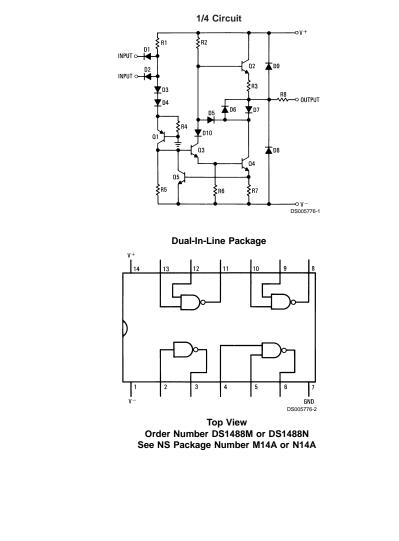
July 1999 July 1999

National Semiconductor

DS1488 Quad Line Driver

General Description


The DS1488 is a quad line driver which converts standard TTL input logic levels through one stage of inversion to output levels which meet EIA Standard RS-232D and CCITT Recommendation V.24.

Features

- Current limited output: ±10 mA typ
- Power-off source impedance: 300Ω min
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are TTL/LS compatible

Schematic and Connection Diagrams

www.DataSheet4U.com

www.national.com

Absolute Maximum Ratings (Note 2)

· •

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

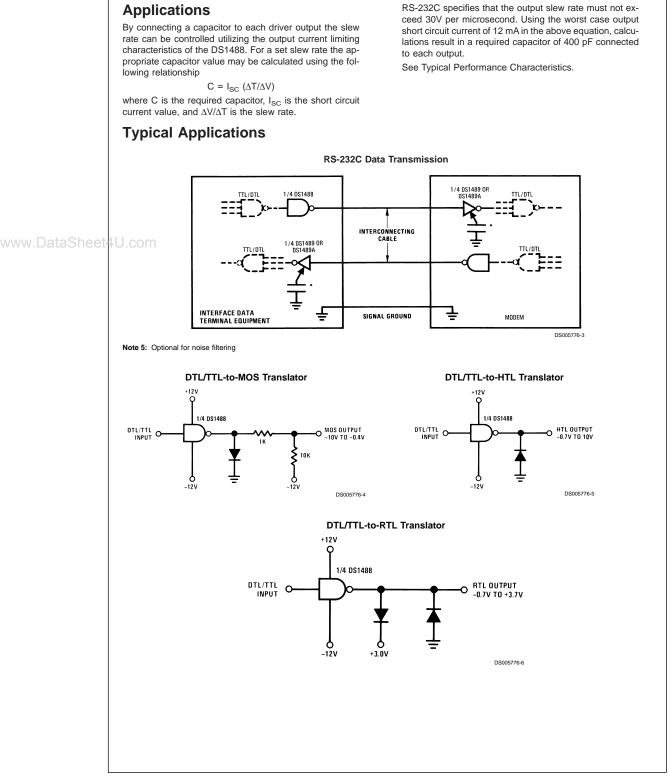
Supply Voltage	
V*	+15V
V-	-15V
Input Voltage (V _{IN})	−15V ≤ V _{IN} ≤ 7.0V
Output Voltage	±15V

Operating Temperature Range Storage Temperature Range	0°C to +75°C –65°C to +150°C
Maximum Power Dissipation (Note 1) a	t 25°C
Molded DIP Package	1280 mW
SO Package	974 mW
Lead Temperature (Soldering, 4 sec.)	260°C
Note 1: Derate molded DIP package 10.2 mW/°C package 7.8 mW/°C above 25°C.	C above 25°C; derate SO

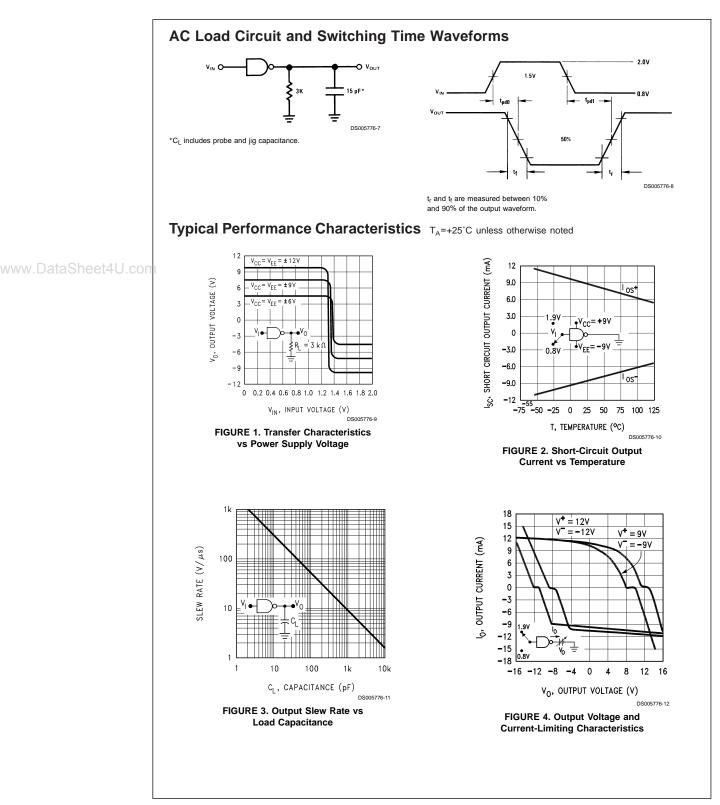
Electrical Characteristics (Notes 3, 4)

 V_{cc} + = 9V, V_{cc} - = -9V unless otherwise specified **Symbol Parameter**

	Date	Cha	$\rightarrow 1$	J.com
VV VV VV .	Data	10116	:CI4U	J.COIII

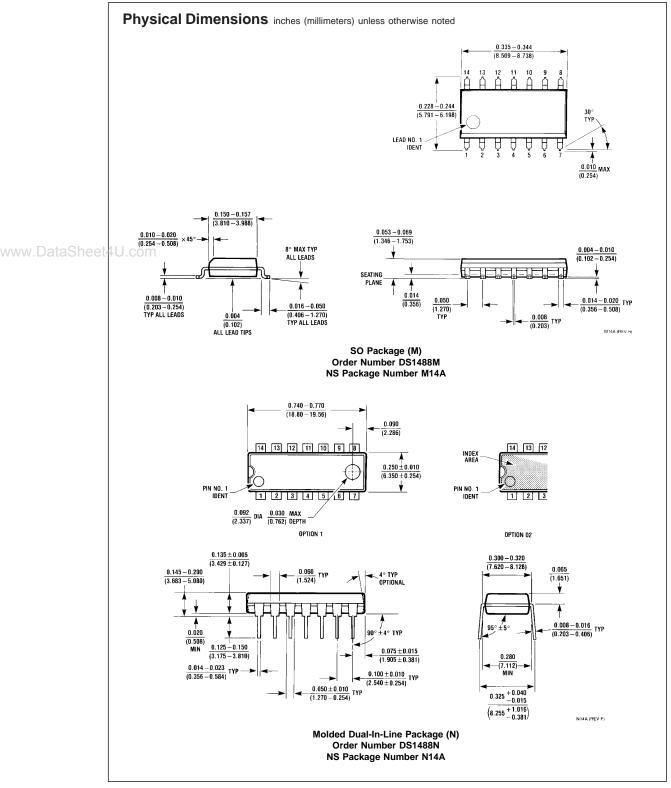

Symbol	Parameter		Conditions	Min	Тур	Max	Units
I _{IL}	Logical "0" Input Current	V _{IN} = 0V			-0.8	-1.3	mA
I _{IH}	Logical "1" Input Current	V _{IN} = +5.0V			0.005	10.0	μA
V _{он}	High Level Output Voltage	$R_L = 3.0 \text{ k}\Omega,$	V ⁺ = 9.0V, V ⁻ = -9.0V	6.0	7.1		V
		V _{IN} = 0.8V	V ⁺ = 13.2V, V ⁻ = -13.2V	9.0	10.7		V
V _{OL}	Low Level Output Voltage	$R_L = 3.0 \text{ k}\Omega,$	V ⁺ = 9.0V, V ⁻ = -9.0V	-6.0	7.0		V
		V _{IN} = 1.9V	V ⁺ = 13.2V, V ⁻ = -13.2V	-9.0	-10.6		V
I _{os} +	High Level Output	$V_{OUT} = 0V, V_{IN} = 0.8V$		-6.0	-10.0	-12.0	mA
	Short-Circuit Current						
I _{os} -	Low Level Output	V _{OUT} = 0V, V _{IN} = 1.9V		6.0	10.0	12.0	mA
	Short-Circuit Current						
R _{OUT}	Output Resistance	$V^{+} = V^{-} = 0V, V_{OUT} = \pm 2V$		300			Ω
I _{cc} +	Positive Supply Current	V _{IN} = 1.9V	V ⁺ = 9.0V, V ⁻ = -9.0V		11.6	20.0	mA
	(Output Open)		V ⁺ = 12V, V ⁻ = -12V		15.7	25.0	mA
			V ⁺ = 15V, V ⁻ = -15V		19.4	34.0	mA
		V _{IN} = 0.8V	V ⁺ = 9.0V, V ⁻ = -9.0V		3.4	6.0	mA
			V ⁺ = 12V, V ⁻ = -12V		4.1	7.0	mA
			V ⁺ = 15V, V ⁻ = -15V		9.1	12.0	mA
I _{cc} -	Negative Supply Current	V _{IN} = 1.9V	V ⁺ = 9.0V, V ⁻ = -9.0V		-10.8	-17.0	mA
	(Output Open)		V ⁺ = 12V, V ⁻ = -12V		-14.6	-23.0	mA
			V ⁺ = 15V, V ⁻ = -15V		-18.3	-34.0	mA
		V _{IN} = 0.8V	V ⁺ = 9.0V, V ⁻ = -9.0V		-0.001	-0.100	mA
			V ⁺ = 12V, V ⁻ = -12V		-0.001	-0.100	mA
			V ⁺ = 15V, V ⁻ = -15V		-0.01	-2.5	mA
P _d	Power Dissipation	V ⁺ = 9.0V, V ⁻ =	= -9.0V		252	333	mW
		V ⁺ = 12V, V ⁻ =	-12V		444	576	mW

Switching Characteristics $(V_{00} = 9)/V_{00} = -9/V_{00} = -9/V_{00} = -9/V_{00}$


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1}	Propagation Delay to a Logical "1"	R_{L} = 3.0 kΩ, C_{L} = 15 pF, T_{A} = 25°C		187	350	ns
t _{pd0}	Propagation Delay to a Logical "0"	$R_{L} = 3.0 \text{ k}\Omega, C_{L} = 15 \text{ pF}, T_{A} = 25^{\circ}\text{C}$		45	175	ns
t _r	Rise Time	$R_{L} = 3.0 \text{ k}\Omega, C_{L} = 15 \text{ pF}, T_{A} = 25^{\circ}\text{C}$		63	100	ns
t _f	Fall Time	$R_{L} = 3.0 \text{ k}\Omega, C_{L} = 15 \text{ pF}, T_{A} = 25^{\circ}\text{C}$		33	75	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 3: Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1488.

Note 4: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.



www.national.com

www.national.com

4

www.national.com

