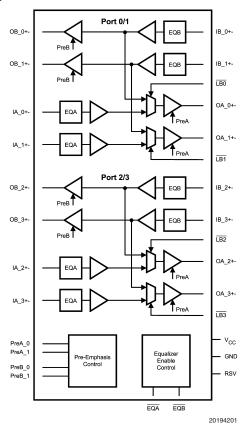


DS25BR400

Quad Transceiver with Input Equalization and Output De-Emphasis


General Description

The DS25BR400 is a quad 250 Mbps - 2.5 Gbps CML transceiver, or 8-channel buffer, for use in XAUI Fibre Channel backplane and cable applications. With operation down to 250 Mbps, the DS25BR400 can be used in applications requiring both low and high frequency data rates. Each input stage has a fixed equalizer to reduce ISI distortion from board traces. The equalizers are grouped in fours and are enabled through two control pins. These control pins provide customers flexibility in XAUI applications where ISI distortion may vary from one direction to another. All output drivers have four selectable steps of de-emphasis to compensate against transmission loss across long FR4 backplanes. The de-emphasis blocks are also grouped in fours. In addition, the DS25BR400 also has loopback control capability on four channels. All CML drivers and receivers are internally terminated with 50Ω pull-up resistors.

Features

- Quad 2.5 Gbps Transceiver or 8-Channel CML Serial Buffer
- 250 Mbps 2.5 Gbps Fully Differential Data Paths
- Optional Fixed Input Equalization
- Selectable Output De-emphasis
- Individual Loopback Controls
- On-chip Termination
- +3.3V supply
- Low Power, 1.3 Watts MAX
- Lead-less eLLP-60 pin package (9mmx9mmx0.8mm, 0.4mm pitch)
- -40°C to +85°C Industrial Temperature Range
- 6 kV ESD Rating, HBM

Functional Block Diagram

Connection Diagram PreA_1 45 PreB_1 LB1 GND OB_1+ 43 IB_1+ GND = DAP OB_1-42 IB_1-41 v_{cc} V_{CC} IA_1+ 40 OA_1+ 39 IA_1-OA_1-60 Pin eLLP 38 GND GND **Top View Shown** 37 IA_2-OA_2-IA_2+ 10 36 OA_2+ $v_{\rm cc}$ 35 V_{CC} OB_2-IB_2-33 OB_2+ IB_2+ 32 GND LB2 31 PreA_0 PreB_0 15 GND IB_3-IB_3+ ر دد GND EQB GND $^{\circ}_{\rm CC}$ OB_3-LB3

Leadless eLLP-60 Pin Package (9mmx9mmx0.8mm, 0.4mm pitch) Order number DS25BR400TSQ See NS Package Number SQA060 20194202

Pin Descriptions

Pin Name	Pin Number	I/O	Description
DIFFERENTI	AL I/O	•	
IB_0+	51	I	Inverting and non-inverting differential inputs of port_0. IB_0+ and IB_0- are internally
IB_0-	52		connected to a reference voltage through a 50Ω resistor.
OA_0+	48	0	Inverting and non-inverting differential outputs of port_0. OA_0+ and OA_0- are connected
-0_AC	49		to V_{CC} through a 50Ω resistor.
B_1+	43	I	Inverting and non-inverting differential inputs of port_1. IB_1+ and IB_1- are internally
B_1-	42		connected to a reference through a 50Ω resistor.
OA_1+	40	0	Inverting and non-inverting differential outputs of port_1. OA_1+ and OA_1- are connected
OA_1-	39		to V_{CC} through a 50Ω resistor.
B_2+	33	ı	Inverting and non-inverting differential inputs of port_2. IB_2+ and IB_2- are internally
B_2-	34		connected to a reference voltage through a 50Ω resistor.
OA_2+	36	0	Inverting and non-inverting differential outputs of port_2. OA_2+ and OA_2- are connected
DA_2-	37		to V_{CC} through a 50Ω resistor.
B_3+	25	1	Inverting and non-inverting differential inputs of port_3. IB_3+ and IB_3- are internally
B_3-	24		connected to a reference voltage through a 50Ω resistor.
 DA_3+	28	0	Inverting and non-inverting differential outputs of port_3. OA_3+ and OA_3- are connected
DA_3-	27		to V_{CC} through a 50 Ω resistor.
A_0+	58	1	Inverting and non-inverting differential inputs of port_0. IA_0+ and IA_0- are internally
A_0-	57	١.	connected to a reference voltage through a 50Ω resistor.
OB_0+	55	0	Inverting and non-inverting differential outputs of port_0. OB_0+ and OB_0- are connected
OB_0+ OB_0-	54		to V_{CC} through a 50 Ω resistor.
A_1+	6 7	'	Inverting and non-inverting differential inputs of port_1. IA_1+ and IA_1- are internally
A_1-			connected to a reference through a 50Ω resistor.
OB_1+	3	0	Inverting and non-inverting differential outputs of port_1. OB_1+ and OB_1- are connected to M_ at the content of the content
OB_1-	4	<u> </u>	to V _{CC} through a 50Ω resistor.
A_2+	10	'	Inverting and non-inverting differential inputs of port_2. IA_2+ and IA_2- are internally
A_2-	9		connected to a reference voltage through a 50Ω resistor.
OB_2+	13	0	Inverting and non-inverting differential outputs of port_2. OB_2+ and OB_2- are connected to the connected t
OB_2-	12		to V _{CC} through a 50Ω resistor.
A_3+	18	I	Inverting and non-inverting differential inputs of port_3. IA_3+ and IA_3- are internally
IA_3-	19		connected to a reference voltage through a 50Ω resistor.
OB_3+	21	0	Inverting and non-inverting differential outputs of port_3. OB_3+ and OB_3- are connected
OB_3-	28		to V _{CC} through a 50Ω resistor.
	3.3V LVCMOS)	
EQA	60	I	This pin is active LOW. A logic LOW at EQA enables equalization for input channels
			IA_0±, IA_1±, IA_2±, and IA_3±. By default, this pin is internally pulled high and
			equalization is disabled.
EQB	16	I	This pin is active LOW. A logic LOW at EQB enables equalization for input channels
			IB_0±, IB_1±, IB_2±, and IB_3±. By default, this pin is internally pulled high and
			equalization is disabled.
PreA_0	15	1	PreA_0 and PreA_1 select the output de-emphasis levels (OA_0±, OA_1±, OA_2±, and
PreA_1	1		OA_3±). PreA_0 and PreA_1 are internally pulled high. Please see <i>Table 2</i> for
			de-emphasis levels.
PreB_0	31	I	PreB_0 and PreB_1 select the output de-emphasis levels (OB_0±, OB_1±, OB_2±, and
PreB_1	45		OB_3±). PreB_0 and PreB_1 are internally pulled high. Please see <i>Table 2</i> for
			de-emphasis levels.
LB0	46	I	This pin is active LOW. A logic LOW at LBO enables the internal loopback path from IB_0:
			to OA_0±. LB0 is internally pulled high. Please see Table 1 for more information.
LB1	44	I	This pin is active LOW. A logic LOW at LB1 enables the internal loopback path from IB_1:
		1	to OA_1±. $\overline{LB1}$ is internally pulled high. Please see <i>Table 1</i> for more information.

Pin Descriptions (Continued)

Pin Name	Pin Number	I/O	Description		
CONTROL (3.3V LVCMOS)					
LB2	32	I	This pin is active LOW. A logic LOW at $\overline{LB2}$ enables the internal loopback path from IB_2± to OA_2±. $\overline{LB2}$ is internally pulled high. Please see <i>Table 1</i> for more information.		
LB3	30	I	This pin is active LOW. A logic LOW at LB3 enables the internal loopback path from IB_3± to OA_3±. LB3 is internally pulled high. Please see <i>Table 1</i> for more information.		
RSV	59	I	Reserve pin to support factory testing. This pin can be left open, tied to GND, or tied to GND through an external pull-down resistor.		
POWER					
V _{CC}	5, 11, 20, 26, 35, 41, 50, 56	Р	$V_{\rm CC}$ = 3.3V ± 5%. Each V _{CC} pin should be connected to the V _{CC} plane through a low inductance path, typically with a via located as close as possible to the landing pad of the V _{CC} pin. It is recommended to have a 0.01 μF or 0.1 μF, X7R, size-0402 bypass capacitor from each V _{CC} pin to ground plane.		
GND	8, 14, 23, 29, 38, 47, 53	Р	Ground reference. Each ground pin should be connected to the ground plane through a low inductance path, typically with a via located as close as possible to the landing pad of the GND pin.		
GND	DAP	Р	DAP is the metal contact at the bottom side, located at the center of the eLLP-60 pin package. It should be connected to the GND plane with at least 4 via to lower the ground impedance and improve the thermal performance of the package.		

Note: I = Input, O = Output, P = Power

Functional Description

TABLE 1. Logic Table for Loopback Controls

LB0	Loopback Function
0	Enable loopback from IB_0± to OA_0±.
1 (default)	Normal mode. Loopback disabled.
LB1	Loopback Function
0	Enable loopback from IB_1± to OA_1±.
1 (default)	Normal mode. Loopback disabled.
LB2	Loopback Function
0	Enable loopback from IB_2± to OA_2±.
1 (default)	Normal mode. Loopback disabled.
LB3	Loopback Function
0	Enable loopback from IB_3± to OA_3±.
1 (default)	Normal mode. Loopback disabled.

TABLE 2. De-Emphasis Controls

PreA_[1:0]	Default VOD Level in mV _{PP} (VODB)	De-Emphasis Level in mV _{PP} (VODPE)	De-Emphasis in dB (VODPE/VODB)
0 0	1200	1200	0
0 1	1200	850	-3
1 0	1200	600	-6
1 1 (Default)	1200	426	-9
PreB_[1:0]	Default VOD Level in mV _{PP}	De-Emphasis Level in mV _{PP} (VODPE)	De-Emphasis in dB
	(VODB)	(VODPE)	(VODPE/VODB)
0 0	1200	1200	0
0 1	1200	850	-3
1 0	1200	600	-6
1 1 (Default)	1200	426	-9

De-emphasis is the primary signal conditioning function for use in compensating against backplane transmission loss. The DS25BR400 provides four steps of de-emphasis ranging from 0, -3, -6 and -9 dB, user-selectable dependent on the loss profile of the backplane. *Figure 1* shows a driver

de-emphasis waveform. The de-emphasis duration is nominal 188 ps, corresponding to 0.75 bit-width at 2.5 Gbps. The de-emphasis levels of switch-side and line-side can be individually programmed.

Input Equalization

Each differential input of the DS25BR400 has a fixed equalizer front-end stage. It is designed to provide fixed equalization for short board traces with transmission losses of approximately 5 dB between 375 MHz to 1.875 GHz. Programmable de-emphasis together with input equalization ensures an acceptable eye opening for a 40-inch FR-4 backplane.

The differential input equalizer for inputs on Channel A and inputs on Channel B can be bypassed by using $\overline{\text{EQA}}$ and $\overline{\text{EQB}}$, respectively. By default, the equalizers are internally pulled high and disabled. Therefore, $\overline{\text{EQA}}$ and $\overline{\text{EQB}}$ must be asserted LOW to enable equalization.

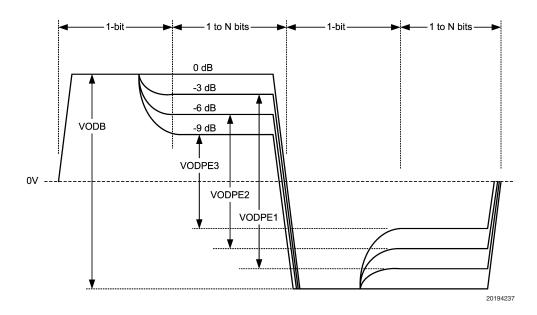


FIGURE 1. Driver De-Emphasis Differential Waveform (showing all 4 de-emphasis steps)

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{ccc} \text{Supply Voltage (V}_{\text{CC}}) & -0.3 \text{V to 4V} \\ \text{CMOS/TTL Input Voltage} & -0.3 \text{V to} \\ & & & & & & & & & & & \\ \text{CML Input/Output Voltage} & & -0.3 \text{V to} \\ \end{array}$

Lead Temperature

 $\begin{array}{ll} \text{Soldering, 4 sec} & +260^{\circ}\text{C} \\ \text{Thermal Resistance, θ_{JA}} & 22.3^{\circ}\text{C/W} \\ \text{Thermal Resistance, θ_{JC}} & 3.2^{\circ}\text{C/W} \\ \end{array}$

Thermal Resistance, Φ_{JB} 10.3°C/W

(Note: assumes 26 thermal vias) ESD Ratings ((Note 9))

 HBM
 6kV

 CDM
 1kV

 MM
 350V

Recommended Operating Ratings

-		_		_	
	Min	Тур	Max	Units	
Supply Voltage (V _{CC} -GND)	3.135	3.3	3.465	V	
Supply Noise Amplitude			100	mV_{PP}	
10 Hz to 2 GHz					
Ambient Temperature	-40		+85	°C	
Case Temperature			100	°C	

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
LVCMOS I	DC SPECIFICATIONS		•			
V _{IH}	High Level Input Voltage		2.0		V _{CC} +0.3	V
V _{IL}	Low Level Input Voltage		-0.3		0.8	V
I _{IH}	High Level Input Current	$V_{IN} = V_{CC}$	-10		10	μΑ
I _{IL}	Low Level Input Current	V _{IN} = GND	75	94	124	μΑ
R _{PU}	Pull-High Resistance			35		kΩ
RECEIVER	SPECIFICATIONS		•			•
V_{ID}	Differential Input Voltage Range	AC Coupled Differential Signal. Below 1.25 Gb/s At 1.25 Gbps–3.125 Gbps Above 3.125 Gbps This parameter is not production tested.	100 100 100		1750 1560 1200	mV _{P-P}
V _{ICM}	Common Mode Voltage at Receiver Inputs	Measured at receiver inputs reference to ground.		1.3		V
R _{ITD}	Input Differential Termination	On-chip differential termination between IN+ or IN	84	100	116	Ω
R _{ITSE}	Input Termination (single-end)	On-chip termination IN+ or IN- to GND for frequency > 100 MHz.		50		Ω
DRIVER S	PECIFICATIONS					
VODB	Output Differential Voltage Swing without De-Emphasis	$R_L = 100\Omega \pm 1\%$ $PreA_1 = 0$; $PreA_0 = 0$ $PreB_1 = 0$; $PreB_0 = 0$ $PreB_1 = 0$; $PreB_0 = 0$ $PreB_1 = 0$; $PreB_1 = 0$	1000	1200	1400	mV_{P-P}

Electrical Characteristics (Continued)
Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
DRIVER S	PECIFICATIONS					
V_{PE}	Output De-Emphasis Voltage Ratio	$R_L = 100\Omega \pm 1\%$ Running K28.7 pattern at 2.5 Gbps				
	20*log(VODPE/VODB)			0		dB
		PreX_[1:0] = 01		-3		dB
		PreX_[1:0] = 10		-6		dB
		PreX_[1:0] = 11		_9		dB
		X = A/B channel de-emphasis drivers				
		(Figure 1 / Figure 6)				
t _{PE}	De-Emphasis Width	Tested at –9 dB de-emphasis level, PreX[1:0]				
76		= 11				
		X = A/B channel de-emphasis drivers	125	200	250	ps
		See <i>Figure 5</i> on measurement condition.				
R _{OTSE}	Output Termination	On-chip termination from OUT+ or OUT- to				
OTSE	Output Termination	V _{CC}	42	50	58	Ω
R _{OTD}	Output Differential	On-chip differential termination between OUT+		100		Ω
	Termination	and OUT-				
ΔR_{OTSE}	Mis-Match in Output	Mis-match in output termination resistors				
	Termination				5	%
	Resistors					
V_{OCM}	Output Common			2.7		V
	Mode Voltage			2.7		V
POWER D	ISSIPATION					
P _D	Power Dissipation	$V_{DD} = 3.465V$				
		All outputs terminated by 100Ω ±1%.			1.0	w
		PreB_[1:0] = 0, PreA_[1:0] = 0			1.3	VV
		Running PRBS 2 ⁷ -1 pattern at 2.5 Gbps				
AC CHAR	ACTERISTICS					
t _R	Differential Low to	Measured with a clock-like pattern at				
	High Transition Time	2.5 Gbps, between 20% and 80% of the		80		ps
		differential output voltage.				ps
_		De-emphasis disabled.				
t _F	Differential High to	Transition time is measured with the fixture				
	Low Transition Time	shown in Figure 6 adjusted to reflect the		80		ps
		transition time at the output pins.				
t _{PLH}	Differential Low to	Measured at 50% differential voltage from				
	High Propagation	input to output.			1	ns
	Delay					
t _{PHL}	Differential High to					
	Low Propagation				1	ns
	Delay					
t _{SKP}	Pulse Skew	It _{PHL} -t _{PLH} I			20	ps
t _{sko}	Output Skew	Difference in propagation delay between				
SNO	(Note 7)	channels on the same part			100	ps
		(Channel-to-Channel Skew)				
t _{SKPP}	Part-to-Part Skew	Difference in propagation delay between				
J	(Note 7)	devices across all channels operating under			165	ps
	` '	identical conditions				
t _{LB}	Loopback Delay	Delay from enabling loopback mode to signals				
-LR	Time	appearing at the differential outputs			4	ns
		Figure 4				
		rigure 4				

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units			
AC CHAR	AC CHARACTERISTICS								
RJ	Device Random Jitter	At 0.25 Gbps			2	ps rms			
	(Note 5)	At 1.5 Gbps			2	ps rms			
		At 2.5 Gbps			2	ps rms			
		Alternating-10 pattern.							
		De-emphasis disabled.							
		(Figure 6)							
DJ	Device Deterministic	At 0.25 Mbps, PRBS7 pattern			25	ps pp			
	Jitter (Note 6)	At 1.5 Gbps, K28.5 pattern			25	ps pp			
		At 2.5 Gbps, K28.5 pattern			25	ps pp			
		At 2.5 Gbps, PRBS7 pattern			25	ps pp			
		De-emphasis disabled.							
		(Figure 6)							
DR	Data Rate (Note 8)	Alternating-10 pattern	0.25		2.5	Gbps			

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables. Operation of the device beyond the maximum Operating Ratings is not recommended.

Note 2: Typical specifications are at TA=25 C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not guaranteed.

Note 3: IN+ and IN- are generic names that refer to one of the many pairs of complementary inputs of the DS25BR400. OUT+ and OUT- are generic names that refer to one of the many pairs of the complementary outputs of the DS25BR400. Differential input voltage V_{ID} is defined as IN+ - IN-I. Differential output voltage V_{ID} is defined as IOUT+ - OUT-I.

Note 4: K28.7 pattern is a 10-bit repeating pattern of K28.7 code group {001111 1000}

K28.5 pattern is a 20-bit repeating pattern of +K28.5 and -K28.5 code groups {110000 0101 001111 1010}

Note 5: Device output random jitter is a measurement of random jitter contributed by the device. It is derived by the equation $SQRT[(RJ_{OUT})^2 - (RJ_{IN})^2]$, where RJ_{OUT} is the total random jitter measured at the output of the device in ps(rms), RJ_{IN} is the random jitter of the pattern generator driving the device. Below 400 Mbps, system jitter and device jitter could not be separated. The 250 Mbps specification includes system random jitter. Please see *Figure 6* for the AC test circuit.

Note 6: Device output deterministic jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation $(DJ_{OUT} - DJ_{IN})$, where DJ_{OUT} is the total peak-to-peak deterministic jitter measured at the output of the device in ps(p-p). DJ_{IN} is the peak-to-peak deterministic jitter at the input of the test board. Please see *Figure 6* for the AC test circuit.

Note 7: t_{SKO} is the magnitude difference in propagation delays between all data paths on one device. This is channel-to-channel skew. t_{SKPP} is the worst case difference in propagation delay across multiple devices on all channels and operating under identical conditions. For example, for two devices operating under the same conditions, t_{SKPP} is the magnitude difference between the shortest propagation delay measurement on one device to the longest propagation delay measurement on another device.

Note 8: This parameter is guaranteed by design and/or characterization and is not tested in production.

Note 9: ESD tests conform to the following standards:

Human Body Model (HBM) applicable standard: MIL-STD-883, Method 3015.7

Machine Model (MM) applicable standard: JESD22-A115-A (ESD MM std. of JEDEC)

Field -Induced Charge Device Model (CDM) applicable standard: JESD22-C101-C (ESD FICDM std. of JEDEC)

Timing Diagrams

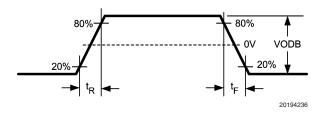


FIGURE 2. Driver Output Transition Time

Timing Diagrams (Continued)

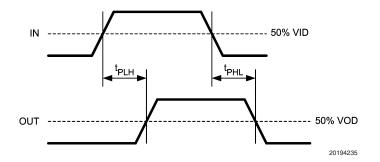


FIGURE 3. Propagation Delay

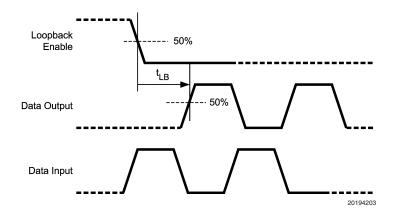


FIGURE 4. Loopback Delay Timing

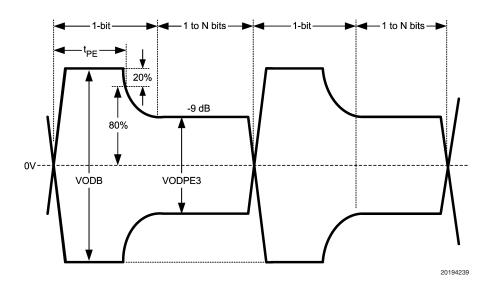


FIGURE 5. Output De-Emphasis Duration

Timing Diagrams (Continued)

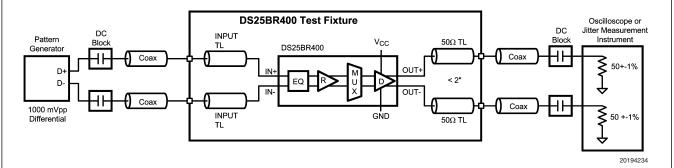
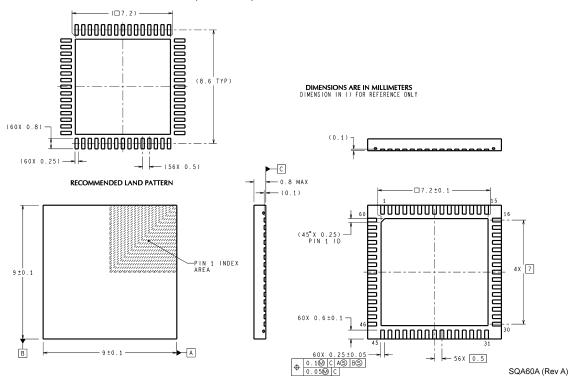



FIGURE 6. AC Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted

eLLP-60 Package Order Number DS25BR400TSQ NS Package Number SQA060

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560