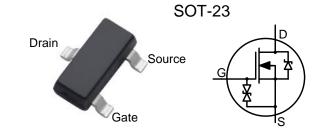


Ultrahigh Threshold Voltage Depletion-Mode Power MOSFET


General Features

- ESD improved Capability
- Depletion Mode (Normally On)
- Proprietary Advanced Planar Technology
- Proprietary Advanced Ultrahigh Vth Technology
- > RoHS Compliant
- ➤ Halogen-free available

Applications

- ➤ Quick Charger
- Current Source
- ➤ Voltage Source
- Normally-on Switches

BV _{DSX}	$V_{GS(off),max}$	$I_{ m DSS,min}$
70V	-21V	120mA

General Description

This novel depletion mode MOSFET, developed and manufactured by ARK proprietary ultrahigh threshold voltage technology. By using the sub threshold characteristics, the depletion mode MOSFET can provide stably power to the load, and the voltage can be clamped to protect the load without Zener diode, and the circuit consumption is reduced.

Ordering Information

Part Number	Package	Marking	Remark
DMZ0615E	SOT-23	0615	Halogen Free

Absolute Maximum Ratings

T_A=25°C unless otherwise specified

Symbol	Parameter	DMZ0615E	Unit	
V _{DSX}	Drain-to-Source Voltage ^[1]	70	V	
V_{DGX}	Drain-to-Gate Voltage ^[1]	70	V	
I_D	Continuous Drain Current	0.1	A	
I_{DM}	Pulsed Drain Current ^[2]	0.4	A	
P_D	Power Dissipation	0.50	W	
V_{GS}	Gate-to-Source Voltage	±30	V	
V _{ESD(G-S)}	Gate Source ESD IEC, C=150pF, R=330Ω	400	V	
T_{L}	Soldering Temperature Distance of 1.6mm from case for 10 seconds	300	${\mathbb C}$	
T _J and T _{STG}	Operating and Storage Temperature Range	-55 to 150		

Caution: Stresses greater than those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device.

Thermal Characteristics

Symbol	Parameter	DMZ0615E	Unit
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	250	K/W

ARK Microelectronics Co., Ltd.

www.ark-micro.com

Rev. 1.2 Feb. 2017

Electrical Characteristics OFF Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
BV_{DSX}	Drain-to-Source Breakdown Voltage	70			V	V_{GS} =-30V, I_{D} =250 μA
				10	μΑ	V_{DS} =70V, V_{GS} = -30V
$I_{D(OFF)}$	Drain-to-Source Leakage Current			1.0	mA	V_{DS} =70V, V_{GS} = -30V T_J =125°C
I_{GSS}	Gate-to-Source Leakage Current			20	υ Δ	$V_{GS}=+30V$, $V_{DS}=0V$
				20	uA	$V_{GS} = -30V, V_{DS} = 0V$

ON Characteristics

 $T_A = 25$ °C unless otherwise specified

011 01101 0101 0100				A		os other wise specified
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
I_{DSS}	Saturated Drain-to-Source Current	120			mA	$V_{GS}=0V, V_{DS}=25V$
R _{DS(ON)}	Static Drain-to-Source On-Resistance		10	15	Ω	$V_{GS}=0V$, $I_{D}=100mA^{[3]}$
V _{GS(OFF)}	Gate-to-Source Cut-off Voltage	-13	-17	-21	V	$V_{DS} = 20V, I_D = 8 \mu A$
gfs	Forward Transconductance		130		mS	$V_{DS} = 20V$, $I_D = 5mA$

Dynamic Characteristics

Essentially independent of operating temperature

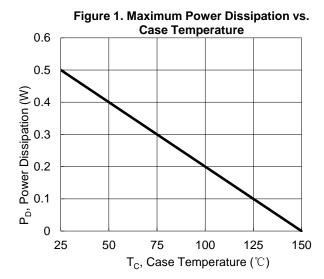
2 jiidiine Ciidi detel istics						ent or operating temperature
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
C_{ISS}	Input Capacitance				pF	V_{GS} =-30V V_{DS} =25V f =1.0MH $_{Z}$
C_{OSS}	Oput Capacitance					
C_{RSS}	Reverse Transfer Capacitance					
Q_{G}	Total Gate Charge					101/01/
Q_{GS}	Gate-to-Source Charge				nC	V_{GS} = -10V~0V V_{DS} =30V, I_{D} =100mA
Q_{GD}	Gate-to-Drain (Miller) Charge					

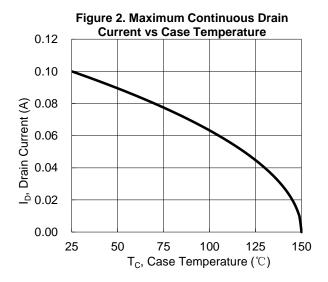
Resistive Switching Characteristics

Essentially independent of operating temperature

	0					1 0 1
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
$t_{d(ON)}$	Turn-on Delay Time				ns	$V_{GS} = -30V \sim -20V$ $V_{DD} = 35V$, $I_{D} = 100 \text{mA}$ $R_{G} = 200 \text{hm}$
t _{rise}	Rise Time					
t _{d(OFF)}	Turn-off Delay Time					
t_{fall}	Fall Time					2001111

Source-Drain Diode Characteristics


T_A=25°C unless otherwise specified


Symbol	Parameter	Min	Тур.	Max.	Units	Test Conditions
V_{SD}	Diode Forward Voltage			1.2	V	$I_{SD} = 100 \text{ mA}, V_{GS} = -30 \text{ V}$

NOTE:

- [1] $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- [2] Repetitive rating, pulse width limited by maximum junction temperature.
- [3] Pulse width \(380 \mu s; \) duty cycle \(\le 2\% \).

Application Highlight

Depletion mode MOSFET has the function of providing power for IC in circuit, as shown in Figure 3.

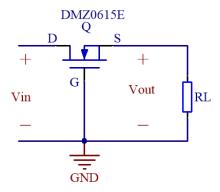


Figure 3

The parameters of the depletion mode MOSFET and the resistance (R_L) of the IC are jointly determined the voltage (V_{out}) and current (I_D) supplied to the IC.

$$I_D = I_{DSS}(1 + I_D R_L / V_{GS(OFF)})^2$$

$$V_{out} = -V_{GS} = I_D R_L$$

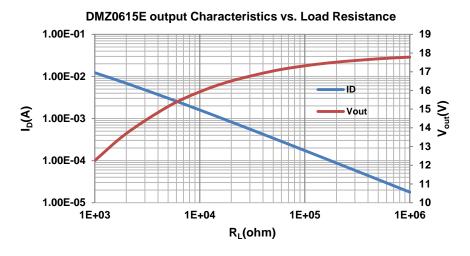


Figure 4

By this way, the depletion mode MOSFET operate in sub-threshold region, the gate voltage(V_{GS}) is always at or below threshold voltage($V_{GS(OFF)}$), even when the input voltage(V_{in}) is increased or the peak voltage occurs also so. Therefore, in addition to provide power for IC, the device can clamp voltage, the IC is protected. The V_{out} and V_{in} have the following formula:

If
$$V_{in} < |V_{GS(OFF)}|$$
, then $V_{out} \approx V_{in}$

If
$$V_{in} \ge |V_{GS(OFF)}|$$
, then $V_{out} \le V_{GS(OFF)}$

The **Ultrahigh Threshold Voltage Depletion-Mode Power MOSFET--DMZ0615E**, was developed by *ARK Microelectronics* using proprietary technology. The threshold voltage of DMZ0615E exceeds -16V, can provide sufficient voltage for IC.

ARK Microelectronics Co., Ltd.

www.ark-micro.com

Rev. 1.2 Feb. 2017

Typical applications:

In the QC2.0/3.0 and Type-C charger circuits, using the depletion mode MOSFET can make the PWM IC power supply circuit more simplified, as shown below:

In Figure 5, the transistor Q3 is used to provide power, and the zener diode ZD is used to clamp voltage, the power supply circuit of IC is composed of several components.

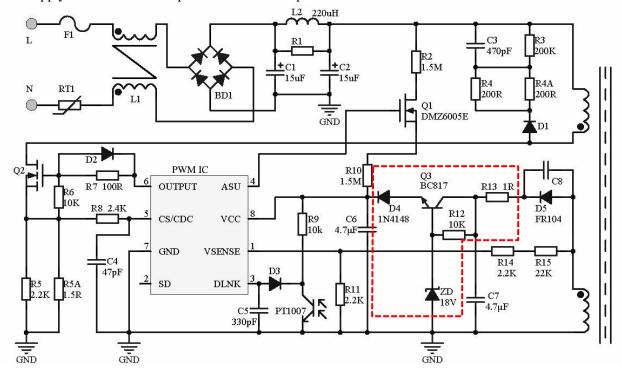


Figure 5

In figure 6, providing power and clamp voltage use only one device-DMZ0615E, the circuit is simplified.

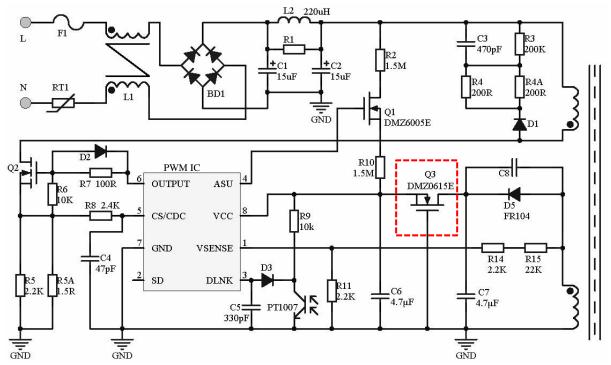
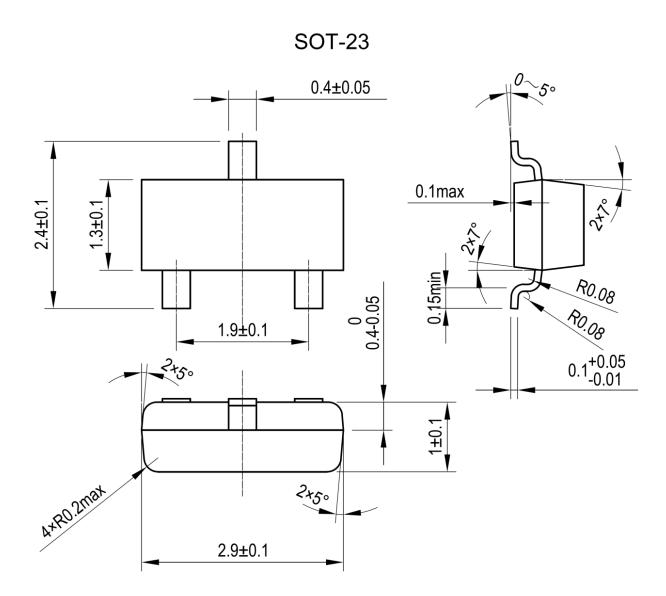



Figure 6

Package Dimensions

Published by ARK Microelectronics Co., Ltd. No.9, East Zijing Road, High-tech District, Chengdu, P. R. China All Rights Reserved.

Disclaimers

ARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to ARK Microelectronics Co., Ltd's terms and conditions supplied at the time of order acknowledgement.

ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessary performed.

ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using ARK Microelectronics Co., Ltd's components. To minimize risk, customers must provide adequate design and operating safeguards.

ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for such altered documentation.

Resale of ARK Microelectronics Co., Ltd's products with statements different from or beyond the parameters stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for the associated ARK Microelectronics Co., Ltd's product or service and is unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for any such statements.

Life Support Policy:

ARK Microelectronics Co., Ltd's products are not authorized for use as critical components in life devices or systems without the expressed written approval of ARK Microelectronics Co., Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which:
 - a. are intended for surgical implant into the human body.
 - b. support or sustain life,
 - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significantinjury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.