fast Ethernet Single Chip Switch Controller

5.3.7 100Base-TX MII Output Timing

Symbol	Parameter	Conditions	Min	Typical	Max	Units
tCK	MII_TXCLK Period			40		ns
tCKL	MII_TXCLK Low Period		18		22	ns
tCKH	MII_TXCLK High Period		18		22	ns
tTXOD	MII_TXD, MII_TXEN to MII_TXCLK Rising Output Delay		0		25	ns

Table 5-11 100Base-TX MII Output Timing

6-Port Fast Ethernet Single Chip Switch Controller

5.3.8 GPSI (7-wire) Input Timing

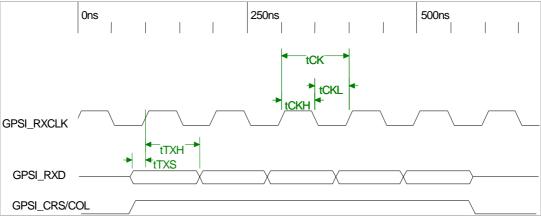


Figure 5-10 GPSI (7-wire) Input Timing

Symbol	Parameter	Conditions	Min	Typical	Max	Units
TCK	GPSI_RXCLK Period			100		ns
TCKL	GPSI_RXCLK Low Period		40		60	ns
ТСКН	GPSI_RXCLK High Period		40		60	ns
TTXS	GPSI_RXD, GPSI_CRS/COL to GPSI_RXCLK Rising Setup Time		10			ns
ТТХН	GPSI_RXD, GPSI_CRS/COL to GPSI_RXCLK Rising Hold Time		10			ns

Table 5-12 GPSI (7-wire) Input Timing

6-Port Fast Ethernet Single Chip Switch Controller

5.3.9 GPSI (7-wire) Output Timing

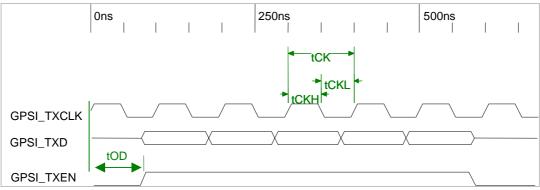


Figure 5-11 GPSI (7-wire) Output Timing

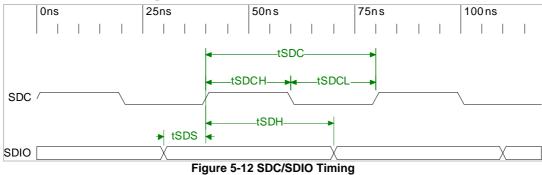

Symbol	Parameter	Conditions	Min	Typical	Max	Units
TCK	GPSI_TXCLK Period			100		ns
TCKL	GPSI_TXCLK Low Period		40		60	ns
ТСКН	GPSI_TXCLK High Period		40		60	ns
TOD	GPSI_TXCLK Rising to GPSI_TXEN/GPSI_TXD Output Delay		50		70	ns

Table 5-13 GPSI (7-wire) Output Timing

6-Port Fast Ethernet Single Chip Switch Controller

5.3.10 SDC/SDIO Timing

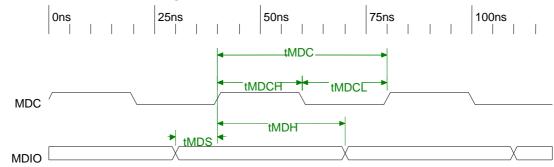

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TCK	SDC Period		20			ns
TCKL	SDC Low Period		10			ns
TCKH	SDC High Period		10			ns
TSDS	SDIO to SDC rising setup time on		4			ns
	read/write cycle					
TSDH	SDIO to SDC rising hold time on		2			ns
	read/write cycle					

Table 5-14 SDC/SDIO Timing

6-Port Fast Ethernet Single Chip Switch Controller

5.3.11 MDC/MDIO Timing

Figure 5-13 MDC/MDIO Timing

Symbol	Parameter	Conditions	Min	Тур	Max	Units
tMDC	MDC Period		100			ns
tMDCL	MDC Low Period		40			ns
tMDCH	MDC High Period		40			ns
TMDS	MDIO to MDC rising setup time				10	ns
	on read/write cycle					
TMDH	MDIO to MDC rising hold time on		10			ns
	read/write cycle					

Table 5-15 MDC/MDIO Timing

6-Port Fast Ethernet Single Chip Switch Controller

Chapter 6 Packaging and Ordering

128 Pin QFP Outside Dimension

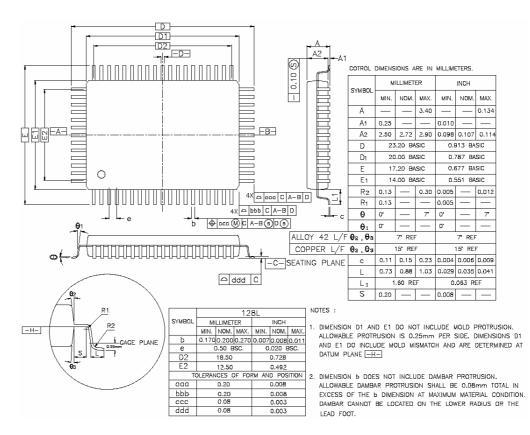


Figure 6-6-1 128 Pin QFP Outside Dimension

6-Port Fast Ethernet Single Chip Switch Controller

Ordering Information

tl			
] "	Package	Pin Count	Part Number
a	QFP	128	DM8606BF
_			

Disclaimer

The information appearing in this publication is believed to be accurate. Integrated circuits sold by DAVICOM Semiconductor are covered by the warranty and patent indemnification, and the provisions stipulated in the terms of sale only. DAVICOM makes no warranty, express, statutory, implied or by description, regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHER. DAVICOM MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. DAVICOM reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically recommended not without additional processing by DAVICOM for such applications. Please note that application circuits illustrated

in this document are for reference purposes only.

DAVICOM's terms and conditions printed on the order acknowledgment govern all sales by DAVICOM. DAVICOM will not be bound by any terms inconsistent with these unless DAVICOM agrees otherwise in writing. Acceptance of the buyer's orders shall be based on these terms.

Company Overview

DAVICOM Semiconductor, Inc. develops and manufactures integrated circuits for integration into data communication products. Our mission is to design and produce IC products that are the industry's best value for Data, Audio, Video, and Internet/Intranet applications. To achieve this goal, we have built an organization that is able to develop chipsets in response to the evolving technology requirements of our customers while still delivering products that meet their cost requirements.

Products

We offer only products that satisfy high performance requirements and which are compatible with major hardware and software standards. Our currently available and soon to be released products are based on our proprietary designs and deliver high quality, high performance chipsets that comply with modem communication standards and Ethernet networking standards.

Contact Windows

For additional information about DAVICOM products, contact the sales department at: Headquarters

Hsin-chu Office: No.6 Li-Hsin Rd. VI, Science-based Park, Hsin-chu City, Taiwan, R.O.C. TEL: 886-3-5798797 FAX: 886-3-6669831

WARNING

Conditions beyond those listed for the absolute maximum may destroy or damage the products. In addition, conditions for sustained periods at near the limits of the operating ranges will stress and may temporarily (and permanently) affect and damage structure, performance and/or function.

6-Port Fast Ethernet Single Chip Switch Controller

Preliminary Version: DM8606BF-DS-P01 Dec, 07, 2005