Supertex inc. ## **N-Channel Depletion-Mode Vertical DMOS FET** #### **Features** - High input impedance - Low input capacitance - Fast switching speeds - ▶ Low ON-resistance - Free from secondary breakdown - Low input and output leakages ## **Applications** - Normally-on switches - Battery operated systems - Converters - Linear amplifiers - Constant current sources - ▶ Telecom ### **General Description** The Supertex DN1509 is suitable for high voltage transient protection for LDO in automobile applications during "load dump" conditions. This low threshold, depletion-mode (normally-on) transistor utilizes an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown. Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired. ## **Ordering Information** | Device | Package Option | BV /BV | D (****) | l _{DSS} (typ) | | |--------|-------------------|--------------------------------------|---------------------------|------------------------|--| | Device | TO-243AA (SOT-89) | BV _{DSX} /BV _{DGX} | R _{DS(ON)} (max) | | | | DN1509 | DN1509N8-G | 90V | 6.0Ω | 540mA | | Product marking for TO-243AA: DN5A* where * = 2-week alpha date code -G indicates package is RoHS compliant ('Green') ## **Absolute Maximum Ratings** | Parameter | Value | |------------------------------------|-------------------| | Drain to source voltage | BV _{DSX} | | Drain to gate voltage | BV _{DGX} | | Gate to source voltage | ±20V | | Operating and storage temperature | -55°C to +150°C | | Soldering temperature ¹ | +300°C | Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground. Note 1. Distance of 1.6mm from case for 10 seconds. ## **Pin Configuration** TO-243AA (SOT-89) (Top View) ## **Electrical Characteristics** (T_A=25°C unless otherwise specified) | Symbol | Parameter | Min | Тур | Max | Units | Conditions | | |----------------------|--|------|-----|------|-------|---|--| | BV _{DSX} | Drain-to-source breakdown voltage | 90 | - | - | V | $V_{GS} = -5V, I_{D} = 1.0 \mu A$ | | | V _{GS(OFF)} | Gate-to-source OFF voltage | -1.8 | - | -3.5 | V | $I_{D} = 10 \mu A$ | | | $\Delta V_{GS(OFF)}$ | V _{GS(OFF)} change with temperature | - | - | 4.5 | mV/°C | $V_{DS} = 15V, I_{D} = 10\mu A$ | | | I _{GSS} | Gate body leakage | - | - | 100 | nA | $V_{GS} = \pm 20V$, $V_{DS} = 0V$ | | | | Drain-to-source leakage current | - | - | 1.0 | μA | V_{DS} = Max rating, V_{GS} = -5.0V | | | l _{D(OFF)} | | - | - | 1.0 | mA | $V_{DS} = 0.8 \text{ Max Rating},$
$V_{GS} = -5.0 \text{V}, T_{A} = 125 ^{\circ} \text{C}$ | | | I _{DSS} | Saturated drain-to-source current | 300 | 540 | - | mA | $V_{GS} = 0V, V_{DS} = 25V$ | | | R _{DS(ON)} | Static drain-to-source ON-state resistance | - | 3.2 | 6.0 | Ω | $V_{GS} = 0V, I_{D} = 200 \text{mA}$ | | | $\Delta R_{DS(ON)}$ | Change in R _{DS(ON)} with temperature | - | - | 1.1 | %/°C | $V_{GS} = 0V, I_{D} = 200 \text{mA}$ | | | G _{FS} | Forward transconductance | 200 | - | - | mmho | $V_{DS} = 10V, I_{D} = 200mA$ | | | C _{ISS} | Input capacitance | - | 70 | 150 | | V _{GS} = -10V, V _{DS} = 25V,
f = 1MHz | | | C _{oss} | Common source output capacitance | - | 20 | 40 | pF | | | | C _{RSS} | Reverse transfer capacitance | - | 6.0 | 15 | | | | | t _{d(ON)} | Turn-ON delay time | - | 12 | 30 | | | | | t _r | Rise time | - | 16 | 45 | no | $V_{DD} = 25V,$ $I_{D} = 100 \text{mA},$ $R_{GEN} = 25\Omega$ | | | t _{d(OFF)} | Turn-OFF delay time | - | 15 | 45 | ns | | | | t _f | Fall time | - | 25 | 60 | | GEN | | | V _{SD} | Diode forward voltage drop | - | - | 1.8 | V | V _{GS} = 0V, I _{SD} = 500mA | | | t _{rr} | Reverse recovery time | - | 400 | - | ns | V _{GS} = 0V, I _{SD} = 500mA | | ### **Thermal Characteristics** | Package | $oldsymbol{I}_{D}$ (continuous) † | ID
(pulsed) | Power Dissipation
@T _A = 25°C | θ _{JC}
(°C/W) | θ _{JA}
(°C/W) | $\mathbf{I}_{\mathtt{DR}}^{}$ | I _{DRM} | |----------|--|----------------|---|---------------------------|---------------------------|-------------------------------|------------------| | TO-243AA | 360mA | 500mA | 1.6W [‡] | 15 | 78 [‡] | 360mA | 500mA | ## **Switching Waveforms and Test Circuit** ^{1.}All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.) ^{2.}All A.C. parameters sample tested. **Notes:** † ID (continuous) is limited by max rated T_J of 150°C. [#] Mounted on FR4 board, 25mm x 25mm x 1.57mm. ## TO-243AA (SOT-89) Package Outline (N8) #### Notes: 1. All dimensions are in millimeters; all angles in degrees. (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.) **Supertex inc.** does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com. ©2006 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.