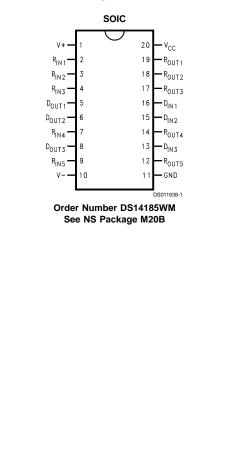
April 1999

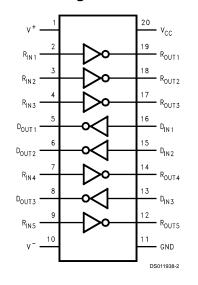
National Semiconductor


DS14185 EIA/TIA-232 3 Driver x 5 Receiver

General Description

The DS14185 is a three driver, five receiver device which conforms to the EIA/TIA-232-E standard.

The flow-through pinout facilitates simple non-crossover board layout. The DS14185 provides a one-chip solution for the common 9-pin serial RS-232 interface between data terminal and data communications equipment.


www.DataSheet4U.conConnection Diagram

Features

- Replaces one 1488 and two 1489s
- Conforms to EIA/TIA-232-E
- 3 drivers and 5 receivers
- Flow through pinout
- Failsafe receiver outputs20-pin SOIC package
- LapLink[®] compatible –200 kbps data rate

Functional Diagram

www.national.com

© 1999 National Semiconductor Corporation DS011938

LapLink® is a registered trademark of Travelling Software.

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	+7V
Supply Voltage (V ⁺)	+15V
Supply Voltage (V ⁻)	–15V
Driver Input Voltage	0V to V_{cc}
Driver Output Voltage (Power Off)	±15V
Receiver Input Voltage	±25V
Receiver Output Voltage (R _{OUT})	0V to V_{cc}
Maximum Package Power Dissip	ation @ +25°C
M Package	1488 mW
Derate M Package	11.9 mW/°C above +25°C

Storage Temperature Range	-65°C to +150°C
Lead Temperature Range (Soldering, 4 seconds)	+260°C
ESD Ratings (HBM, 1.5 kΩ, 100 pF)	≥1.5 kV

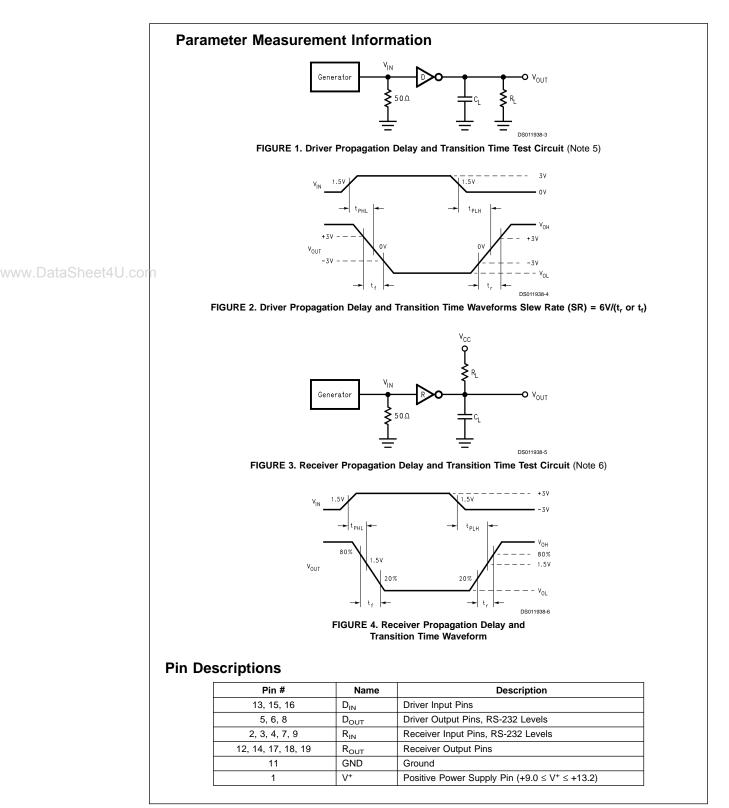
Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V_{CC})	+4.75	+5.0	+5.25	V
Supply Voltage (V ⁺)	+9.0	+12.0	+13.2	V
Supply Voltage (V ⁻)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)	0	25	70	°C

Electrical Characteristics (Note 2)

www.DataSheet4U.com Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Co	Min	Тур	Max	Units	
DEVICE C	HARACTERISTICS	ł					
I _{cc}	V _{CC} Supply Current	No Load, All Inputs at -	+5V		21.0	30	mA
l+	V ⁺ Supply Current	No Load, All Driver	$V^{+} = 9V, V^{-} = -9V$		8.7	15	mA
	(Note 2)	Inputs at 0.8V or +2V	V ⁺ = 13.2V, V ⁻ = -13.2V		13	22	mA
I-	V ⁻ Supply Current	All Receiver Inputs	V ⁺ = 9V, V ⁻ = -9V		-12.5	-22	mA
	(Note 2)	at 0.8V or 2.4V.	V ⁺ = 13.2V, V ⁻ = -13.2V		-16.5	-28	mA
DRIVER C	HARACTERISTICS					1	
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 5V				10	μA
	(Note 2)						
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			-1.24	-1.5	mA
	(Note 2)						
V _{он}	High Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 0.8V,$	1	6	7		V
	(Note 2)	$V^+ = 9V, V^- = -9V$					
		$R_{L} = 3 k\Omega, V_{IN} = 0.8V,$	1	8.5	9		V
		V ⁺ = +12V, V ⁻ = -12V					
		$R_{L} = 7 k\Omega, V_{IN} = 0.8V,$		10	11.5		V
		V ⁺ = +13.2V, V ⁻ = -13	.2V				
V _{OL}	Low Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 2V,$			-7	-6	V
	(Note 2)	V ⁺ = 9V, V ⁻ = -9V					
		$R_L = 3 k\Omega, V_{IN} = 2V,$			-8	-7.5	V
		V ⁺ = +12V, V ⁻ = -12V					
		$R_{L} = 7 k\Omega, V_{IN} = 0.8V,$			-11	-10	V
		V ⁺ = +13.2V, V ⁻ = -13	.2V				
I _{os} +	Output High Short	V _O = 0V, V _{IN} = 0.8V	$V_{O} = 0V, V_{IN} = 0.8V$		-13	-18	mA
	Circuit Current (Note 2)						
I _{os} -	Output Low Short	V _O = 0V, V _{IN} = 2.0V		6	13	18	mA
	Circuit Current (Note 2)						
Ro	Output Resistance	$-2V \le V_O \le +2V$,	$-2V \le V_O \le +2V,$				Ω
		$V^{+}=V^{-}=V_{CC}=0V$					
		$-2V \le V_{O} \le +2V,$		300			Ω
		$V^+ = V^- = V_{CC} = Open Ckt$					


Symbol	Parameter		Conditions		Min	Тур	Max	Uni
	CHARACTERISTICS							-
V _{TH}	Input High Threshold	Vo s	≤ 0.4V, I _O = 3.2 mA			1.85	2.4	V
	(Recognized as a High Signal)							
V _{TI}	Input Low Threshold	$V_{o} >$	$\ge 2.5 \text{V}, \text{ I}_{\Omega} = -0.5 \text{ mA}$		0.7	1.0		ν
16	(Recognized as a Low Signal)				-			
R _{IN}	Input Resistance	V _{IN} :	= ±3V to ±15V		3.0	4.1	7.0	k
I _{IN}	Input Current (Note 2)	-	= +15V		2.1	4.1	5.0	m
			= +3V		0.43	0.7	1	m
			= -15V		-5.0	-4.1	-2.1	m
			= -3V		-1	-0.65	-0.43	m
V _{он}	High Level Output Voltage		= -0.5 mA, V _{IN} = -3V		2.6	4		ν
011					4.0	4.9		V
	(Note 7)		$I_{OH} = -10 \ \mu A, \ V_{IN} = -3V$					
		I_{OH} = -0.5 mA, V_{IN} = Open Circuit			2.6	4		\
U.com					2.6 4.0	4 4.9		-
	Low Level Output Voltage	I _{OH} :	= -0.5 mA, V _{IN} = Open Circuit = -10μ A, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = $+3V$		-		0.4	\
V _{ol} I _{osr}	Short Circuit Current (Note 2)	I _{OH} = I _{OL} = V _O =	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V		-	4.9	0.4	
V _{ol} I _{osr}	Short Circuit Current (Note 2)	I _{OH} = I _{OL} = V _O =	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V		4.0	4.9 0.2	-	
V _{OL} I _{OSR} Switc	Short Circuit Current (Note 2)	I _{OH} = I _{OL} = V _O =	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V	Min	4.0	4.9 0.2	-1.7	N N m
V_{OL} I_{OSR} Switc $T_A = 25$ Symbol	Short Circuit Current (Note 2)	I _{OH} = I _{OL} = V _O =	= -10 μ A, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V	Min	4.0	4.9 0.2 -2.7	-1.7	V V m.
V_{OL} I_{OSR} Switc $T_A = 25$ Symbol	Short Circuit Current (Note 2)	$I_{OH} =$ $I_{OL} =$ $V_{O} =$	= -10 μ A, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V	Min	4.0	4.9 0.2 -2.7	-1.7	N N m
V_{OL} I_{OSR} Switc $T_A = 25$ Symbol DRIVER	Short Circuit Current (Note 2)	$I_{OH} = I_{OL} = V_{O} = 0$	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V = 2) Conditions	Min	4.0 -4 Typ	4.9 0.2 -2.7 Ma	-1.7	Units
V _{OL} I _{OSR} T _A = 25 Symbol DRIVER	Short Circuit Current (Note 2) Ching Characteristics C Parameter CHARACTERISTICS Propagation Delay High to Lo	$I_{OH} = I_{OL} = V_{O} = 0$	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V = 2) Conditions $R_L = 3 k\Omega$, $C_L = 50 pF$	Min	4.0 -4 Typ 60	4.9 0.2 -2.7 Ma	-1.7	Unit:
V _{OL} I _{OSR} Switc T _A = 25 Symbol DRIVER ^t _{PHL} ^t _{PLH} t _{r,} t _r	Short Circuit Current (Note 2) Ching Characteristics C Parameter CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig	$I_{OH} = I_{OL} = V_{O} = 0$	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V = 2) Conditions $R_L = 3 k\Omega$, $C_L = 50 pF$	Min	4.0 -4 Typ 60 240	4.9 0.2 -2.7 Ma	-1.7	Units ns ns
V _{OL} I _{OSR} Switc T _A = 25 Symbol DRIVER ^t _{PHL} ^t _{PLH} t _{r,} t _r	Short Circuit Current (Note 2) Ching Characteristics C Parameter CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Output Slew Rate (Note 8)	$I_{OH} =$ $I_{OL} =$ $V_{O} =$ V_{O}	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V = 2) Conditions $R_L = 3 k\Omega$, $C_L = 50 pF$	Min	4.0 -4 Typ 60 240	4.9 0.2 -2.7 Ma	-1.7	Units ns ns
V_{OL} I_{OSR} $T_A = 25$ $Symbol$ $DRIVER$ t_{PHL} t_{PLH} t_r, t_r $RECEIVE$	Short Circuit Current (Note 2) Ching Characteristics C Parameter CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Output Slew Rate (Note 8) CHARACTERISTICS	$I_{OH} =$ $I_{OL} =$ $V_{O} =$ $V_{O} =$ $V_{O} =$ $V_{O} =$	= -10 μ A, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V \Rightarrow 2) Conditions R _L = 3 kΩ, C _L = 50 pF (<i>Figures 1, 2</i>) R _L = 1.5 kΩ, C _L = 15 pF (includes fixture plus probe),	Min	4.0 -4 Typ 60 240 50	4.9 0.2 -2.7 Ma 35 35	-1.7	Units ns ns
V_{OL} I_{OSR} $T_A = 25$ Symbol DRIVER t_{PHL} t_{PLH} t_{r}, t_{f} RECEIVE t_{PHL}	Short Circuit Current (Note 2) Ching Characteristics C C CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Output Slew Rate (Note 8) CR CHARACTERISTICS Propagation Delay High to Lo	$I_{OH} =$ $I_{OL} =$ $V_{O} =$ $V_{O} =$ $V_{O} =$ $V_{O} =$	= -10 μA, V _{IN} = Open Circuit = 3.2 mA, V _{IN} = +3V = 0V, V _{IN} = 0V ⇒ 2) Conditions $R_L = 3 k\Omega, C_L = 50 pF$ (<i>Figures 1, 2</i>) $R_L = 1.5 k\Omega, C_L = 15 pF$	Min	4.0 -4 Typ 60 240 50	4.9 0.2 -2.7 Ma 35 35 35	-1.7	Units ns ns ns

Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbits/sec), t_r = t_f = 200 ns, V_{IH} = 3V, V_{IL} = -3V, duty cycle = 50%.

Note 7: If receiver inputs are unconnected, receiver output is a logic high.

. .

Note 8: Refer to typical curves. Driver output slew rate is measured from the +3.0V to the -3.0V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/µs maximum slew rate, a minimum load capacitance of 390 pF is recommended.

www.national.com

•

Pin Descriptions (Continued)

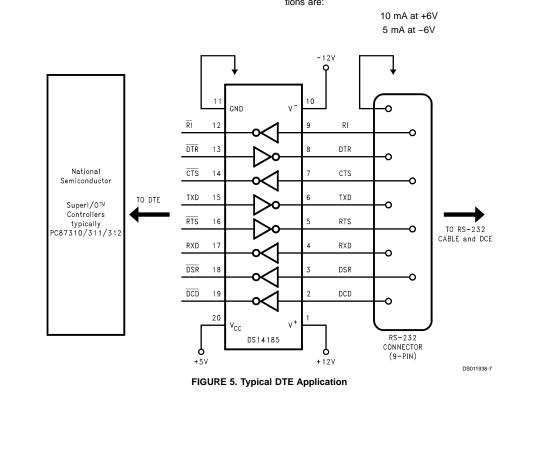
Pin #	Name	Description
10	V-	Negative Power Supply Pin (–9.0 \leq V ⁻ \leq –13.2)
20	V _{cc}	Positive Power Supply Pin (+5V ±5%)

Applications Information

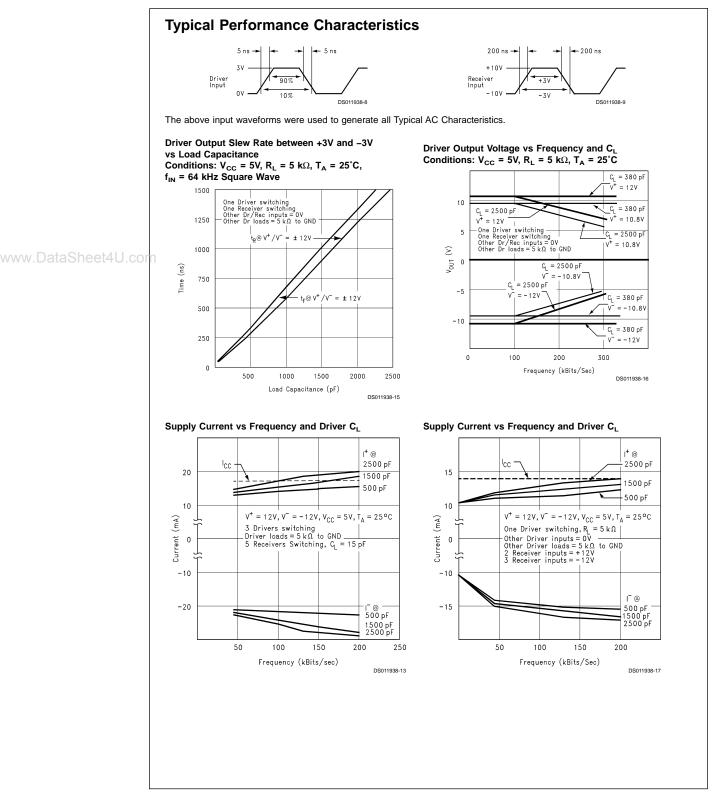
In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS, and RI.

The DS14185 is a 3 x 5 Driver/Receiver and offers a single chip solutuion for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

www.DataSheet4U.com

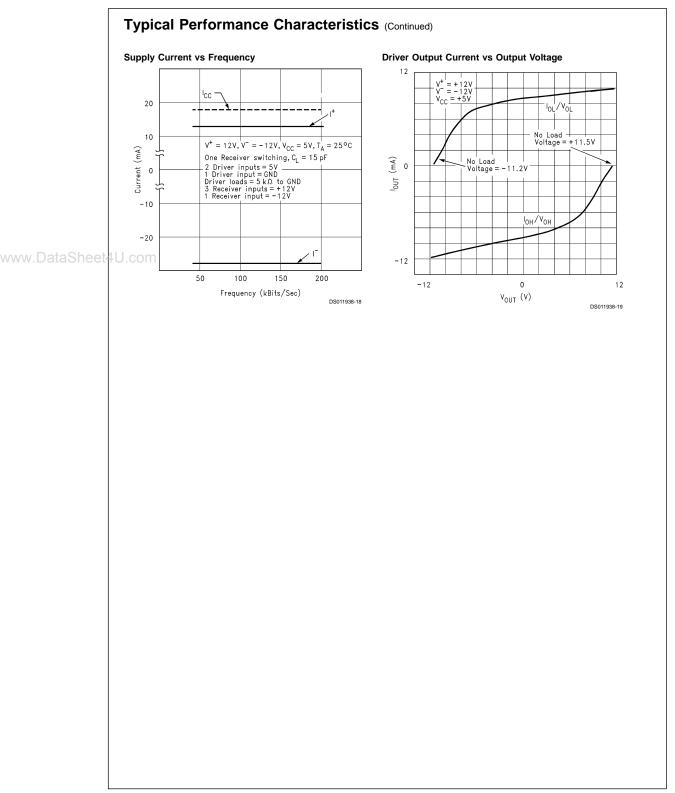

LapLink COMPATIBILITY

The DS14185 can easily provide 128 kbps data rate under maximum driver load conditions of C_L = 2500 pF and R_L = 3 k Ω , while power supplies are:

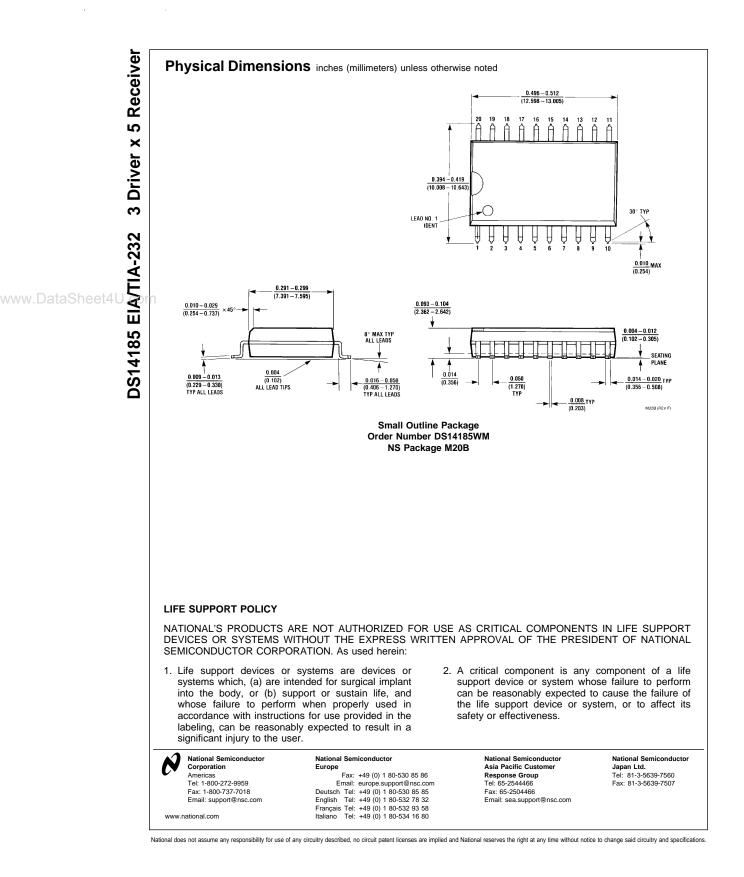

 $V_{CC} = 4.75V, V^+ = 10.8V, V^- = -10.8V$

MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V⁺ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V⁻ terminal. Refer to typical curves of V_{OUT}/I_{OUT}. Typical mouse specifications are:



www.national.com



www.national.com

6

www.national.com

