

DS92LV010AEP

OBSOLETE June 15, 2009

Bus LVDS 3.3/5.0V Single Transceiver

General Description

The DS92LV010AEP is one in a series of transceivers designed specifically for the high speed, low power proprietary bus backplane interfaces. The device operates from a single 3.3V or 5.0V power supply and includes one differential line driver and one receiver. To minimize bus loading the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility as 4 separate lines are provided (DIN, DE, $\overline{\rm RE}$, and ROUT). The device also features flow through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10 mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27 Ohms.

The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of $\pm 1V$.

The receiver threshold is $\pm 100 mV$ over a $\pm 1V$ common mode range and translates the low voltage differential levels to standard (CMOS/TTL) levels.

ENHANCED PLASTIC

- Extended Temperature Performance of -40°C to +85°C
- · Baseline Control Single Fab & Assembly Site
- Process Change Notification (PCN)
- · Qualification & Reliability Data
- Solder (PbSn) Lead Finish is standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support

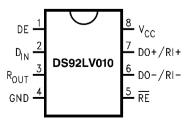
Features

- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Balanced Output Impedance
- Lite Bus Loading 5pF typical
- Glitch free power up/down (Driver disabled)
- 3.3V or 5.0V Operation
- ±1V Common Mode Range
- ±100mV Receiver Sensitivity
- High Signaling Rate Capability (above 100 Mbps)
- Low Power CMOS design
- Product offered in 8 lead SOIC package

Applications

Selected Military Applications Selected Avionics Applications

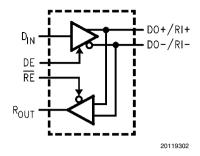
Ordering Information

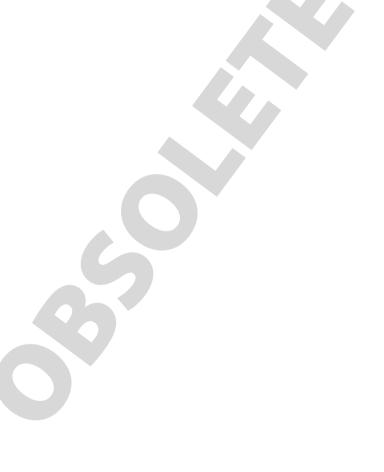

PART NUMBER	VID PART NUMBER NS PACKAGE NUMBER	
DS92LV010ATMEP	V62/04740-01	M08A
(Notes 1, 2)	TBD	TBD

Note 1: For the following (Enhanced Plastic) version, check for availability: - DS92LV010ATMXEP Parts listed with an "X" are provided in Tape & Reel and parts without an "X" are in Rails.

Note 2: FOR ADDITIONAL ORDERING AND PRODUCT INFORMATION, PLEASE VISIT THE ENHANCED PLASTIC WEB SITE AT: www.national.com/mil

Note 3: Refer to package details under Physical Dimensions


Connection Diagram



See NS Package Number M08A

TRI-STATE® is a registered trademark of National Semiconductor Corporation

aSh**BlocknDiagram**

Absolute Maximum Ratings (Notes 4, 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) 6.0V Enable Input Voltage (DE, -0.3V to $(V_{CC} + 0.3V)$ -0.3V to $(V_{CC} + 0.3V)$ Driver Input Voltage (DIN) Receiver Output Voltage -0.3V to $(V_{CC} + 0.3V)$ (R_{OUT}) Bus Pin Voltage (DO/RI±) -0.3V to +3.9V**Driver Short Circuit Current** Continuous >2.0 kV ESD (HBM 1.5 k Ω , 100 pF) Maximum Package Power Dissipation at 25°C 1025 mW Derate SOIC Package 8.2 mW/°C
Storage Temperature
Range -65°C to +150°C
Lead Temperature
(Soldering, 4 sec.) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC}), or	3.0	3.6	V
Supply Voltage (V _{CC})	4.5	5.5	V
Receiver Input Voltage	0.0	2.9	V
Operating Free Air Temperature	-40	+85	°C

DC Electrical Characteristics (Notes 5, 6, 12)

 $T_A = -40$ °C to +85°C unless otherwise noted, $V_{CC} = 3.3$ V ± 0.3 V

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1	DO+/RI+,	140	250	360	mV
ΔV _{OD}	V _{OD} Magnitude Change		DO-/RI-		3	30	mV
V _{os}	Offset Voltage			1	1.25	1.65	V
ΔV _{OS}	Offset Magnitude Change				5	50	mV
I _{OSD}	Output Short Circuit Current	$V_O = 0V$, DE = V_{CC}			-12	-20	mA
V _{OH}	Voltage Output High	$V_{ID} = +100 \text{ mV}$ $I_{OH} = -400 \text{ µ}$	A R _{OUT}	2.8	3		٧
		Inputs Open		2.8	3		٧
		Inputs Shorted		2.8	3		٧
		Inputs Terminated, $R_L = 27\Omega$		2.8	3		٧
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -100 \text{ mV}$			0.1	0.4	V
I _{os}	Output Short Circuit Current	$V_{OUT} = 0V, V_{ID} = +100 \text{ mV}$		-5	-35	-85	mA
V _{TH}	Input Threshold High	DE = 0V	DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low		DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, \text{ or } 0V$		-20	±1	+20	μΑ
		$V_{CO} = 0V$, $V_{IN} = +2.4V$, or 0V		-20	±1	+20	μΑ
V _{IH}	Minimum Input High Voltage		DIN, DE,	2.0		V _{cc}	V
V _{IL}	Maximum Input Low Voltage		RE	GND		0.8	V
I _{IH}	Input High Current	V _N = V _{CC} or 2.4V			±1	±10	μΑ
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V			±1	±10	μΑ
V_{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA		-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}, R_L = 27\Omega$	V _{CC}		13	20	mA
I _{CCR}		DE = RE = 0V			5	8	mA
I _{CCZ}		DE = 0V, RE = V _{CC}			3	7.5	mA
I _{CC}		$DE = V_{CC}, \overline{RE} = 0V, R_L = 27\Omega$			16	22	mA
C _{output}	Capacitance @ BUS Pins		DO+/RI+, DO-/RI-		5		pF

DC Electrical Characteristics (Notes 5, 6, 12) $T_A = -40^{\circ}\text{C}$ to +85°C unless otherwise noted, $V_{CC} = 5.0 \text{V} \pm 0.5 \text{V}$

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+,	145	270	390	mV
ΔV _{OD}	V _{OD} Magnitude Change			DO-/RI-		3	30	mV
V _{os}	Offset Voltage				1	1.35	1.65	V
ΔV_{OS}	Offset Magnitude Change]				5	50	mV
I _{OSD}	Output Short Circuit Current	$V_O = 0V$, $DE = V_{CC}$		7		-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	$I_{OH} = -400 \mu A$	R _{OUT}	4.3	5.0		V
		Inputs Open	1		4.3	5.0		٧
		Inputs Shorted	1		4.3	5.0		٧
		Inputs Terminated, $R_L = 27\Omega$]		4.3	5.0		V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -100 \text{ mV}$				0.1	0.4	V
I _{os}	Output Short Circuit Current	$V_{OUT} = 0V, V_{ID} = +100 \text{ mV}$			-35	-90	-130	mA
$\overline{V_{TH}}$	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low			DO-/RI-	-100			mV
I _{IN}	Input Current	DE = 0V, V _{IN} = +2.4V, or 0V			-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V, \text{ or } 0V$			-20	±1	+20	μA
V _{IH}	Minimum Input High Voltage			DIN, DE,	2.0		V _{cc}	V
V _{IL}	Maximum Input Low Voltage		77	RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V		7		±1	±10	μA
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V		7		±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA	///	7	-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}, R_L = 27\Omega$				17	25	mA
I _{CCR}		$DE = \overline{RE} = 0 $		7		6	10	mA
I _{CCZ}	1	DE = 0V, RE = V _{CC}		7		3	8	mA
I _{CC}	1	$\overline{DE} = V_{CC}, \overline{RE} = 0V, R_L = 27\Omega$		7		20	25	mA
C _{output}	Capacitance @ BUS Pins	5		DO+/RI+, DO-/RI-		5		pF

AC Electrical Characteristics (Notes 9, 12)

 $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
DIFFEREN	DIFFERENTIAL DRIVER TIMING REQUIREMENTS						
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figures 2, 3	1.0	3.0	5.0	ns	
t _{PLHD}	Differential Prop. Delay Low to High	C _L = 10 pF	1.0	2.8	5.0	ns	
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.2	1.0	ns	
t _{TLH}	Transition Time Low to High			0.3	2.0	ns	
t _{THL}	Transition Time High to Low			0.3	2.0	ns	
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	4.5	9.0	ns	
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns	
t _{PZH}	Enable Time Z to High		2.0	5.0	7.0	ns	
t _{PZL}	Enable Time Z to Low		1.0	4.5	9.0	ns	

DIFFERENTIAL RECEIVER TIMING REQUIREMENTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Prop. Delay High to Low	Figures 6, 7	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High	C _L = 10 pF	2.5	5.5	10.0	ns
t _{SKD}	Differential SKEW It _{PHLD} - t _{PLHD} I			0.5	2.0	ns
t _r	Rise Time			1.5	4.0	ns
t _f	Fall Time			1.5	4.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	2.0	5.0	7.0	ns
t _{PZH}	Enable Time Z to High	(Note 11)	2.0	7.0	13.0	ns
t _{PZL}	Enable Time Z to Low		2.0	6.0	10.0	ns

AC Electrical Characteristics (Notes 9, 12)

$T_A = -40$	0° C to +85°C, $V_{CC} = 5.0V \pm 0.5V$,				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	ITIAL DRIVER TIMING REQUIREMENTS					
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figures 2, 3	0.5	2.7	4.5	ns
t _{PLHD}	Differential Prop. Delay Low to High	C _L = 10 pF	0.5	2.5	4.5	ns
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	3.0	7.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	4.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.0	9.0	ns
DIFFEREN	ITIAL RECEIVER TIMING REQUIREMENT	TS .				
t _{PHLD}	Differential Prop. Delay High to Low	Figures 6, 7	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High	$C_L = 10 \text{ pF}$	2.5	4.6	10.0	ns
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.4	2.0	ns
t _r	Rise Time			1.2	2.5	ns
t _f	Fall Time			1.2	2.5	ns
t _{PHZ}	Disable Time High to Z	R_L = 500Ω, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	2.0	4.0	6.0	ns
t _{PZH}	Enable Time Z to High	(Note 11)	2.0	5.0	9.0	ns
t _{PZL}	Enable Time Z to Low		2.0	5.0	7.0	ns

Electrical Characteristics

Note 4: "Absolute Maximum Ratings" are these beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 5: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except V_{OD}, V_{ID}, V_{TH} and V_{TI} unless otherwise specified.

Note 6: All typicals are given for V_{CC} = +3.3V or 5.0 V and T_A = +25°C, unless otherwise stated.

Note 7: ESD Rating: HBM (1.5 k Ω , 100 pF) > 2.0 kV EAT (0 Ω , 200 pF) > 300V.

Note 8: C₁ includes probe and fixture capacitance.

Note 9: Generator waveforms for all tests unless otherwise specified: f = 1MHz, ZO = 50Ω, tr, tf ≤ 6.0ns (0%-100%) on control pins and ≤ 1.0ns for RI inputs.

Note 10: The DS92LV010AEP is a current mode device and only function with datasheet specification when a resistive load is applied between the driver outputs.

Note 11: For receiver TRI-STATE® delays, the switch is set to V_{CC} for t_{PZL}, and t_{PLZ} and to GND for t_{PZH}, and t_{PHZ}.

Note 12: "Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

Test Circuits and Timing Waveforms

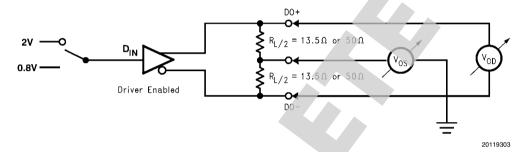


FIGURE 1. Differential Driver DC Test Circuit

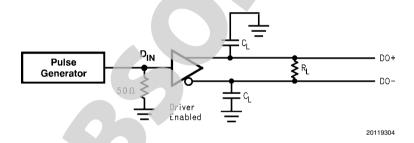


FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

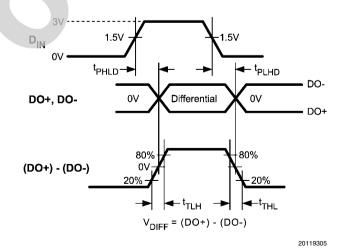


FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

www.DataSheet4U.com

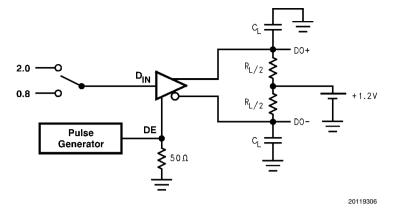


FIGURE 4. Driver TRI-STATE Delay Test Circuit

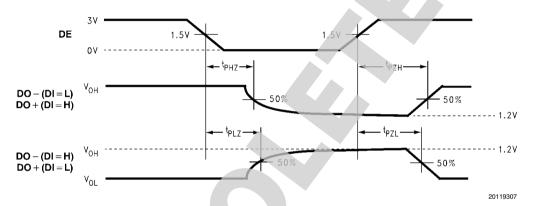


FIGURE 5. Driver TRI-STATE Delay Waveforms

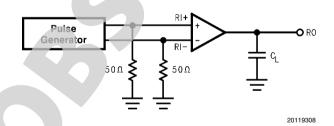


FIGURE 6. Receiver Propagation Delay and Transition Time Test Circuit

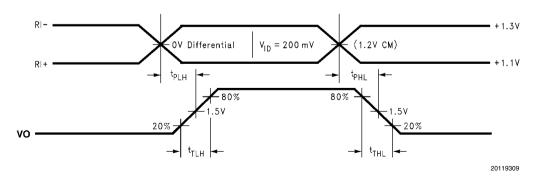


FIGURE 7. Receiver Propagation Delay and Transition Time Waveforms

aSheet4U.com

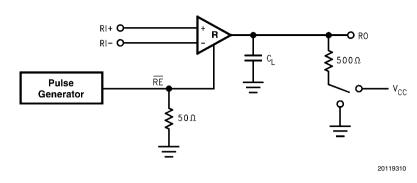


FIGURE 8. Receiver TRI-STATE Delay Test Circuit

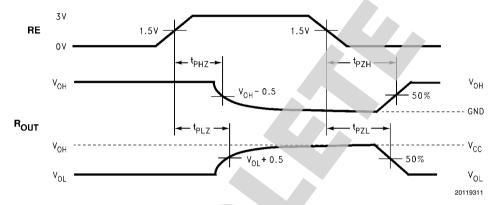
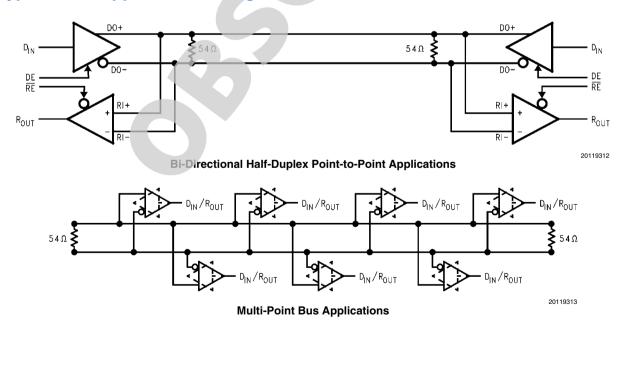



FIGURE 9. Receiver TRI-STATE Delay Waveforms TRI-STATE Delay Waveforms

Typical Bus Application Configurations

Application Information

There are a few common practices which should be implied when designing PCB for BLVDS signaling. Recommended practices are:

- Use at least 4 layer PCB board (BLVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (BLVDS port side) connector as possible.
- Bypass each BLVDS device and also use distributed bulk capacitance. Surface mount capacitors placed close to

power and ground pins work best. Two or three multi-layer ceramic (MLC) surface mount capacitors (0.1 μF , and 0.01 μF in parallel should be used between each V_{CC} and ground. The capacitors should be as close as possible to the V_{CC} pin.

- Use the termination resistor which best matches the differential impedance of your transmission line.
- Leave unused LVDS receiver inputs open (floating)

TABLE 1. Functional Table

MODE SELECTED	DE	RE
DRIVER MODE	Н	Н
RECEIVER MODE	L	Ļ
TRI-STATE MODE	L	Н
LOOP BACK MODE	Н	L

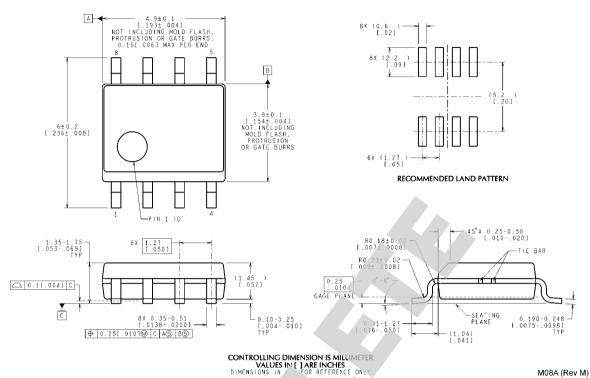
TABLE 2. Transmitter Mode

	INPUTS	OUTI	PUTS
DE	DI	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	2 > & > 0.8	Х	X
L	Х	Z	Z

L = Low state H = High state

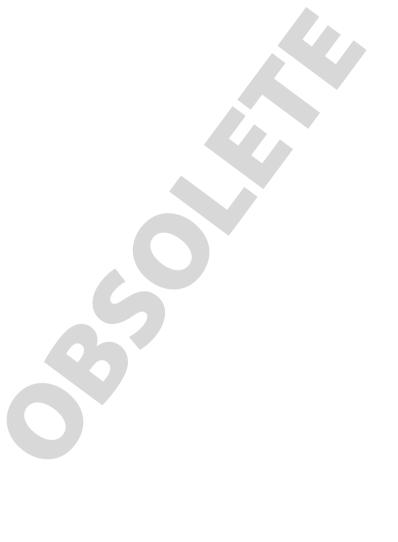
TABLE 3. Receiver Mode

	INPUTS			
RE	(RI+)-(RI-)			
L	L (< −100 mV)	L		
L	H (> +100 mV)	Н		
L	100 mV > & > -100 mV	Х		
H	X	Z		


X = High or Low logic state Z = High impedance state

L = Low state H = High state

TABLE 4. Device Pin Description


Pin Name	Pin #	Input/Output	Description
DIN	2	I	TTL Driver Input
DO±/RI±	6, 7	I/O	LVDS Driver Outputs/LVDS Receiver Inputs
R _{OUT}	3	0	TTL Receiver Output
RE	5	I	Receiver Enable TTL Input (Active Low)
DE	1	I	Driver Enable TTL Input (Active High)
GND	4	NA	Ground
V _{cc}	8	NA	Power Supply

Physical Dimensions inches (millimeters) unless otherwise noted

M08A (Rev M)

See NS Package Number M08A

Sheet4U.com

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

201193 Version 3 Revision 1 Print Date/Time: 2009/06/15 11:42:20