

Low-Jitter Configurable Dual LVPECL-CMOS Oscillator

www.discera.com

General Description

The DSC2021 series of high performance dual output oscillators utilize a proven silicon MEMS technology to provide excellent jitter and stability while incorporating additional device functionality. The two outputs are controlled by separate supply voltages to allow for independent voltage level control. The frequencies of the outputs can be identical or independently derived from a common PLL frequency source. The DSC2021 has provision for up to eight userdefined pre-programmed, pin-selectable frequency combinations. output DSC2021 is also equipped with independent pin-selectable output drive strengths for the CMOS output to reduce EMI and noise.

DSC2021 is packaged in a 14-pin 3.2x2.5 mm QFN package and available in temperature grades from Ext. Commercial to Industrial.

Block Diagram

Features

- Low RMS Phase Jitter: <1 ps (typ)
- High Stability: ±10, ±25, ±50 ppm
- Wide Temperature Range
 - o Industrial: -40° to 85° C
 - o Ext. commercial: -20° to 70° C
- High Supply Noise Rejection: -50 dBc
- Two Independent Outputs
 - LVPECL and CMOS
- Pin-Selectable Configurations
 - 3-bit Output Drive Strength (CMOS)
 - o 3-bit Output Frequency Combinations
- Short Lead Times: 2 Weeks
- Wide Frequency Range
 - o LVPECL Output: 2.3 to 460 MHz
 - o CMOS Output: 2.3 to 170 MHz
- Miniature Footprint of 3.2x2.5mm
- Excellent Shock & Vibration Immunity
 - o Qualified to MIL-STD-883
- High Reliability
 - 20x better MTF than quartz oscillators
- Supply Range of 2.25 to 3.6 V
- Lead Free & RoHS Compliant

Applications

- Storage Area Networks
 - o SATA, SAS, Fibre Channel
- Passive Optical Networks
 - o EPON, 10G-EPON, GPON, 10G-PON
- Ethernet
 - o 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video & Surveillance
- PCI Express

Pin Description

		Pin			
Pin No.	Pin Name	Type	Description		
1	Enable	I	Enables outputs when high and disables (tri-state) them when low		
2	NC	NA	Leave unconnected or grounded		
3	OS0	I	Least significant bit for output drive strength selection for CMOS		
4	GND	Power	Ground		
5	FS0	I	Least significant bit for frequency selection		
6	FS1	I	Middle bit for frequency selection		
7	FS2	I	Most significant bit for frequency selection		
8	Output1+	0	Positive LVPECL Output 1		
9	Output1-	0	Negative LVPECL Output 1		
10	OS1	I	Middle bit for output drive strength selection for CMOS		
11	Output 2	0	CMOS output		
12	VDD2	Power	Power Supply 2 for CMOS Output		
13	VDD	Power	Power Supply		
14	OS2	I	Most significant bit for output drive strength selection for CMOS		

Operational Description

The DSC2021 is a dual output LVPECL-CMOS oscillator consisting of a MEMS resonator and a support PLL IC. The two outputs, CMOS and LVPECL, are generated through independent 8-bit programmable dividers from the output of the internal PLL. Two constraints are imposed on the output frequencies: 1) f_2 =M x f_1 /N, where M and N are even integers between 4 and 254, 2) 1.2GHz < N x f_2 < 1.7GHz.

The actual frequencies output by the DSC2021 are controlled by an internal pre-programmed memory (OTP). This memory stores all coefficients required by the PLL for up to eight different frequency combinations. Three control pins (FSO – FS2) select the output frequency combination. Discera supports customer defined versions of the DSC2021. Standard frequency options are described in in the following sections.

The DSC2021 provides control of the output voltage levels of the CMOS output. VDD2 (pin 12) sets the high voltage level of Output 2 and must be equal to or less than VDD at all times to insure proper operation. VDD2 can be as low as 1.65V.

When Enable (pin 1) is floated or connected to VDD, the DSC2021 is in operational mode. Driving Enable to ground will tri-state both output drivers (hi-impedance mode).

The DSC2021 has programmable output drive strength for CMOS output. Using three control pins (OS0-OS2), the drive strength for CMOS output (output 2) can be adjusted to match circuit board impedances to reduce power supply noise, overshoot/undershoot and EMI. Table 1 displays typical rise / fall times for the output with a 15pf load capacitance as a function of these control pins at VDD=3.3V and room temperature.

Table 1. Rise/Fall times for drive strengths

	Output Drive Strength Bits [OS2, OS1, OS0] - Default [111]								
	000	001	010	011	100	101	110	111	
tr (ns)	2.1	1.7	1.6	1.4	1.3	1.3	1.2	1.1	
tf (ns)	2.5	2.4	2.4	2	1.8	1.6	1.3	1.3	

DSC2021 Page 2 MK-Q-B-P-D-12042604-2

Output Clock Frequencies

Table 2 lists the standard frequency configurations and the associated ordering information to be used in conjunction with the ordering code above. Customer defined combinations are available.

Table 2. Pre-programmed pin-selectable output frequency combinations

Ordering	Freq	Freq Select Bits [FS2, FS1, FS0] - Default is [111]								
Info	(MHz)	000	001	010	011	100	101	110	111	
10001	f _{OUT1}	150	150	125	100	150	156.25	125	100	
I0001	f _{OUT2}	75	50	50	50	25	25	25	25	
I000X	f _{OUT1}	Contact factory for additional configurations								
10007	f _{OUT2}	Contact factory for additional configurations.								

Frequency select bit are weakly tied high so if left unconnected the default setting will be [111] and the device will output the associated frequency highlighted in **Bold**.

Absolute Maximum Ratings

Item	Min	Max	Unit	Condition
Supply Voltage	-0.3	+4.0	V	
Input Voltage	-0.3	$V_{DD}+0.3$	V	
Junction Temp	-	+150	°C	
Storage Temp	-55	+150	°C	
Soldering Temp	-	+260	°C	40sec max.
ESD	-		V	
HBM		4000		
MM		400		
CDM		1500		

Note: 1000+ years of data retention on internal memory

Ordering Code

Specifications (Unless specified otherwise: T=25° C, max CMOS drive strength)

Parameter		Condition	Min.	Typ.	Max.	Unit
Supply Voltage ¹	V_{DD}		2.25		3.6	V
Supply Current	I_{DD}	EN pin low – outputs are disabled		21	23	mA
Supply Current ²	I_{DD}	EN pin high – outputs are enabled LVPECL: R_L =50 Ω , F_{O1} =125 MHz CMOS: C_L =15pF, F_{O2} =75 MHz		62		mA
Frequency Stability	Δf	Includes frequency variations due to initial tolerance, temp. and power supply voltage			±10 ±25 ±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Startup Time ³	t_{SU}	T=25°C			5	ms
Input Logic Levels Input logic high Input logic low	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		0.75xV _{DD}		- 0.25xV _{DD}	V
Output Disable Time ⁴	t_DA				5	ns
Output Enable Time	t _{EN}				20	ns
Pull-Up Resistor ²		Pull-up exists on all digital IO		40		kΩ
· ·		LVPECL Output				
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	$R_L = 50\Omega$	V _{DD} -1.08		- V _{DD} -1.55	V
Pk to Pk Output Swing	- OL	Single-Ended		800		mV
Output Transition time ⁴ Rise Time Fall Time	t _R	20% to 80% R _L = 50Ω , C _L = 0pF (to GND)		250		ps
Frequency	f_0	Single Frequency	2.3		460	MHz
Output Duty Cycle	SYM	Differential	48		52	%
Period Jitter ⁵	J_{PER}	F ₀₁ =125 MHz	-	2.5		ps _{RMS}
Integrated Phase Noise	J _{CC}	200kHz to 20MHz @156.25MHz 100kHz to 20MHz @156.25MHz 12kHz to 20MHz @156.25MHz		0.25 0.38 1.7	2	ps _{RMS}
		CMOS Output				
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	I=±6mA	0.9xV _{DD} -		- 0.1xV _{DD}	V
Output Transition time ⁴ Rise Time Fall Time	t _R t _F	20% to 80% C _L =15pf		1.1 1.3	2 2	ns
Frequency	f_0	Commercial/Industrial temp range	2.3		170	MHz
Output Duty Cycle	SYM		45		55	%
Period Jitter ⁵	J_{PER}	F _{O2} =125 MHz		3		ps _{RMS}
Integrated Phase Noise J _{CC}		200kHz to 20MHz @ 125MHz 100kHz to 20MHz @ 125MHz 12kHz to 20MHz @ 125MHz		0.3 0.38 1.7	2	ps _{RMS}

Notes:

- Pin 4 $\ensuremath{V_{\text{DD}}}$ should be filtered with 0.01uf capacitor.
- 2.
- Output is enabled if Enable pad is floated or not connected. t_{su} is time to stable output frequency after V_{DD} is applied and outputs are enabled. Output Waveform and Test Circuit figures below define the parameters. Period Jitter includes crosstalk from adjacent output.

DSC2021 Page 4 MK-Q-B-P-D-12042604-2

Nominal Performance Parameters (Unless specified otherwise: T=25° C, V_{DD}=3.3 V)

LVPECL Phase jitter (integrated phase noise)

CMOS Phase jitter (integrated phase noise)

Output Waveform: LVPECL

Output Waveform: CMOS

DSC2021 Page 5 MK-Q-B-P-D-12042604-2

Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C							
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.						
Preheat Time 150°C to 200°C	60-180 Sec						
Time maintained above 217°C	60-150 Sec						
Peak Temperature	255-260°C						
Time within 5°C of actual Peak	20-40 Sec						
Ramp-Down Rate	6°C/Sec Max.						
Time 25°C to Peak Temperature	8 min Max.						

Package Dimensions

3.2 x 2.5 mm 14 Lead Plastic Package

Disclaimer:

Discera makes no warranty of any kind, express or implied, with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Discera reserves the right to make changes without further notice to materials described herein. Discera does not assume any liability arising from the application or use of any product or circuit described herein. Discera does not authorize its products for use a critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Discera's product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Discera against all charges.

DISCERA, Inc. • Phone: +1 (408) 432-8600

1961 Concourse Drive, San Jose, California 95131
• Fax: +1 (408) 432-8609 • Email: sales@discera.com

USAwww.discera.com

DSC2021 Page 6 MK-Q-B-P-D-12042604-2