
July 1986

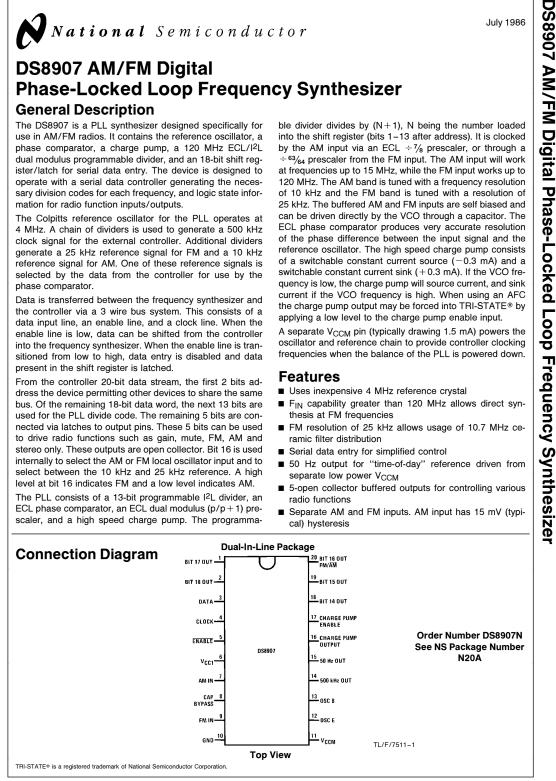
DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer

General Description

The DS8907 is a PLL synthesizer designed specifically for use in AM/FM radios. It contains the reference oscillator, a phase comparator, a charge pump, a 120 MHz ECL/I²L dual modulus programmable divider, and an 18-bit shift register/latch for serial data entry. The device is designed to operate with a serial data controller generating the necessary division codes for each frequency, and logic state information for radio function inputs/outputs.

The Colpitts reference oscillator for the PLL operates at 4 MHz. A chain of dividers is used to generate a 500 kHz clock signal for the external controller. Additional dividers generate a 25 kHz reference signal for FM and a 10 kHz reference signal for AM. One of these reference signals is selected by the data from the controller for use by the phase comparator.

Data is transferred between the frequency synthesizer and the controller via a 3 wire bus system. This consists of a data input line, an enable line, and a clock line. When the enable line is low, data can be shifted from the controller into the frequency synthesizer. When the enable line is transitioned from low to high, data entry is disabled and data present in the shift register is latched.


From the controller 20-bit data stream, the first 2 bits address the device permitting other devices to share the same bus. Of the remaining 18-bit data word, the next 13 bits are used for the PLL divide code. The remaining 5 bits are connected via latches to output pins. These 5 bits can be used to drive radio functions such as gain, mute, FM, AM and stereo only. These outputs are open collector. Bit 16 is used internally to select the AM or FM local oscillator input and to select between the 10 kHz and 25 kHz reference. A high level at bit 16 indicates FM and a low level indicates AM.

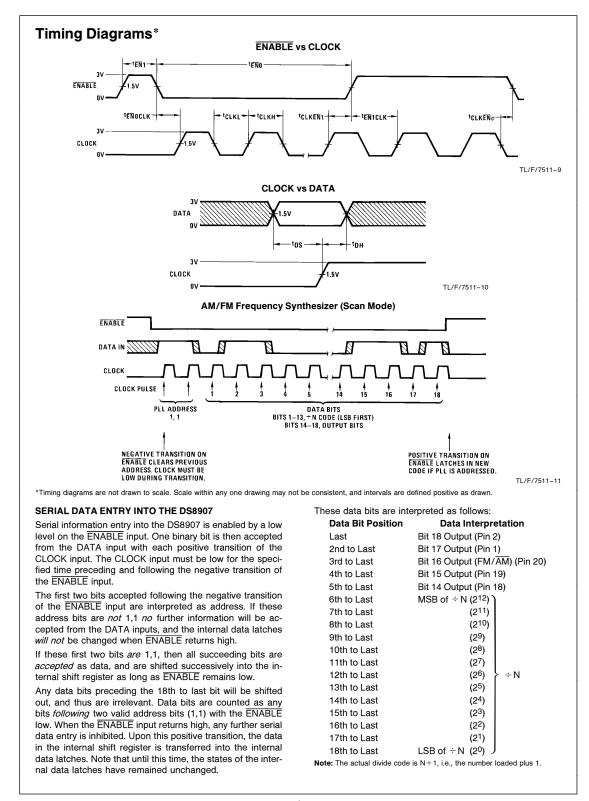
The PLL consists of a 13-bit programmable I²L divider, an ECL phase comparator, an ECL dual modulus (p/p+1) prescaler, and a high speed charge pump. The programmable divider divides by (N+1), N being the number loaded into the shift register (bits 1-13 after address). It is clocked by the AM input via an ECL \div 7/8 prescaler, or through a \div ⁶³/₆₄ prescaler from the FM input. The AM input will work at frequencies up to 15 MHz, while the FM input works up to 120 MHz. The AM band is tuned with a frequency resolution of 10 kHz and the FM band is tuned with a resolution of 25 kHz. The buffered AM and FM inputs are self biased and can be driven directly by the VCO through a capacitor. The ECL phase comparator produces very accurate resolution of the phase difference between the input signal and the reference oscillator. The high speed charge pump consists of a switchable constant current source (-0.3 mA) and a switchable constant current sink (+0.3 mA). If the VCO frequency is low, the charge pump will source current, and sink current if the VCO frequency is high. When using an AFC the charge pump output may be forced into TRI-STATE® by applying a low level to the charge pump enable input.

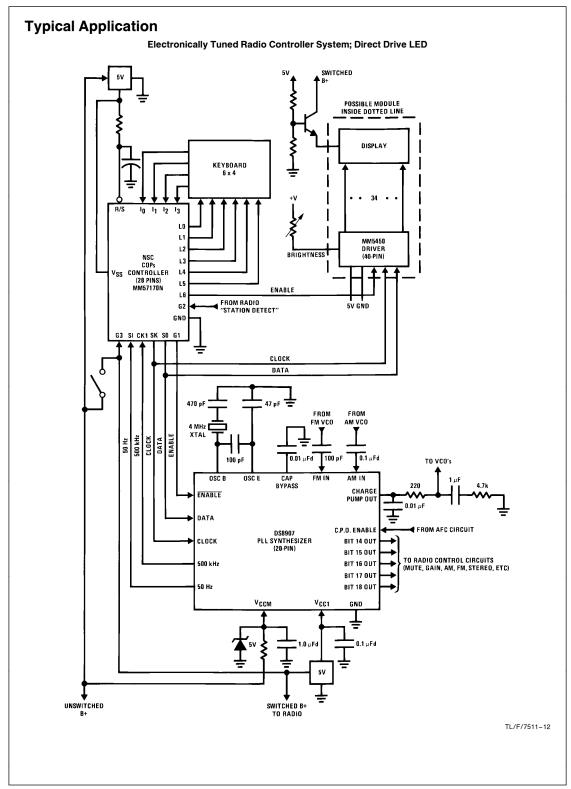
A separate V_{CCM} pin (typically drawing 1.5 mA) powers the oscillator and reference chain to provide controller clocking frequencies when the balance of the PLL is powered down.

Features

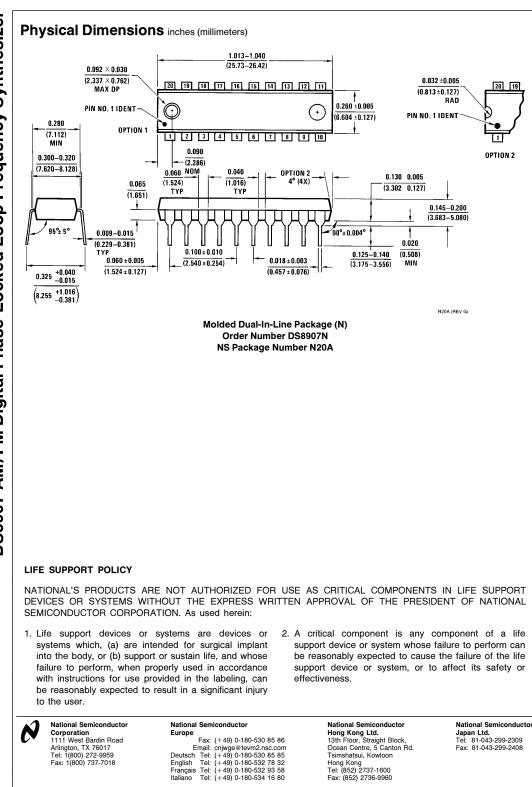
- Uses inexpensive 4 MHz reference crystal
- FIN capability greater than 120 MHz allows direct synthesis at FM frequencies
- FM resolution of 25 kHz allows usage of 10.7 MHz ce-ramic filter distribution
- Serial data entry for simplified control
- 50 Hz output for "time-of-day" reference driven from separate low power V_{CCM}
- 5-open collector buffered outputs for controlling various radio functions
- Separate AM and FM inputs. AM input has 15 mV (typical) hysteresis




© 1995 National Semiconductor Corporation TL/F/7511 RRD-B30M105/Printed in U. S. A


Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales			Storage Temperature Range Lead Temperature (Soldering, 4 sec.)			−65°C to +150°C 260°C			
Office/Dis Supply Vol	tributors for availability and sp	ecifications.				IS	Max		Inite
(V _{CC1})	laye	7V					Max		Jnits
(V _{CCM})		7V	V _{CC1}	, 00	4.75		5.25		V
Input Volta	-	7V	V _{CCM}	_	4.5		6.0		V
Output Volt	0	7V	Temperature, 7	A	0		70		°C
Symbol	ctrical Characteristic	CS (Notes 2 and 3)	Conditions		N	lin	Тур	Мах	Units
V _{IH}	Logical "1" Input Voltage		Conditions			.1	• 7 P	max	V
- <u>III</u>	Logical "1" Input Current	$V_{IN} = 2.7V$					0	10	μA
VIL	Logical "0" Input Voltage						-	0.7	<u>ب</u> مبر V
L Logical "0" Input Voltage		Data, Clock, and	d ENABLE Inputs,	$V_{INI} = 0V$	-		-5	-25	μA
IL Logical "0" Input Current			nable, $V_{IN} = 0V$				-250	-450	μA
ОН	Logical "1" Output Current All Bit Outputs, 50 Hz Output	V _{OH} = 5.25V						50	, μΑ
	500 kHz Output	$V_{OH} = 2.4V, V_{OH}$	_{CCM} = 4.5V					-250	μA
V _{OL}	Logical "0" Output Voltage All Bit Outputs	$I_{OL} = 5 \text{ mA}$						0.5	v
	50 Hz Output, 500 Hz Output	ut I _{OL} = 250 μA						0.5	V
CC1	Supply Current (V _{CC1})	All Bits Outputs	High				90	160	mA
		$V_{\rm CCM} = 6.0V, A$	All Other Pins Oper	า			1.5	4.0	mA
CCM(STANDE					_			0.0	m۸
	Charge Pump Ougtput Curren	t $1.2V \le V_{OUT} \le$	V _{CCM} - 1.2V	Pump Up	-0	0.10	-0.30	-0.6	mA
· ·	.,	t $1.2V \le V_{OUT} \le V_{CCM} \le 6.0V$	$V_{CCM} - 1.2V$	Pump Up Pump Dow	-).10 10	-0.30 0.30	-0.6	mA
	.,		V _{CCM} -1.2V		n 0.				
ICCM(STANDE	Charge Pump Ougtput Curren		/ _{CC1} = 5.25V,	Pump Dow	n 0.		0.30	0.6	mA
	Charge Pump Ougtput Curren	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C	/ _{CC1} = 5.25V, Ipen	Pump Dow TRI-STATE	n 0.		0.30 0	0.6 ±100	mA nA
CCM(OPERAT	Charge Pump Ougtput Curren (E) V _{CCM} Supply Current	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C	/ _{CC1} = 5.25V, Ipen	Pump Dow TRI-STATE	n 0.	10	0.30 0 2.5	0.6 ±100 6.0	mA nA
IOUT ICCM(OPERAT AC Ele Symbol	Charge Pump Ougtput Curren E) V _{CCM} Supply Current ctrical Characteristic Parameter	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $CS V_{CC} = 5V, T_A$	$V_{CC1} = 5.25V,$ pen $= 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$	n 0.	10 	0.30 0 2.5 yp M	0.6 ±100 6.0	mA nA mA
IOUT ICCM(OPERAT AC Ele Symbol Vin(MIN)(F)	Charge Pump Ougtput Curren E) V _{CCM} Supply Current ctrical Characteristic	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $CS V_{CC} = 5V, T_A$ AM and FM Input	$V_{CC1} = 5.25V,$ pen $= 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE $t_f \leq 10 \text{ ns}$	n 0.	10 T	0.30 0 2.5 yp M	0.6 ±100 6.0 ax U	mA nA mA
OUT AC Ele Symbol Vin(MIN)(F) VIN(MAX)(F)	Charge Pump Ougtput Curren Charge Pump Ougtput Curren UCCM Supply Current Ctrical Characteristic Parameter FIN Minimum Signal Input	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $CS V_{CC} = 5V, T_A$ AM and FM Input AM and FM Input	$V_{CC1} = 5.25V$, pen = 25°C, t _r ≤ 10 ns Conditions s, 0°C $\leq T_A \leq 70^\circ$ s, 0°C $\leq T_A \leq 70^\circ$	Pump Dow TRI-STATE $t_f \leq 10 \text{ ns}$	n 0.	10 T	0.30 0 2.5 yp M 20 1	0.6 ±100 6.0 ax U 00 m ¹ m ¹	mA nA mA Jnits / (rms)
OUT AC Ele Symbol Vin(MIN)(F) VIN(MAX)(F)	Charge Pump Ougtput Curren (E) V _{CCM} Supply Current Ctrical Characteristic Parameter F _{IN} Minimum Signal Input F _{IN} Maximum Signal Input	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $CS V_{CC} = 5V, T_A$ AM and FM Input	$V_{CC1} = 5.25V$, pen $= 25^{\circ}C$, $t_r \le 10$ ns Conditions s, $0^{\circ}C \le T_A \le 70^{\circ}$ s, $0^{\circ}C \le T_A \le 70^{\circ}$ ns	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C	n 0. E Min 1000	10 T	0.30 0 2.5 yp M 20 1 500	0.6 ±100 6.0 ax U 00 m ¹ 3	mA nA mA Jnits / (rms)
AC Ele Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE	Charge Pump Ougtput Curren Charge Pump Ougtput Curren UCCCM Supply Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $CS V_{CC} = 5V, T_A$ AM and FM Input AM and FM Input $V_{IN} = 100 \text{ mV rm}$	$\begin{array}{c} & & \\$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4	10 T	0.30 0 2.5 yp M 20 1 500	0.6 ±100 6.0 ax U 00 m ¹ 3	mA nA mA Jnits / (rms) / (rms) MHz
AC Ele Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE RIN(FM)	Charge Pump Ougtput Curren Charge Pump Ougtput Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range (Sine Wave Input)	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V$ All Other Pins C $V_{CC} = 5V, T_A$ AM and FM Input AM and FM Input $V_{IN} = 100 \text{ mV rm}$ $0^{\circ}C \le T_A \le 70^{\circ}C$	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60	10 T	0.30 0 2.5 yp M 20 1 500	0.6 ±100 6.0 ax U 00 m ¹ 3	mA nA mA / mA / (rms) / (rms) / (rms) MHz MHz
AC Ele Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE RIN(FM) RIN(AM)	Charge Pump Ougtput Current Charge Pump Ougtput Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range (Sine Wave Input) AC Input Resistance, FM	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V_{AII Other Pins C}$ $V_{CC} = 5V, T_{A}$ AM and FM Input AM and FM Input V_{IN} = 100 mV rm 0°C $\le T_{A} \le 70°C$ 120 MHz, V _{IN} =	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60 300	10 T 2 15	0.30 0 2.5 yp M 20 11 500 1.	0.6 ±100 6.0 ax U 00 m ¹ 3	mA nA mA Jnits / (rms) / (rms) MHz MHz Ω
IOUT ICCM(OPERAT AC Ele Symbol	Charge Pump Ougtput Curren Charge Pump Ougtput Current VCCM Supply Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range (Sine Wave Input) AC Input Resistance, FM AC Input Resistance, AM	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V_{AII} Other Pins C$ $CS V_{CC} = 5V, T_{A}$ $AM \text{ and FM Input}$ $AM \text{ and FM Input}$ $V_{IN} = 100 \text{ mV m}$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $120 \text{ MHz}, V_{IN} = 10$	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60 300 1000	10 T 2 15	0.30 0 2.5 yp M 20 11 500 11 500 6 11	0.6 ±100 6.0 ax 10 00 m ¹ 3 20	mA nA mA Jnits / (rms) / (rms) MHz MHz Ω Ω
Iout ICCM(OPERAT Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE RIN(FM) RIN(AM) CIN	Charge Pump Ougtput Current Charge Pump Ougtput Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range (Sine Wave Input) AC Input Resistance, FM AC Input Resistance, AM Input Capacitance, FM and AM Minimum ENABLE High	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V_{AII} Other Pins C$ $CS V_{CC} = 5V, T_{A}$ $AM \text{ and FM Input}$ $AM \text{ and FM Input}$ $V_{IN} = 100 \text{ mV m}$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $120 \text{ MHz}, V_{IN} = 10$	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60 300 1000	10 T 15 15 6	0.30 0 2.5 yp M 20 1 500 1. 500 6 1 25 12	0.6 ±100 6.0 ax 0 m ¹ m ² 0	mA nA mA Jnits / (rms) / (rms) / (rms) MHz Ω Ω Ω pF
IOUT ICCM(OPERAT Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE RIN(FM) RIN(AM) CIN tEN1	Charge Pump Ougtput Current Charge Pump Ougtput Current Ctrical Characteristic Parameter FIN Minimum Signal Input Operating Frequency Range (Sine Wave Input) AC Input Resistance, FM AC Input Resistance, AM Input Capacitance, FM and AM Minimum ENABLE High Pulse Width Minimum ENABLE Low	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V_{AII} Other Pins C$ $CS V_{CC} = 5V, T_{A}$ $AM \text{ and FM Input}$ $AM \text{ and FM Input}$ $V_{IN} = 100 \text{ mV m}$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $120 \text{ MHz}, V_{IN} = 10$	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60 300 1000	10 T 2 15 6 6 3	0.30 0 2.5 yp M 20 1 500 11 500 6 1 25 12 75 7	0.6 ± 100 6.0 ax 0 m ¹ m ² 0 50	mA nA mA Jnits / (rms) / (rms) MHz Ω MHz Ω pF ns
AC Ele Symbol VIN(MIN)(F) VIN(MAX)(F) FOPERATE RIN(FM) RIN(AM) CIN tEN1 tEN1	Charge Pump Ougtput Curren Charge Pump Ougtput Current Ctrical Characteristic Parameter FIN Minimum Signal Input FIN Maximum Signal Input Operating Frequency Range (Sine Wave Input) AC Input Resistance, FM AC Input Resistance, AM Input Capacitance, FM and AM Minimum ENABLE High Pulse Width Minimum ENABLE Low Pulse Width Minimum Time Before ENABLE Goes Low That CLOCK Must	$V_{CCM} \le 6.0V$ $V_{CCM} = 6.0V, V_{AII} Other Pins C$ $CS V_{CC} = 5V, T_{A}$ $AM \text{ and FM Input}$ $AM \text{ and FM Input}$ $V_{IN} = 100 \text{ mV m}$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $120 \text{ MHz}, V_{IN} = 10$	$V_{CC1} = 5.25V,$ $ppen = 25^{\circ}C, t_r \le 10 \text{ ns}$ Conditions $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$ $s, 0^{\circ}C \le T_A \le 70^{\circ}$	Pump Dow TRI-STATE s, $t_f \le 10 \text{ ns}$ C C AM	Min 1000 0.4 60 300 1000	10 T 15 6 3 3	0.30 0 2.5 yp M 20 11 500 6 11 25 12 75 7 50	0.6 ± 100 6.0 ax 0 0 m ³ 20 0 50 50	mA nA mA MHz / (rms) / (rms) MHz Ω Ω pF ns ns

_


Symbol	Parameter	Conditions	Min	Тур	Max	Units
^t EN1CLK	Minimum Time After ENABLE Goes High Before an Unused Positive CLOCK Edge May Occur			175	350	ns
t _{CLKH}	Minimum CLOCK High Pulse Width			275	550	ns
t _{CLKL}	Minimum CLOCK Low Pulse Width			400	800	ns
t _{DS}	Minimum DATA Setup Time, Minimum Time before CLOCK That DATA Must Be Valid			150	300	ns
t _{DH}	Minimum DATA Hold Time, Minimum Time after CLOCK That DATA Must Remain Valid			400	800	ns
		yond which the safety of the device cannot be guaranteed. Exc perated at these limits. The table of "Electrical Characteristic				
Note 2: Un	less otherwise specified min/max limits apply a	across the -40° C to $+85^{\circ}$ C temperature range for the DS890	7.			
	currents into device pins shown as positive, out min on absolute value basis.	of device pins as negative, all voltages referenced to ground u	unless other	rwise noted	d. All value	s shown

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.