

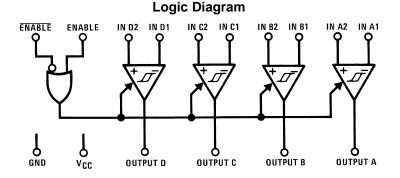
SNOSAM6B-OCTOBER 2005-REVISED APRIL 2013

DS26LS32MQML Quad Differential Line Receivers

Check for Samples: DS26LS32MQML

FEATURES

- High Differential or Common-Mode Input Voltage Ranges of ±7V on the DS26LS32.
- ±0.2V Sensitivity Over the Input Voltage Range on the DS26LS32.
- DS26LS32 Meet All Requirements of RS-422
 and RS-423
- 6k Minimum Input Impedance
- 100 mV Input Hysteresis on the DS26LS32
- Operation From a single 5V Supply
- TRI-STATE Outputs, with Choice of Complementary Output Enables for Receiving Directly onto a Data Bus


DESCRIPTION

The DS26LS32 and DS26LS32A are quad differential line receivers designed to meet the RS-422, RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The DS26LS32 and DS26LS32A have an input sensitivity of 200 mV over the input voltage range of \pm 7V. The DS26LS33 has an input sensitivity of 500 mV over the input voltage range of \pm 15V.

The DS26LS32A differs in function from the popular DS26LS32 and DS26LS33 in that input pull-up and pull-down resistors are included which prevent output oscillation on unused channels.

Each version provides an enable and disable function common to all four receivers and features TRI-STATE outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commercial operating temperature ranges.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Connection Diagram

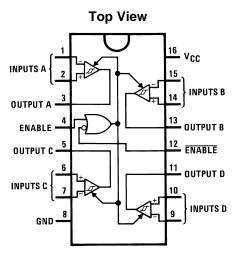
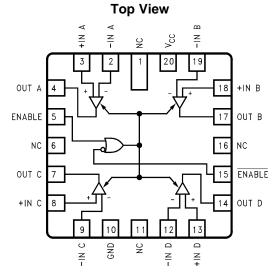



Figure 1. CDIP Package See Package Numbers NFE0016A, NAD0016A

Figure 2. 20-Lead LCCC Package See Package Number NAJ0020A

Truth Table⁽¹⁾

ENABLE	ENABLE	Input	Output
0	1	X	Hi-Z
See No.	to Dolow	V _{ID} ≥ V _{TH} (Max)	1
See No	te Below	$V_{ID} \leq V_{TH}$ (Min)	0

(1) Hi-Z = TRI-STATE

Note: Input conditions may be any combination not defined for ENABLE and ENABLE .

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

Absolute Maximum Ratings (1)

7V
±25V
±25V
7V
50 mA
1666.5 mW
1875 mW
967.74 mW
+150°C
100°C/W
130°C/W
140°C/W
See MIL-STD-1835
−65°C to +165°C
260°C
500V

(1) Absolute Maximum Ratings are those values beyond which the safety of the device cannot be verified. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Derate NFE0016A, package 11.11 mW/°C above 25°C; derate NAJ0020A package 12.5 mW/°C above 25°C; derate NAD0016A

(2)

Package 6.4516 mW/°C for above 25°C.

Human body model, $1.5k\Omega$ in series with 100pF. (3)

Recommended Operating Conditions

Supply Voltage, V _{CC}	4.5 V to 5.5 V
Temperature, T _A	−55°C to +125°C

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

www.ti.com

STRUMENTS

EXAS

DS26LS32M 883 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_{CC} = 5V$

	Parameter	Test Conditions	Notes	Min	Мах	Unit	Sub- groups
1	Incut Current	$V_{CC} = 5.5V$, $V_{IN} = 15V$ (Pin under test), other inputs -15V, $\leq V_{IN} \leq +15V$	(1)		2.3	mA	1, 2, 3
I _{IN}	Input Current	$V_{CC} = 5.5V$, $V_{IN} = -15V$ (Pin under test), other inputs -15V, $\leq V_{IN} \leq +15V$	(1)		-2.8	mA	1, 2, 3
IIL	Logical "0" ENABLE Current	$V_{CC} = 5.5 V, V_{IN} = 0.4 V$	(1)		-360	uA	1, 2, 3
I _{IH}	Logical "1" ENABLE Current	V _{CC} = 5.5V, V _{IN} = 2.7V	(1)		20	uA	1, 2, 3
l _l	Logical "1" ENABLE Current	V _{CC} =5.5V, V _{IN} = 5.5V	(1)		100	uA	1, 2, 3
V _{IC}	Input Clamp Voltage (ENABLE)	V _{CC} = 4.5V, I _{IN} = -18mA	(1)		-1.5	V	1, 2, 3
V _{OH}	Logical "1" Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5V, \ I_{\underline{OH}} = -440uA, \\ \DeltaV_{IN} = 1V, \ V \ ENABLE = 0.8V \end{array}$	(1)	2.5		V	1, 2, 3
		$V_{CC} = 4.5V, I_{OL} = 4mA, \Delta V_{IN} = -1V, V ENABLE = 0.8V$	(1)		.4	V	1, 2, 3
V _{OL}	Logical "0" Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5V, \ I_{OL} = 8mA, \\ \DeltaV_{IN} = -1V, \ V \ ENABLE = 0.8V \end{array}$	(1)		.45	V	1, 2, 3
I _{OS} (MIN)	Output Short Circuit Current	$ \begin{array}{l} V_{CC}=5.5V, \ V_{O}=0V, \\ \DeltaV_{IN}=1V \end{array} $	(1)	-15		mA	1, 2, 3
I _{OS} (MAX)	Output Short Circuit Current	$ \begin{array}{l} V_{CC} = 5.5V, V_{O} = 0V, \\ \DeltaV_{IN} = 1V \end{array} $	(1)		-85	mA	1, 2, 3
I _{CC}	Supply Current	$V_{CC} = 5.5V$, All $V_{IN} = GND$, Outputs Disabled	(1)		70	mA	1, 2, 3
		$V_{CC} = 5.5 V, V_{O} = 0.4 V$	(1)		-20	uA	1, 2, 3
lo	Off-State Output Current	$V_{CC} = 5.5V, V_{O} = 2.4V$	(1)		20	uA	1, 2, 3
V _{TH}	Differential Input Voltage	$-7V \le V_{CM} \le 7V$	(1)(2)	-0.2	0.2	V	1, 2, 3
R _{IN}	Input Resistance	-15V ≤ V _{CM} ≤ 15V	(1)	6		kohm	1, 2, 3
V _{IL}	Logical "0" Input Voltage (ENABLE)	V _{CC} = 4.5V	(1)(2)		0.8	V	1, 2, 3
V _{IH}	Logical "1" Input Voltage (ENABLE)	V _{CC} = 4.5V	(1)(2)	2		V	1, 2, 3

(1) For Subgroups 1 and 2, power dissipation must be externally controlled at elevated temperatures.

(2) Parameter tested go-no-go only.

DS26LS32M 883 Electrical Characteristics AC Parameters - Propagation Delay Time

The following conditions apply, unless otherwise specified. V_{CC} = 5V

	Parameter	Test Conditions	Notes	Min	Мах	Unit	Sub- groups	
t _{PLH}	Propagation Delay Time	$C_L = 15_PF$	(1)		30	nS	9,11,	
t _{PLH}	Propagation Delay Time	$C_L = 15_PF$	(1)		120	nS	10	
t _{PHL}	Propagation Delay Time	$C_L = 15_PF$	(1)		30	nS	9,11,	
t _{PHL}	Propagation Delay Time	C _L = 15 _P F	(1)		120	nS	10	
		$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 5_{\text{P}}\text{F}$	(1)		34	nS	9	
t _{PLZ}	Enable to Output	$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 5_{\text{P}}\text{F}$	(1)		64	nS	10	
		$\overline{ENABLE} \ C_{L} = 5_{P}F$	(1)		27	nS	11	
	Eachta ta Octavit	$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 5_{\text{P}}\text{F}$	(1)		32	nS	9,11,	
t _{PHZ}	Enable to Output	$\overline{\text{ENABLE}}$ C _L = 5 _P F	(1)		35	nS	10	
		$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 15_{\text{P}}\text{F}$	(1)		34	nS	9	
t _{PZL}	Enable to Output	$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 15_{\text{P}}\text{F}$	(1)		65	nS	10	
		$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 15_{\text{P}}\text{F}$	(1)		27	nS	11	

(1) Tested at 25°C, specified but not tested at +125°C & -55°C

SNOSAM6B-OCTOBER 2005-REVISED APRIL 2013

DS26LS32M 883 Electrical Characteristics AC Parameters - Propagation Delay Time (continued)

The following conditions apply, unless otherwise specified. $V_{CC} = 5V$

	Parameter	Test Conditions	Notes	Min	Max	Unit	Sub- groups
	Enchle to Output	$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 15_{\text{P}}\text{F}$	(1)		35	nS	9, 11
^t PZH	Enable to Output	$\overline{\text{ENABLE}} \text{ C}_{\text{L}} = 15_{\text{P}}\text{F}$	(1)		65	nS	10

AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS

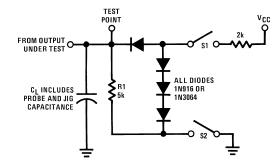
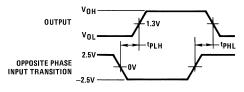
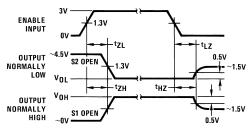




Figure 3. Load Test Circuit for TRI-STATE Outputs

- (1) Diagram shown for ENABLE low.
- (2) Pulse generator for all pulses: Rate = 1.0 MHz; $Z_0 = 50\Omega$; $t_r \le 6$ ns; $t_f \le 6.0$ ns.

Figure 4. Propagation Delay

- (1) S1 and S2 of load circuit are closed except where shown.
- (2) Pulse generator for all pulses: Rate = 1.0 MHz; $Z_0 = 50\Omega$; $t_f \le 6$ ns; $t_f \le 6.0$ ns.

Figure 5. Enable and Disable Times

TYPICAL APPLICATIONS

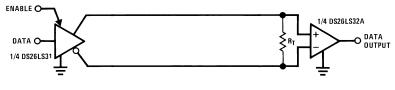


Figure 6. Two-Wire Balanced Interface—RS-422

www.ti.com

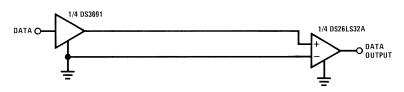


Figure 7. Single Wire with Driver Ground Reference—RS-423

Copyright © 2005–2013, Texas Instruments Incorporated

www.ti.com

REVISION HISTORY

Date Released	Revision	Section	Originator	Changes
10/20/05	A	New Release, Corporate format. Changes made in conversion: Ordering Info. Table, Absolute Ratings, Maximum Operating Conditions, Typos in QMLV & RH, 883 AC Electrical Characteristics Parameters Column.	R. Malone	1 MDS data sheet converted into Corporate data sheet format. Added: SMD reference for 883 NSID's, Juction temp., Thermal Resistance θ_{JA} and θ_{JC} . Changed: Maximum Operating Conditions to Recommended Operating Conditions, Enable and Disable Time to Enable to Output. Deleted max limit: 27nS for t _{PZH} and added subgroup 11 to max limit 35nS. MDS data sheet MNDS26LS32–X, Rev. 2B0 will be Archived.
4/15/2013	В		TIS	Changed layout of National Data Sheet to TI format

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-7802006QEA	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	(DS26C32AMJ/883 ~ DS26LS32MJ/883) (5962-7802006QEA Q ~ 5962-916400 1MEA Q)	Samples
DS26LS32MJ/883	ACTIVE	CDIP	NFE	16	25	TBD	Call TI	Call TI	-55 to 125	(DS26C32AMJ/883 ~ DS26LS32MJ/883) (5962-7802006QEA Q ~ 5962-916400 1MEA Q)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

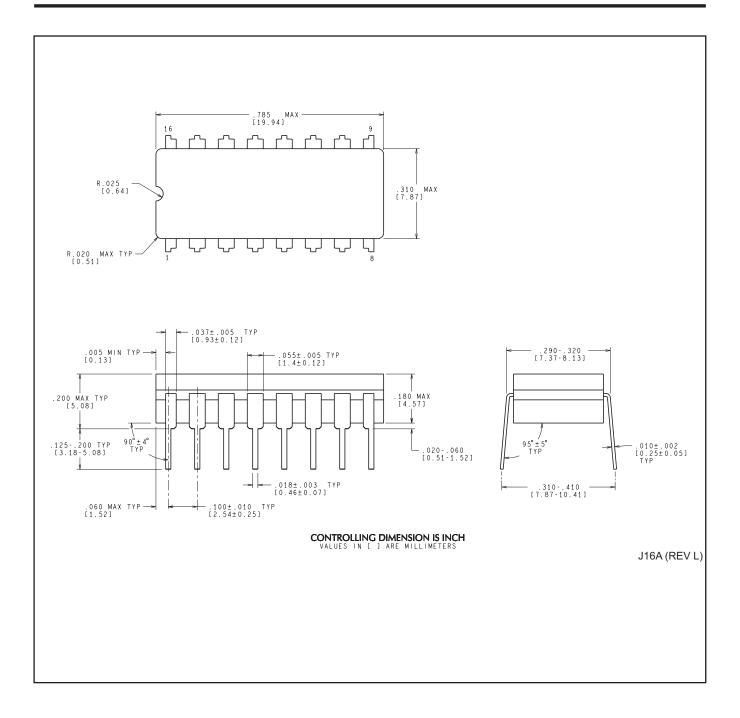
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

25-Oct-2016


⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

NFE0016A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated