
DSP56300

24-BIT
DIGITAL SIGNAL PROCESSOR

FAMILY MANUAL

Motorola, Inc.
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive, West
Austin, Texas 78735-8598

TABLE OF CONTENTS

Paragraph Page
Number Title Number

1 CORE DESCRIPTION...1-1

2 EXPANSION PORT..2-1

2.1 INTRODUCTION ...2-1
2.2 EXPANSION PORT SIGNAL DESCRIPTION ...2-1

2.2.1 Interrupt And Mode Control ...2-1
2.2.2 Clock and Phase-Locked Loop (PLL)..2-3
2.2.3 On-Chip Emulator Interface (OnCE)/JTAG Interface2-3
2.2.4 Expansion Port (Port A)...2-4

2.3 EXPANSION PORT OPERATION...2-7
2.3.1 Static RAM support ...2-7

2.3.1.1 Synchronous Static RAM (SSRAM) Support2-7
2.3.1.2 Asynchronous Static RAM (SRAM) Support2-11

2.3.2 Dynamic Memories Support ..2-12
2.3.3 Expansion Port Stalls ..2-15

2.3.3.1 External Fetch From Synchronous SRAM.2-15
2.3.3.2 Non Synchronous SRAM Access Immediately Following Synchronous

SRAM access..2-15
2.3.4 Expansion port Disable ...2-16

2.4 BUS HANDSHAKE AND ARBITRATION ..2-16
2.4.1 Bus Arbitration Signals ..2-16
2.4.2 The Arbitration Protocol...2-17
2.4.3 Arbitration Scheme..2-18
2.4.4 Bus Arbitration Example Cases...2-19

2.4.4.1 Case 1 – Normal ...2-19
2.4.4.2 Case 2 – Bus Busy ...2-19
2.4.4.3 Case 3 – Low Priority..2-19
2.4.4.4 Case 4 – Default ...2-19
2.4.4.5 Case 5 – Bus Lock during RMW...2-19
2.4.4.6 Case 6 – Bus Park ..2-19

2.5 EXPANSION PORT CONTROL ..2-20
2.5.1 AA control Registers (one for each AA pin)...2-20

2.5.1.1 BAT(1:0) - External Access Type and pin definition- bits 1-02-21
2.5.1.2 BAAP - AA pin Polarity - bit 2..2-22
2.5.1.3 BPEN - Program space Enable - bit 3 ..2-22
MOTOROLA TABLE OF CONTENTS i

Table of Contents (Continued)
Paragraph Page

Number Title Number

2.5.1.4 BXEN - X data space Enable - bit 4 ... 2-22
2.5.1.5 BYEN - Y data space Enable - bit 5 ... 2-22
2.5.1.6 BAM - Address Muxing - bit 6 ... 2-22
2.5.1.7 BPAC- Packing Enable - bit 7... 2-23
2.5.1.8 BNC(3:0) - Number of address bits to Compare - bits 11-8............ 2-23
2.5.1.9 BAC(11:0) - Address to compare - bits 23-12................................. 2-23

2.5.2 Bus Control Register ... 2-24
2.5.2.1 BA0W(4:0) - Area 0 Wait control - bits 4-0 2-24
2.5.2.2 BA1W(4:0) - Area 1 Wait control - bits 9-5 2-25
2.5.2.3 BA2W(2:0) - Area 2 Wait control - bits 12-10 2-25
2.5.2.4 BA3W(2:0) - Area 3 Wait control - bits 15-13 2-25
2.5.2.5 BDFW(4:0)- Default Area Wait control - bits 20-16......................... 2-25
2.5.2.6 BBS - Bus State - bit 21.. 2-26
2.5.2.7 BLH - Bus Lock Hold - bit 22 .. 2-26
2.5.2.8 BRH - Bus Request Hold - bit 23.. 2-26

2.5.3 IDentification Register ... 2-26
2.6 DRAM CONTROLLER .. 2-26

2.6.1 DRAM Control Register... 2-26
2.6.1.1 BCW(1:0) - In page Wait states - bits 1-0 2-27
2.6.1.2 BRW(1:0) - Out of page Wait states- bits 3-2 2-27
2.6.1.3 BPS(1:0) - DRAM Page Size - bits 9-8 ... 2-28
2.6.1.4 BPLE - Page logic Enable - bit 11 .. 2-28
2.6.1.5 BME - Mastership Enable - bit 12... 2-29
2.6.1.6 BREN - Refresh Enable - bit 13.. 2-29
2.6.1.7 BSTR - Software Triggered Refresh - bit 14................................... 2-29
2.6.1.8 BRF(7:0) Refresh rate - bits 22-15 ... 2-30
2.6.1.9 BRP - Refresh Prescaler - bit 23 .. 2-30

3 DATA ARITHMETIC LOGIC UNIT ... 3-1

3.1 DATA ALU ARCHITECTURE.. 3-1
3.1.1 Data ALU Input Registers (X1, X0, Y1, Y0) .. 3-1
3.1.2 MAC Unit... 3-2
3.1.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)...................... 3-4
3.1.4 Accumulator Shifter... 3-4
3.1.5 Bit Field Unit (BFU) ... 3-5
3.1.6 Data Shifter/Limiter ... 3-5
3.1.7 Scaling .. 3-5
3.1.8 Limiting.. 3-5

3.2 DATA ALU ARITHMETIC AND ROUNDING... 3-6
3.2.1 Data Representation ... 3-6
ii TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

3.2.2 Rounding Modes ...3-8
3.2.2.1 Convergent Rounding ...3-8
3.2.2.2 Two’s Complement Rounding...3-8

3.2.3 Arithmetic Saturation Mode ...3-11
3.2.4 Multiprecision Arithmetic Support ..3-12

3.2.4.1 Double Precision Multiply Mode..3-13
3.2.5 Block Floating Point FFT Support ...3-14

3.3 DATA ALU PROGRAMMING MODEL ..3-15
3.4 SIXTEEN BIT ARITHMETIC MODE ..3-15

3.4.1 Moves in sixteen bit arithmetic mode ..3-16
3.4.1.1 Moves into registers or accumulators ...3-16
3.4.1.2 Moves from registers or accumulators..3-17
3.4.1.3 Short Immediate moves ..3-18
3.4.1.4 Scaling and Limiting..3-18

3.4.2 Sixteen bit arithmetic ...3-18
3.5 PIPELINE CONFLICTS ...3-20

4 ADDRESS GENERATION UNIT ..4-1

4.1 AGU ARCHITECTURE..4-1
4.2 SIXTEEN-BIT COMPATIBILITY MODE ..4-2
4.3 PROGRAMMING MODEL ...4-3

4.3.1 Address Register Files (R0 - R3, EP and R4 - R7)4-3
4.3.1.1 Stack Extension Pointer (EP)..4-4

4.3.2 Offset Register Files (N0 - N3 and N4 - N7)..4-4
4.3.3 Modifier Register Files (M0 - M3 and M4 - M7)..4-4

4.4 ADDRESSING MODES..4-4
4.4.1 Register Direct Mode...4-4

4.4.1.1 Data or Control Register Direct ...4-5
4.4.1.2 Address Register Direct ..4-5

4.4.2 Address Register Indirect Modes ..4-5
4.4.2.1 No Update (Rn)...4-5
4.4.2.2 Postincrement By 1 (Rn)+...4-5
4.4.2.3 Postdecrement By 1 (Rn)- ...4-5
4.4.2.4 Postincrement By Offset Nn (Rn)+Nn...4-5
4.4.2.5 Postdecrement By Offset Nn (Rn)-Nn...4-5
4.4.2.6 Indexed By Offset Nn (Rn+Nn) ...4-6
4.4.2.7 Predecrement By 1 -(Rn) ..4-6
4.4.2.8 Short displacement (Rn+short displacement)4-6
4.4.2.9 Long displacement (Rn+long displacement).....................................4-6

4.4.3 PC Relative Modes..4-6
MOTOROLA TABLE OF CONTENTS iii

Table of Contents (Continued)
Paragraph Page

Number Title Number

4.4.3.1 Short Displacement PC Relative .. 4-6
4.4.3.2 Long Displacement PC Relative... 4-6
4.4.3.3 Address Register PC Relative .. 4-7

4.4.4 Special Address Modes .. 4-7
4.4.4.1 Immediate Data .. 4-7
4.4.4.2 Immediate Short Data... 4-7
4.4.4.3 Absolute Address.. 4-7
4.4.4.4 Absolute Short Address.. 4-7
4.4.4.5 Short Jump Address ... 4-7
4.4.4.6 I/O Short Address ... 4-7
4.4.4.7 Implicit Reference... 4-7

4.5 ADDRESS MODIFIER TYPES.. 4-8
4.5.1 Linear Modifier (Mn=$XXFFFF) ... 4-8
4.5.2 Reverse-Carry Modifier (Mn=$000000) ... 4-8
4.5.3 Modulo Modifier (Mn=MODULUS–1) .. 4-8
4.5.4 Multiple Wrap-Around Modulo Modifier.. 4-11
4.5.5 Address-Modifier-Type Encoding Summary ... 4-11

5 INSTRUCTION CACHE CONTROLLER.. 5-1

5.1 INTRODUCTION... 5-1
5.2 INSTRUCTION CACHE ARCHITECTURE ... 5-1

5.2.1 Instruction Cache Structure... 5-1
5.2.2 Cache Programmer’s Model ... 5-2
5.2.3 Cache Operation... 5-3

5.2.3.1 program fetch.. 5-3
5.2.3.2 hit .. 5-3
5.2.3.3 word miss when burst mode is disabled... 5-3
5.2.3.4 word miss when burst mode is enabled.. 5-3
5.2.3.5 sector miss.. 5-4

5.2.4 Default Mode On Hardware Reset .. 5-4
5.2.5 Cache Locking .. 5-5
5.2.6 Cache Unlocking... 5-5
5.2.7 Cache Flush.. 5-6
5.2.8 Sector Replacement Unit .. 5-7
5.2.9 Data Transfers to/from ICACHE Space .. 5-7

5.2.9.1 DMA transfers... 5-7
5.2.9.2 Software-Controlled transfers ... 5-7

5.2.10 Cache Observability Via OnCE... 5-8
iv TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

6 PROGRAM CONTROL UNIT ..6-1

6.1 OVERVIEW ...6-1
6.2 PROGRAM CONTROL UNIT ARCHITECTURE ...6-2

6.2.1 Instruction Pipeline ..6-2
6.2.2 Clock Oscillator ...6-3

6.3 PROGRAMMING MODEL ...6-4
6.3.1 Program Counter (PC) ..6-4
6.3.2 Vector Base Address Register (VBA)..6-4
6.3.3 Loop Counter Register (LC) ..6-5
6.3.4 Loop Address Register (LA) ..6-5
6.3.5 System Stack (SS) ..6-5
6.3.6 Stack Extension Pointer (EP) ..6-6
6.3.7 Stack Size Register (SZ) ...6-6
6.3.8 Stack Counter Register (SC)...6-6
6.3.9 Stack Pointer Register (SP) ..6-7

6.3.9.1 Stack Pointer (Bits 0–3) ..6-7
6.3.9.2 Stack Error Flag / P4 bit (Bit 4) ...6-7
6.3.9.3 Underflow Flag / P5 bit (Bit 5) ...6-8

6.3.10 Status Register (SR) ...6-9
6.3.10.1 Carry (Bit 0)...6-10
6.3.10.2 Overflow (Bit 1) ...6-10
6.3.10.3 Zero (Bit 2) ..6-10
6.3.10.4 Negative (Bit 3) ...6-11
6.3.10.5 Unnormalized (Bit 4) ...6-11
6.3.10.6 Extension (Bit 5)..6-11
6.3.10.7 Limit (Bit 6) ..6-11
6.3.10.8 Scaling (Bit 7)..6-12
6.3.10.9 Interrupt Masks (Bits 8 and 9)...6-12
6.3.10.10 Scaling Mode (Bits 10 and 11)..6-12
6.3.10.11 Reserved SR Bit (Bit 12)...6-13
6.3.10.12 Sixteen-Bit Compatibility Mode (Bit 13)6-13
6.3.10.13 Double Precision Multiply Mode (Bit 14)6-13
6.3.10.14 DO-Loop Flag (Bit 15)...6-14
6.3.10.15 DO-Forever flag (Bit 16)..6-14
6.3.10.16 Sixteen-Bit Arithmetic Mode (Bit 17) ...6-14
6.3.10.17 Reserved SR Bit (Bit 18)...6-14
6.3.10.18 Cache Enable (Bit 19)...6-15
6.3.10.19 Arithmetic Saturation Mode (Bit 20) ..6-15
6.3.10.20 Rounding Mode (Bit 21) ..6-15
MOTOROLA TABLE OF CONTENTS v

Table of Contents (Continued)
Paragraph Page

Number Title Number

6.3.10.21 Core Priority (Bits 22 and 23) ... 6-15
6.3.11 Operating Mode Register .. 6-16

6.3.11.1 Chip Operating Mode (Bits 0, 1,2 and 3) 6-17
6.3.11.2 External Bus Disable (Bit 4).. 6-17
6.3.11.3 Reserved COM Bit (Bit 5) ... 6-17
6.3.11.4 Stop Delay (Bit 6).. 6-17
6.3.11.5 Memory Switch (Bit 7)... 6-18
6.3.11.6 Core-Dma Priority Bits (Bits 9 and 8).. 6-18
6.3.11.7 Burst Mode Enable (Bit 10)... 6-18
6.3.11.8 TA Synchronize Select (Bit 11)... 6-18
6.3.11.9 Bus Release Timing (Bit 12) ... 6-19
6.3.11.10 Reserved EOM Bits (Bits 15, 14 and 13).................................... 6-19
6.3.11.11 XY Select for Stack extension (Bit 16).. 6-19
6.3.11.12 Extended Stack Underflow Flag (Bit 17)..................................... 6-19
6.3.11.13 Extended Stack Overflow Flag (Bit 18)....................................... 6-19
6.3.11.14 Extended Stack Wrap Flag (Bit 19) .. 6-20
6.3.11.15 Extended Stack Enable (Bit 20).. 6-20
6.3.11.16 Reserved SCS Bits (Bits 21-23) ... 6-20

6.4 SIXTEEN-BIT COMPATIBILITY MODE .. 6-20

7 PROCESSING STATES.. 7-1

7.1 NORMAL PROCESSING STATE.. 7-1
7.1.1 Instruction Pipeline.. 7-1

7.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING) 7-2
7.2.1 Interrupt Sources... 7-3

7.2.1.1 Hardware Interrupt Source ... 7-4
7.2.1.2 Software Interrupt Source... 7-5

7.2.2 Interrupt Priority Structure ... 7-5
7.2.2.1 Interrupt Priority Levels... 7-6
7.2.2.2 Exception Priorities within an IPL ... 7-7

7.2.3 Instructions Preceding the Interrupt Instruction Fetch............................... 7-7
7.2.4 Interrupt Types.. 7-8
7.2.5 Interrupt Arbitration ... 7-8
7.2.6 Interrupt Instruction Fetch ... 7-10
7.2.7 Interrupt Instruction Execution .. 7-10
vi TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

7.3 RESET PROCESSING STATE ...7-12
7.4 WAIT PROCESSING STATE ..7-12
7.5 STOP PROCESSING STATE ...7-13

8 DMA CONTROLLER ...8-1

8.1 DMA CONTROLLER PROGRAMMING MODEL ..8-2
8.1.1 DMA Source Address Register (DSR) ..8-3
8.1.2 DMA Destination Address Register (DDR)..8-3
8.1.3 DMA Offset Register (DOR) ..8-3
8.1.4 DMA Counter (DCO) ...8-4

8.1.4.1 DMA counter mode A - single counter ..8-4
8.1.4.2 DMA counter mode B - dual counter...8-5
8.1.4.3 DMA counter modes C, D and E- triple counter................................8-5

8.1.5 DMA Control Register (DCR) ..8-8
8.1.5.1 DCR DMA Channel Enable Bit (DE) Bit 23.......................................8-8
8.1.5.2 DCR DMA Interrupt Enable Bit (DIE) Bit 22......................................8-8
8.1.5.3 DCR DMA Transfer Mode (DTM2-DTM0)- bits 21:19.......................8-8
8.1.5.4 DCR DMA Channel priority(DPR1-DPR0) - bits 18:178-10
8.1.5.5 DCR DMA Continuous Mode (DCON) - bit 168-11
8.1.5.6 DCR DMA Request Source (DRS0-DRS4) Bits 15-118-11
8.1.5.7 DCR DMA three Dimensional mode (D3D)- bit 10..........................8-12
8.1.5.8 DCR DMA Address Mode (DAM5-DAM0)- bits 9:4.........................8-12
8.1.5.9 DCR DMA Destination Space (DDS0-DDS1) Bits 3, 28-16
8.1.5.10 DCR DMA Source Space (DSS0-DSS1) Bits 1, 08-16

8.1.6 DMA Status Register (DSTR)..8-16
8.1.6.1 DSTR DMA Channel Transfer Done Status (DTD)- bits 5-0...........8-17
8.1.6.2 DSTR reserved bits - bits 23:12 and 7:6...8-17
8.1.6.3 DSTR DMA Active state (DACT) - bit 8 ..8-17
8.1.6.4 DSTR DMA Active Channel (DCH2-DCH0) - bits 11:98-17

8.2 DMA Restrictions ...8-18

9 PLL and CLOCK GENERATOR...9-1

9.1 INTRODUCTION ...9-1
9.1.1 Clock Input Division...9-2
9.1.2 Frequency Multiplication..9-2
9.1.3 Skew Elimination ...9-2
9.1.4 Low Power Divide and Output Stage ..9-3

9.2 PLL BLOCK DIAGRAM ...9-3
9.2.1 Frequency Pre-Divider ..9-4
9.2.2 Phase Frequency Detector and Charge Pump Loop Filter9-4
MOTOROLA TABLE OF CONTENTS vii

Table of Contents (Continued)
Paragraph Page

Number Title Number

9.2.3 PLL Control Register (PCTL) .. 9-4
9.2.3.1 Multiplication Factor Bits (MF0-MF11) - Bits 0-11 9-5
9.2.3.2 Division Factor Bits (DF2-DF0) - Bits 12-14 9-6
9.2.3.3 Crystal Range Bit (XTLR) - Bit 15... 9-7
9.2.3.4 XTAL Disable Bit (XTLD) - Bit 16.. 9-7
9.2.3.5 STOP Processing State Bit (PSTP) - Bit 17 9-7
9.2.3.6 PLL Enable Bit (PEN) - Bit 18... 9-8
9.2.3.7 Clock Output Disable Bit (COD) - Bit 19... 9-8
9.2.3.8 PreDivider Factor Bits (PD0-PD3) - Bits 20-23................................. 9-9

9.2.4 Voltage Controlled Oscillator (VCO) ... 9-9
9.2.5 Divide by 2 .. 9-10
9.2.6 Frequency Divider ... 9-10

9.3 CLKGEN BLOCK DIAGRAM... 9-10
9.3.1 Low Power Divider (LPD).. 9-10
9.3.2 Divide by 2 .. 9-11
9.3.3 Operating Frequency .. 9-11
9.3.4 Synchronization among EXTAL, CLKOUT, and the Internal Clock......... 9-11

9.4 PLL PINS... 9-11

10 ON-CHIP EMULATOR (OnCE™) .. 10-1

10.1 INTRODUCTION... 10-1
10.2 ON-CHIP EMULATION (OnCE) PINS.. 10-1

10.2.1 Debug Event (DE) ... 10-2
10.3 OnCE CONTROLLER.. 10-2

10.3.1 OnCE Command Register (OCR)... 10-3
10.3.1.1 Register Select (RS4-RS0) Bits 0-4.. 10-3
10.3.1.2 Exit Command (EX) Bit 5.. 10-3
10.3.1.3 Go Command (GO) Bit 6 .. 10-5
10.3.1.4 Read/Write Command (R/W) Bit 7.. 10-5

10.3.2 OnCE Decoder (ODEC)... 10-5
10.3.3 OnCE Status and Control Register (OSCR) 10-5

10.3.3.1 Trace Mode Enable (TME) Bit 0 ... 10-6
10.3.3.2 Interrupt Mode Enable (IME) Bit 1 .. 10-6
10.3.3.3 Software Debug Occurrence (SWO) Bit 2 10-6
10.3.3.4 Memory Breakpoint Occurrence (MBO) Bit 3 10-6
10.3.3.5 Trace Occurrence (TO) Bit 4 .. 10-6
10.3.3.6 Cache Hit (HIT) Bit 5... 10-6
10.3.3.7 Core Status (OS0,OS1) Bits 6-7... 10-6
10.3.3.8 Reserved Bits 8-23 ... 10-7
viii TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

10.4 OnCE MEMORY BREAKPOINT LOGIC ..10-7
10.4.1 Memory Address Latch (OMAL)..10-7
10.4.2 Memory Limit Register 0 (OMLR0)..10-7
10.4.3 Memory Address Comparator 0 (OMAC0) ..10-8
10.4.4 Memory Limit Register 1 (OMLR1)..10-8
10.4.5 Memory Address Comparator 1 (OMAC1) ..10-8
10.4.6 Breakpoint Control Register (OBCR) ..10-8

10.4.6.1 Memory Breakpoint Select (MBS0-MBS1) Bits 0-110-9
10.4.6.2 Breakpoint 0 Read/Write Select (RW00-RW01) Bits 2-310-9
10.4.6.3 Breakpoint 0 Condition Code Select (CC00-CC01) Bits4-5........10-10
10.4.6.4 Breakpoint1 Read/Write Select (RW10-RW11) Bits 6-710-10
10.4.6.5 Breakpoint1 Condition Code Select (CC10-CC11) Bits8-9.........10-10
10.4.6.6 Breakpoint 0 and 1 Event Select (BT1-BT0) Bits10-11...............10-11

10.4.7 Memory Breakpoint Counter (OMBC) ...10-11
10.5 CACHE SUPPORT..10-12
10.6 OnCE TRACE LOGIC ..10-13

10.6.1 Trace Counter (OTC) ..10-14
10.7 METHODS OF ENTERING THE DEBUG MODE10-14

10.7.1 External Debug Request During RESET...10-15
10.7.2 External Debug Request During Normal Activity.................................10-15
10.7.3 Executing the JTAG DEBUG_REQUEST Instruction..........................10-15
10.7.4 External Debug Request During STOP...10-15
10.7.5 External Debug Request During WAIT..10-15
10.7.6 Software Request During Normal Activity ...10-15
10.7.7 Enabling Trace Mode ..10-16
10.7.8 Enabling Memory Breakpoints ..10-16

10.8 PIPELINE INFORMATION AND GDB REGISTER......................................10-16
10.8.1 PDB Register (OPDBR) ..10-16
10.8.2 PIL Register (OPILR) ..10-17
10.8.3 GDB Register (OGDBR)..10-17

10.9 TRACE BUFFER ...10-17
10.9.1 PAB Register for Fetch (OPABFR) ...10-17
10.9.2 PAB Register for Decode (OPABDR)..10-17
10.9.3 PAB Register for Execute (OPABEX) ...10-18
10.9.4 Trace Buffer...10-18

10.10 SERIAL PROTOCOL DESCRIPTION ..10-19
10.10.1 OnCE Commands ..10-20
MOTOROLA TABLE OF CONTENTS ix

Table of Contents (Continued)
Paragraph Page

Number Title Number

0

10.11 TARGET SITE DEBUG SYSTEM REQUIREMENTS 10-20
10.12 EXAMPLES OF USING THE OnCE... 10−2

10.12.1 Checking whether the chip has entered the Debug Mode 10-21
10.12.2 Polling the JTAG instruction shift register ... 10-21
10.12.3 Saving Pipeline Information .. 10-21
10.12.4 Reading the Trace Buffer .. 10-22
10.12.5 Displaying a specified register .. 10-22
10.12.6 Displaying X memory area starting at address $xxxxxx.................... 10-23
10.12.7 Returning from Debug Mode to Normal Mode to current program.... 10-24
10.12.8 Returning from Debug Mode to Normal Mode to a new program 10-24

10.13 EXAMPLES OF JTAG-OnCE INTERACTION... 10-25

11 JTAG (IEEE 1149.1) Test Access Port ... 11-1

11.1 INTRODUCTION... 11-1
11.2 OVERVIEW ... 11-1

11.2.1 JTAG PINS.. 11-3
11.2.1.1 Test Clock (TCK) .. 11-3
11.2.1.2 Test Mode Select (TMS)... 11-3
11.2.1.3 Test Data Input (TDI) .. 11-3
11.2.1.4 Test Data Output (TDO) ... 11-3
11.2.1.5 Test Reset (TRST~) ... 11-3

11.2.2 TAP CONTROLLER.. 11-3
11.2.3 BOUNDARY SCAN REGISTER .. 11-4
11.2.4 INSTRUCTION REGISTER .. 11-5

11.2.4.1 EXTEST.. 11-6
11.2.4.2 SAMPLE/PRELOAD... 11-6
11.2.4.3 BYPASS .. 11-6
11.2.4.4 IDCODE.. 11-7
11.2.4.5 HI-Z... 11-7
11.2.4.6 CLAMP ... 11-8
11.2.4.7 ENABLE_ONCE ... 11-8
11.2.4.8 DEBUG_REQUEST.. 11-8

11.3 DSP56300 RESTRICTIONS ... 11-9

12 OPERATING MODES AND MEMORY SPACES 12-1

12.1 CHIP OPERATING MODES.. 12-1
12.1.1 Expanded Modes (Modes 0 and 8) ... 12-2
12.1.2 System Configuration Modes 1-15 (Mode 1-7 and 9-F)........................ 12-2

12.2 DSP56300 CORE MEMORY MAP.. 12-2
12.2.1 X Data Memory Space.. 12-2
x TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

12.2.2 Y Data Memory Space ..12-5
12.2.3 Program Memory...12-6

12.3 SIXTEEN-BIT COMPATIBILITY MODE ..12-7
12.4 MEMORY SWITCH MODE..12-8

INSTRUCTION SET

Appendix A INSTRUCTION SET ..A-3

A-1 INTRODUCTION...A-3
A-2 INSTRUCTION FORMATS AND SYNTAX ...A-3

A-2.1 Operand Sizes ..A-5
A-2.2 Data Organization in Registers...A-6
A-2.3 Data ALU Registers ..A-6
A-2.4 AGU Registers..A-7
A-2.5 Program Control Registers ...A-7
A-2.6 Data Organization in Memory ...A-8

A-3 INSTRUCTION GROUPS ...A-8
A-3.1 Arithmetic Instructions ..A-9
A-3.2 Logical Instructions ...A-11
A-3.3 Bit Manipulation Instructions...A-12
A-3.4 Loop Instructions ..A-13
A-3.5 Move Instructions..A-13
A-3.6 Program Control Instructions ..A-15

A-4 INSTRUCTION GUIDE ...A-17
A-4.1 NOTATION ...A-17

A-5 CONDITION CODE COMPUTATION ...A-22
A-6 INSTRUCTIONS DESCRIPTIONS ...A-26

A-6.1 Absolute Value (ABS) ...A-27
A-6.2 Add Long with Carry (ADC) ..A-28
A-6.3 Add (ADD) ...A-29
A-6.4 Shift Left and Add Accumulators (ADDL) ...A-31
A-6.5 Shift Right and Add Accumulators (ADDR) ..A-32
A-6.6 Logical AND (AND)...A-33
A-6.7 AND Immediate with Control Register (ANDI) ..A-35
A-6.8 Arithmetic Shift Accumulator Left (ASL) ...A-37
A-6.9 Arithmetic Shift Accumulator Right (ASR) ..A-40
MOTOROLA TABLE OF CONTENTS xi

Table of Contents (Continued)
Paragraph Page

Number Title Number

A-6.10 Branch Conditionally (Bcc) ...A-43
A-6.11 Bit Test and Change (BCHG)...A-45
A-6.12 Bit Test and Clear (BCLR)..A-48
A-6.13 Branch Always (BRA)...A-51
A-6.14 Branch if Bit Clear (BRCLR)...A-53
A-6.15 Exit Current Do Loop Conditionally (BRKcc) ..A-56
A-6.16 Branch if Bit Set (BRSET) ..A-57
A-6.17 Branch to Subroutine Conditionally (BScc) ..A-60
A-6.18 Branch to Subroutine if Bit Clear (BSCLR)...A-62
A-6.19 Bit Test and Set (BSET) ...A-65
A-6.20 Branch to Subroutine (BSR)...A-68
A-6.21 Branch to Subroutine if Bit Set (BSSET) ..A-70
A-6.22 Bit Test (BTST)...A-73
A-6.23 Count Leading Bits (CLB)...A-75
A-6.24 Clear accumulator (CLR)...A-77
A-6.25 Compare (CMP) ...A-78
A-6.26 Compare Magnitude (CMPM)...A-80
A-6.27 Compare Unsigned (CMPU)...A-82
A-6.28 Enter Debug Mode (DEBUG) ...A-83
A-6.29 Enter Debug Mode Conditionally (DEBUGcc)A-84
A-6.30 Decrement by One (DEC) ..A-85
A-6.31 Divide Iteration (DIV) ..A-86
A-6.32 Double Precision MAC with 24 bit Right Shift (DMAC).........................A-89
A-6.33 Start Hardware Loop (DO)..A-91
A-6.34 Start Infinite Loop (DO FOREVER) ..A-95
A-6.35 Start PC Relative Hardware Loop (DOR)...A-97
A-6.36 Start PC Relative Infinite Loop (DOR FOREVER)..............................A-100
A-6.37 End Current DO Loop (ENDDO) ..A-102
A-6.38 Logical Exclusive OR (EOR) ..A-103
A-6.39 Bit Field (EXTRACT) ..A-105
A-6.40 Extract Unsigned Bit Field (EXTRACTU) ...A-108
A-6.41 Execute Conditionally without CCR Update (IFcc)A-111
A-6.42 Execute Conditionally with CCR Update (IFcc.U)A-112
A-6.43 Illegal Instruction Interrupt (ILLEGAL) ..A-113
A-6.44 Increment by One (INC) ...A-115
A-6.45 Insert Bit field (INSERT) ...A-116
A-6.46 Jump Conditionally (JCC)...A-119
A-6.47 Jump if Bit Clear (JCLR)...A-121
A-6.48 Jump (JMP) ..A-123
xii TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

A-6.49 Jump to Subroutine Conditionally (JScc)..A-124
A-6.50 Jump to Subroutine if Bit Clear (JSCLR) ..A-126
A-6.51 Jump if Bit Set (JSET) ..A-129
A-6.52 Jump to Subroutine (JSR) ..A-131
A-6.53 Jump to Subroutine if Bit Set (JSSET)..A-133
A-6.54 Load PC Relative Address (LRA) ...A-136
A-6.55 Logical Shift Left (LSL) ...A-138
A-6.56 Logical Shift Right (LSR) ..A-141
A-6.57 Load Updated Address (LUA)...A-144
A-6.58 Signed Multiply-Accumulate (MAC) ..A-146
A-6.59 Signed MAC with Immediate Operand (MACI)A-148
A-6.60 Mixed Multiply-Accumulate (MAC su/uu)..A-149
A-6.61 Signed MAC and Round (MACR) ...A-150
A-6.62 Signed MAC and Round with Immediate Operand (MACRI)..............A-152
A-6.63 Transfer by Signed Value (MAX) ..A-154
A-6.64 Transfer by Magnitude (MAXM)..A-155
A-6.65 Merge Two Half Words (MERGE) ..A-156
A-6.66 Move Data (MOVE) ..A-158
A-6.67 NO Parallel Data Move ...A-159
A-6.68 Immediate Short Data Move (I)...A-160
A-6.69 Register to Register Data Move (R)..A-162
A-6.70 Address Register Update (U)..A-164
A-6.71 X Memory Data Move (X:) ..A-165
A-6.72 X Memory and Register Data Move (X:R) ...A-168
A-6.73 Y Memory Data Move (Y:) ..A-170
A-6.74 Register and Y Memory Data Move (R:Y) ...A-173
A-6.75 Long Memory Data Move (L:) ...A-176
A-6.76 XY Memory Data Move (X: Y:) ...A-178
A-6.77 Move Control Register (MOVEC) ...A-180
A-6.78 Move Program Memory (MOVEM) ...A-183
A-6.79 Move Peripheral Data (MOVEP)...A-185
A-6.80 Signed Multiply (MPY) ...A-188
A-6.81 Mixed Multiply (MPY su/uu) ...A-190
A-6.82 Signed Multiply with Immediate Operand (MPYI)A-191
A-6.83 Signed Multiply and Round (MPYR) ...A-192
A-6.84 Signed Multiply and Round with Immediate Operand (MPYRI).........A-194
A-6.85 Negate Accumulator (NEG) ..A-196
A-6.86 No Operation (NOP) ...A-197
A-6.87 Norm Accumulator Iteration (NORM)..A-198
MOTOROLA TABLE OF CONTENTS xiii

Table of Contents (Continued)
Paragraph Page

Number Title Number

A-6.88 Fast Accumulator Normalization (NORMF) ..A-200
A-6.89 Logical Complement (NOT)..A-202
A-6.90 Logical Inclusive OR (OR)..A-203
A-6.91 OR Immediate with Control Register (ORI) ..A-205
A-6.92 Program-Cache Flush (PFLUSH)...A-207
A-6.93 Program-Cache Flush Unlock Sectors(PFLUSHUN)A-208
A-6.94 Program-Cache Global Unlock (PFREE) ...A-209
A-6.95 Lock Instruction Cache Relative Sector (PLOCKR)A-210
A-6.96 Unlock instruction Cache Sector (PUNLOCK)....................................A-211
A-6.97 Unlock instruction Cache Relative Sector (PUNLOCKR)...................A-212
A-6.98 Repeat Next Instruction (REP) ...A-213
A-6.99 Reset On-Chip Peripheral Devices (RESET)A-215
A-6.100 Round Accumulator (RND)...A-216
A-6.101 Rotate Left (ROL) ...A-218
A-6.102 Rotate Right (ROR) ..A-220
A-6.103 Return from Interrupt (RTI) ...A-222
A-6.104 Return from Subroutine (RTS)..A-223
A-6.105 Subtract Long with Carry (SBC) ..A-224
A-6.106 Stop Instruction Processing (STOP)...A-225
A-6.107 Subtract (SUB) ..A-227
A-6.108 Shift Left and Subtract Accumulators (SUBL)A-229
A-6.109 Shift Right and Subtract Accumulators (SUBR)A-231
A-6.110 Transfer Conditionally (Tcc) ...A-232
A-6.111 Transfer Data ALU Register (TFR)...A-234
A-6.112 Software Interrupt (TRAP)..A-235
A-6.113 Conditional Software Interrupt (TRAPcc) ..A-236
A-6.114 Test Accumulator (TST) ..A-237
A-6.115 Wait for interrupt (WAIT)...A-238

A-7 INSTRUCTION PARTIAL ENCODING...A-239
A-7.1 Partial Encodings for Use in Instruction Encoding................................A-239
A-7.2 Parallel Instruction Encoding of the Operation Code............................A-251

A-7.2.1 Multiply Instruction Encoding ...A-251
A-7.2.2 NonMultiply Instruction Encoding...A-252

INSTRUCTION EXECUTION TIMING

Appendix B INSTRUCTION EXECUTION TIMING..B-3
xiv TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

B-1 INTRODUCTION...B-3
B-2 INSTRUCTION TIMING ..B-3
B-3 INSTRUCTION SEQUENCE DELAYS ...B-13

B-3.1 External Bus Wait States ..B-13
B-3.2 External Bus Contention ...B-13
B-3.3 Instruction Fetch delays..B-14
B-3.4 Data ALU Interlock..B-15

B-3.4.1 Arithmetic Stall ...B-15
B-3.4.2 Transfer Stall ..B-15
B-3.4.3 Status Stall ...B-15

B-3.5 Address Registers Interlocks ..B-15
B-3.5.1 Conditional Transfer Interlock ..B-15
B-3.5.2 Address Generation Interlock...B-15

B-3.6 Stack Extension Delays ..B-17
B-3.7 Program Flow-Control delays ...B-18

B-3.7.1 MOVE to CR...B-19
B-3.7.2 MOVE from CR ..B-19
B-3.7.3 MOVE to SP/SC ...B-19
B-3.7.4 MOVE to LA register ..B-19
B-3.7.5 MOVE to SR...B-19
B-3.7.6 MOVE to SSH/SSL...B-19
B-3.7.7 JMP to (LA) or to (LA-1) ...B-20
B-3.7.8 RTI to (LA) or to (LA-1)...B-20
B-3.7.9 MOVE from SSH ..B-20
B-3.7.10 Conditional Instructions ..B-20
B-3.7.11 Interrupt Abort ..B-20
B-3.7.12 Degenerated DO loop ..B-20
B-3.7.13 Annulled REP and DO..B-20

B-4 INSTRUCTION SEQUENCE RESTRICTIONS...B-21
B-4.1 Restrictions Near the End of DO Loops..B-21

B-4.1.1 At LA-3 ...B-21
B-4.1.2 At LA-2 ...B-21
B-4.1.3 At LA-1 ...B-22
B-4.1.4 At LA...B-22

B-4.2 General DO Restrictions...B-22
B-4.3 ENDDO Restrictions ...B-23
B-4.4 BRKcc Restrictions ...B-23
B-4.5 RTI and RTS Restrictions ...B-23
B-4.6 SP, SC and SSH/SSL Manipulation Restrictions....................................B-23
MOTOROLA TABLE OF CONTENTS xv

Table of Contents (Continued)
Paragraph Page

Number Title Number

B-4.7 Fast Interrupt Routines...B-24
B-4.8 REP Restrictions ..B-24
B-4.9 Stack Extension Restrictions..B-24
B-4.10 Instruction Cache General Restrictions..B-25

B-5 Peripheral pipeline restrictions..B-25
B-5.1 Polling a peripheral device for write..B-25
B-5.2 Writing to a read-only register ..B-26

BENCHMARK PROGRAMS

Appendix C BENCHMARK PROGRAMS ..C-3

C-1 INTRODUCTION ..C-3
C-2 SET OF BENCHMARKS ..C-3

C-2.1 Real Multiply...C-3
C-2.2 N Real Multiplies ..C-3
C-2.3 Real Update ...C-4
C-2.4 N Real Updates..C-4
C-2.5 Real Correlation Or Convolution (FIR Filter) ..C-5
C-2.6 Real * Complex Correlation Or Convolution (FIR Filter)...........................C-7
C-2.7 Complex Multiply ..C-7
C-2.8 N Complex Multiplies..C-8
C-2.9 Complex Update...C-9
C-2.10 N Complex Updates ...C-10
C-2.11 Complex Correlation Or Convolution (FIR Filter)C-11
C-2.12 Nth Order Power Series (Real) ..C-12
C-2.13 2nd Order Real Biquad IIR Filter ..C-13
C-2.14 N Cascaded Real Biquad IIR Filter ..C-14
C-2.15 N Radix-2 FFT Butterflies (DIT, in-place algorithm)C-15
C-2.16 True (Exact) LMS Adaptive Filter ..C-16
C-2.17 Delayed LMS Adaptive Filter..C-19
C-2.18 FIR Lattice Filter ...C-20
C-2.19 All Pole IIR Lattice Filter ...C-21
C-2.20 General Lattice Filter ..C-23
C-2.21 Normalized Lattice Filter...C-24
C-2.22 [1x3][3x3] Matrix Multiplication ...C-25
C-2.23 N Point 3x3 2-D FIR Convolution ...C-26
xvi TABLE OF CONTENTS MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number

C-2.24 Parsing data stream .. C-28
C-2.25 Creating data stream ... C-30
C-2.26 Parsing Hoffman code data stream ... C-32

C-3 BENCHMARK OVERVIEW... C-36
MOTOROLA TABLE OF CONTENTS xvii

Table of Contents (Continued)
Paragraph Page

Number Title Number
xviii TABLE OF CONTENTS MOTOROLA

LIST of FIGURES

Figure Page
Number Title Number

1 CORE DESCRIPTION

Figure 1-1. DSP56300 Core Block Diagram .. 1-3

2 EXPANSION PORT

Figure 2-1. Bus operation - zero wait states Sync. SRAM access....................... 2-9
Figure 2-2. Bus operation - one wait state Sync. SRAM access........................ 2-10
Figure 2-3. Synchronous Static RAM connection diagram................................. 2-10
Figure 2-4. Bus operation one wait state - SRAM access.................................. 2-11
Figure 2-5. Static RAM connection diagram... 2-12
Figure 2-6. Dynamic RAM connection diagram.. 2-14
Figure 2-7. Bus operation two wait states - DRAM read access (in-page)......... 2-14
Figure 2-8. Bus operation two wait states - DRAM write access (in-page) 2-15
Figure 2-9. Bus Arbitration scheme.. 2-18
Figure 2-10. Address Attribute Registers (AAR3-0) ... 2-20
Figure 2-11. Bus Control Register (BCR)... 2-24
Figure 2-12. DRAM Control Register (DCR) .. 2-27

3 DATA ARITHMETIC LOGIC UNIT

Figure 3-1. Data ALU Block Diagram... 3-3
Figure 3-2. Bit Weighting and Alignment of Operands... 3-7
Figure 3-3. Integer/Fractional Multiplication ... 3-7
Figure 3-4. Convergent Rounding (no scaling) .. 3-9
Figure 3-5. Two’s Complement Rounding (no scaling) 3-10
Figure 3-6. DMAC Implementation... 3-12
Figure 3-7. Double Precision Multiplication Using DMAC 3-13
Figure 3-8. Double precision algorithm .. 3-14
Figure 3-9. DSP56300 Core Programming Model ... 3-15
Figure 3-10. Sixteen Bit Arithmetic Mode Data Organization............................... 3-16
Figure 3-11. Pipeline Conflicts - Arithmetic stall... 3-20
Figure 3-12. Pipeline Conflicts - Status stall... 3-21
Figure 3-13. Pipeline Conflicts - Transfer stall ... 3-22
MOTOROLA LIST of FIGURES xix

xx

List of Figures (Continued)
Figure Page

Number Title Number

4 ADDRESS GENERATION UNIT

Figure 4-1. AGU Block Diagram... 4-1
Figure 4-2. AGU Programming Model.. 4-3

5 INSTRUCTION CACHE CONTROLLER

Figure 5-1. Instruction Cache Block Diagram... 5-2

6 PROGRAM CONTROL UNIT

Figure 6-1. Program Control Unit Architecture ... 6-2
Figure 6-2. Seven Stage Pipeline... 6-3
Figure 6-3. Program Control Unit Programming Model.. 6-4
Figure 6-4. SP Register Format ... 6-7
Figure 6-5. Status Register Format .. 6-10
Figure 6-6. Operating Mode Register (OMR) Format... 6-17
Figure 6-7. Central Processor Programming Model... 6-21

7 PROCESSING STATES

Figure 7-1. Interrupt Priority Register C (IPRC) ... 7-6
Figure 7-2. Interrupt Priority Register P (IPRP).. 7-7

8 DMA CONTROLLER

Figure 8-1. DMA Control Register .. 8-8
Figure 8-2. DMA Status Register ... 8-17

9 PLL and CLOCK GENERATOR

Figure 9-1. PLL & CLOCK Block Diagram ... 9-1
Figure 9-2. PLL Block Diagram .. 9-4
Figure 9-3. PLL Control Register (PCTL) ... 9-5
Figure 9-4. CLKGEN Block Diagram.. 9-10

10 ON-CHIP EMULATOR (OnCE™)

Figure 10-1. OnCE Block Diagram.. 10-1
Figure 10-2. OnCE Multiprocessor Configuration ... 10-2
Figure 10-3. OnCE Controller ... 10-3
Figure 10-4. OnCE Command Register .. 10-3
Figure 10-5. OnCE Status and Control Register (OSCR)................................. 10-5
LIST of FIGURES MOTOROLA

List of Figures (Continued)
Figure Page

Number Title Number

Figure 10-6. OnCE Memory Breakpoint Logic 0 ... 10-8
Figure 10-7. Breakpoint Control Register... 10-9
Figure 10-8. Circular Tags Buffer (TAGB).. 10-13
Figure 10-9. OnCE Trace Logic Block Diagram.. 10-14
Figure 10-10. OnCE Pipeline Information and GDB Registers 10-16
Figure 10-11. OnCE Trace Buffer ... 10-19

11 JTAG (IEEE 1149.1) Test Access Port

Figure 11-1. JTAG Block Diagram ... 11-2
Figure 11-2. TAP Controller State Machine ... 11-4
Figure 11-3. Instruction Register .. 11-6
Figure 11-4. Bypass Register... 11-7
Figure 11-5. Identification Register Configuration.. 11-7

12 OPERATING MODES AND MEMORY SPACES

Figure 12-1. DSP56300 Core Memory Map... 12-2
Figure 12-2. DSP56300 Core Memory Map (SC = 1) .. 12-8

Appendix A INSTRUCTION SET

Figure A-1. General Formats of an Instruction Word..A-4
Figure A-2. Reading and Writing the ALU Extension RegistersA-7
Figure A-3. Reading and Writing Control Registers..A-8

Appendix B INSTRUCTION EXECUTION TIMING

Appendix C BENCHMARK PROGRAMS
MOTOROLA LIST of FIGURES xxi

xxii LIST of FIGURES MOTOROLA

List of Figures (Continued)
Figure Page

Number Title Number

LIST of TABLES

Table Page
Number Title Number

1 CORE DESCRIPTION

2 EXPANSION PORT

3 DATA ARITHMETIC LOGIC UNIT

Table 3-1. Actions of the Arithmetic Saturation Mode (SM=1).......................... 3-11

4 ADDRESS GENERATION UNIT

Table 4-1. Addressing Modes Summary... 4-10
Table 4-2. Address-Modifier-Type Encoding Summary 4-12

5 INSTRUCTION CACHE CONTROLLER

6 PROGRAM CONTROL UNIT

Table 6-1. Seven Stage Pipeline... 6-3
Table 6-2. SP Register Values in the non-extended mode................................. 6-8
Table 6-3. Unnormalized Bit definition .. 6-11
Table 6-4. Extension Bit definition... 6-11

7 PROCESSING STATES

Table 7-1. Instruction Pipeline... 7-2
Table 7-2. Interrupt Sources ... 7-4
Table 7-3. Status Register Interrupt Mask Bits ... 7-6
Table 7-4. Interrupt Priority Level Bits... 7-7
Table 7-5. External Interrupt Trigger Mode Bits .. 7-7
Table 7-6. Exception Priorities within an IPL... 7-9
Table 7-7. Fast Interrupt Pipeline.. 7-10
Table 7-8. Long Interrupt Pipeline... 7-11

8 DMA CONTROLLER

Table 8-1. DMA Controller Data Transfers.. 8-1
Table 8-2. DMA Controller Programming Model - Channel 0 8-2
Table 8-3. DMA Controller Programming Model - Channel 1 8-2
Table 8-4. DMA Controller Programming Model - Channel 2 8-2
MOTOROLA LIST of TABLES xxiii

List of Tables (Continued)
Table Page

Number Title Number

Table 8-5. DMA Controller Programming Model - Channel 3..............................8-2
Table 8-6. DMA Controller Programming Model - Channel 4..............................8-3
Table 8-7. DMA Controller Programming Model - Channel 5..............................8-3
Table 8-8. DMA Offset Registers...8-3
Table 8-9. DMA Status Register..8-3
Table 8-10. DMA Transfer Mode (DTM2-DTM0) Bits..8-9
Table 8-11. DCR DMA Channel priority(DPR1-DPR0) Bits.................................8-10
Table 8-12. Source Address Generation Mode (D3D = 0)8-13
Table 8-13. Destination Address Generation Mode (D3D = 0)............................8-14
Table 8-14. Counter Mode (D3D = 1)..8-15
Table 8-15. Address Mode Select (D3D = 1) ..8-15
Table 8-16. Address Generation Mode (D3D = 1)...8-15
Table 8-17. DCH Status bits encoding ..8-18

9 PLL and CLOCK GENERATOR

Table 9-1. Multiplication Factor Bits MF0-MF11..9-6
Table 9-2. Division Factor Bits DF0-DF2...9-7
Table 9-3. PSTP and PEN Relationship..9-8
Table 9-4. Predivision Factor Bits PD0-PD3 ...9-9

10 ON-CHIP EMULATOR (OnCE™)

Table 10-1. OnCE Register Addressing. ..10-4
Table 10-2. Core Status Bits Description. ...10-7
Table 10-3. Memory Breakpoint 0 and 1 Select Table.10-9
Table 10-4. Breakpoint 0 Read/Write Select Table ..10-9
Table 10-5. Breakpoint 0 Condition Select Table ...10-10
Table 10-6. Breakpoint 1 Read/Write Select Table ..10-10
Table 10-8. Breakpoint 0 and 1 Event Select Table...10-11
Table 10-7. Breakpoint 1 Condition Select Table ...10-11
Table 10-9. TMS Sequencing for DEBUG_REQUEST and poll the status10-26
Table 10-10. TMS Sequencing for ENABLE_ONCE...10-27
Table 10-11. TMS Sequencing for reading pipeline registers10-28

11 JTAG (IEEE 1149.1) Test Access Port

Table 11-1. JTAG Instructions...11-5

12 OPERATING MODES AND MEMORY SPACES

Table 12-1. DSP56300 Core reset vectors..12-1
xxiv LIST of TABLES MOTOROLA

List of Tables (Continued)
Table Page

Number Title Number

Table 12-2. DSP56300 Core operating modes... 12-1
Table 12-3. Internal X I/O Space Map... 12-3

Appendix A INSTRUCTION SET

Table A-1. Parallel Instructions Format ...A-5
Table A-2. NonParallel Instructions Format...A-5
Table A-3. Arithmetic Instructions..A-9
Table A-4. Logical Instructions ..A-11
Table A-5. Bit Manipulation Instructions..A-13
Table A-6. Loop Instructions..A-13
Table A-7. Move Instructions...A-15
Table A-8. Program Control Instructions ...A-15
Table A-9. Instruction Description Notation...A-17
Table A-10. Destination Accumulator Encoding...A-239
Table A-11. Data ALU Operands Encoding..A-239
Table A-12. Data ALU Source Operands Encoding ..A-239
Table A-13. Program Control Unit Register Encoding.......................................A-239
Table A-14. Data ALU Operands Encoding...A-240
Table A-15. Data ALU operands encoding..A-240
Table A-16. Effective Addressing Mode Encoding #1A-241
Table A-17. Memory/Peripheral Space ...A-241
Table A-18. Effective Addressing Mode Encoding #2A-241
Table A-19. Effective Addressing Mode Encoding #3A-242
Table A-20. Effective Addressing Mode Encoding #4A-242
Table A-21. Triple-Bit Register Encoding ..A-242
Table A-22. Six-Bit Encoding For all On-Chip RegistersA-243
Table A-23. Long Move Register Encoding...A-243
Table A-24. Data ALU Source Registers Encoding...A-243
Table A-25. AGU Address and Offset Registers EncodingA-244
Table A-26. Data ALU Multiply Operands Encoding #1A-244
Table A-27. Data ALU Multiply Operands Encoding #2A-244
Table A-28. Data ALU Multiply Operands Encoding #3A-244
Table A-29. Data ALU Multiply Sign Encoding..A-244
Table A-30. Data ALU Multiply Operands Encoding #3A-245
Table A-31. 5-Bit Register Encoding #1 ..A-245
Table A-32. Immediate Data ALU Operand Encoding.......................................A-246
Table A-33. Write Control Encoding..A-246
Table A-34. ALU Registers Encoding..A-246
Table A-35. X:R Operand Registers Encoding..A-247
MOTOROLA LIST of TABLES xxv

List of Tables (Continued)
Table Page

Number Title Number

Table A-36. R:Y Operand Registers Encoding ... A-247
Table A-37. Single-Bit Special Register Encoding Tables................................ A-247
Table A-38. X:Y: Move Operands Encoding Tables .. A-248
Table A-39. Signed/Unsigned partial encoding #1.. A-248
Table A-40. Signed/Unsigned partial encoding #2.. A-249
Table A-41. 5-Bit Register Encoding... A-249
Table A-42. Condition Codes Computation Equations A-250
Table A-43. Condition Codes Encoding.. A-251
Table A-44. Operation Code K0-2 Decode... A-251
Table A-45. Nonmultiply Instruction Encoding.. A-252
Table A-46. Special Case #1 .. A-252

Appendix B INSTRUCTION EXECUTION TIMING

Table B-1. Instruction Timing, Word Count and encoding B-4
Table B-2. Stack Extension Delays... B-18

Appendix C BENCHMARK PROGRAMS
xxvi LIST of TABLES MOTOROLA

1 CORE DESCRIPTION

This document describes the DSP56300 Core, a new core of Motorola’s family of
programmable CMOS digital signal processors. The DSP56300 is the powerful New DSP
Engine (NDE) core capable of executing an instruction on every clock cycle, thus yielding
a twofold performance increase as compared to the 56000 core while maintaining object
code compatibility with it.

The DSP56300 core is composed of the Expansion Port and DRAM Controller, Data ALU,
Address Generation Unit, Instruction Cache Controller, Program Control Unit, DMA
Controller, PLL Clock Oscillator, On-chip Emulator and the Peripheral and Memory
Expansion Bus.

The cost-effectiveness of the parts is the major factor in the economic success of the DSP
family thus the provided solution must be low-cost but powerful enough to meet the
computational demands, flexible enough to meet various demands of the
customers/applications and have enough degree of integration to minimize the total
system cost.

DSP applications require parts capable of very high execution speed in a real-time I/O
intensive environment. The DSP56300 core with its capability of executing an instruction
per clock cycle has the processing power to meet this demand.

To minimize the total system cost the DSP56300 core incorporates a versatile external
memory interface that provides glueless interface to a variety of memories such as
Dynamic RAMs (DRAMs), Static RAMs (SRAMs), Synchronous Static RAMs (SSRAMs)
etc. by providing on-chip DRAM controller as well as chip select logic. The concurrent
Six-Channel DMA Controller augments the data throughput that characterizes the DSP
applications. Special attention is paid in the design stage to minimize the chip power
consumption. Low power consumption is achieved both in active and in standby modes.
Power consumption scale down with clock frequency reduction, use of on-chip memory,
use of on-chip peripherals, and use of WAIT and STOP standby modes. External buses
are driven only when required. On-chip memory expansion does not increase power
dissipation significantly because only memory modules being accessed consume power.

The design priorities for the DSP56300 Core are:

1. Low-cost
2. Low-power dissipation
3. High-performance
4. High integration
MOTOROLA CORE DESCRIPTION 1 - 1

DSP56300 Core Features
High performance CPU

• 66/80Million Instructions per Second (Mips) with a 66/80 MHz clock
• Object Code Compatible with the 56K Core
• Fully pipelined 24 x 24 Bit Parallel Multiplier-Accumulator
• 56 Bit Parallel Barrel Shifter
• 16 Bit Arithmetic Support
• Highly Parallel Instruction Set
• Position Independent Code (PIC) support
• Unique DSP Addressing Modes
• On-Chip Memory-Expandable Hardware Stack
• Nested Hardware Do Loops
• Fast Auto-Return Interrupts
• On-Chip user-controllable Instruction Cache
• On-Chip Concurrent Six-Channel DMA Controller
• On-Chip PLL
• On-Chip Emulator (OnCE)
• Program Address Tracing Support
• JTAG port compatible with the IEEE 1149.1 Standard

Reduced power dissipation
• Very low power CMOS design
• Wait and Stop low power standby modes
• Fully-static logic, operation frequency down to DC.
1 - 2 CORE DESCRIPTION MOTOROLA

E
X

TA
L

X
TA

L

SS

L

PI
Figure 1-1. DSP56300 Core Block Diagram

EXTERNAL
BUS INTERFACE

&
I - CACHE
CONTROL

CLOCK
GENERATOR

INTERNAL
DATA BUS
SWITCH

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/IRQC

MODB/IRQB

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS
56 BARREL SHIFTER

EXTERNAL
ADDRESS

BUS
SWITCH

EXTERNAL
DATA BUS
SWITCH

ADDRE

14

DATA

CONTRO

MODA/IRQA

PLL

ADDRESS
GENERATION

UNIT

OnCE™

24

24

DDB

DABSIX CHANNELS
DMA UNIT

MEMORY EXPANSION AREA
PERIPHERAL

Y
M

_E
B

X
M

_E
B

P
M

_E
B

P
IO

_E
B

EXPANSION AREA

JTAG
6

RESET

MODD/IRQD

POWER
MNGMNT

NIT/NMI

2

BOOTSTRAP
ROM
MOTOROLA CORE DESCRIPTION 1 - 3

1 - 4 CORE DESCRIPTION MOTOROLA

2 EXPANSION PORT

2.1 INTRODUCTION

The expansion port of the DSP56300 Core has the following features/functions:

• Interrupt And Mode Control

• Clock and Phase-Locked Loop (PLL)

• On-chip Emulator Interface (OnCE)/JTAG Interface

• Memory Expansion Port (Port A)

• Emulation Port

Port A is the memory expansion port that can be used either for memory expansion or for
memory-mapped I/O. A number of features make port A versatile and easy to use. These
features provide a low part-count connection with fast or slow static memories, dynamic
memories, I/O devices and multiple bus master system.

The port A data bus is 24 bit wide with a separate 24 bit address bus capable of sustained
rate of one memory access per clock cycle for data space accesses (using synchronous
static memory). External memory is divided into three 16M X 24 bit spaces - X, Y and P.
An internal wait state generator can be programmed to insert up to 31 wait state if access
to slower memory or I/O device is required. A bus wait signal allows an external device to
control the number of wait states inserted in a bus access operation. Bus arbitration
signals allow an external device use of the bus while internal operations continue using
the internal memory.

2.2 EXPANSION PORT SIGNAL DESCRIPTION

2.2.1 Interrupt And Mode Control

 RESET (Reset) - Active low, Schmitt trigger input. RESET is internally
synchronized to the clock out (CLKOUT). When asserted, the chip is
placed in the reset state and the internal phase generator is reset. The
Schmitt trigger input allows a slowly rising input (such as a capacitor
charging) to reliably reset the chip. If RESET is negated synchronous to
the clock out (CLKOUT), exact start-up timing is guaranteed, allowing
MOTOROLA EXPANSION PORT 2 - 1

multiple processors to start-up synchronously and operate together in
“lock-step”. When the RESET pin is negated, the initial chip operating
mode is latched from the MODA, MODB, MODC and MODD pins.
RESET pin can tolerate 5V.

MODA/IRQA (Mode Select A/External Interrupt Request A) - Active low Schmitt
trigger input, internally synchronized to the clock out (CLKOUT). MODA/
IRQA selects the initial chip operating mode during hardware reset and
becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC and MODD select one of 16 initial chip operating modes,
latched into the operating mode register (OMR) when the RESET pin is
negated. If IRQA is asserted synchronous to the clock out (CLKOUT),
multiple processors can be re-synchronized using the WAIT instruction
and asserting IRQA to exit the wait state. If the processor is in the STOP
standby state and IRQA is asserted, the processor will exit the STOP
state.
MODA/IRQA pin can tolerate 5V.

MODB/IRQB (Mode Select B/External Interrupt Request B) - Active low Schmitt
trigger input, internally synchronized to the clock out (CLKOUT). MODB/
IRQB selects the initial chip operating mode during hardware reset and
becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC and MODD select one of 16 initial chip operating modes,
latched into the operating mode register (OMR) when the RESET pin is
negated. If IRQB is asserted synchronous to the clock out (CLKOUT),
multiple processors can be re-synchronized using the WAIT instruction
and asserting IRQB to exit the wait state.
MODB/IRQB pin can tolerate 5V.

MODC/IRQC (Mode Select C/External Interrupt Request C) - Active low Schmitt
trigger input, internally synchronized to the clock out (CLKOUT). MODC/
IRQC selects the initial chip operating mode during hardware reset and
becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC and MODD select one of 16 initial chip operating modes,
latched into the operating mode register (OMR) when the RESET pin is
negated. If IRQC is asserted synchronous to the clock out (CLKOUT),
multiple processors can be re-synchronized using the WAIT instruction
and asserting IRQC to exit the wait state.
MODC/IRQC pin can tolerate 5V.

MODD/IRQD (Mode Select D/External Interrupt Request D) - Active low Schmitt
2 - 2 EXPANSION PORT MOTOROLA

trigger input, internally synchronized to the clock out (CLKOUT). MODD/
IRQD selects the initial chip operating mode during hardware reset and
becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC and MODD select one of 16 initial chip operating modes,
latched into the operating mode register (OMR) when the RESET pin is
negated. If IRQD is asserted synchronous to the clock out (CLKOUT),
multiple processors can be re-synchronized using the WAIT instruction
and asserting IRQD to exit the wait state.
MODD/IRQD pin can tolerate 5V.

2.2.2 Clock and Phase-Locked Loop (PLL)

EXTAL (External Clock/Crystal Input) - This input connects the internal crystal
oscillator input to an external crystal or an external clock.

XTAL (Crystal Output) - This output connects the internal crystal oscillator
output to an external crystal. If an external clock is used, XTAL should
not be connected.

PCAP (PLL capacitor) - This input connects the off-chip capacitor for PLL filter.
One terminal of the capacitor is connected to PCAP while the other
terminal is connected to PVCC.

CLKOUT (Clock Output) - This output pin provides an output clock synchronized
to the internal core clock phase.

NOTE 1: If PLL is enabled and both the multiplication and division factors are equal
to one, then CLKOUT is also synchronized to EXTAL.

NOTE 2: If PLL is disabled, CLKOUT frequency and the chip frequency is half the
frequency of EXTAL.

PINIT/NMI (PLL Initial/Non Maskable Interrupt) - During the assertion of hardware
reset, PINIT/NMI is configured as PINIT and its value is written into the
PEN bit of the PLL control register and determines whether the PLL is
enabled or disabled. After hardware reset negation and during normal
instruction processing the PINIT/NMI Schmitt trigger input pin is
configured as NMI, a negative edge triggered, non maskable interrupt
request, internally synchronized to the clock out (CLKOUT).
PINIT/NMI pin can tolerate 5V.

2.2.3 On-Chip Emulator Interface (OnCE)/JTAG Interface

DE (Debug Event) - This open drain bidirectional active low pin provides, as
an input, a means of entering the debug mode of operation from an
external command controller, and as an output, a means of
acknowledging that the chip has entered the debug mode. This pin when
MOTOROLA EXPANSION PORT 2 - 3

asserted as an input causes the DSP56300 core to finish the current
instruction being executed, save the instruction pipeline information,
enter the debug mode and wait for commands to be entered from the
debug serial input line. This pin is asserted as an output for three clock
cycles when the chip enters the debug mode as a result of a debug
request or as a result of meeting a breakpoint condition.
DE pin can tolerate 5V.

TCK (Test Clock) - The test clock input TCK pin is the test clock used to
synchronize the JTAG test logic
TCK pin can tolerate 5V.

TDI (Test Data Input) - The test data input TDI pin is the serial input for test
instructions and data. TDI is sampled on the rising edge of TCK and it
has an internal pullup resistor.
TDI pin can tolerate 5V.

TDO (Test data output) - The test data output TDO pin is the serial output for
test instructions and data. TDO is three-stateable and is actively driven
in the shift-IR and shift-DR controller states. TDO changes on the falling
edge of TCK.

TMS (Test Mode Select) - The test mode select input (TMS) pin is used to
sequence the test controller’s state machine. The TMS is sampled on
the rising edge of TCK and it has an internal pullup resistor
TMS pin can tolerate 5V.

TRST (Test Reset) - This active low Schmitt trigger input pin TRST is used to
asynchronously initialize the test controller. The TRST has an internal
pullup resistor
TRST pin can tolerate 5V.

2.2.4 Expansion Port (Port A)

A0-A23 (Address Bus) - three-state. Active high outputs when a bus master,
three-stated otherwise, specify the address for external program and
data memory accesses. To minimize power dissipation, A0–A23 do not
change state when external memory spaces are not being accessed.
A0–A23 are three-stated during hardware reset.

D0-D23 (Data Bus) - three-state, active high, bidirectional input/outputs when a
bus master. These pins provide the bidirectional data bus for external
program and data memory accesses. D0–D23 are in the high
impedance state when not a bus master, or when there is no external
bus activity. They are also three-stated during hardware reset.
2 - 4 EXPANSION PORT MOTOROLA

AA(3:0)/RAS(3:0)(Address Attribute or Row Address Strobe) - three-state outputs with a
programmable polarity. When defined as Address Attribute these
signals can be used as chip selects or additional address lines. When
defined as RAS these signals can be used as Row Address Strobe for
DRAM interface. The AA/RAS pins are three stated during hardware
reset.

RD (Read Enable) - three-state. Active low output when bus master, three-
stated otherwise. RD is asserted to read external memory on the data
bus (D0–D23). RD is three-stated during hardware reset.

WR (Write Enable) - three-state. Active low output when bus master, three-
stated otherwise. WR is asserted to write external memory on the data
bus (D0–D23). WR is three-stated during hardware reset.

TA (Transfer Acknowledge) - active low input. If the DSP56300 core is the
bus master and there is no external bus activity or the DSP56300 core
is not the bus master, the TA input is ignored. The TA input is a
synchronous/asynchronous (according to TAS bit in the OMR register)
“DTACK” function which can extend an external bus cycle indefinitely.
Any number of wait states (1, 2,..., infinity) may be added to the wait
states inserted by the BCR by keeping TA negated. In typical operation,
TA is negated at the start of a bus cycle, is asserted to enable
completion of the bus cycle and is negated before the next bus cycle.
The current bus cycle completes one clock period after TA is asserted
synchronous to CLKOUT. The number of wait states is determined by
the TA input or by the Bus Control Register (BCR), whichever is longer.
The BCR can be used to set the minimum number of wait states in
external bus cycles. If TA is tied low (asserted) and no wait states are
specified in the BCR register, zero wait states will be inserted into
external bus cycles.

NOTE1 In order to use the TA functionality the BCR must be programmed to at
least one wait state, a zero wait state access can not be extended by
negating TA, Otherwise improper operation may result.

NOTE2 TA functionality may not be used while performing DRAM type accesses,
Otherwise improper operation may result.

BR (Bus Request) - active low output, never three-stated. BR is asserted
when the CPU or DMA is requesting bus mastership. BR is negated
when the CPU or DMA no longer needs the bus. BR may be asserted
or negated independent of whether the DSP56300 Core is a bus master
or a bus slave. Bus “parking” allows BR to be negated even though the
DSP56300 Core is the bus master. See the description of bus “parking”
in the BB pin description. The BRH bit in the Bus Control Register
(Section 2.5.2) allows BR to be asserted under software control even
MOTOROLA EXPANSION PORT 2 - 5

though the CPU or DMA does not need the bus. BR is typically sent to
an external bus arbitrator which controls the priority, parking and tenure
of each DSP56300 Core on the same external bus. BR is only affected
by CPU or DMA requests for the external bus, never for the internal bus.
During hardware reset, BR is negated and the arbitration is reset to the
bus slave state.

BG (Bus Grant) – active low input. BG must be asserted/negated
synchronous to the clock out (CLKOUT) for proper operation. BG is
asserted by an external bus arbitration circuit when the DSP56300 Core
may become the next bus master. When BG is asserted, the DSP56300
Core must wait until BB is negated before taking bus mastership. When
BG is negated, bus mastership is typically given up at the end of the
current bus cycle. This may occur in the middle of an instruction which
requires more than one external bus cycle for execution. BG is ignored
during hardware reset.

BB (Bus Busy) - bidirectional active low input/output, must be asserted and
negated synchronous to the clock out (CLKOUT).This signal indicates
that the bus is active. Only after this signal is negated the pending bus
master can become the bus master (and then assert it again).The bus
master may keep BB asserted after ceasing bus activity regardless of
whether BR is asserted or negated, this is called “bus parking” and
allows the current bus master to reuse the bus without re-arbitration until
other device wants the bus. The negation of BB is done by an “active
pull-up” method i.e.BB is driven high and then released and held high
by an external pull-up resistor. BB is an active low input during hardware
reset.

NOTE: BB requires an external pullup resistor.

BL (Bus Lock) - active low output, never three-stated. Asserted at the start
of an external indivisible Read-Modify-Write (RMW) bus cycle and
negated at the end of the write bus cycle. BL remains asserted between
the read and write bus cycles of the RMW bus sequence. BL may be
used to “resource lock” an external multi-port memory for secure
semaphore updates. The only instructions which automatically assert
BL are BSET, BCLR or BCHG instruction which accesses external
memory. BL can also be asserted by setting the BLH bit in the BCR
register (see Section 2.5.2). BL is negated during hardware reset.

BS (Bus Strobe) - three-state. Active low output when a bus master, three-
stated when not a bus master. Asserted at the start of a bus cycle (for
half of a clock cycle) providing an “early bus start” signal for a bus
2 - 6 EXPANSION PORT MOTOROLA

controller. If the external bus is not used during an instruction cycle BS
remains negated until the next external bus cycle. BS is three-stated
during hardware reset.

CAS (Column Address Strobe) - active low output when bus master and three
stated otherwise (if BME bit in DRAM control register is cleared), CAS
is used by DRAM memories to strobe column address. CAS is three
stated during hardware reset.

BCLK (Bus Clock) - three-state. Active high output when a bus master BCLK
is used by synchronous SRAM to sample address, data and control
signals. BCLK is active only during SSRAM accesses, when active
BCLK is synchronized to CLKOUT by the internal Phase Lock Loop,
BCLK precedes CLKOUT by 1/4 of a clock cycle. BCLK is three stated
during hardware reset.

2.3 EXPANSION PORT OPERATION

The external bus timing is defined by the operation of the Address Bus, Data Bus and Bus
Control pins described in the previous paragraph. The DSP56300 Core external ports are
designed to interface with a wide variety of memory and peripheral devices, high speed
synchronous static RAMs, high speed static RAMs and dynamic RAMs, as well as slower
memory devices. For detailed explanation see the paragraphs on synchronous static RAM
support, static RAM support and dynamic RAM support.

2.3.1 Static RAM support

External bus timing is controlled by the TA control signal and by the Bus Control Register
(BCR) that is described in Section 2.5.2. Insertion of wait states is controlled by the BCR
to provide constant bus access timing, and by TA to provide dynamic bus access timing.
The number of wait states for each external access is determined by the TA input or by the
BCR, whichever is longer.
The external memory address is defined by the Address Bus A0-A23 and the Memory
Address attribute signals AA(3:0). The Address Attribute signals have the same timing as
the Address Bus and may be used as additional address lines. The Address Attribute
signals are also used to generate chip select signals for the appropriate memory chips.
These chip select signals change the memory chips from low power standby mode to
active mode and begin the access time. This allows slower memories to be used since the
Address Attribute signals are address-based rather than read or write enable-based.

2.3.1.1 Synchronous Static RAM (SSRAM) Support

Synchronous Static RAM devices can be easily interfaced to the DSP56300 Core bus
timing. The Synchronous Static RAMs internal pipeline fits the DSP56300 Core pipeline,
and therefore permits high speed data transfers (each clock cycle, zero wait states) with
MOTOROLA EXPANSION PORT 2 - 7

a reasonable access time. Due to the DSP56300 Core pipeline structure, one cycle stall
is inserted after performing fetch from external SSRAM. In such a case, the effective
number of stall states in the pipeline will be the number specified in the Bus Control
Register (BCR) + 1 (although the external access itself will be performed exactly the same
for fetches and for data moves).
Figure 2-3 shows a connection configuration (for a detailed timing information see the
specific DSP56300 Core based chip technical data sheet). The synchronous SRAM
access is composed from the following steps:

1. The address - A(23:0), address attributes - AA(3:0),bus strobe - BS, and
write enable - WR are asserted before the rising edge of BCLK. (WR only
for write accesses, for read accesses RD is asserted asynchronously to
BCLK).

2. Bus strobe is negated before the change of the new address thus enabling
the sample of address and control (for devices that do not use BCLK).

3. The address - A(23:0), address attributes - AA(3:0), and write enable - WR
are negated (for write accesses) with the falling edge of BCLK (new
address and controls are driven if another external SSRAM access is
needed).

4. For write operation: Data is driven with the falling edge of BCLK
For read operation: Data is sampled with the leading edge of BCLK.

Wait states (from BCR or by TA signal) will postpone the appearance of the next leading
edge of BCLK thus increasing memory access time (see Figure 2-2 on page 2-10).
2 - 8 EXPANSION PORT MOTOROLA

Figure 2-1. Bus operation - zero wait states Sync. SRAM access

• for detailed timing specification see the specific data sheet

CLKOUT

Address bus

Data in (read)

Data out (write)

BCLK

(data sampled at)

(data driven at

)

T0 T1 T0 T1 T0 T1

BS

WR

RD
MOTOROLA EXPANSION PORT 2 - 9

Figure 2-2. Bus operation - one wait state Sync. SRAM access

• for detailed timing specification see the specific data sheet

Figure 2-3. Synchronous Static RAM connection diagram

CLKOUT

Address bus

Data in (read)

Data out (write)

BCLK

T0 T1 T0 Tw Tw T1

BS

WR

(data sampled at)

)(data driven at

WS

RD

DSP56300
Sync.
Static
RAM

A

D

WR

BCLK

A

D

SW

K

AA SE
2 - 10 EXPANSION PORT MOTOROLA

2.3.1.2 Asynchronous Static RAM (SRAM) Support

Static RAMs can be easily interfaced to the DSP56300 Core bus timing. Due to the Static
RAM requirement to keep the address stable during the entire bus cycle, at least one wait
state must be inserted to the bus operation. The next diagram shows a possible
configuration (for a detailed timing information see the specific DSP56300 Core based
chip technical data sheet).The static RAM access is composed from the following steps
(see also Figure 2-4 on page 2-11)

1. The address - A(23:0), address attributes - AA(3:0),and bus strobe - BS
are asserted in the middle of CLKOUT high phase.

2. Write enable - WR is asserted with the falling edge of CLKOUT (for a single
wait state access). Read enable - RD, is asserted in the middle of
CLKOUT low phase.

3. For write operation: Data is driven in the middle of CLKOUT high phase.
For read operation: Data is sampled in the middle of CLKOUT last low
phase of the external access.

Wait states (from BCR or by TA signal) will postpone the disappearance of the external
address thus increasing memory access time. In any case, static RAM access requires at
least one wait state.

Figure 2-4. Bus operation one wait state - SRAM access

• for detailed timing specification see the specific data sheet

CLKOUT

Address bus

Data in (read)

Data out (write)

(data sampled at)

(data driven at)

T0 T1 T0 Tw Tw T1

WS

BS

WR

RD
MOTOROLA EXPANSION PORT 2 - 11

Figure 2-5. Static RAM connection diagram

NOTE 1: BCLK is negated during asynchronous SRAM access and therefore all
signals timing are related to CLKOUT.

NOTE 2: When the external access type is defined as SRAM, the assertion of WR
signal depends on the number of wait states programmed in the BCR. If
a single wait state is programmed in the BCR, WR signal is asserted with
the falling edge of CLKOUT. If the number of wait states programmed is
2 or 3, WR assertion is delayed by half of a clock cycle (half CLKOUT
cycle). If the number of wait states programmed is 4 or more, WR
assertion is delayed by a full clock cycle. This feature enables the
connection of slow external devices that require long address setup time
before write assertion in order to prevent false write.

2.3.2 Dynamic Memories Support

External bus timing is controlled by the DRAM Control Register (DCR) that is described
in Section 2.6.1. Insertion of wait states is controlled by the DCR to provide constant bus
access timing.
The external memory address is defined by the Address Bus A0-A23. The n low order
address bits are multiplexed inside the DSP56300 Core, and the new 24 bits address is
driven to the external bus. The address multiplexing enable glue-less interface to dynamic
memories by simply connecting the low order n bits to the memory address pins. The
Address Attribute signals function as RAS. An in page access is assumed and therefore
RAS is kept asserted unless one of the following occurs:

1. An out of page access is detected.
2. An access to another bank of dynamic memory is attempted.
3. A refresh access is attempted (CAS before RAS).

DSP56300
Static
RAM

A

D

A

D

AA

RD

WR

E

G

W

2 - 12 EXPANSION PORT MOTOROLA

4. A write to of the following registers is detected: BCR, DCR, AAR3, AAR2,
AAR1, AAR0.

5. A lost of bus mastership is detected while the BME bit in the DCR register
is cleared.

6. Wait or stop instruction are detected.
7. Hardware or software reset are detected.

Modern dynamic memory (DRAM) are becoming the preferred choice for a wide variety
of computing systems based on

1. Cost per bit due to dynamic storage cell density.
2. Packaging density due to multiplexed address and control pins.
3. Improved price-performance relative to static RAMs due to fast access

mode (page mode).
4. Commodity pricing due to high volume production.

Port A bus control signals are designed for efficient interface to DRAM devices in both
random read/write cycles and fast access mode (page mode). An on-chip DRAM
controller controls the page hit circuit, address multiplexing (row address and column
address), control signal generation (CAS and RAS) and refresh access generation (CAS
before RAS) for a large variety of DRAM module sizes and different access times. The
DRAM controller operation and programming is described in Section 2.6. The next
diagram shows a possible configuration (for a detailed timing information see the specific
DSP56300 Core based chip technical data sheet). The dynamic RAM access is
composed from the following steps (in page access):

1. The column address - A(23:0), and bus strobe - BS are asserted in the
middle of CLKOUT high phase.

2. Write enable - WR, or read enable - RD are asserted with the falling edge
of CLKOUT.

3. CAS assertion timing depends on the number of in page wait states
selected by BCW bits in DCR register and on the access purpose (read/
write). (See Figure 2-7 on page 2-14 for DRAM in page 2 w.s example).

4. CAS is negated before the end of the external access in order to meet the
CAS precharge timing.

In any case, DRAM access requires at least one wait state.

Out of page access: The out of page access will start with the negation of RAS, the
assertion of the control signals (WR/RD) and after RAS precharge time the assertion of
RAS. RAS assertion, and CAS timing, depend on the number of out of page wait states
selected by BRW bit in DCR register.

NOTE: The 56300 Core does not support external DRAM devices overlapping,
i.e. two or more external DRAM devices, connected to different AA pins,
with common addresses.
MOTOROLA EXPANSION PORT 2 - 13

Figure 2-6. Dynamic RAM connection diagram

• Address line are multiplexed inside the DSP56300 Core

Figure 2-7. Bus operation two wait states - DRAM read access (in-page)

DSP56300 Dynamic
RAM

A

D

A

D

AA/RAS

RD

WR

RAS

G

W

CAS CAS

CLKOUT

Address bus

Data in (data sampled at)

T0 T1 T0 Tw Tw Tw

2 WS

BS

RD

Tw

CAS

RAS

Column address
2 - 14 EXPANSION PORT MOTOROLA

Figure 2-8. Bus operation two wait states - DRAM write access (in-page)

• for detailed timing specification see the specific data sheet

2.3.3 Expansion Port Stalls

In addition to the wait states that are controlled by the BCR, DCR and the TA negation
there are two more cases where the expansion port controller stalls the DSP56300
pipeline.

2.3.3.1 External Fetch From Synchronous SRAM.

Due to the DSP56300 pipeline any external fetch from Synchronous SRAM will add one
cycle stall. This one cycle stall will be inserted even if the synchronous SRAM already
needs wait states for access time. The instruction cache enable/disable has no affect on
this stall.

2.3.3.2 Non Synchronous SRAM Access Immediately Following Synchronous
SRAM access.

Due to the synchronous SRAM pipelined access there is a possibility of contention on the
data bus in a case of non synchronous SRAM (DRAM or asynchronous SRAM) access
immediately following a synchronous SRAM access. This sequence is automatically
detected by the expansion port control hardware, and a one cycle stall is inserted in order
to avoid contention.
In case of a default area (always SRAM) access immediately following a synchronous
SRAM access, the user should be careful that the SRAM will not be activated in the

CLKOUT

Address bus

Data out)

T0 T1 T0 Tw Tw Tw

2 WS

BS

WR

Tw

CAS

RAS

(data driven at

column address
MOTOROLA EXPANSION PORT 2 - 15

second cycle of the synchronous SRAM access, because the select of the default area
SRAM is generated externally (not one of the AA signals).

2.3.4 Expansion port Disable

In many application that are sensitive to the power consumption there is no use of the
expansion port because all the memory reside inside the chip itself. A special feature of
the expansion port controller enables the user to reduce significantly the power
consumption of the expansion port controller by setting the EBD bit in the OMR register.
If this bit is set the expansion port controller is disabled, the DSP56300 will release the
bus i.e.negate BR and BL, tristate BB, and ignore BG. Of course no external DMA
accesses or refresh accesses can be performed. When EBD is set the user should not
attempt to access the external memory, otherwise improper operation will result. Likewise,
before EBD bit is set, the user should clear BREN (Refresh Enable - bit 13 in DCR) to
prevent a refresh attempt to external DRAM, otherwise improper operation will result.

2.4 BUS HANDSHAKE AND ARBITRATION

Bus transactions are governed by a single bus master. Bus arbitration determines which
device becomes the bus master. The arbitration logic implementation is system
dependent, but must result in at most one device becoming the bus master (even if
multiple devices request bus ownership). The arbitration signals permit simple
implementation of a variety of bus arbitration schemes (e.g. fairness, priority, etc.).
External logic must be provided by the system designer to implement the arbitration
scheme.

2.4.1 Bus Arbitration Signals

Three signals are provided for bus arbitration. Two of them are considered as local
arbitration signals and one as system arbitration signal. The local arbitration signals run
between a potential bus master and the arbitration logic. The local signals are BR and BG.
BB is a system arbitration signal. These signals are described below.

BR Bus Request - Asserted by the requesting device to indicate that it wants
to use the bus, and it is held asserted until the device no longer needs
the bus. This includes time when it is the bus master as well as when it
is not the bus master.

BG Bus Grant - Asserted by the bus arbitration controller to signal the
requesting device that it is the bus master elect. BG is valid only when
the bus is not busy (Bus Busy signal - BB is described below).
2 - 16 EXPANSION PORT MOTOROLA

BB Bus Busy - The system arbitration signal BB is monitored by all potential
bus masters and is driven by the current bus master. This signal controls
the hand-over of bus ownership by the bus master at the end of bus
possession. BB is an active pull-up signal i.e.it is driven high before it is
released (and then held high by an external pull-up resistor).

2.4.2 The Arbitration Protocol

The bus is arbitrated by a central bus arbitrator, using individual request/grant lines to
each bus master. The arbitration protocol can operate in parallel with bus transfer activity
so that the bus hand-over can be made without much performance penalty.

The arbitration sequence occurs as follows:

1. All candidates for bus ownership assert their respective BR signals as
soon as they need the bus.

2. The arbitration logic designates a bus master-elect by asserting the BG
signal for that device.

3. The master-elect tests BB to ensure that the previous master has
relinquished the bus. If BB is negated, then the master-elect asserts BB,
which designates the device as the new bus master. If a higher priority bus
request occurs before the BB signal was negated, then the arbitration logic
may replace the current master-elect with the higher priority candidate.
However, only one BG signal must be asserted at one time.

4. The new bus master begins its bus transfers after the assertion of BB.
5. The arbitration logic signals the current bus master to relinquish the bus

by negating BG at any time. An DSP56300 Core bus master releases its
ownership (drives BB high and then release it) after completing the current
external bus access except for the cases described in NOTE2. If an
instruction is executing a Read-Modify-Write external access, an
DSP56300 Core master asserts the BL signal and will only relinquish the
bus (and negate BL) after completing the entire Read-Modify-Write
sequence. When the current bus master release BB, it first drives the BB
signal high and then the BB signal is held by the pull-up resistor. The next
bus master-elect has received its BG signal and is waiting for BB to be
negated before claiming ownership

6. The possession of the bus by the new bus master is done by asserting the
BB signal.

The DSP56300 Core has 2 control bits and one status bit, located in the Bus Control
Register (BCR - see Section 2.5.2) to permit software control of the BR and BL signals,
and to verify when the chip is the bus master. If the BRH bit in the BCR register is cleared,
the DSP56300 Core asserts its BR signal only as long as requests for bus transfers are
pending or being attempted. If the BRH bit is set, BR will remain asserted. If the BLH bit
in the BCR register is cleared, the DSP56300 Core asserts its BL signal only during a
read-modify-write bus access. If the BLH bit is set, BL will remain asserted (even when
not a bus master).
MOTOROLA EXPANSION PORT 2 - 17

The DSP56300 core has a control bit located in the Operating Mode Register (BRT in
OMR register) that enable fast/slow bus release mode. In fast bus release mode all port
A pins are three stated in the same cycle. In slow bus release mode an extra cycle is add,
all port A pins except BB are released first and only in the next cycle BB is released.
Therefore, in slow mode it is guaranteed that BB is the last pin that is three stated. This
may be useful in systems where a possibility of contention exists. More detailed
explanation (including timing diagrams) may be found in the data sheet.

NOTE1 During the execution of WAIT and STOP instructions the DSP56300 will
release the bus (i.e.negate BR and BB), and ignore BG.

NOTE2 The three packing accesses, the two accesses of a read-modify-write
instruction (BSET, BCLR, BCHG) and the up to four fetch burst accesses
are treated as one access form an arbitration point of view, i.e.the bus
mastership will not be released during the execution of these accesses.

2.4.3 Arbitration Scheme

The bus arbitration scheme is implementation dependent. The diagram in Figure 2-9 on
page 2-18 illustrates a common method of implementing the bus arbitration scheme. The
arbitration logic determines the device priorities and assigns bus ownership depending on
those priorities. An implementation of a bus arbitration scheme may hold BG asserted, for
example, to the current bus owner if none of the other devices are requesting the bus. As
a consequence, the current bus master may keep BB asserted after ceasing bus activity,
regardless of whether BR is asserted or negated. This situation is called “bus parking” and
allows the current bus master to use the bus repeatedly without re-arbitration until some
other device requests the bus.

Figure 2-9. Bus Arbitration scheme

DSP56300

BB

BG

BR

BL

DSP56300

BB

BG

BR

BL

Arbitration
Logic

Vcc
2 - 18 EXPANSION PORT MOTOROLA

2.4.4 Bus Arbitration Example Cases

2.4.4.1 Case 1 – Normal

If the device requesting mastership asserts BR, the arbiter asserts the requesting devices
BG and BB is driven high and then released, indicating the bus is not busy. The requesting
device will assert BB.

2.4.4.2 Case 2 – Bus Busy

If the device requesting mastership asserts BR, the arbiter responds by asserting the
requesting devices BG, however, the bus is busy because BB is asserted. The requesting
device will not assert BB until BB is driven high and then released by the current bus
master.

2.4.4.3 Case 3 – Low Priority

If the device requesting mastership asserts BR, the arbiter withholds asserting the
requesting devices BG because a higher priority device requested the bus. BB of the
requesting device will not be asserted.

2.4.4.4 Case 4 – Default

If a device does not request the bus and the arbiter, by design (i.e. default), asserts BG
and BB is negated indicating the bus is not busy. The granted device will assert BB. If the
bus arbiter leaves BG asserted because other requests are not pending, then BB will
remain asserted. This condition is called bus parking and eliminates the need for the
default bus master to rearbitrate for the bus during its next external access.

2.4.4.5 Case 5 – Bus Lock during RMW

If the device requesting mastership asserts BR and the arbiter asserts the requesting
devices BG and BB is negated, then the requesting device will assert BB. If a read-modify-
write (RMW) instruction which accesses external memory is being executed, and the bus
arbiter negates BG, then BB will remain asserted until the entire RMW instruction
completes execution. BB will then be driven high and released thereby relinquishing the
bus. Note that during external RMW instruction execution, BL is asserted. In general, the
BL signal can be used to ensure that a multiport memory can only be written by one
master at a time.

2.4.4.6 Case 6 – Bus Park

The device requesting mastership asserts BR, the arbiter asserts the requesting devices
BG and BB is negated indicating the bus is not busy – the requesting device will assert
BB. When the requesting device no longer requires the bus it will negate BR. If the bus
arbiter leaves BG asserted because other requests are not pending, then BB will remain
asserted. This condition is called bus parking and eliminates the need for the last bus
master to rearbitrate for the bus during its next external access.
MOTOROLA EXPANSION PORT 2 - 19

2.5 EXPANSION PORT CONTROL

The expansion port control consist of 4 Address Attribute Registers, DRAM control
register and the Bus Control Register.

2.5.1 AA control Registers (one for each AA pin)

The four control registers (AAR3, AAR2, AAR1, AAR0) are 24 bit read write registers
used to control the activity of the AA3-0/RAS3-0 pins. An AA/RAS pin is asserted if the
address in his appropriate AAR register (BAC bits) matches the external address (the
exact number of address bits that are compared is determined by BNC bits) and if the
external access is aimed to a space (X Y or P) that is enabled in the appropriate AAR
register. All AAR registers are disabled (all the AAR bits are cleared) during hardware
reset. The AAR bits are shown in the following figure and described in the following
paragraphs.

Figure 2-10. Address Attribute Registers (AAR3-0)

NOTE 1 A priority mechanism exists among the four AAR control registers in
order to resolve selection conflicts. AAR3 has the highest priority and
AAR0 has the lowest priority, (e.g. if the external address matches the
address and the space that is specified in both AAR1 and AAR2, the

BAC0

Address to Compare

BPEN

01

BYEN

2

BAT1

3

BAAP

4567891011

BXEN

121314

BAC8

151617181920212223

BAT0

external Access Type
AA pin polarity
Program space Enable
X data space Enable
Y data space Enable
Address Muxing
 Packing Enable
Number of Address bit to
compare

BAC3 BAC2BAC11 BAC5BAC7 BAC6BAC9BAC10 BAC1

BNC3 BNC1BNC2 BNC0

BAC4

BAMBPAC
2 - 20 EXPANSION PORT MOTOROLA

external access type will be selected according to the AAR2 register)
The priority mechanism allows continues partition of the external
address space.

NOTE 3 When the AA/RAS pin functions as AA pin, it is negated at the start of
the next clock cycle only if there is no external access that use the same
AA pin (i.e. the AA pin will be kept asserted in a sequence of two
consecutive external accesses that access the same memory bank).
This method enables the use of low power standby mode in the external
memories (these memories should be accessed first by a dummy
access)

NOTE 4 The programmer should guarantee an AAR register is not changed while
accessing the memory selected by this AAR, otherwise improper
operation may result.

NOTE 5 A write operation to any AAR register will cause the DRAM controller to
invalidate the page logic and will force the next DRAM access to be an
out of page access.

2.5.1.1 BAT(1:0) - External Access Type and pin definition- bits 1-0

The read/write control bits BAT(1:0) define the external access type (DRAM, SRAM or
SSRAM) to the area defined by BAC(11:0),BYEN, BXEN and BPEN bits. The encoding of
BAT1 - BAT0 is described in the following table.

BAT1 BAT0 external access type

0 0 Synchronous SRAM access

0 1 Static RAM access

1 0 DRAM access

1 1 Reserved
MOTOROLA EXPANSION PORT 2 - 21

When the external access type is defined as DRAM access (BAT(1:0) = 10) the AA/RAS
pin will act as a RAS pin, otherwise it will act as a AA pin. External accesses to the default
area will be always executed as if BAT(1:0) of the default area equals 01, i.e. static RAM
access.
BAT(1:0) bits are cleared during hardware reset.

2.5.1.2 BAAP - AA pin Polarity - bit 2

The read/write control bit BAAP defines whether the AA/RAS pin is an active low or an
active high pin. When BAAP is cleared the AA/RAS pin is an active low pin (useful for
enabling memory modules, or for DRAM row address strobe), if BAAP is set the
appropriate AA/RAS pin is a active high pin (useful as additional address bit).
BAAP bit is cleared during hardware reset.

2.5.1.3 BPEN - Program space Enable - bit 3

The read/write control bit BPEN defines whether the AA/RAS pin and logic should be
activated during external program space accesses. BPEN when set enables the
comparison of the external address to the BAC bits during external program space
accesses. If BPEN is cleared no comparison of address is performed, during external
Program space accesses.
BPEN bit is cleared during hardware reset.

2.5.1.4 BXEN - X data space Enable - bit 4

The read/write control bit BXEN defines whether the AA pin and logic should be activated
during external X data space accesses. BXEN when set enables the comparison of the
external address to the BAC bits during external X data space accesses. If BXEN is
cleared no comparison of address is performed, during external X data space accesses.
BXEN bit is cleared during hardware reset.

2.5.1.5 BYEN - Y data space Enable - bit 5

The read/write control bit BYEN defines whether the AA pin and logic should be activated
during external Y data space accesses. BYEN when set enables the comparison of the
external address to the BAC bits during external Y data space accesses. If BYEN is
cleared no comparison of address is performed during external Y data space accesses.
BYEN bit is cleared during hardware reset.

2.5.1.6 BAM - Address Muxing - bit 6

The read/write control bit BAM defines whether the 8 least significant bits of the address
will appear on A7-A0 pins (LS portion of the external address bus) or on A23-A16 pins
(MS portion of the external address bus). When BAM is set, the 8 LS bits will appear on
A23-A16 pins. When BAM is cleared, the address will appeared normally and will occupy
the entire external address bus (A23-A0). This feature enables to connect an external
2 - 22 EXPANSION PORT MOTOROLA

peripheral to the most significant bits of the address thus decreasing the load on the LSP
of the external address and enables more efficient interface to external memories. BAM
is ignored during DRAM access (BAT1=1).
BAM bit is cleared during hardware reset.

2.5.1.7 BPAC- Packing Enable - bit 7

The read/write control bit BPAC enables (when set) the internal packing/unpacking logic.
In this mode each DMA external access will initiate three external accesses to an eight
bits wide external memory (the address of these accesses will be the original DMA
address - the DAB, then DAB+1 and then DAB+2). The packing to a 24 bits word (or the
unpacking from 24 bits word to 3 eight bits words) is done automatically by the expansion
port control hardware. The external memory should reside in the eight least significant bits
of the external data bus, and the packing (or unpacking for external write accesses) is
done least significant byte first (i.e.the first data byte is the LS byte the second is the
middle byte and the last is the MS byte). When this bit is cleared the expansion port control
logic assumes a 24 bit wide external memory.
BPAC bit is cleared during hardware reset.

NOTE 1 BPAC is considered only for DMA accesses, and ignored during core
accesses.

NOTE 2 In order to ensure sequential external accesses the DMA address
should advance in steps of three. See example of the DMA channel
programming in Chapter 8.1 - DMA CONTROLLER PROGRAMMING
MODEL

NOTE 3 DMA address +1, and DMA address +2 should not cross the AAR bank
borders otherwise improper operation may result.

NOTE 4 Arbitration is not allowed during the packing access, i.e. the three
accesses are treated as one access from the arbitration point of view,
and the bus mastership will not be released during these accesses.

NOTE 5 Packing Mode is not allowed to Synchronous SRAM with zero wait
states, otherwise improper operation may result.

2.5.1.8 BNC(3:0) - Number of address bits to Compare - bits 11-8

The read/write control bits BNC(3:0) defines the number of bits (from the BAC bits) that
are compared to the external address. If no bits should be compared (BNC(3:0) = 0000)
the AA pin is activated only according to the space enable bits (BPEN, BXEN, BYEN). The
combinations BNC(3:0) = 1111, 1110, 1101 are reserved.
BCN(3:0) bit are cleared during hardware reset.

2.5.1.9 BAC(11:0) - Address to compare - bits 23-12

The read/write control bits BAC(11:0) defines the address that should be compared to the
MOTOROLA EXPANSION PORT 2 - 23

external address in order to decide if to assert the AA/RAS pin. The number of bits that
should be compared is defined by the BNC(3:0) bits, BAC bits are always compared to the
most significant portion of the external address bus (e.g. if BNC(3:0) = 0011 then
BAC(11:9) are compared to the 3 most significant bits of the external address).
BAC(11:0) bits are cleared during hardware reset.

2.5.2 Bus Control Register

The Bus Control Register (BCR) is a 24 bit read write register used to control the external
bus activity and Bus Interface Unit operation. The BCR bits are shown in Figure 2-11 on
page 2-24 and described in the following paragraphs.

Figure 2-11. Bus Control Register (BCR)

2.5.2.1 BA0W(4:0) - Area 0 Wait control - bits 4-0

The read/write control bits BA0W(4:0) define the number of wait states (0 - 31) inserted
in each external SRAM or synchronous SRAM accesses to area 0 (DRAM accesses are
not affected by these bits). Area 0 is the area defined by AAR0 register.
For SRAM accesses only, the value of these bits should not be programmed as zero since
SRAM memory access requires at least one wait state.
For SRAM accesses only, when selecting 4 to 7 wait states, one additional wait state will
be inserted at the end of the access. When selecting 8 or more wait states, two additional
wait states will be inserted at the end of the access. These trailing wait states increase the
data hold time and the memory release time and do not increase the memory access time.
BA0W(4:0) bits are set during hardware reset (i.e. 31 wait states).

BA0W2BA0W3

BA2W2

Area 3 wait state
Default area wait states
Bus State
Bus Lock hold
Bus Request hold

BA0W0

012

BA0W4

3

BA1W0

4567891011

BA0W1

121314151617181920212223

Area 0 wait states
Area 1 wait states
Area 2 wait states

BA3W2 BA3W1BLHBRH BA3W0

BA2W1 BA1W4BA2W0

BBS

BA1W1BA1W2BA2W3

BDFW0BDFW3 BDFW2 BDFW1BDFW4
2 - 24 EXPANSION PORT MOTOROLA

2.5.2.2 BA1W(4:0) - Area 1 Wait control - bits 9-5

The read/write control bits BA1W(4:0) define the number of wait states (0 - 31) inserted
in each external SRAM or synchronous SRAM accesses to area 1 (DRAM accesses are
not affected by these bits). Area 1 is the area defined by AAR1 register.
For SRAM accesses only, the value of these bits should not be programmed as zero since
SRAM memory access requires at least one wait state.
For SRAM accesses only, when selecting 4 to 7 wait states, one additional wait state will
be inserted at the end of the access. When selecting 8 or more wait states, two additional
wait states will be inserted at the end of the access. These trailing wait states increase the
data hold time and the memory release time and do not increase the memory access time.
BA1W(4:0) bits are set during hardware reset (i.e. 31 wait states).

2.5.2.3 BA2W(2:0) - Area 2 Wait control - bits 12-10

The read/write control bits BA2W(2:0) define the number of wait states (0 - 7) inserted in
each external SRAM or synchronous SRAM accesses to area 2 (DRAM accesses are not
affected by these bits). Area 2 is the area defined by AAR2 register.
For SRAM accesses only, the value of these bits should not be programmed as zero since
SRAM memory access requires at least one wait state.
For SRAM accesses only, when selecting 4 to 7 wait states, one additional wait state will
be inserted at the end of the access. These trailing wait states increase the data hold time
and the memory release time and do not increase the memory access time.
BA2W(2:0) bits are set during hardware reset (i.e. 7 wait states).

2.5.2.4 BA3W(2:0) - Area 3 Wait control - bits 15-13

The read/write control bits BA3W(2:0) define the number of wait states (0 - 7) inserted in
each external SRAM or synchronous SRAM accesses to area 3 (DRAM accesses are not
affected by these bits). Area 3 is the area defined by AAR3 register.
For SRAM accesses only, the value of these bits should not be programmed as zero since
SRAM memory access requires at least one wait state.
For SRAM accesses only, when selecting 4 to 7 wait states, one additional wait state will
be inserted at the end of the access. These trailing wait states increase the data hold time
and the memory release time and do not increase the memory access time.
BA3W(2:0) bits are set during hardware reset (i.e. 7 wait states).

2.5.2.5 BDFW(4:0)- Default Area Wait control - bits 20-16

The read/write control bits BDFW(3:0) define the number of wait states (0 - 31) inserted
in each external accesses to an area which is not defined by any of the BAAR registers.
The access type to this area is SRAM only. The value of these bits should not be
programmed as zero since SRAM memory access requires at least one wait state.
When selecting 4 to 7 wait states, one additional wait state will be inserted at the end of
the access. When selecting 8 or more wait states, two additional wait states will be
inserted at the end of the access. These trailing wait states increase the data hold time
and the memory release time and do not increase the memory access time.
 BDFW(4:0) bits are set during hardware reset (e.g. 31 wait states).
MOTOROLA EXPANSION PORT 2 - 25

2.5.2.6 BBS - Bus State - bit 21

The read only Bus State status bit - BBS is set when the DSP is the bus master and
cleared otherwise. BBS bit is cleared during hardware reset.

2.5.2.7 BLH - Bus Lock Hold - bit 22

The read/write control bit Bus Lock Hold - BLH is used to assert the BL pin even if no read-
modify-write access is occurring. When BLH is set, BL pin is always asserted. If BLH bit
is cleared BL pin is asserted only if a read-modify-write external access is attempted.
BLH bit is cleared during hardware reset.

2.5.2.8 BRH - Bus Request Hold - bit 23

The read/write control bit Bus Request Hold - BRH is used to assert the BR pin even if no
external access is needed. When BRH is set BR pin is always asserted, if BRH bit is
cleared BR pin is asserted only if external access is attempted or pending.
BRH bit is cleared during hardware reset.

2.5.3 IDentification Register

The IDentification Register (IDR) is a 24 bit read only via programmed register used to
identify the different DSP56300 core-based family members. This register specify the chip
number and revision and the DSP56300 core revision. The exact number for each
DSP56300 core member can be found in the specific part data sheet.

2.6 DRAM CONTROLLER

The DRAM controller is designed for efficient interface to dynamic RAM devices in both
random read/write cycles and fast access mode (page mode). An on-chip DRAM
controller controls the page hit circuit, the address multiplexing (row address and column
address), the control signal generation (CAS and RAS) and the refresh access generation
(CAS before RAS) for a large variety of DRAM module sizes and different access times.
The on chip DRAM controller configuration is determined by the DRAM Control Register
(DCR).

2.6.1 DRAM Control Register

The DRAM Control Register (DCR) is a 24 bit read write register used to control and
configure the external DRAM accesses. The DCR bits are shown in Figure on page 2-27
and described in the following paragraphs.

NOTE The programmer must guarantee that all the DCR bits except BSTR are
2 - 26 EXPANSION PORT MOTOROLA

not changed while accessing a DRAM. Otherwise improper operation
may result.

Figure 2-12. DRAM Control Register (DCR)

2.6.1.1 BCW(1:0) - In page Wait states - bits 1-0

The read/write control bits - BCW(1:0) define the number of wait states that should be
inserted in each DRAM in-page access.
The encoding of BCW1 and BCW0 is described in the following table. BCW(1:0) bits are
cleared during hardware reset

2.6.1.2 BRW(1:0) - Out of page Wait states- bits 3-2

The read/write control bits- BRW(1:0) define the number of wait states that should be
inserted in each DRAM out of page access.

BCW1 BCW0 DRAM External access

0 0 1 w.s for each in-page access

0 1 2 w.s for each in-page access

1 0 3 w.s for each in-page access

1 1 4 w.s for each in-page access

BME

Mastership Enable
Refresh Enable
Software triggered Refresh
Refresh request rate
Refresh Prescaler

BCW0

01

BRW0

234567891011

BCW1

Reserved Bit

121314151617181920212223

BRW1

In page wait states
Out of page wait states
DRAM Page Size
Page logic Enable

BRF0 BSTRBRF2BRF3 BREN

BPLE BPS1 BPS0

BRF1BRF4BRF5BRF6BRF7BRP
MOTOROLA EXPANSION PORT 2 - 27

The encoding of BRW1 and BRW0 is described in the next table. BRW(1:0) bits are
cleared during hardware reset.

2.6.1.3 BPS(1:0) - DRAM Page Size - bits 9-8

The read/write control bits- BPS(1:0) define the size of the external DRAM page and
thereby the number of the column address bits. The internal page mechanism works
according to these bits only if the page logic is enabled (by BPLE bit). The four
combinations of BPS(1:0) enable the use of many DRAM sizes (1Mbit, 4Mbit, 16Mbit and
64Mbit). The encoding of BPS1 and BPS0 is described in the following table. BPS(1:0)
bits are cleared during hardware reset.

NOTE When driving the row address all the 24 address bits of the external
address bus are driven. e.g: if BPS(1:0) = 01, when driving the row
address the 14 MS bits of the internal address (XAB, YAB,PAB or DAB)
will be driven on A(13:0) pins, and A(23:14) pins will be driven with the
10 MSB of the internal address. This method enables the use of different
DRAMs with the same page size.

2.6.1.4 BPLE - Page logic Enable - bit 11

The read/write Page logic Enable - BPLE is used to enable/disable the in-page identifying
logic. When this bit is set it enables the page logic (the page size is defined by BPS(1:0)
bits), each in-page identification will cause the DRAM controller to drive only the column
address (and the associate CAS signal).When this bit is cleared the page logic is disabled,
and the DRAM controller will always access the external DRAM in out-of-page accesses

BRW1 BRW0 DRAM External access

0 0 4 w.s for each out-of-page access

0 1 8 w.s for each out-of--page access

1 0 11 w.s for each out-of-page access

1 1 15 w.s for each out-of-page access

BPS1 BPS0 Column address width DRAM
Page size

0 0 9 bits 512

0 1 10 bits 1K

1 0 11 bits 2K

1 1 12 bits 4K
2 - 28 EXPANSION PORT MOTOROLA

(e.g. row address with RAS assertion and then column address with CAS assertion). This
mode is useful for low power dissipation.There is only one in-page identifying logic and
therefore when switching from one DRAM external bank to another DRAM bank (the
DRAM external banks are defined by the access type bits in the AAR registers, different
external bank are accessed through different AA/RAS pin) a page fault occurs. BPLE bit
is cleared during hardware reset.

2.6.1.5 BME - Mastership Enable - bit 12

The read/write control bit Mastership Enable - BME is used to enable/disable interface to
a local DRAM for the DSP. When BME is cleared, the RAS and CAS pins are three-stated
when mastership is lost and therefore the user must connect an external pull-up resistor
to these pins. In this case (BME = 0) the DSP DRAM controller assumes a page fault each
time the mastership is lost and a DRAM refresh will require a bus mastership. If BME bit
is set the RAS and CAS pins are always driven from the DSP and therefore DRAM refresh
can be performed even if the DSP is not the bus master. BME bit is cleared during
hardware reset.

2.6.1.6 BREN - Refresh Enable - bit 13

The read/write control bit Refresh Enable - BRE enables/disables the internal refresh
counter. When this bit is set the refresh counter is enabled and a refresh request (CAS
before RAS) is generated each time the refresh counter reaches zero, a refresh cycle will
occur to all DRAM banks together (all pins that were defined as RAS will be asserted
together). When this bit is cleared the refresh counter is disabled and a refresh request
may be software triggered by using the BSTR bit. BRE bit is cleared during hardware
reset.

NOTE 1 In a system where more than one DSP share the same DRAM, the
DRAM controller of more than one DSP may be active, but it is
recommended that only one DSP will have its BREN bit set, and bus
mastership will be requested for a refresh access.

NOTE 2 If BREN is set and a WAIT instruction is executed, periodic refresh will
still be generated each time the refresh counter reaches zero.

NOTE 3 If BREN is set and a STOP instruction is executed, periodic refresh will
not be generated and the refresh counter will be disabled.

2.6.1.7 BSTR - Software Triggered Refresh - bit 14

The read/write control/status bit Software triggered refresh - BSTR is used to generate a
software triggered refresh request. When this bit is set a refresh request is generated and
a refresh access will be executed to all DRAM banks (the exact timing of the refresh
access depends on the pending external accesses and on BME bit). After the refresh
access (CAS before RAS) was executed BSTR bit is cleared by the DRAM controller
hardware.The refresh cycle length depends on the BRW(1:0) bits (a refresh access is as
long as the out-of-page access). BSTR bit is cleared during hardware reset.
MOTOROLA EXPANSION PORT 2 - 29

2.6.1.8 BRF(7:0) Refresh rate - bits 22-15

The read/write control bits BRF(7:0) control the refresh request rate.The BRF(7:0) specify
a divide rate of 1 (BRF(7:0)= $00) to 256 (BRF(7:0) = $FF). A refresh request will be
generated each time the refresh counter reaches zero if the refresh counter is enabled (by
setting BRE bit). BRF(7:0) bits are cleared during hardware reset.

2.6.1.9 BRP - Refresh Prescaler - bit 23

The read/write control bit - BRP controls a prescaler in series with the refresh clock
divider. If BPR is set a divide by 64 prescaler is connected in series with the refresh clock
divider, if BPR is cleared the prescaler is bypassed. The refresh request rate (in clock
cycles) is the value written to BRF(7:0) bits + 1, multiplied by 64 (if BRP is set) or by 1 (if
BRP is cleared). BPR is cleared during hardware reset

NOTE 1 Refresh requests are not accumulated and therefore in a fast refresh
request rate not all the refresh requests will be served (e.g. the
combination BRF(7:0) = $00 and BRP = 0 will generate refresh request
every clock cycle, but a refresh access takes at least 5 clock cycles).

NOTE 2 When programming the periodic refresh rate the user must consider the
RAS time-out period. There is no hardware support for the RAS time-out
restriction.
2 - 30 EXPANSION PORT MOTOROLA

3 DATA ARITHMETIC LOGIC UNIT

3.1 DATA ALU ARCHITECTURE

The Data ALU (see Figure 3-1) performs all the arithmetic and logical operations on data
operands in the DSP56300 Core.

The Data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the Data ALU, which may be 24, 48, or 56 bits,
always originate from Data ALU registers. The results of all Data ALU operations are
stored in an accumulator. A sixteen bit arithmetic mode of operation is available by setting
the SA bit in the status register (SR).

All the Data ALU operations are performed in two clock cycles in pipeline fashion so that
a new instruction can be initiated in every clock, yielding an effective execution rate of an
instruction per clock cycle. The destination of every arithmetic operation can be used as
a source operand for the immediate following operation without penalty.

The components of the Data ALU are as follows:
• Four 24-bit input registers
• A parallel, fully pipelined multiply-accumulator unit (MAC)
• Two 48-bit accumulator registers
• Two 8-bit accumulator extension registers
• A Bit Field Unit (BFU) with a 56-bit barrel shifter
• An accumulator shifter
• Two data bus shifter/limiter circuits

3.1.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated
as four independent 24-bit registers or as two 48-bit registers called X and Y, formed by
concatenation of X1:X0 and Y1:Y0, respectively. X1 is the most significant word in X and
Y1 is the most significant word in Y. The registers serve as input buffer registers between
the XDB or YDB and the MAC unit or barrel shifter. They are used as Data ALU source
operands, allowing new operands to be loaded for the next instruction while the register
contents are used by the current instruction. The registers may also be read back out to
the appropriate data bus.
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 1

3.1.2 MAC Unit

The MAC unit comprise the main arithmetic processing unit of the DSP56300 Core and
perform all of the calculations on data operands. In the case of arithmetic instructions, the
unit accepts up to three input operands and outputs one 56-bit result of the following form,
extension:most significant product:least significant product (EXT:MSP:LSP). The
operation of the MAC unit occurs independently and in parallel with XDB and YDB activity,
and its registers facilitate buffering for both Data ALU inputs and outputs. Latches are
provided on the MAC unit input to permit writing an input register, which is the source for
a Data ALU operation in the same instruction. The input to the multiplier can only come
from the X or Y registers. The multiplier executes 24-bit x 24-bit, parallel, fractional
multiplies, between two’s-complement signed, unsigned or mixed operands. The 48-bit
product is right justified and added to the 56-bit contents of either the A or B accumulator.

The 56-bit sum is stored back in the same accumulator. The multiply/accumulate
operation is fully pipelined and takes two clock cycles to complete. In the first clock the
multiply is performed and the product is stored in the pipeline register. In the second clock
the accumulator is added or subtracted. If a multiply without accumulation (MPY) is
specified in the instruction, the MAC clears the accumulator and then adds the contents
to the product. When a 56-bit result is to be stored as a 24-bit operand, the LSP can be
simply truncated, or it can be rounded into the MSP. Rounding is performed if specified in
the DSP instruction (e.g., the signed multiply-accumulate and round (MACR) instruction).
The rounding performed is either convergent rounding (round-to-nearest-even) or two’s-
complement rounding. The type of rounding is specified by the rounding bit in the status
register. The bit in the accumulator that is rounded is specified by the scaling mode bits in
the status register.
3 - 2 DATA ARITHMETIC LOGIC UNIT MOTOROLA

Figure 3-1. Data ALU Block Diagram

It is possible to saturate the arithmetic unit’s result going into the accumulator so that it
would fit into 48 bits (MSP and LSP). This process is commonly referred to as arithmetic
saturation. It is activated by the Arithmetic Saturation Mode (SM) bit in the status register
(SR). The purpose of this mode is to provide for algorithms which do not recognize or
cannot take advantage of the extension accumulator (EXT). For further details refer to
Section 3.2.3.

ACCUMULATOR
SHIFTER

IMMEDIATE FIELD

48

5656

24

24

5656

56

56

56

X DATA BUS

Y DATA BUS

2424

X0

X1

Y0

Y1

24 24

MULTIPLIER

ACCUMULATOR
AND ROUNDING

UNIT

A (56)

B (56)

SHIFTER/LIMITER

PIPELINE REGPIPELINE REGISTERS PIPELINE REGISTERS

BIT FIELD UNIT
AND BARREL SHIFTER

56

P DATA BUS

MUX

56
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 3

3.1.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)

The six Data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-
bit accumulators, A and B. Each of these two accumulators consists of three concatenated
registers (A2:A1:A0 and B2:B1:B0, respectively). The 24-bit MSP is stored in A1 or B1;
the 24-bit LSP is stored in A0 or B0. The 8-bit EXT is stored in A2 or B2.

Reading the A or B accumulators over the XDB and YDB is protected against overflow by
substituting a limiting constant for the data that is being transferred. The content of A or B
is not affected should limiting occur; only the value transferred over the XDB or YDB is
limited. This process is commonly referred to as transfer saturation and should not be
confused with the arithmetic saturation mode.

The overflow protection is performed after the contents of the accumulator have been
shifted according to the scaling mode. Shifting and limiting will be performed only when
the entire 56-bit A or B register is specified as the source for a parallel data move over the
XDB or YDB. When A0, A1, A2, B0, B1, or B2 are specified as the source for a parallel
data move, shifting and limiting are not performed. When the 8-bit wide accumulator
extension register (A2 or B2) is specified as the source for a parallel data move, it is sign
extended to produce the full 24-bit wide word. The accumulator registers (A or B) serve
as buffer registers between the arithmetic unit and the XDB and/or YDB. These registers
are used as both Data ALU source and destination operands.

Automatic sign extension of the 56-bit accumulators is provided when the A or B register
is written with a smaller operand. Sign extension can occur when writing A or B from the
XDB and/or YDB or with the results of certain Data ALU operations (such as the transfer
conditionally (Tcc) or transfer Data ALU register (TFR) instructions). If a word operand is
to be written to an accumulator register (A or B), the MSP (A1 or B1) portion of the
accumulator is written with the word operand, the LSP (A0 or B0) portion is zero filled, and
the EXT (A2 or B2) portion is sign extended from MSP. Long-word operands are written
into the low-order portion, MSP:LSP, of the accumulator register, and the EXT portion is
sign extended from MSP. No sign extension is performed if an individual 24-bit register is
written (A1, A0, B1, or B0). Test logic is included in each accumulator register to support
operation of the data shifter/limiter circuits. This test logic is used to detect overflows out
of the data shifter so that the limiter can substitute one of several constants to minimize
errors due to the overflow.

3.1.4 Accumulator Shifter

The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 56-bit
output that is implemented immediately before the MAC accumulator input. The source
accumulator shifting operations are as follows:

• No Shift (Unmodified)
• 24-Bit Right Shift (Arithmetic) for DMAC
• 16-Bit Right Shift (Arithmetic) for DMAC in

Sixteen Bit Arithmetic Mode
• Force to zero
3 - 4 DATA ARITHMETIC LOGIC UNIT MOTOROLA

3.1.5 Bit Field Unit (BFU)

The bit field unit contains a 56-bit parallel bidirectional shifter with a 56-bit input and a 56-
bit output, mask generation unit and logic unit. The bit field unit is used in the following
operations:

• Multibit Left Shift (Arithmetic or Logical) for ASL, LSL
• Multibit Right Shift (Arithmetic or Logical) for ASR, LSR
• 1-Bit Rotate (Right or Left) for ROR, ROL
• Bit Field Merge, Insert and Extract for MERGE, INSERT,

EXTRACT and EXTRACTU
• Count Leading Bits for CLB
• Fast Normalization for NORMF
• Logical operations for AND, OR, EOR, and NOT

3.1.6 Data Shifter/Limiter

The data shifter/limiter circuits provide special postprocessing on data read from the ALU
accumulator registers A and B out to the XDB or YDB. There are two independent shifter/
limiter circuits (one for XDB and one for the YDB); each consists of a shifter followed by a
limiting circuit.

3.1.7 Scaling

The data shifters (in the shifters/limiters unit), controlled by the scaling mode bits in the
status register, are capable of shifting data one bit to the left (scale up) or one bit to the
right (scale down) as well as passing the data unshifted (no scaling). Each data shifter has
a 24-bit output with overflow indication. These shifters permit dynamic scaling of fixed-
point data without modifying the program code. For example, this permits block floating-
point algorithms such as fast Fourier transforms to be implemented in a regular fashion.

3.1.8 Limiting

In the DSP56300 Core, the Data ALU accumulators A and B have eight extension bits.
Limiting will occur when the extension bits are in use and either A or B is the source being
read over XDB or YDB. The limiters in the DSP56300 Core place a shifted and limited
value on XDB or YDB without changing the contents of the A or B registers. Having two
limiters allows two-word operands to be limited independently in the same instruction
cycle. The two data limiters can also be combined to form one 48-bit data limiter for long-
word operands.

If the contents of the selected source accumulator can be represented without overflow in
the destination operand size (i.e. signed integer portion of the accumulator is not in use),
the data limiter is disabled, and the operand is not modified. If the contents of the selected
source accumulator cannot be represented without overflow in the destination operand
size, the data limiter will substitute a limited data value having maximum magnitude
(saturated) and having the same sign as the source accumulator contents: $7FFFFF for
24-bit or $7FFFFF FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000
000000 for 48-bit negative numbers. This process is called transfer saturation. The value
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 5

in the accumulator register is not shifted or limited and can be reused within the Data ALU.
When limiting does occur, a flag is set and latched in the status register.

3.2 DATA ALU ARITHMETIC AND ROUNDING

3.2.1 Data Representation

The DSP56300 Core uses a fractional data representation for all Data ALU operations.
Figure 3-2 shows the bit weighting of words, long words, and accumulator operands for
this representation. The decimal points are all aligned and are left justified.

For words and long words, the most negative number that can be represented is -1.0
whose internal representation is $800000 and $800000000000, respectively.

The most positive word is $7FFFFF or 1-2-23 and the most positive long word is
$7FFFFFFFFFFF or 1-2-47. These limitations apply to all data stored in memory and to
data stored in the Data ALU input buffer registers. The extension registers associated with
the accumulators allow word growth so that the most positive number that can be used is
approximately 256 and the most negative number is -256.

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and
its MSB is automatically sign extended through the accumulator extension register (A2 or
B2). The least significant accumulator register (A0 or B0) is automatically cleared. When
a long-word operand is written to an accumulator, the least significant word of the operand
is written to the least significant accumulator register (see Figure 3-2).
3 - 6 DATA ARITHMETIC LOGIC UNIT MOTOROLA

Figure 3-2. Bit Weighting and Alignment of Operands

The number representation for integers is between ± 2 (N-1); whereas, the fractional
representation is limited to numbers between ± 1. To convert from an integer to a fractional
number, the integer must be multiplied by a scaling factor so the result will always be
between ± 1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numbers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 3-3.

Figure 3-3. Integer/Fractional Multiplication

The key difference is in the alignment of the 2N-1 bit product. In fractional multiplication
the 2N-1 significant product bits should be left aligned, and a zero is filled in the least

2–472–2420–28

2–472–24

–20 2–23

–20

*

A2, B2 A1, B1 A0, B0

SIGN EXTENSION OPERAND ZERO

DATA ALU

WORD OPERAND

X1, X0
Y1, Y0
A1, A0
B1, B0

LONG - WORD OPERAND

X1:X0 = X
Y1:Y0 = Y

A1:A0 = A10
B1:B0 = B10

ACCUMULATOR A OR B

S S

.

.

SIGNED MULTIPLIER

S S MSP LSP •

2N — 1 PRODUCT
SIGN EXTENSION

2N BITS

S S

.

.

SIGNED MULTIPLIER

0S• MSP LSP

2N — 1 PRODUCT
ZERO FILL

2N BITS

INTEGER FRACTIONAL

SIGNED MULTIPLICATION N x N - 2N - 1 BITS
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 7

significant bit (LSB), to maintain fractional representation. In integer multiplication the 2N-
1 significant product bits should be right aligned, and the sign bit should be duplicated, to
maintain integer representation. Since the DSP56300 Core incorporates a fractional array
multiplier, it always aligns the 2N-1 significant product bits to the left. The user should be
aware of this when multiplying integer numbers.

3.2.2 Rounding Modes

The DSP56300 Core’s DATA ALU performs rounding of the accumulator register to single
precision if requested in the instruction. The upper portion of the accumulator is rounded
according to the contents of the lower portion of the accumulator. The boundary between
the lower portion and the upper portion is determined by the scaling mode bits S0 and S1
in the status register (SR). Two types of rounding are implemented: convergent rounding
and two’s complement rounding. The type of rounding is selected by the rounding mode
bit (RM) in the EMR portion of the status register.

3.2.2.1 Convergent Rounding

This is the default rounding mode. Convergent rounding is also called round-to-nearest
(even) number. The usual rounding method rounds up any value above one-half and
rounds down any value below one-half. The question arises as to which way one-half
should be rounded. If it is always rounded one way, the results will eventually be biased in
that direction. Convergent rounding solves the problem by rounding down if the number is
even (LSB=0) and rounding up if the number is odd (LSB=1). Figure 3-4 shows the four
cases for rounding a number in the A1 (or B1) register. If scaling is set in the status
register, the rounding position is updated to reflect the alignment of the result when it will
be put on the data bus. However, the contents of the register are not scaled.

3.2.2.2 Two’s Complement Rounding

When twos-complement rounding is selected by setting the rounding mode bit in the MR,
all values equal or above one-half are rounded up and all values below one-half are
rounded down. Therefore a small positive bias is introduced. Figure 3-4 shows the four
cases for rounding a number in the A1 (or B1) register. If scaling is set in the status
register, the rounding position is updated to reflect the alignment of the result when it will
be put on the data bus. However, the contents of the register are not scaled.
3 - 8 DATA ARITHMETIC LOGIC UNIT MOTOROLA

Figure 3-4. Convergent Rounding (no scaling)

......A2A1........................A0
XX . .XX XXX . . .XXX0100 011XXX XXX
5548 4724 230

CASE I: IF A0 < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

AFTER ROUNDING

AFTER ROUNDING

BEFORE ROUNDING

BEFORE ROUNDING

0

.....A2.................A1.........................A0*
XX . .XX XXX . . .XXX0100 000 000
5548 4724 230

CASE II: IF A0 > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

.....A2..........A1..........................A0
XX . .XX XXX . . .XXX0100 1110XXXXX
5548 4724 23......................0

1

.....A2................A1.........................A0*
XX . .XX XXX . . .XXX0101 000 000
5548 4724 23.......................0

CASE III: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 0, THEN ROUND DOWN (ADD NOTHING)

.....A2................A1..........................A0
XX . .XX XXX . . .XXX0100 10000 000
5548 4724 23......................0

0

......A2................A1.........................A0*
XX . .XX XXX . . .XXX0100 000 000
5548 4724 23......................0

CASE IV: IF A0 = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING

.....A2................A1..........................A0
XX . .XX XXX . . .XXX0101 10000000
5548 4724 23......................0

1
AFTER ROUNDING

......A2................A1.........................A0*
XX . .XX XXX . . .XXX0110 000000
5548 4724 23......................0

*A0 is always clear; performed during RND, MPYR, MACR
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 9

Figure 3-5. Two’s Complement Rounding (no scaling)

......A2A1........................A0
XX . .XX XXX . . .XXX0100 011XXX XXX
5548 4724 230

CASE I: IF A0 < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

AFTER ROUNDING

AFTER ROUNDING

BEFORE ROUNDING

BEFORE ROUNDING

0

.....A2.................A1.........................A0*
XX . .XX XXX . . .XXX0100 000 000
5548 4724 230

CASE II: IF A0 > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

.....A2..........A1..........................A0
XX . .XX XXX . . .XXX0100 1110XXXXX
5548 4724 23......................0

1

.....A2................A1.........................A0*
XX . .XX XXX . . .XXX0101 000 000
5548 4724 23.......................0

CASE III: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 0, THEN ROUND UP (ADD 1 TO A1)

.....A2................A1..........................A0
XX . .XX XXX . . .XXX0100 10000 000
5548 4724 23......................0

1

......A2................A1.........................A0*
XX . .XX XXX . . .XXX0101 000 000
5548 4724 23......................0

CASE IV: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING

.....A2................A1..........................A0
XX . .XX XXX . . .XXX0101 10000000
5548 4724 23......................0

1
AFTER ROUNDING

......A2................A1.........................A0*
XX . .XX XXX . . .XXX0110 000000
5548 4724 23......................0

*A0 is always clear; performed during RND, MPYR, MACR
3 - 10 DATA ARITHMETIC LOGIC UNIT MOTOROLA

3.2.3 Arithmetic Saturation Mode

By setting the Arithmetic Saturation Mode (SM) bit in the status register (SR), the
arithmetic unit’s result is limited to 48 bits (MSP and LSP). The highest dynamic range of
the machine is then limited to 48 bits. The purpose of this bit is to provide a saturation
mode for algorithms which do not recognize or cannot take advantage of the extension
accumulator.

The arithmetic saturation logic operates by checking three bits of the 56-bit result after
rounding: two bits of the extension byte (EXT[7] and EXT[0]) and one bit on the MSP
(MSP[23]). The result obtained in the accumulator when SM =1 is shown in Table 3-1.:

Table 3-1. Actions of the Arithmetic Saturation Mode (SM=1)

The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not
affected by the scaling mode. In the same way, the rounding of the saturation constant
(during MPYR, MACR, RND) is independent of the scaling mode: $007FFFFFFFFFFF is
rounded to $007FFFFF000000 and $FF800000000000 to $FF800000000000.

When in Arithmetic Saturation Mode, the Overflow Bit (V bit) in the status register is set if
the Data ALU result is not representable in the 48-bit accumulator, i.e. an arithmetic
saturation has occurred. This also implies that the limiting bit (L bit) in the status register
is set when an arithmetic saturation occurs.

Caution: The arithmetic saturation mode is ALWAYS disabled during the execution of the
following instructions: TFR, Tcc, DMACsu, DMACuu, MACsu, MACuu, MPYsu, MPYuu,
CMPU, and all BIT FIELD UNIT operations (see 3.1.5). If the result of these instructions
should be saturated, a MOVE A,A (or B,B) instruction must be added following the original
instruction (provided no scaling is set). However, the “V” bit of the status register will never
be set by the arithmetic saturation of the accumulator during the MOVE A,A (or B,B). Only
the “L” bit will then be set.

EXT[7] EXT[0] MSP[23] result in accumulator

0 0 0 unchanged
0 0 1 $00 7FFFFF FFFFFF
0 1 0 $00 7FFFFF FFFFFF
0 1 1 $00 7FFFFF FFFFFF

1 0 0 $FF 800000 000000
1 0 1 $FF 800000 000000
1 1 0 $FF 800000 000000
1 1 1 unchanged
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 11

3.2.4 Multiprecision Arithmetic Support

A set of Data ALU operations is provided in order to facilitate multi-precision
multiplications. When these instructions are used, the multiplier accepts some
combinations of signed two’s-complement format and unsigned format. These instructions
are:

• MPY/MAC su: multiplication and multiply-accumulate with
signed times unsigned operands

• MPY/MAC uu: multiplication and multiply-accumulate with
unsigned times unsigned operands

• DMACss: multiplication with signed times signed operands
and 24-bit arithmetic right shift of the accumulator
before accumulation

• DMACsu: multiplication with signed times unsigned
operands and 24-bit arithmetic right shift of the
accumulator before accumulation

• DMACuu: multiplication with unsigned times unsigned
operands and 24-bit arithmetic right shift of the
accumulator before accumulation

Figure 3-6 shows how the DMAC instruction is implemented inside the Data ALU.

Figure 3-6. DMAC Implementation

Figure 3-7 illustrates the use of these instructions in the case of a double precision
multiplication. The signed x signed operation is used to multiply or multiply-accumulate the
two upper, signed, portions of two signed double precision numbers. The unsigned x
signed operation is used to multiply or multiply-accumulate the upper, signed, portion of
one double precision number with the lower, unsigned, portion of the other double
precision number. The unsigned x unsigned operation is used to multiply or multiply-
accumulate the lower, unsigned, portion of one double precision number with the lower,
unsigned, portion of the other double precision number.

Multiply

+

Accumulate

Accumulator Shifter
>> 24
3 - 12 DATA ARITHMETIC LOGIC UNIT MOTOROLA

Figure 3-7. Double Precision Multiplication Using DMAC

3.2.4.1 Double Precision Multiply Mode

To support existing 56K code, double precision multiply can also be performed by a double
precision algorithm which uses four multiply operations, after entering a dedicated
“Double Precision Multiply” mode. The mode is entered by setting bit 14 (DM) of the Status
Register (bit 6 of the MR register). The mode is disabled by clearing the DM bit.

The algorithm is shown in Figure 3-8. The ORI instruction sets the DM mode bit in the MR
register, but due to the instruction execution pipeline the Data ALU enters the Double
Precision Multiply mode only after one cycle. The ANDI instruction clears the DM mode
bit in the MR register, but due to the instruction execution pipeline the Data ALU leaves
the mode after one cycle; the ANDI instruction should not be immediately followed by a
restricted Data ALU instruction, to allow for the pipeline delay.

While in Double Precision Multiply mode, the behavior of the four specific operations listed
in the double precision algorithm is modified. Therefore these operations (with those
specific register combinations) should not be used, while in Double Precision Multiply
mode, for any other purpose but for the double precision multiply algorithm. All other Data
ALU operations (or the four listed operations but with other register combination) may not
be used.

The double precision multiply algorithm uses the Y0 register at all stages. Therefore Y0
should not be changed when running the double precision multiply algorithm. If the use of

48 bits

96 bits

B0B1A0A1A2

X0X1

Y1 Y0

XLXH

YH YL

X

=

S Ext

+
+

+

XL x YL

XH x YL

YH x XL

XH x YH

Signed X Unsigned

Signed X Signed

Unsigned X Unsigned
mpyuu x0,y0,a
move a0,b0

dmacsu x1,y0,a

macsu y1,x0,a
move a0,b1
dmacss x1,y1,a
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 13

the Data ALU is required in an interrupt service routine, Y0 should be saved together with
other Data ALU registers to be used, and should be restored before leaving the interrupt
routine.

Figure 3-8. Double precision algorithm

3.2.5 Block Floating Point FFT Support

Block Floating Point FFT operation requires the early detection of data growth between
FFT butterfly passes. If data growth is detected, suitable down scaling must be applied to
ensure that no overflow will occur during the next butterfly calculation pass. The total
scaling applied is the block exponent of the FFT output. The Block Floating Point FFT
algorithm is described in the Motorola application note APR4/D, “Implementation of Fast
Fourier Transforms on Motorola’s DSP56000/DSP56001 and DSP96002 Digital Signal
Processors”.

Data growth detection is implemented as a status bit in the status register. The “FFT
scaling bit” S (bit 7) of the status register is set upon moving a result from accumulator A
or B to the XDB or YDB bus (during an accumulator to memory or accumulator to register
move) and will remain set until explicitly cleared, that is, the “S” bit is a “sticky” bit.

Y:X:

R5MSP2
LSP2

MSP1
LSP1

R1

DP2
DP0

DP3
DP1

R0R0

DP3_DP2_DP1_DP0 = MSP1_LSP1 x MSP2_LSP2

ori #$40,mr ;enter mode

move x:(r1)+,x0 y:(r5)+,y0 ;load operands

mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP->a

mac x1,y0,a a0,y:(r0) ;shifted(a)+

; MSP*LSP->a

mac x0,y1,a ;a+LSP*MSP->a

mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; MSP*MSP->a

move a,l:(r0)+

andi #$bf,mr ;exit mode

; non-restricted Data ALU operation ;pipeline delay
3 - 14 DATA ARITHMETIC LOGIC UNIT MOTOROLA

3.3 DATA ALU PROGRAMMING MODEL

The Data ALU features 24-bit input/output data registers that can be concatenated to
accommodate 48-bit data and two 56-bit accumulators, which are segmented into three
24-bit pieces that can be transferred over the buses. Figure 3-9 illustrates how the
registers in the programming model are grouped.

Figure 3-9. DSP56300 Core Programming Model

3.4 SIXTEEN BIT ARITHMETIC MODE

Setting the SA bit in the status register (SR) enables the Sixteen Bit Arithmetic mode of
operation. The 16 bit data is right aligned in the 24 bit memory word, that is in the 16 least
significant bits of the 24 bit word. The user may use 16 bit wide data memories with either
leaving the 8 most significant bits unconnected, or tieing these bits to GND.

In the Sixteen Bit Arithmetic mode of operation the source operands can be 16, 32 or 40
bit. The numerical results have 40 bits accuracy. These 40 bits are composed of 16 bit
LSP, 16 bit MSP and 8 bit EXT.

47 0

DATA ALU

DATA ALU

* A2 A1 A0

INPUT REGISTERS

ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

X Y

A B

X1 X0

23 0 23 0

 55 0

23.......7 0 23 0 23 0
* B2 B1 B0

 55 0

23.......7 0 23 0 23 0

47 0
Y1 Y0

23 0 23 0
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 15

Figure 3-10 shows the bit positions in the memory and Data ALU registers when in
Sixteen Bit Arithmetic mode.

Figure 3-10. Sixteen Bit Arithmetic Mode Data Organization

Note 1: When switching to and from sixteen bit arithmetic mode, for two instruction cycles,
no arithmetic instruction or a move instruction should be performed.
Note 2: The programmer should be cautious about exchanging data between 16-bit
arithmetic mode and 24-bit arithmetic mode via write-read operations on data-ALU
registers and accumulators. Since the write operations in 16 bit arithmetic mode corrupt
the information in the least significant bytes of the registers or accumulators, these
registers or accumulator should not be used as 24-bit data without some processing.

3.4.1 Moves in sixteen bit arithmetic mode

In the Sixteen Bit Arithmetic mode of operation, the Data ALU registers may still be read
or written over the XDB and the YDB as 24 or 48 bit operations. No 16 or 32 bit moves are
provided. The mapping of the 16-bit data to the 24-bit buses is described in the following
paragraphs.

3.4.1.1 Moves into registers or accumulators

When moving XDB or YDB into a full Data ALU accumulator (A or B) the 16 LS bits of the
bus will be placed in bits 32-47 of the accumulator (16 MS bits of A1 or B1). Bits 8-23 of
the accumulator (16 MS bits of A0 or B0) will be cleared and the EXT of the accumulator
(A2 or B2) will be loaded with sign extension.

When moving XDB and YDB (48 bits) into a full Data ALU accumulator (A or B) the 16 LS
bits from XDB will be placed in bits 32-47 of the accumulator (16 MS bits of A1 or B1). The

47 0

DATA ALU

DATA ALU

* A2 A1 A0

INPUT REGISTERS

ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

X Y

A B

X1 X0

23 7 0 23 7 0

Undefined

 55 0

23.......7 0 23 7 0 23 7 0
* B2 B1 B0

 55 0

23.......7 0 23 7 0 23 7 0

47 0
Y1 Y0

23 7 0 23 7 0

MEMORY LOCATIONS

Memory Word Memory Long Word

Data

23 15 0
Data Data

23 15 0 23 15 0

AND NON-DATA-ALU REGISTERS
3 - 16 DATA ARITHMETIC LOGIC UNIT MOTOROLA

16 LS bits from YDB will be placed in bits 8-23 of the accumulator (16 MS bits of A0 or
B0). The EXT of the accumulator (A2 or B2) will be loaded with sign extension.

When moving XDB or YDB into a register (X0, X1, Y0 or Y1) or partial accumulator (A0,
A1, B0 or B1) the 16 LS bits of the bus will be loaded into the 16 MS bits of the destination
register. No other portion of the accumulator will be affected.

When moving XDB or YDB into the accumulator extension register (A2 or B2) the 8 LS
bits of the bus will be loaded into the 8 LS bits of the destination register and the 16 MS
bits of the bus will not be used. The remaining parts of the accumulator will not be affected.

When moving XDB and YDB into a 48-bit register (X or Y) or partial accumulator (A10 or
B10) the 16 LS bits of XDB bus will be loaded into the 16 MS bits of the MSP (X1, Y1, A1
or B1) and the 16 LS bits of YDB bus will be loaded into the 16 MS bits of the LSP (X0,
Y0, A0 or B0). The EXT part of the accumulator (A2 or B2) will not be affected.

3.4.1.2 Moves from registers or accumulators

When moving a partial accumulator (A0, A1, B0 or B1) to XDB or YDB, the 16 MS bits of
the source will be transferred to the 16 LS bits of the bus with 8 zeros in the MS bits. No
scaling or limiting will be performed. When the source is the accumulator extension
register (A2 or B2) it occupies the 8 LS bits of the bus while the next 16 bits are sign
extension of bit number 7.

When moving a partial accumulator (A10 or B10) to XDB and YDB, the 16 MS bits of the
MSP of the source (A1 or B1) will be transferred to the 16 LS bits of XDB with 8 zeros in
the MS bits, while the 16 MS bits of the LSP of the source (A0 or B0) will be transferred
to the 16 LS bits of YDB with 8 zeros in the MS bits. No scaling or limiting will be
performed.

When moving a full Data ALU accumulator (A or B) to XDB or YDB, scaling and limiting
will be performed, and then the 16-bit scaled and limited word will be placed on the bus
LS bits and sign extension will be placed on the bus 8 MS bits.

When moving a full Data ALU accumulator (A or B) to XDB and YDB, scaling and limiting
will be performed, and then the 16 MS bits of the 32-bit scaled and limited double word
will be placed on XDB 16 LS bits and sign extension will be placed on the bus 8 MS bits.
The 16 LS bits of the 32-bit scaled and limited double word will be placed on YDB 16 LS
bits with 8 zeros on the bus 8 MS bits.

When moving a register (X0, X1, Y0 or Y1) to XDB or YDB, the 16 MS bits of the source
will be transferred to the 16 LS bits of the bus with 8 zeros in the MS bits.

When moving a 48-bit register (X or Y) to XDB and YDB, the 16 MS bits of the high register
(X1 or Y1) will be placed on XDB 16 LS bits and 8 zeroes will be placed on the bus 8 MS
bits. The 16 LS bits of the low register (X0 or Y0) will be placed on YDB 16 LS bits with 8
zeros on the bus 8 MS bits.
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 17

Note: When a read operation of a Data ALU register (X, Y, X0, X1, Y0 or Y1) immediately
follows a write operation to the same register, then the value placed on the 8 MS bits of
the XDB or YDB will be undefined.

3.4.1.3 Short Immediate moves

When an Immediate Short Data MOVE is performed while in Sixteen Bit Arithmetic mode
of operation and the destination register is A0, A1, B0 or B1, the 8 bit immediate short
operand is interpreted as an unsigned integer and is therefore stored in bits 15-8 of the
register (which correspond to the 8 LS bits of a 16-bit number). If the destination register
is A2 or B2, the 8 bit immediate short operand is stored in bits 7-0 of the register.

When the destination register is A, B, X0, X1, Y0 or Y1, the 8 bit immediate short operand
is interpreted as a signed fraction and is therefore stored in bits 47-40 of the accumulator,
or bits 23-16 of a register (which correspond to the 8 MS bits of a 16-bit number).

3.4.1.4 Scaling and Limiting

If scaling is specified, the data shifter virtually concatenates the 16 bit LSP to the 16 bit
MSP so as to provide numerically correct shift.

During the Sixteen Bit Arithmetic mode of operation the limiting will be affected as
described below: the maximum positive value will be $007FFF ($007FFF00FFFF for
double precision). The maximum negative value will be $008000 ($008000000000 for
double precision).

3.4.2 Sixteen bit arithmetic

When reading an operand from a Data ALU register or accumulator to the arithmetic unit,
the 8 least significant bits of the 24 bit word, are ignored, i.e. read as zeros. The arithmetic
unit will force these bits to zero when generating a result.

The arithmetic unit virtually concatenates the 16 bit LSP with the 16 bit MSP to form a
continuous number. Therefore all arithmetic operations, including shifts, are numerically
correct.

The execution of Data ALU instructions when in sixteen bit arithmetic mode is not affected,
except for the following:

1. The operands and results width (16/32/40 instead of 24/48/56).
2. The rounding, if specified by the operation, will be performed on the most

significant bit of the 16-bit LS portion of the result, that is on the bit
corresponding to bit number twenty-three of A0/B0 (the scaling mode will
affect this position accordingly). See RND instruction for details.

3. The arithmetic saturation detection is unchanged, but the saturated values
change to $007FFF00FFFF00 and $FF800000000000.

4. The carry bit C will be added/subtracted, in ADC/SBC instructions, to the
least significant bit of the 16-bit LSP.
3 - 18 DATA ARITHMETIC LOGIC UNIT MOTOROLA

5. Logic operations will only affect the 16-bit wide word.
6. Rotation in rotate instructions will be performed on a 16-bit wide word.
7. The possible normalization range changes, thus affecting the CLB

instruction.
8. DMAC instruction will perform a 16-bit arithmetic right shift of the

accumulator before accumulation.
9. Double Precision Multiplication Algorithm, with the Double Precision

Multiply Mode bit is set, will not be supported.
10. The bit parsing instructions (MERGE, EXTRACT, EXTRACTU and

INSERT) are affected by the sixteen bit arithmetic mode so as to perform
on the appropriate bit positions of the sixteen bit data. In INSERT the user
has to update the offset by adding a bias value of 16. For further details
refer to the specific instruction details in appendix A.

11. In the Read Modify Write instructions (BCHG, BCLR, BSET and BTST)
and in the Jump/Branch on bit instructions (BRCLR, BRSET, BSCLR,
BSSET, JCLR, JSET, JSCLR and JSSET) the bit numbering in sixteen bit
arithmetic mode is relative to 16-bit wide words, i.e. bit number 0 is the
least significant bit and bit number 15 is the most significant bit. Bit
numbers over 15 should not be used.
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 19

3.5 PIPELINE CONFLICTS

The Data ALU is fully pipelined and every instruction takes two clock cycles to complete.
However a new instruction can be started on every clock cycle and a new result is
produced on every clock cycle thus yielding an effective execution rate of an instruction
per clock cycle. There are no pipeline dependencies when using the result of the Data
ALU as source operand for the immediate following Data ALU instruction. Nevertheless,
Data ALU operations can produce pipeline conflicts as described in the following
paragraphs.

Since every Data ALU instruction takes two clock cycles to complete, an interlock
condition occurs when trying to read an accumulator (or parts of an accumulator) while
the preceding instruction was a Data ALU instruction that specified that same accumulator
as the destination. This interlock condition, named “arithmetic stall”, is detected in
hardware and an idle cycle (no op) is inserted, thereby the correctness is guaranteed. The
user can optimize his code by inserting a useful instruction before the read instruction.
Figure 3-13 describes the cases in which the pipelined nature of the Data ALU generates
arithmetic stall cases.

Figure 3-11. Pipeline Conflicts - Arithmetic stall
;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for move:

mac x0,y0,a ;data ALU operation

move a1,x:(r0)+ ;one clock delay is added to

;allow mac to complete

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for bset:

tfr a,b ;data ALU operation

bset #3,b ;one clock delay is added to

;allow tfr to complete

following example illustrates a way to find useful usage of

;the pipeline delay clock:

mac x0,y0,a ;data ALU operation

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;read accumulator A without

;any time penalty
3 - 20 DATA ARITHMETIC LOGIC UNIT MOTOROLA

A second interlock condition, named “status stall”, occurs when trying to read the status
register (SR) while the preceding or the second preceding instruction was a Data ALU
instruction or an accumulator read (which updates the S and L condition codes in the
status register). The hardware will insert two or one idle cycles (no op) accordingly,
thereby the correctness is guaranteed. Notice that “read status register” implies a MOVE
status register, Bit Manipulation Instructions (e.g. BSET) on a status register bit, or
Program Control Instructions (e.g. BSCLR) which test for a bit in the status register. Figure
3-12 describes the cases in which the pipelined nature of the Data ALU generates stall
interlock cases.

Figure 3-12. Pipeline Conflicts - Status stall
;following example illustrates a two-clock pipeline delay when

;trying to read the status register as source for move:

mac x0,y0,a ;data ALU operation

move sr,x:(r0)+ ;TWO clock delay is added to

;allow mac to update SR

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for bit

;manipulation instruction:

move a,x:(r0)+ ;read full accumulator

nop

btst #5,sr ;ONE clock delay is added (and

;not two) due to the previous nop

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for program control

;instruction:

insert x0,y1,a ;data ALU operation

bsclr #5,sr,$ff00ff ;ONE clock delay is added (and not

;two) since bsclr is a two word

;instruction
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 21

A third interlock condition, named “transfer stall”, occurs when the source Data ALU
accumulator of the move portion of an instruction is “identical” to the destination Data ALU
accumulator of the move portion of the preceding instruction. “Identical” accumulators for
this matter are any combination of portions (including the full width) of the same Data ALU
accumulator, e.g. A1 and A, A2 and A0 etc. The hardware will insert one idle cycle (no op)
thereby the correctness is guaranteed.

Figure 3-13. Pipeline Conflicts - Transfer stall

Note: A special case of interlock occurs when using a 24 bit logic instruction and writing
concurrently to the EXT or the LSP of the same accumulator. The hardware will insert one
idle cycle (no op), thereby the correctness is guaranteed. For example:

or x1,a y1,a0

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator that was written by the preceding

;instruction:

move y:(r1)+,a1 ;write into partial accumulator

move a2,x:(r0)+ ;one clock delay is added

;following example illustrates a way to find useful usage of

;the pipeline delay clock:

move y:(r1)+,a1 ;write into partial accumulator

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;no time penalty for this read
3 - 22 DATA ARITHMETIC LOGIC UNIT MOTOROLA

4 ADDRESS GENERATION UNIT

4.1 AGU ARCHITECTURE

The AGU is one of the three execution units on the DSP56300 Core. The AGU performs
the effective address calculations (using integer arithmetic) necessary to address data
operands in memory and contains the registers used to generate the addresses. It
implements four types of arithmetic: linear, modulo, multiple wrap-around modulo and
reverse-carry and operates in parallel with other chip resources to minimize address-
generation overhead. The AGU is divided into two halves, each of which has an address
arithmetic logic unit (ALU) and four sets of registers (see Figure 4-1).

Figure 4-1. AGU Block Diagram

These registers are the address registers (R0 - R3 and R4 - R7), offset registers (N0 - N3
and N4 - N7), and the modifier registers (M0 - M3 and M4 - M7). The eight Rn, Nn, and
Mn registers are treated as register triplets — e.g., only N2 and M2 can be used to update
R2. The eight triplets are R0:N0:M0, R1:N1:M1, R2:N2:M2, R3:N3:M3, R4:N4:M4,
R5:N5:M5, R6:N6:M6, and R7:N7:M7. Each register may be read or written by the global
data bus (GDB).

The two arithmetic units can generate two 24-bit addresses every instruction cycle — one

GLOBAL DATA BUS

N0

N1

N2

N3 M3

M2

M1

M0

ADDRESS
ALU

ADDRESS
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

TRIPLE MULTIPLEXER

LOW ADDRESS ALU HIGH ADDRESS ALU

XAB YAB PAB

PROGRAM ADDRESS BUS

EP
MOTOROLA ADDRESS GENERATION UNIT 4 - 1

for any two of the XAB and YAB, or one PAB address. The AGU can directly address
16,777,216 locations on the XAB, 16,777,216 locations on the YAB, and 16,777,216
locations on the PAB. The two independent address ALUs work with the two data
memories to feed two operands to the data ALU in a single cycle. Each operand may be
addressed by an Rn, Nn, and Mn triplet.

The two address ALUs are identical (see Figure 4-1); each one of them contains a 24-bit
full adder (called offset adder), which can add 1) plus one, 2) minus one, 3) the contents
of the respective offset register N, or 4) minus N to the contents of the selected address
register. A second full adder (called a modulo adder) adds the summed result of the first
full adder to a modulo value, M or minus M, where M is stored in the respective modifier
register. A third full adder (called a reverse-carry adder) can add 1) plus one, 2) minus one,
3) the offset N (stored in the respective offset register), or 4)minus N to the selected
address register with the carry propagating in the reverse direction — i.e., from the most
significant bit (MSB) to the least significant bit (LSB). The offset adder and the reverse-
carry adder are in parallel and share common inputs. The only difference between them
is that the carry propagates in opposite directions. Test logic determines which of the three
summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address
register file during one instruction cycle. The contents of the selected modifier register
specify the type of arithmetic to be used in an address register update calculation. The
modifier value is decoded in the address ALU.

The address output multiplexers (see Figure 4-1) select the source for the XAB, YAB, and
PAB. These multiplexers allow the XAB, YAB, or PAB outputs to originate from R0 - R3 or
R4 - R7.

4.2 SIXTEEN-BIT COMPATIBILITY MODE

When the SIXTEEN-BIT COMPATIBILITY mode bit (see Figure 6-5 on page 6-10) is
turned on, the following occur in the AGU:

• Move operations to/from any of the AGU registers (R0-R7, N0-N7 and M0-
M7) clear the 8 MSBits of the destination.

• The 8 MSBits of any AGU address calculation result are cleared.

• The sign bit of the selected N register is bit15 instead of bit 23.

• The 8 MSBits of the address are ignored in the calculations of memory re-
gions.

Note: Proper memory access operation is not guaranteed if an address
register had non-zero bits in its 8 MSBits before changing to 16 bit com-
4 - 2 ADDRESS GENERATION UNIT MOTOROLA

patibility mode. This is because the 8 MSBits will not be cleared when
the register is the source for the address.

This mode of operation supports compatibility to object code written for the DSP56000
Family of Digital Signal Processors.

Due to pipelining, a change in the bit takes affect only after the following three instruction
cycles. Inserting three NOP instructions after the instruction that changes the value of this
bit will ensure proper operation.

4.3 PROGRAMMING MODEL

The programmer’s view of the AGU is eight sets of three registers (see Figure 4-2). These
registers can be used as temporary data registers and indirect memory pointers.
Automatic updating is available when using address register indirect addressing. The Rn
registers can be programmed for linear addressing, modulo addressing (regular or
multiple wrap-around), and bit-reverse addressing.

Figure 4-2. AGU Programming Model

4.3.1 Address Register Files (R0 - R3, EP and R4 - R7)

The eight 24-bit address registers, R0 - R7, can contain addresses or general-purpose
data. The 24-bit address in a selected address register is used in the calculation of the
effective address of an operand. When supporting parallel X and Y data memory moves,
the address registers must be thought of as two separate files, R0 - R3 and R4 - R7. The
contents of an Rn may point directly to data or may be offset. In addition, Rn can be pre-
updated or post-updated according to the addressing mode selected. If an Rn is updated,
modifier registers, Mn, are always used to specify the type of update arithmetic. Offset
registers, Nn, are used for the update-by-offset addressing modes. The address register
modification is performed by one of the two modulo arithmetic units. Most addressing
modes modify the selected address register in a read-modify-write fashion; the address
register is read, its contents are modified by the associated modulo arithmetic unit, and
the register is written with the appropriate output of the modulo arithmetic unit. The form

R7

R6

R5

R4

R3

R2

R1

R0

23 0
N7

N6

N5

N4

N3

N2

N1

N0

OFFSET REGISTERS MODIFIER REGISTERS

UPPER FILE

LOWER FILE

ADDRESS REGISTERS

M7

M6

M5

M4

M3

M2

M1

M0

23 0 23 0

EP
MOTOROLA ADDRESS GENERATION UNIT 4 - 3

of address register modification performed by the modulo arithmetic unit is controlled by
the contents of the offset and modifier registers discussed in the following paragraphs.

4.3.1.1 Stack Extension Pointer (EP)

The contents of the 24-bit EP register is used to point to the stack extension in data
memory whenever the stack extension is enabled and move operations to/from the on-
chip hardware stack are needed. The EP register is a read/write register and is referenced
implicitly by some instructions (DO, JSR, RTI, etc.) or directly e.g. by using the MOVEC
instruction. The stack extension pointer is not initialized during hardware reset, and must
be set (using a MOVEC instruction) prior to enabling the stack extension. For a more
detailed description of the stack extension mode of operation, please refer to Section
6.3.5.

4.3.2 Offset Register Files (N0 - N3 and N4 - N7)

The eight 24-bit offset registers, N0 - N7, can contain offset values used to increment/
decrement address registers in address register update calculations or can be used for
24-bit general-purpose storage. For example, the contents of an offset register can be
used to step through a table at some rate (e.g., five locations per step for waveform
generation), or the contents can specify the offset into a table or the base of the table for
indexed addressing. Each address register, Rn, has its own offset register, Nn, associated
with it.

4.3.3 Modifier Register Files (M0 - M3 and M4 - M7)

The eight 24-bit modifier registers, M0 - M7, define the type of address arithmetic to be
performed for addressing mode calculations, or they can be used for general-purpose
storage. The address ALU supports linear, modulo, and reverse-carry arithmetic types for
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn
also specify the modulus. Each address register, Rn, has its own modifier register, Mn,
associated with it. Each modifier register is set to $FFFFFF on processor reset, which
specifies linear arithmetic as the default type for address register update calculations.

4.4 ADDRESSING MODES

The DSP56300 Core provides four different addressing modes: register direct, address
register indirect, PC relative and special (see Table 4-1).

4.4.1 Register Direct Mode

These effective addressing modes specify that the operand is in one (or more) of the 10
Data ALU registers, 24 address registers or 7 control registers.
4 - 4 ADDRESS GENERATION UNIT MOTOROLA

4.4.1.1 Data or Control Register Direct

The operand is in one, two or three Data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. This addressing mode is also used to specify
a control register operand for special instructions. This reference is classified as a register
reference.

4.4.1.2 Address Register Direct

The operand is in one of the 24 address registers specified by an effective address in the
instruction. This reference is classified as a register reference.

4.4.2 Address Register Indirect Modes

When an address register is used to point to a memory location, the addressing mode is
called address register indirect (see Table 4-1). The term indirect is used because the
register contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective address
of that operand.

4.4.2.1 No Update (Rn)

The address of the operand is in the address register, Rn (see Table 4-1). The contents of
the Rn register are unchanged by executing the instruction.

4.4.2.2 Postincrement By 1 (Rn)+

The address of the operand is in the address register, Rn (see Table 4-1). After the
operand address is used, it is incremented by 1 and stored in the same address register.
The type of arithmetic used to calculate is determined by Mn. The Nn register is ignored.

4.4.2.3 Postdecrement By 1 (Rn)-

The address of the operand is in the address register, Rn (see Table 4-1). After the
operand address is used, it is decremented by 1 and stored in the same address register.
The type of arithmetic used to calculate is determined by Mn. The Nn register is ignored.

4.4.2.4 Postincrement By Offset Nn (Rn)+Nn

The address of the operand is in the address register, Rn (see Table 4-1). After the
operand address is used, it is incremented by the contents of the Nn register and stored
in the same address register. The type of arithmetic used to calculate is determined by
Mn. The contents of the Nn register are unchanged.

4.4.2.5 Postdecrement By Offset Nn (Rn)-Nn

The address of the operand is in the address register, Rn (see Table 4-1). After the
operand address is used, it is decremented by the contents of the Nn register and stored
in the same address register. The type of arithmetic used to calculate is determined by
MOTOROLA ADDRESS GENERATION UNIT 4 - 5

Mn. The contents of the Nn register are unchanged.

4.4.2.6 Indexed By Offset Nn (Rn+Nn)

The address of the operand is the sum of the contents of the address register, Rn, and
the contents of the address offset register, Nn (see Table 4-1). The type of arithmetic used
to calculate is determined by Mn. The contents of the Rn and Nn registers are unchanged.

4.4.2.7 Predecrement By 1 -(Rn)

The address of the operand is the contents of the address register, Rn, decremented by 1
(see Table 4-1). The contents of Rn are decremented and stored in the same address
register. The type of arithmetic used to calculate is determined by Mn. The Nn register is
ignored.

4.4.2.8 Short displacement (Rn+short displacement)

In this addressing mode the address of the operand is the sum of the contents of the
address register Rn and a short displacement occupying 7 bits in the instruction word. The
displacement is first sign extended to 24 bits and then added to Rn to obtain the address
of the operand. The contents of the Rn register is unchanged. The type of arithmetic used
to calculate is determined by Mn. The Nn register is ignored. This reference is classified
as a memory reference.

4.4.2.9 Long displacement (Rn+long displacement)

This addressing mode requires one word (label) of instruction extension. The address of
the operand is the sum of the contents of the address register Rn and the extension word.
The contents of the Rn register is unchanged. The type of arithmetic used to increment
Rn is determined by Mn. The Nn register is ignored. This reference is classified as a
memory reference.

4.4.3 PC Relative Modes

In the PC relative addressing modes, the address of the operand is obtained by adding a
displacement, represented in two’s complement format, to the value of the program
counter (PC). The PC points to the address of the instruction’s opcode word. The Nn and
Mn registers are ignored, and the arithmetic used is always linear.

4.4.3.1 Short Displacement PC Relative

The short displacement occupies 9 bits in the instruction operation word. The
displacement is first sign extended to 24 bits and then added to the PC to obtain the
address of the operand.

4.4.3.2 Long Displacement PC Relative

This addressing mode requires one word of instruction extension. The address of the
operand is the sum of the contents of the PC and the extension word.
4 - 6 ADDRESS GENERATION UNIT MOTOROLA

4.4.3.3 Address Register PC Relative

The address of the operand is the sum of the contents of the PC and the address register
Rn. The Mn and Nn registers are ignored. The contents of the Rn register are unchanged.

4.4.4 Special Address Modes

The special address modes do not use an address register in specifying an effective
address. These modes specify the operand or the address of the operand in a field of the
instruction or they implicitly reference an operand.

4.4.4.1 Immediate Data

This addressing mode requires one word of instruction extension. The immediate data is
a word operand in the extension word of the instruction. This reference is classified as a
program reference.

4.4.4.2 Immediate Short Data

The 8-bit or 12-bit operand is in the instruction operation word. The 8-bit operand is used
for immediate move to register, ANDI and ORI instructions and it is zero extended. The
12-bit operand is used for DO and REP instructions and it is zero extended. This reference
is classified as a program reference.

4.4.4.3 Absolute Address

This addressing mode requires one word of instruction extension. The address of the
operand is in the extension word. This reference is classified as a memory reference and
a program reference.

4.4.4.4 Absolute Short Address

For the Absolute Short addressing mode the address of the operand occupies 6 bits in the
instruction operation word and it is zero extended. This reference is classified as a
memory reference.

4.4.4.5 Short Jump Address

The operand occupies 12 bits in the instruction operation word. The address is zero
extended to 24 bits. This reference is classified as a program reference.

4.4.4.6 I/O Short Address

For the I/O short addressing mode the address of the operand occupies 6 bits in the
instruction operation word and it is one extended. I/O short is used with the bit
manipulation and move peripheral data instructions.

4.4.4.7 Implicit Reference

Some instructions make implicit reference to the program counter (PC), system stack
MOTOROLA ADDRESS GENERATION UNIT 4 - 7

(SSH, SSL), loop address register (LA), loop counter (LC) or status register (SR). The
registers implied and their use is defined by the individual instruction descriptions
(Appendix A).

4.5 ADDRESS MODIFIER TYPES

The DSP56300 Core address ALU supports linear, modulo, and reverse-carry arithmetic
types for all address register indirect modes. These arithmetic types easily allow the
creation of data structures in memory for FIFOs (queues), delay lines, circular buffers,
stacks, and bit-reversed FFT buffers. Data is manipulated by updating address registers
(pointers) rather than moving large blocks of data. The contents of the address modifier
register, Mn, define the type of arithmetic to be performed for addressing mode
calculations; for modulo arithmetic, the contents of Mn also specify the modulus. All
address register indirect modes can be used with any address modifier. Each address
register, Rn, has its own modifier register, Mn, associated with it.

4.5.1 Linear Modifier (Mn=$XXFFFF)

Address modification is performed using normal 24-bit linear (modulo 16,777,216)
arithmetic. A 24-bit offset, Nn, and ±1 can be used in the address calculations. The range
of values can be considered as signed (Nn from –8,388,608 to +8,388,607) or unsigned
(Nn from 0 to +16,777,216) since there is no arithmetic difference between these two data
representations.

4.5.2 Reverse-Carry Modifier (Mn=$000000)

Reverse carry is selected by setting the modifier register to zero. The address modification
is performed in hardware by propagating the carry in the reverse direction — i.e., from the
MSB to the LSB. Reverse carry is equivalent to bit reversing the contents of Rn (i.e.,
redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the offset value, Nn,
adding normally, and then bit reversing the result. If the + Nn addressing mode is used
with this address modifier and Nn contains the value 2(k–1) (a power of two), this
addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn by 1,
and bit reversing the k LSBs of Rn again. This address modification is useful for
addressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT
data. The range of values for Nn is 0 to + 8M (i.e., Nn=223), which allows bit-reverse
addressing for FFTs up to 16,777,216 points.

4.5.3 Modulo Modifier (Mn=MODULUS–1)

The address modification is performed modulo M, where M ranges from 2 to + 32,768 (see
Table 4-2). Modulo M arithmetic causes the address register value to remain within an
address range of size M, defined by a lower and upper address boundary.

The value m=M–1 is stored in the modifier register, Mn. The lower boundary (base
4 - 8 ADDRESS GENERATION UNIT MOTOROLA

address) value must have zeros in the k LSBs, where 2k ≥ M, and therefore must be a
multiple of 2k. The upper boundary is the lower boundary plus the modulo size minus one
(base address plus M–1). Since M≤2k, once M is chosen, a sequential series of memory
blocks (each of length 2k) is created where these circular buffers can be located. If M<2k,
there will be a space between sequential circular buffers of (2k)–M.

The address pointer is not required to start at the lower address boundary or to end on
the upper address boundary; it can initially point anywhere within the defined modulo
address range. Neither the lower nor the upper boundary of the modulo region is stored;
only the size of the modulo region is stored in Mn. The boundaries are determined by the
contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address register
pointer increments past the upper boundary of the buffer (base address plus M–1), it will
wrap around through the base address (lower boundary). Alternatively, assuming the
(Rn)- indirect addressing mode, if the address decrements past the lower boundary (base
address), it will wrap around through the base address plus M–1 (upper boundary).
MOTOROLA ADDRESS GENERATION UNIT 4 - 9

Table 4-1. Addressing Modes Summary

If an offset, Nn, is used in the address calculations, the 24-bit absolute value, |Nn|, must

Addressing Modes
Uses Mn
Modifier

Operand Reference Assembler
SyntaxS C D A P X Y L XY

Register Direct
Data or Control Register No ✓ ✓

Address Register Rn No ✓

Address Modifier Register Mn No ✓

Address Offset Register Nn No ✓

Address Register Indirect
No Update No ✓ ✓ ✓ ✓ ✓ (Rn)

Postincrement by 1 Yes ✓ ✓ ✓ ✓ ✓ (Rn)+
Postdecrement by 1 Yes ✓ ✓ ✓ ✓ ✓ (Rn)–

Postincrement by Offset Nn Yes ✓ ✓ ✓ ✓ ✓ (Rn)+Nn
Postdecrement by Offset Nn Yes ✓ ✓ ✓ ✓ (Rn)–Nn

Indexed by Offset Nn Yes ✓ ✓ ✓ ✓ (Rn+Nn)
Predecrement by 1 Yes ✓ ✓ ✓ ✓ –(Rn)

Short/Long Displacement Yes ✓ ✓ ✓ (Rn+displ)
PC Relative

Short/Long Displacement
PC Relative

No ✓ (PC+displ)

Address Register No ✓ (PC+Rn)
Special

Short/Long Immediate Data No ✓

Absolute Address No ✓ ✓ ✓ ✓

Absolute Short Address No ✓ ✓ ✓

Short Jump Address No ✓

I/O Short Address No ✓ ✓

Implicit No ✓ ✓ ✓

Notes: S= System Stack Reference
C= Program Control Unit Register Reference
D= Data ALU Register Reference
A= Address ALU Register Reference
P= Program Memory Reference
X= X Memory Reference
Y= Y Memory Reference
L= L Memory Reference

XY= XY Memory Reference
4 - 10 ADDRESS GENERATION UNIT MOTOROLA

be less than or equal to M for proper modulo addressing. If Nn>M, the result is data
dependent and unpredictable, except for the special case where Nn=P x 2k, a multiple of
the block size where P is a positive integer. For this special case, when using the (Rn)+Nn
addressing mode, the pointer, Rn, will jump linearly to the same relative address in a new
buffer, which is P blocks forward in memory. Similarly, for (Rn)–Nn, the pointer will jump P
blocks backward in memory.

This technique is useful in sequentially processing multiple tables or N-dimensional
arrays. The range of values for Nn is –8,388,608 to +8,388,607. The modulo arithmetic
unit will automatically wrap around the address pointer by the required amount. This type
address modification is useful for creating circular buffers for FIFOs (queues), delay lines,
and sample buffers up to 8,388,607 words long as well as for decimation, interpolation,
and waveform generation. The special case of (Rn) ± Nn modulo M with Nn=P x 2k is
useful for performing the same algorithm on multiple blocks of data in memory — e.g.,
parallel infinite impulse response (IIR) filtering.

4.5.4 Multiple Wrap-Around Modulo Modifier

The multiple wrap-around addressing mode is selected by setting bit 15 of modifier
register to one (see Table 4-2). The address modification is performed modulo M, where
M may be any power of 2 in the range from 21 to 214. Modulo M arithmetic causes the
address register value to remain within an address range of size M defined by a lower and
upper address boundary. The value M-1 is stored in the modifier register Mn least
significant 15 bits while the 16th bit (bit 15) is set to one and the rest of the most significant
8 bits are considered don’t care. The lower boundary (base address) value must have
zeroes in the k LSBs, where 2k = M, and therefore must be a multiple of 2k. The upper
boundary is the lower boundary plus the modulo size minus one (base address plus M-1).

The address pointer is not required to start at the lower address boundary and may begin
anywhere within the defined modulo address range (between the lower and upper
boundaries). If the address register pointer increments past the upper boundary of the
buffer (base address plus M-1) it will wrap around to the base address. If the address
decrements past the lower boundary (base address) it will wrap around to the base
address plus M-1. If an offset Nn is used in the address calculations, it is not required to
be less than or equal to M for proper modulo addressing since multiple wrap around is
supported for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around
cannot occur with (Rn)+, (Rn)- and -(Rn) addressing modes).

4.5.5 Address-Modifier-Type Encoding Summary

Table 4-2 is a summary of the address modifier types discussed in the previous
paragraphs. There are four modifier types:

• Linear Addressing
• Reverse-Carry Addressing
• Modulo Addressing
• Multiple Wrap-Around Modulo Addressing
MOTOROLA ADDRESS GENERATION UNIT 4 - 11

Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines and sample buffers. The linear
addressing is useful for general-purpose addressing. The multiple wrap-around address
modifier is useful for decimation, interpolation and waveform generation since the multiple
wrap-around capability may be used for argument reduction.

Table 4-2. Address-Modifier-Type Encoding Summary

Modifier Mn Address Calculation Arithmetic

XX0000 Reverse-Carry (Bit-Reverse)

XX0001 Modulo 2

XX0002 Modulo 3

: :

XX7FFE Modulo 32767 (215-1)

XX7FFF Modulo 32768 (215)

XX8001 Multiple Wrap-Around Modulo 2

XX8003 Multiple Wrap-Around Modulo 4

XX8007 Multiple Wrap-Around Modulo 8

: :

XX9FFF Multiple Wrap-Around Modulo 213

XXBFFF Multiple Wrap-Around Modulo 214

XXFFFF Linear (Modulo 224)

Notes: XX means don’t care

All other combinations are reserved
4 - 12 ADDRESS GENERATION UNIT MOTOROLA

5 INSTRUCTION CACHE CONTROLLER

5.1 INTRODUCTION

The instruction cache may be viewed as a buffer memory between the main (external and
probably slow) memory, and the fast CPU. The cache is used to store the program
instructions that are frequently used. An increase in throughput may result when
instruction words required by a program are available in the on-chip cache, and the time
required to access them on the external bus is eliminated. Cache specific instructions are
provided in the instruction set, permitting the user to lock sectors of the cache, and to flush
the cache contents under software control. The instruction cache controller in the
DSP56300 core is capable of controlling 1k or 2k of instruction cache memory array, with
the following features:

Following is a summary of the instruction cache features:
• Software controlled enable bit in the chip extended mode register
• Mask programming selection between 1024 or 2048 locations
• 8 Way, Fully Associative, Sectored Placement Policy
• One to Four Word Transfer Granularity
• LRU Sector Replacement Algorithm
• User Transparent - No user management required
• Individual Sector Locking/Unlocking
• Software controlled Global Cache Flush
• Cache controller status observability via the On-Chip Emulator

5.2 INSTRUCTION CACHE ARCHITECTURE

5.2.1 Instruction Cache Structure

The Instruction Cache is composed of the Memory Array and the Cache Controller. Figure
5-1 shows a block diagram of the instruction cache controller.

The Instruction Cache memory array contains 1024 (or 2048, mask programmed) 24-bit
words, logically divided into eight 128 (256)-word cache sectors. Since there are 8 sectors
of 128 (256) words each, in the internal program RAM, the 24 bit address is divided into
the following two fields:

• vbit field; 7 (8) LSBits for the word displacement in the sector

• tag field; 17 (16) MSBits for the sector base address
MOTOROLA INSTRUCTION CACHE CONTROLLER 5 - 1

The sectors placement algorithm is fully associative.

A 17 (16) bit tag is associated with every one of the 8 internal program memory RAM
sectors. When the Cache Controller searches for a tag equal to the tag field of the current
address, it compares it to the 8 tags in parallel using the 8 comparators.

Each word in each cache sector is associated with a cache word valid bit, that specifies
whether or not the data in that word has already been fetched from external memory and
is therefore valid. There is a total of 2048 (1024 of them are not used if the Icache size is
1024 bytes) valid bits, arranged as 8 banks of 128 or 256 valid bits each, one bank for
every sector. Note that these valid bits are not available to the user, for direct use. The valid
bits are cleared by the processor hardware RESET to indicate that the PRAM context has
not been initialized.

Figure 5-1. Instruction Cache Block Diagram

5.2.2 Cache Programmer’s Model

The Instruction Cache is controlled by two control bits:

24 bit program address

17 (16) bits 7 (8) bits

tag register/comparator 0

hit/miss~

instruction word 0v0
instruction word 1v1

instruction word 127/255v127/255

tag field vbit field
5 - 2 INSTRUCTION CACHE CONTROLLER MOTOROLA

• Cache Enable (CE) bit in the EMR part of the Chip Status Register (SR,
bit 19). When CE is cleared the Instruction Cache is disabled. When CE is
set the Instruction Cache is enabled.

• Burst Enable (BE) bit in the EOM part of the Chip Operating Mode Regis-
ter (OMR, bit 10). When BE is cleared the Instruction Cache Transfer
Granularity on miss is a single-word. When BE is set, the Instruction
Cache Transfer Granularity on miss is increased to a one to four burst
block.

NOTE To assure proper operation, cache enable mode (CE bit in SR) should
not be cleared while burst mode is enabled (BE bit in OMR is set).

• The Instruction Cache is supported by the instruction set via the following
instructions: PLOCK, PLOCKR, PUNLOCK, PUNLOCKR, PFREE,
PFLUSH, PFLUSHUN.

5.2.3 Cache Operation

5.2.3.1 program fetch

When the core generates an address for an instruction fetch, the cache controller
compares its tag field to the tag values currently stored in the tag register file. This tag
values are the tag fields of the base addresses of the memory sectors currently mapped
into the cache.

5.2.3.2 hit

If there is a tag match, i.e. sector hit, then the valid bit of the corresponding word in that
cache sector is checked by using the vbit field as an address to the valid bit array. If the
valid bit is set, meaning the word in the cache has already been brought to the cache and
is valid, then that word is fetched from the cache location corresponding to the desired
address. This situation is called a cache hit meaning that both corresponding sector and
corresponding instruction word are present and valid in the instruction cache. The Sector
Replacement Unit (SRU) flags the sector as the Most Recently Used (MRU).

5.2.3.3 word miss when burst mode is disabled

If there is a tag match, i.e. sector hit, but the desired word is not flagged as valid
(corresponding valid bit is cleared), than the cache initiates a read access to the external
program memory, introducing wait states into the pipeline. The amount of wait states will
be 1 plus the number of wait states that are programmed into the bus interface unit’s
control registers, reflecting the type of memory used. The Sector Replacement Unit (SRU)
flags the sector as the Most Recently Used (MRU) and the fetched instruction is sent both
to the core and copied to the relevant sector location. Then the valid bit of that word is set.

5.2.3.4 word miss when burst mode is enabled

If there is a tag match, i.e. sector hit, but the desired word is not flagged as valid
(corresponding valid bit is cleared), than the cache initiates a burst of up to 4 read
accesses to the external program memory. The exact number of fetch requests depends
MOTOROLA INSTRUCTION CACHE CONTROLLER 5 - 3

on the two least significant bits of the address of the initiating fetch that was detected as
miss -

• ‘11’ - only one request will be initiated as if the burst mode was disabled

• ‘10’ - two requests will be initiated and the number of wait states required
by the memory type and speed will be added by two.

• ‘01’ - three requests will be initiated and the number of wait states required
by the memory type and speed will be added by three.

• ‘00’ - four requests will be initiated and the number of wait states required
by the memory type and speed will be added by four.

These external read accesses will introduce wait states into the pipeline. The amount of
wait states for each fetch will be 1 plus the number of wait states that are programmed into
the bus interface unit’s control registers, reflecting the type of memory used. The Sector
Replacement Unit (SRU) flags the sector as the Most Recently Used (MRU) and each of
the fetched instruction is copied to the relevant sector location. Then the valid bit of that
word is set.

5.2.3.5 sector miss

If there is no match between the tag field and all sector tag registers, meaning that the
memory sector containing the requested word is not present in the cache, the situation is
called a sector miss, which is another form of a cache miss. If a sector miss occurred, the
cache’s SRU selects the sector to be replaced. The cache controller then flushes the
selected cache sector by clearing all corresponding valid bits, loads the corresponding tag
register with the new tag field, and at the same time initiates an access to the external
program memory, as described in Section 5.2.3.3 and Section 5.2.3.4. The sector is
flagged as MRU, the fetched instruction is sent both to the core and copied to the relevant
sector location and the valid bit of that word is set.

5.2.4 Default Mode On Hardware Reset

After hardware RESET the Instruction Cache is disabled and the DSP56300 Core
operates in the PRAM Mode. The cache is initialized to the following initial condition:

• All valid bits will be cleared.

• All tag registers are initialized to hold the value $1FFFF ($FFFF).

• The LRU stack will hold a default descending order of sectors.

• All cache sectors are in the unlocked state.
5 - 4 INSTRUCTION CACHE CONTROLLER MOTOROLA

5.2.5 Cache Locking

Cache locking is useful for locking some time-critical code parts in the cache memory.
When a cache sector is locked, the Sector Replacement Unit (SRU) can not replace this
sector even if it becomes the least recently used sector (bottom of LRU stack).

A sector can be locked by the instructions PLOCK or PLOCKR. Their operand is an
effective memory address (absolute or PC-relative). The cache sector to which this
address belongs (if there is such one), is locked. If the specified effective address does
not belong to one of the current cache sectors, a memory sector containing this address
will be allocated into the cache, thereby replacing the least recently used cache sector.
This cache sector will be locked but empty. If all the cache sectors are already locked, this
memory sector will not be allocated into the cache and the lock operation will not be
executed. The locked cache sector becomes MRU.

Locking a cache sector, if it is already in the cache, does not affect the contents of it, the
value of its valid bits or the corresponding tag register contents.

Note: PLOCK and PLOCKR are detected as illegal opcodes in PRAM Mode.
Issuing these instructions when the cache is disabled will initiate the
Illegal Interrupt. A distance of at least three instruction cycles (equivalent
to three NOP instructions) should be maintained between an instruction
that changes the value of the cache enable bit (CE) and one of the in-
structions PLOCK and PLOCKR.

5.2.6 Cache Unlocking

A locked sector can be unlocked to allow sector replacement from that cache sector.
Unlocking can be performed in three different ways.

A locked sector can be unlocked by the PFREE, PUNLOCK or PUNLOCKR instructions.
PUNLOCK/R’s operand is an effective memory address (absolute or PC-relative). The
memory sector containing this address is allocated into a cache sector (if its not already
in a cache sector) and this cache sector is unlocked. If all the cache sectors are already
locked, this memory sector will not be allocated into the cache and the unlock operation
will not be executed. The unlocked cache sector becomes MRU, and is enabled for
replacement by the LRU algorithm. Unlocking a locked cache sector using these
instructions does not affect its contents, its tag, or its valid bits.

All the locked sectors can be unlocked simultaneously using the instruction PFREE, which
provides the user the ability to reset the locking mechanism. Unlocking the sectors using
PFREE, does not affect their contents (instructions already fetched into the sector storage
area), their valid bits, their tag register contents or the LRU stack status. If a PFREE
instruction is executed when none of the sectors are locked, than none of the tag registers,
valid bits and LRU status will be changed.

The locked sectors could also be unlocked by the PFLUSH instruction. Unlocking the
sectors, via PFLUSH, clears all the sector’s valid bits and sets the LRU stack and tag
MOTOROLA INSTRUCTION CACHE CONTROLLER 5 - 5

registers to their default values.

Note: PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes in
PRAM Mode. Issuing these instructions when the cache is disabled will
initiate the Illegal Interrupt. A distance of at least three instruction cycles
(equivalent to three NOP instructions) should be maintained between an
instruction that changes the value of the cache enable bit (CE) and one
of the instructions PFREE, PUNLOCK and PUNLOCKR.

5.2.7 Cache Flush

This operation is performed by executing the instructions PFLUSH or PFLUSHUN. The
execution of PFLUSH causes a global cache flush that brings the cache to the hardware
reset initial condition:

• All valid bits will be cleared.

• All tag registers are initialized to hold the value $1FFFF ($FFFF).

• The LRU stack will hold a default descending order of sectors.

• All cache sectors are in the unlocked state.

The execution of PFLUSHUN causes a flush only to the unlocked sectors and brings the
cache to the following initial condition:

• All valid bits of the unlocked sectors will be cleared.

• All tag registers of the unlocked sectors are initialized to hold the value
$1FFFF ($FFFF).

• The LRU stack will hold a default descending order of sectors.

Note: Coherency between PRAM mode and CACHE mode is not supported by
the Instruction Cache Controller. It is not possible to fill the cache while
in PRAM mode, and use the contents after switching to CACHE mode.
The cache is automatically flushed when switching from CACHE to
PRAM mode.

Note: PFLUSH and PFLUSHUN are detected as illegal opcodes in PRAM
Mode. Issuing these instructions when the cache is disabled will initiate
the Illegal Interrupt. A distance of at least three instruction cycles (equiv-
alent to three NOP instructions) should be maintained between an in-
struction that changes the value of the cache enable bit (CE) and one of
the instructions PFLUSH and PFLUSHUN.
5 - 6 INSTRUCTION CACHE CONTROLLER MOTOROLA

5.2.8 Sector Replacement Unit

When a sector miss occurs, a cache sector must be selected to contain the new memory
sector. The Sector Replacement Unit (SRU) determines which sector would be flushed
from the cache, by constantly monitoring the requested addresses and the sectors usage.

The sector replacement policy is to replace the Least Recently Used (LRU) sector.

The LRU stack status is effected only in Cache Enable Mode by instruction fetch
operations and by execution of the PFLUSH, PLOCK and PUNLOCK instructions. Locked
cache sectors continue to “move” up and down the LRU stack. This implies that when
picking the Least Recently Used sector (the one at the bottom of the LRU stack), locked
sectors are skipped.

When the cache is initialized to the reset condition, the LRU stack holds a default
descending order of sectors, i.e. sector number 0 is the Most Recently Used and sector
number 7 is the Least Recently Used.

5.2.9 Data Transfers to/from ICACHE Space

Data transfers to/from the program memory can be accomplished by the DMA or by
software, using MOVE instructions.

5.2.9.1 DMA transfers

DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Stack even
when the cache is enabled.

When the cache is disabled, the instruction cache memory space is considered a part of
the internal program memory space. DMA transfers to/from this space will be executed
without any limitation.

When the cache is enabled, the instruction cache memory space is considered a part of
the external program memory space. DMA transfers to/from this space will be executed
through the external memory expansion port. Coherency between the external program
memory and the contents of the instruction cache is not maintained.

5.2.9.2 Software-Controlled transfers

The term “PMOVE” is used to indicate a MOVE instruction used to transfer data between
the program memory space and any other source/destination. PMOVE transfers have no
effect on the Tag Register File and LRU Stack even if the cache is enabled. The term
“PMOVEW” is used to indicate a PMOVE transfer with the program memory space being
the destination. The term “PMOVER” is used to indicate a PMOVE transfer with the
program memory space being the source.

When the cache is disabled, the instruction cache memory space is considered a part of
the internal program memory space. PMOVER from this space or PMOVEW to this space
MOTOROLA INSTRUCTION CACHE CONTROLLER 5 - 7

will be executed without any limitation.

When the cache is enabled, PMOVER transfers are checked for a HIT or MISS:

• If the cache controller generates a HIT on the program memory space ad-
dress, the data will be read from the cache memory array. Since PMOVE
is not considered an instruction fetch operation, the LRU state will not be
changed due to this transfer.

• If the cache controller generates a MISS on the program memory space
address, the data will be read from the external program memory causing
the amount of wait states as specified in the bus control register of the
memory expansion port. The Cache state will not be changed due to this
transfer. When in the Burst Mode, no burst will be initiated.

When the cache is enabled, PMOVEW transfers are also checked for a HIT or MISS:

• If the cache controller generates a SECTOR-HIT on the program memory
space address, the data will be written both to the cache memory array
and to the external program memory causing the amount of wait states as
specified in the bus control register of the memory expansion port. The val-
id bit of the word will be set.The LRU stack will not be changed due to this
transfer.

• If the cache controller generates a SECTOR-MISS on the program mem-
ory space address, the data will be written only to the external program
memory causing the amount of wait states as specified in the bus control
register of the memory expansion port. The Cache state will not be
changed due to this transfer. When in the Burst Mode, no burst will be ini-
tiated.

WARNING
For proper operation, none of the three instructions before a PMOVE
transfer should clear or set the Cache-Enable bit in the Status Register.

5.2.10 Cache Observability Via OnCE

The user is supplied with full non-intrusive system debug capability when in cache mode,
having the ability to observe the cache status:

• what are the memory sectors that are currently mapped into cache

• which cache sectors are locked

• which cache sector is the Least Recently Used
5 - 8 INSTRUCTION CACHE CONTROLLER MOTOROLA

• indication on the occurrence of HIT

This is accomplished in the debug mode, by reading the tag registers contents, lock bits,
LRU bits and hit-status serially via the OnCE.

It is also possible to read the valid bits of specific cache locations. To check, whether an
address, which MSBs are in a tag register, is in the cache, one should send the opcode
of a MOVEM from this address. The bit 5 of OSCR will indicate the value of the valid bit.

• Each read of the cache status via the OnCE should access all the 9 reg-
isters, so that such a read starts every time from the tag #0.

• Each read of the cache status via the OnCE should be made only when
the chip is in the debug mode of operation.
MOTOROLA INSTRUCTION CACHE CONTROLLER 5 - 9

5 - 10 INSTRUCTION CACHE CONTROLLER MOTOROLA

6 PROGRAM CONTROL UNIT

This section describes the program control unit (PCU) hardware and its programming
model. The instruction pipeline description is also included since understanding the
pipeline is particularly important in understanding the DSP56300 Core. Note that the
pipelined operation remains essentially hidden from the user, thus easing
programmability.

6.1 OVERVIEW

The program control unit performs instruction prefetch, instruction decoding, hardware
DO loop control and exception processing. Its programmers model consists of eight read/
write 24-bits registers, one read/write 5-bits register and a hardware system stack (SS).
In addition to the standard program flow-control resources (e.g. interrupts, jumps), the
program control unit support hardware DO loop and REPEAT mechanism.

The SS is a 16-level by 48-bit separate internal memory used to automatically store the
PC and SR during subroutine calls and long interrupts. The SS automatically stores the
LC and LA registers in addition to the PC and SR registers for hardware loops. All other
data and control registers can be stored in the SS via software control. Each location in
the SS is addressable as two 24-bit registers, system stack high (SSH) and system stack
low (SSL), which are pointed to by the four LSBs of a 24-bit stack pointer (SP). The SS is
extended in the data memory, in a space specified by the stack control registers that
monitor the accesses to the SS. This hardware will copy the Least-Recently-Used location
of the SS to data memory in case the on-chip hardware stack is full, and will bring data
from data memory in case the on-chip hardware stack is empty.

The program control unit implements a seven-stage (prefetch-I, prefetch-II, decode,
address gen-I, address gen-II, execute-I, execute-II) pipeline and controls the five
processing states of the DSP56300 Core: normal, exception, reset, wait, and stop.
MOTOROLA PROGRAM CONTROL UNIT 6 - 1

Figure 6-1. Program Control Unit Architecture

6.2 PROGRAM CONTROL UNIT ARCHITECTURE

The program control unit (Figure 6-1) consists of three hardware blocks:

Program Decode Controller (PDC), that decodes the 24-bit instruction loaded into the
instruction latch and generates all signals necessary for pipeline control.

Program Address Generator (PAG), which contains all the hardware needed for program
address generation, system stack and loop control.

Program Interrupt Controller (PIC) which arbitrates among all interrupt requests (internal
and the five external: IRQA, IRQB, IRQC, IRQD and NMI) and generates the appropriate
interrupt vector address.

6.2.1 Instruction Pipeline

The program control unit implements a seven-stage pipelined architecture in which
concurrent stages of this pipeline occur. These seven stages consist of two prefetch
stages, one decode stage, two address generation stages and two execute stages, as
illustrated in Figure 6-2 and described in Table 6-1.

Although composed of many stages, the pipelined operation remains essentially hidden
from the user, thus easing programmability. This is achieved by means of interlock
hardware that is present in every execution unit of the processor. Due to this feature,
programs written for the DSP56000/1/2 will execute correctly on the DSP56300 Core
without any need for modification. Modification of the program may reduce the occurence

PROGRAM

INTERRUPT

CONTROLLER

PROGRAM

DECODE

CONTROLLER

PROGRAM

ADDRESS

GENERATOR

GDBPABPDBGDB

Interrupt Request Inputs

RESET
6 - 2 PROGRAM CONTROL UNIT MOTOROLA

of interlocks and improve execution speed.

Figure 6-2. Seven Stage Pipeline

Table 6-1. Seven Stage Pipeline

6.2.2 Clock Oscillator

The DSP56300 Core uses a two-phase clock for instruction execution; therefore, the clock
runs at the same rate as the instruction execution. The clock can be provided by
connecting an external crystal between XTAL and EXTAL, or by an external oscillator
connected to EXTAL. The PLL can be used in order to determine the internal frequency
related to the external.

Pipeline
Stage

Description of Pipeline Stage

PreFetch-I • Address generation for Program Fetch
• Increment PC

PreFetch-II • Instruction word read from memory

Decode • Instruction Decode

Address Gen-I • Address generation for Data Load/Store operations

Address Gen-II • Address pointer update

Execute-I • Read source operands to Multiplier and Adder
• Read source register for memory store operations
• Multiply
• Write destination register for memory load operations

Execute-II • Read source operands for Adder if written by previous ALU operation
• Add
• Write Adder results to the Adder destination operand
• Write Multiplier results to the Multiplier destination operands

P
re

F
et

ch
 -

 I

P
re

F
et

ch
 -

 II

D
ec

od
e

A
dd

re
ss

 G
en

-
I

A
dd

re
ss

 G
en

-
II

E
xe

cu
te

-
I

E
xe

cu
te

-
II
MOTOROLA PROGRAM CONTROL UNIT 6 - 3

6.3 PROGRAMMING MODEL

The program control unit features LA and LC registers dedicated to supporting the
hardware DO loop instruction in addition to the standard program flow-control resources,
such as a PC, SR, and SS. All registers are read/write to facilitate system debugging.
Figure 6-3 shows the program control unit programming model with the registers and the
SS. The following paragraphs give a detailed description of each register.

Figure 6-3. Program Control Unit Programming Model.

6.3.1 Program Counter (PC)

This is a special-purpose 24-bit address register that contains the address of instruction
words in the program memory space. The PC can point to instructions, data operands, or
addresses of operands. References to this register are always inherent and are implied
by most instructions. The PC is stacked when hardware loops are initialized, when a JSR
is performed, or when a long interrupt occurs. The PC is the source for the calculation of
the real address in all position-independent instructions (like BRA).

6.3.2 Vector Base Address Register (VBA)

The VBA is a 24-bit register, 8 of them (bits 7-0) are read-only and are always cleared.
The VBA is used as a base address of the interrupt vector and interrupt vector+1. When
executing a fast or long interrupt, the vector address bits 7-0 are driven from the program
interrupt control unit while bits 23-8 are driven from the VBA. The VBA register is a read/

S
P

[3:0]23 6 5 4 3 0

23 0

PROGRAM COUNTER
(PC)

48 SSH 2423 SSL 0

0

STATUS REGISTER
(SR)

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)
* READ AS ZERO, SHOULD BE WRITTEN WITH ZERO FOR FUTURE COMPATIBILITY

15
23 0

STACK SIZE (SZ)

23 0

23 0

23 1615 8 7 0

SYSTEM STACK

EMR MR CCR

OPERATING MODE
REGISTER (OMR)

23 1615 8 7 0

SCS EOM COM

23 8 7 0

VECTOR BASE
ADDRESS(VBA)

*

STACK COUNTER(SC)

4 0
6 - 4 PROGRAM CONTROL UNIT MOTOROLA

write register that is referenced implicitly by interrupt processing or directly by the MOVEC
instruction. The VBA is cleared during hardware reset.

6.3.3 Loop Counter Register (LC)

The LC register is a special read/write 24-bit counter used to specify the number of times
a hardware program loop is to be repeated, in the range of 0 to (224-1). This register is
stacked into the SSL by a DO instruction and unstacked by end-of-loop processing or by
execution of an ENDDO and BRKcc instructions. The LC is used also in the REP
instruction, to specify the number of times the repeated instruction is to be repeated.

6.3.4 Loop Address Register (LA)

The contents of the 24-bit LA register indicate the location of the last instruction word in a
hardware loop. This register is stacked into the SSH by a DO instruction and is unstacked
by end-of-loop processing or by execution of an ENDDO and BRKcc instructions. The LA
register, a read/write register, is written by a DO instruction and read by the SS when
stacking the register.

6.3.5 System Stack (SS)

The System Stack (SS) is a separate 16x48-bit internal memory divided into two banks:
System Stack High (SSH) and System Stack Low (SSL), 24 bits wide each. The SS is
used for the following main tasks:

• Storing return address and status for subroutine calls.

• Storing LA, LC, PC and SR for the hardware DO loops.

• Storing calling routine variables for subroutine calls.

When a subroutine is called e.g. using the JSR instruction, the return address (PC) is
automatically stored in the SSH and the chip status (SR) is automatically stored in the
SSL.

When a return from subroutine is initiated by using the RTS instruction, the contents of the
top location in the SSH is pulled and loaded into the PC and the SR is not affected. When
a return is initiated using the RTI instruction, the contents of the top locations in the SS
are pulled and loaded into the PC and SR (from SSH and SSL respectively).

The SS is also used to implement no-overhead nested hardware DO loops. When a
hardware do-loop is initiated e.g. by using the DO instruction, the previous contents of the
Loop Counter (LC) register is automatically stored in the SSL, the previous contents of the
Loop Address (LA) register is automatically stored in the SSH and the Stack Pointer (SP)
is incremented. The address of the loop’s first instruction (PC) is also stored in the SSH
and the chip status register (SR) is stored in the SSL.
MOTOROLA PROGRAM CONTROL UNIT 6 - 5

The SS may be extended in the data memory by means of control hardware that monitors
the accesses to the SS. This extension is enabled by Stack Extension Enable (SEN) bit in
the chip Operating Mode Register (OMR). If this bit is cleared, the extension of the system
stack is disabled and the amount of nesting is determined by the limited level of the
hardware stack (15, one location is unusable when the stack extension is disabled). Up to
15 long interrupts, 7 DO loops, 15 JSRs, or combinations of these can be accommodated
by the SS when its extension in data memory is disabled. When the SS limit is exceeded
(either in the extended or in the non-extended mode), a nonmaskable stack error interrupt
occurs.

By enabling the Stack extension, the limits on the level of nesting of subroutines or DO
loops can be set to any desired value.

A stack extension algorithm is applied to all accesses to the stack:

• If an explicit (e.g. move to ssh) or implicit (e.g. jsr) push operation is per-
formed, then the stack is examined by the stack extension control logic af-
ter that push has finished. If the on-chip hardware stack is full, then the
least recently used word is moved into data memory to the location spec-
ified by the stack extension pointer (EP).

• If an explicit (e.g. move from ssh) or implicit (e.g. rts) pop operation is per-
formed, then the stack is examined by the stack extension control logic af-
ter that pop has finished. If the on-chip hardware stack is empty, then the
stack is loaded from the location (in data memory) specified by the stack
extension pointer (EP).

6.3.6 Stack Extension Pointer (EP)

The contents of the 24-bit EP register is used to point to the stack extension in data
memory whenever the stack extension is enabled and move operations to/from the on-
chip hardware stack are needed. The EP register is located in the Address Generation
Unit (AGU). For more detals, please refer to Section 4.3.1.

6.3.7 Stack Size Register (SZ)

The 24-bit SZ register determines the number of data words allocated in memory for the
stack in the extended mode. The extended stack overflow flag is generated when the value
in SP equals the value in SZ. The stack size register is not initialized during hardware
reset, and must be set (using a MOVEC instruction) prior to enabling the stack extension.

6.3.8 Stack Counter Register (SC)

The 5-bit SC register is used to monitor how many entries of the hardware stack are in
use. The SC register is a read/write register and is referenced implicitly by some
6 - 6 PROGRAM CONTROL UNIT MOTOROLA

instructions (DO, JSR, RTI etc.) or directly by the MOVEC instruction. The stack counter
register is cleared during hardware reset.

Note: During normal operation, the Stack Counter register should not be
written. If a task switch is needed, writing a value greater than 14 or
smaller than 2 will automatically activate the stack extension control
hardware.
For proper operation, the SC should not be written with values greater
than 16.

6.3.9 Stack Pointer Register (SP)

The 24-bit SP register indicates the location of the top of the SS. The status of the SS is
also indicated in SP, when the extended mode is disabled (underflow, empty, full, and
overflow). The SP register is referenced implicitly by some instructions (DO, JSR, RTI,
etc.) or directly by the MOVEC instruction. The SP register format, shown in Figure 6-4, is
described in the following paragraphs. The SP register is implemented as a 24-bit counter
that addresses (selects) a 16-locations stack with its four LSBs. The possible SP values
in the non-extended mode are shown in Table 6-2.

Figure 6-4. SP Register Format

6.3.9.1 Stack Pointer (Bits 0–3)

The SP points to the last used location on the SS. Immediately after hardware reset, these
bits are cleared (SP=0), indicating that the SS is empty.
Data is pushed onto the SS by incrementing the SP, then writing data to the location
pointed to by the SP. An item is pulled off the stack by copying it from the location pointed
to by the SP and then decrementing SP.

6.3.9.2 Stack Error Flag / P4 bit (Bit 4)

This is a dual function bit. In the extended mode it acts as bit 4 of the Stack Pointer, as
part of a 24-bit up/down counter. In the non-extended mode, it serves as the stack error
(SE) flag that indicates that a stack error has occurred. The transition of the stack error
flag from zero to one in the non-extended mode causes a priority level-3 stack error
exception.

23 6 5 4 3 0

Stack Pointer

Stack-Error Flag / P4
UnderFlow Flag / P5

P[23:6]

P[23:6] UF/P5 SE/P4 P[3:0]
MOTOROLA PROGRAM CONTROL UNIT 6 - 7

When the non-extended stack is completely full, the SP reads 001111, and any operation
that pushes data onto the stack will cause a stack error exception to occur. The SP will
read 010000 (or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a stack error exception, and
the SP will read $0000FF (or $0000FE if an implied double pull occurs). During such case,
the stack error bit is set as shown in Table 6-2.

The stack error flag is a “sticky bit” which, once set, remains set until cleared by the user.
The overflow/underflow bit remains latched until the first move to SP is executed.

Table 6-2. SP Register Values in the non-extended mode

6.3.9.3 Underflow Flag / P5 bit (Bit 5)

This is a dual function bit. In the extended mode it acts as bit 5 of the Stack Pointer, as
part of a 24-bit up/down counter. In the non-extended mode, the underflow flag is set when
a stack underflow occurs. The stack underflow flag is a “sticky bit”, i.e. once the stack error
flag is set, the underflow flag will not change state until explicitly written by a move
instruction. The combination of “underflow=1” and “stack error=0” is an illegal combination
and will not occur unless it is forced by the user. Also see the description for the stack error
flag (Section 6.3.9.2) for additional information.

6.3.10 Status Register (SR)

This 24-bit register consists of an 8-bit condition code register (CCR), 8-bit mode register
(MR) and an 8-bit extended mode register (EMR). The SR is stacked when program

UF SE P3 P2 P1 P0 Description

1 1 1 1 1 0 Stack Underflow condition after double pull

1 1 1 1 1 1 Stack Underflow condition

0 0 0 0 0 0 Stack Empty (RESET); Pull causes underflow

0 0 0 0 0 1 Stack Location 1

. Stack Locations 2 - 13

0 0 1 1 1 0 Stack Location 14

0 0 1 1 1 1 Stack Location 15;Push causes overflow

0 1 0 0 0 0 Stack Overflow condition

0 1 0 0 0 1 Stack Overflow condition after double push
6 - 8 PROGRAM CONTROL UNIT MOTOROLA

looping is initialized, when a JSR is performed, or when interrupts occur (except for no-
overhead fast interrupts). The SR format is shown in Figure 6-5.

Each of the SR bits are masked programmable. They can be programmed to one of the
following configurations:

• read/write bit with the functionality as described in the following para-
graphs

• read as zero bit

The two reserved bits are also outputs of the DSP56300 core, with derivative-dependent
functionality. These outputs are also mask programmed to one of the following states:

• connected to the SR bit, reflecting its state

• connected to GND (forced to ‘0’)

The CCR is a special-purpose control register that defines the results of previous
arithmetic computations. The CCR bits are affected by data arithmetic logic unit (ALU)
operations, parallel move operations, and by instructions that directly reference the CCR
(ORI and ANDI) or instructions that specify SR as its destination (e.g. MOVEC). Parallel
move operations only affect the S and L bits of the CCR. During processor reset all CCR
bits are cleared.

The MR is a special-purpose control register defining the current system state of the
processor. The MR bits are affected by processor reset, exception processing, DO,
ENDDO (end current DO loop), RTI (return from interrupt) and TRAP instructions, and by
instructions that directly reference the MR register - ANDI and ORI or instructions that
specify SR as its destination (e.g. MOVEC). During processor reset the interrupt mask bits
of the MR will be set while all the other bits will be cleared.
MOTOROLA PROGRAM CONTROL UNIT 6 - 9

Figure 6-5. Status Register Format

The EMR is a special-purpose control register defining the current system state of the
processor. The EMR bits are affected by processor reset, exception processing, DO
FOREVER, ENDDO (end current DO loop), BRKcc , RTI (return from interrupt) and TRAP
instructions, and by instructions that specify SR as its destination (e.g. MOVEC). During
processor reset, all EMR bits will be cleared.

6.3.10.1 Carry (Bit 0)

The carry (C) bit is set if a carry is generated out of the MSB of the result in an addition
operation. This bit is also set if a borrow is generated in a subtraction operation;
Otherwise, this bit is cleared. The carry or borrow is generated from bit 55 of the result.
The carry bit is also affected by bit manipulation, rotate, and shift instructions.

6.3.10.2 Overflow (Bit 1)

The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result; Otherwise,
this bit is cleared. This bit indicates that the result cannot be represented in the
accumulator register; thus, the register has overflowed. In Arithmetic Saturation Mode, an
arithmetic overflow occurs if the Data ALU result is not representable in the accumulator
without the extension part, i.e. 48-bit accumulator (32-bit in Sixteen Bit Mode).

6.3.10.3 Zero (Bit 2)

The zero (Z) bit is set if the result equals zero. Otherwise, this bit is cleared.

EMR MR CCR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CP1:0 RM SM CE SA FV LF DM SC S1:0 I1:0 S L E U N Z V C

CP1 - Core Priority Bit 1 LF - DO-Loop Flag S - Scaling Bit

CP0 - Core Priority Bit 0 DM - Double Precision Multiply L - Limit

RM - Rounding Mode SC - Sixteen-Bit Compatibility E - Extension

SM - Arithmetic Saturation S1 - Scaling Mode Bit 1 U - Unnormalized

CE - Instruction Cache Enable S0 - Scaling Mode Bit 0 N - Negative

SA - Sixteenth-Bit Arithmetic I1 - Interrupt Mask Bit 1 Z - Zero

FV - DO-Forever Flag I0 - Interrupt Mask Bit 0 V - Overflow

C - Carry

- Reserved bit. Read as zero, should be written with zero for future compatibility
6 - 10 PROGRAM CONTROL UNIT MOTOROLA

6.3.10.4 Negative (Bit 3)

The negative (N) bit is set if the MSB of the result is set. Otherwise, this bit is cleared.

6.3.10.5 Unnormalized (Bit 4)

The unnormalized (U) bit is set if the two MSBs of the most significant (MSP) portion of
the result are identical. Otherwise, this bit is cleared. The MSP portion of the A or B
accumulators is defined by the scaling mode. The U bit is computed as described in Table
6-3.

6.3.10.6 Extension (Bit 5)

The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are
all ones or all zeros. Otherwise, this bit is set. The integer portion is defined by the scaling
mode as described in Table 6-4. If the E bit is cleared, then the low-order fraction portion
contains all the significant bits; the high-order integer portion is just sign extension. In this
case, the accumulator extension register can be ignored. If the E bit is set, it indicates that
the accumulator extension register is in use.

Table 6-3. Unnormalized Bit definition

Table 6-4. Extension Bit definition

6.3.10.7 Limit (Bit 6)

The limit (L) bit is set if the overflow bit is set or if the data shifter/limiter circuits perform a

S1 S0
Scaling
Mode

U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

S1 S0
Scaling
Mode

Integer Portion

0 0 No Scaling Bits 55,54..............48,47

0 1 Scale Down Bits 55,54..............49,48

1 0 Scale Up Bits 55,54..............47,46
MOTOROLA PROGRAM CONTROL UNIT 6 - 11

limiting operation. In arithmetic Saturation Mode, the limit bit is also set when an arithmetic
saturation occurs in the Data Alu result; otherwise, it is not affected. The L bit is cleared
only by a processor reset or by an instruction that specifically clears it, which allows the L
bit to be used as a latching overflow bit (i.e., a “sticky” bit). L is affected by data movement
operations that read the A or B accumulator registers.

6.3.10.8 Scaling (Bit 7)

The Scaling bit (S) is set upon moving a result from accumulator A or B to the XDB or YDB
buses (during an accumulator to memory or accumulator to register move) and will remain
set until explicitly cleared, that is, the “S” bit is a “sticky” bit. The logical equations of this
bit are dependent on the scaling mode. The scaling bit will be set if the absolute value in
the accumulator, before scaling, was greater or equal to 0.25 or smaller than 0.75. This bit
is cleared during hardware reset.

6.3.10.9 Interrupt Masks (Bits 8 and 9)

The interrupt mask bits, I1 and I0, reflect the current IPL of the processor and indicate the
IPL needed for an interrupt source to interrupt the processor. The current IPL of the
processor can be changed under software control. The interrupt mask bits are set during
hardware reset but not during software reset.

6.3.10.10 Scaling Mode (Bits 10 and 11)

The scaling mode bits, S1 and S0, specify the scaling to be performed in the data ALU

S0 S1
Scaling
Mode

S equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR B45) OR S (previous)

0 1 Scale down S = (A47 XOR A46) OR (B47 XOR B46) OR S (previous)

1 0 Scale up S = (A45 XOR A44) OR (B45 XOR B44) OR S (previous)

1 1 Reserved S undefined

I1 I0
Exceptions
Permitted

EXceptions
Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2
6 - 12 PROGRAM CONTROL UNIT MOTOROLA

shifter/limiter and the rounding position in the data ALU MAC unit. The shifter/limiter
scaling mode affects data read from the A or B accumulator registers out to the XDB and
YDB. Different scaling modes can be used with the same program code to allow dynamic
scaling. One application of dynamic scaling is to facilitate block floating-point arithmetic.
The scaling mode also affects the MAC rounding position to maintain proper rounding
when different portions of the accumulator registers are read out to the XDB and YDB. The
scaling mode bits, which are cleared at the start of a long interrupt service routine, are
also cleared during a processor reset.

6.3.10.11 Reserved SR Bit (Bit 12)

This bit is reserved for future expansion; It will read as zero during DSP56300 Core read
operations and should be written with zero for future compatibility.

6.3.10.12 Sixteen-Bit Compatibility Mode (Bit 13)

The Sixteen-Bit Compatibility Mode (SC) enables full compatibility to object code written
for the DSP56000 Family of Digital Signal Processors. When the SC bit is set, move
operations to/from any of the AGU registers and to/from any of the PCU registers clear the
8 MSBits of the destination. The SC is cleared during processor reset.

6.3.10.13 Double Precision Multiply Mode (Bit 14)

The double precision multiply (DM) bit enables the operation of four multiply/multiply-
accumulate operations, for the implementation of a double precision algorithm. This
algorithm involves the multiplication of two 48-bit operands with a 96-bit result. The mode
is disabled by clearing the DM bit.

Note: The Double Precision Multiply Mode is supported in order to maintain
object code compatibility with the 56k Family of Digital Signal Proces-
sors. For a more efficient way of executing double precision multiply,
please refer to Section 3.

While in Double Precision Multiply mode, the behavior of the four specific operations listed
in the double precision algorithm is modified. Therefore these operations (with those

S1 S0
Rounding

 Bit
Scaling Mode

0 0 23 No Scaling

0 1 24 Scale down (1-Bit Arithmetic Right Shift)

1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 - Reserved for Future Expansion
MOTOROLA PROGRAM CONTROL UNIT 6 - 13

specific register combinations) should not be used, while in Double Precision Multiply
mode, for any other purpose but for the double precision multiply algorithm. All other Data
ALU operations (or the four listed operations but with other register combination) may be
used.

The double precision multiply algorithm uses the Y0 register at all stages. Therefore Y0
should not be changed when running the double precision multiply algorithm. If the use of
the Data ALU is required in an interrupt service routine, Y0 should be saved together with
other Data ALU registers to be used, and should be restored before leaving the interrupt
routine. The DM is cleared during a processor reset.

6.3.10.14 DO-Loop Flag (Bit 15)

The loop flag (LF) bit, set when a program loop is in progress, enables the detection of the
end of a program loop. The LF is restored from stack when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively,
allow the nesting of program loops. At the start of a long interrupt service routine, the SR
(including the LF) is pushed on the SS and the LF is cleared. When returning from the long
interrupt with an RTI instruction, the SS is pulled and the LF is restored. The LF is cleared
during a processor reset.

6.3.10.15 DO-Forever flag (Bit 16)

The DO-Forever flag (FV) bit is set when a DO FOREVER. The FV flag, like LF flag, is
restored from stack when terminating a DO FOREVER program loop. Stacking and
restoring the FV flag when initiating and exiting a DO FOREVER program loop, respec-
tively, allow the nesting of program loops. At the start of a long interrupt service routine,
the SR (including the FV) is pushed on the SS and the FV is cleared. When returning from
the long interrupt with an RTI instruction, the SS is pulled and the FV is restored. The FV
is cleared during a processor reset.

6.3.10.16 Sixteen-Bit Arithmetic Mode (Bit 17)

The Sixteen-Bit Arithmetic Mode (SA) when set, enables the sixteen bit arithmetic mode
of operation. In this mode the rounding of the arithmetic operation will be performed on bit
15 of the accumulator A1/B1 instead of the usual bit 23 of A0/B0. The scaling, as well as
the shifting/limiting operation of the Data-ALU will be affected accordingly. The SA bit is
cleared during processor reset. At the start of a long interrupt service routine, the SR
(including the SA) is pushed on the SS and the SA is cleared. The SA is cleared during a
processor reset.

6.3.10.17 Reserved SR Bit (Bit 18)

This bit is reserved for future expansion; It will read as zero during DSP56300 Core read
operations and should be written with zero for future compatibility.
6 - 14 PROGRAM CONTROL UNIT MOTOROLA

6.3.10.18 Cache Enable (Bit 19)

The Cache Enable (CE) bit is used to enable or to disable the operation of the instruction
cache controller. If the bit is set, the cache is enabled, instructions are cached into the
internal PRAM and fetch from there. If the bit is cleared, the cache is disabled and the
DSP56300 Core will fetch instructions from external or internal program memory,
according to the memory space table of the specific DSP56300 Core-based chip. This bit
is cleared during a processor reset.

NOTE To guarantee proper operation cache enable mode (CE bit in SR) should
not be cleared while burst mode is enabled (BE bit in OMR is set).

6.3.10.19 Arithmetic Saturation Mode (Bit 20)

The Arithmetic Saturation Mode (SM) bit, when set, selects automatic saturation on 48
bits for the results going to the accumulator. This saturation is done by a special circuit
inside the MAC unit. The purpose of this bit is to provide an arithmetic saturation mode for
algorithms which do not recognize or cannot take advantage of the extension accumula-
tor. This bit is cleared during processor reset.

6.3.10.20 Rounding Mode (Bit 21)

The Rounding Mode (RM) bit selects the type of rounding performed by the DATA ALU
during arithmetic operations. If the bit is cleared, convergent rounding is selected. If the
bit is set, two’s complement rounding is selected. At the start of a long interrupt service
routine, the SR (including the RM) is pushed on the SS and the RM is cleared.The RM bit
is cleared during processor reset.

6.3.10.21 Core Priority (Bits 22 and 23)

Under the control of CDP1:0 bits in the Operating Mode Register (OMR), see Section
6.3.11.6, the CORE priority bits, CP1 and CP0, specify the priority of CORE accesses to
external memory. These bits are compared against the priority bits of the active DMA

OMR - CDP1:0 CP1:0 Core Priority

00 00 0 (lowest)

00 01 1

00 10 2

00 11 3 (highest)

01 xx see Section 6.3.11.6

10 xx see Section 6.3.11.6

11 xx see Section 6.3.11.6
MOTOROLA PROGRAM CONTROL UNIT 6 - 15

channel. If CORE priority is greater then DMA priority, the DMA will wait for a free access
slot in the external bus. If CORE priority is less then DMA priority, the CORE will wait for
a free access slot in the external bus. If CORE priority equals to the DMA priority, CORE
and DMA will access the external bus in a linear fix pattern. The Core priority bits are set
during processor reset.

6.3.11 Operating Mode Register

The OMR is a 24-bit register, partitioned into three bytes. The least significant byte of
OMR (bits 7-0) is the Chip Operating Mode byte (COM) which is used to determine the
operating mode of the chip. This byte is only affected by processor reset and by
instructions directly referencing the OMR: ANDI, ORI or other instructions that specify
OMR as a destination (e.g. MOVEC). During processor reset, the chip operating mode bits
(MD,MC, MB and MA) will be loaded from the external mode select pins MODD,MODC,
MODB and MODA respectively.

Each of the OMR bits are masked programmable. They can be programmed to one of the
following configurations:

• read/write bit with the functionality as described in the following para-
graphs

• read as zero bit

Some of the reserved bits, as described later, are also outputs of the DSP56300 core, with
derivative-dependent functionality. These outputs are also mask programmed to one of
the following states:

• connected to the SR bit, reflecting its state

• connected to GND (forced to ‘0’)

The middle part of OMR (bits 15-8) is the Extended Chip Operating Mode byte (EOM)
which is used to determine the operating mode of the chip. This byte is only affected by
processor reset and by instructions directly referencing the OMR: ANDI, ORI or other
instructions that specify OMR as a destination (e.g. MOVEC).

The most significant byte of OMR (bits 23-16) is the System Stack Control Status byte
(SCS) which is used to control and monitor the Stack extension in the data memory. The
SCS byte is referenced implicitly by some instructions (DO, JSR, RTI, etc.) or directly by
the MOVEC instruction.
6 - 16 PROGRAM CONTROL UNIT MOTOROLA

Figure 6-6. Operating Mode Register (OMR) Format

6.3.11.1 Chip Operating Mode (Bits 0, 1,2 and 3)

The chip operating mode bits MD,MC, MB and MA, indicate the operating mode of the
DSP56300 Core. On processor reset, these bits are loaded from the external mode select
pins, MODD, MODC, MODB and MODA, respectively. After the DSP56300 Core leaves
the reset state, MD, MC, MB and MA can be changed under program control.

6.3.11.2 External Bus Disable (Bit 4)

The External Bus Disable (EBD) bit is use to disable the external bus controller, in order
to reduce the power consumption when external memories are not used. When EBD bit
is set the external bus controller is disabled and external memory should not be accessed.
When the EBD bit is cleared the external bus controller is enabled and external access
may be performed. The EBD bit is cleared on hardware reset. For a detailed description
of the EBD and it's applications please refer to Chapter 2.

6.3.11.3 Reserved COM Bit (Bit 5)

This bit is reserved for future expansion; it will read as zero during DSP56300 Core read
operations and should be written with zero for future compatibility. The bit is also output of
the DSP56300 core, with derivative-dependent functionality. The output is mask
programmed to one of the states mentioned in previous paragraph.

6.3.11.4 Stop Delay (Bit 6)

The STOP instruction causes the DSP56300 Core to indefinitely suspend processing in
the middle of the STOP instruction. When exiting the stop state, if the stop delay bit is
cleared, a 128K clock cycle delay is selected before continuing the stop instruction cycle.
However, if the stop delay bit is set, the delay before continuing the instruction cycle is 16
clock cycles. The long delay allows a clock stabilization period for the internal clock to
begin oscillating and to stabilize. When a stable external clock is used, the shorter delay
allows faster start-up of the DSP56300 Core. The Stop Delay bit is cleared during
processor reset.

SCS EOM COM

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEN WRP EOV EUN XYS BRT TAS BE CDP1:0 MS SD EBD MD MC MB MA

SEN - Stack Extension Enable BRT - Bus Release Timing MS - Memory Switch Mode

WRP - Extended Stack Wrap Flag TAS - TA Synchronize Select SD - Stop Delay

EOV - Extended Stack Overflow Flag BE - Burst Mode Enable EBD - External Bus Disable

EUN - Extended Stack Underflow Flag CDP1 - Core-Dma Priority 1 MD - Operating Mode D

XYS - Stack Extension Space Select CDP0 - Core-Dma Priority 0 MC - Operating Mode C

MB - Operating Mode B

MA - Operating Mode A

- Reserved bit. Read as zero, should be written with zero for future compatibility
MOTOROLA PROGRAM CONTROL UNIT 6 - 17

6.3.11.5 Memory Switch (Bit 7)

The Memory Switch (MS) Mode bit is used to turn on the memory space switch mode in
which some addresses of the internal data memory (X, Y or both) become part of the chip
internal program RAM.This bit is cleared during processor reset.

NOTE 1 Program data placed in PRAM/I-Cache area changes its placement after
the setting of MS bit, such as it always occupies the top most internal
PRAM addresses.

NOTE 2 o assure proper operation, six NOP instructions should be placed after
instruction that changes MS bit.

NOTE 3 To assure proper operation, MS bit should not be set while I-Cache is
enabled (CE bit is set in SR).

6.3.11.6 Core-Dma Priority Bits (Bits 9 and 8)

The Core-Dma Priority (CDP1,CDP0) bits specify the priority between the Core accesses
and DMA accesses to external bus.

These bits are set during processor reset.

6.3.11.7 Burst Mode Enable (Bit 10)

The burst mode enable (BE) bit is used to enable or to disable the burst mode in the
memory expansion port during instruction cache miss. If the bit is cleared, the burst mode
is disabled and only one program word will be fetched from the external memory when an
instruction cache miss condition is detected. If the bit is set, the burst mode is enabled,
and up to four program words will be fetched from the external memory when an
instruction cache miss is detected. For detailed description of the Burst Mode, refer to
Chapter 5. This bit is cleared by hardware reset.

6.3.11.8 TA Synchronize Select (Bit 11)

The TA synchronize select (TAS) bit is used to select the synchronization method for the
input Port A pin - TA (Transfer Acknowledge). If TAS is cleared, the user is responsible to
assert the TA pin synchronously to the chip clock, as described in the detailed data sheet.
If TAS is set, the TA input pin is synchronized inside the chip, thus eliminating the need for
an off-chip synchronizer. The user must negate TA pin synchronously to the chip clock,
independently of the TAS bit value. See Section 2.2.4 for more details. The TAS bit is
cleared on hardware reset.

CDP1:0 Core-Dma Priority

00 determined by comparing CP1:0 with the active DMA channel priority

01 DMA accesses have higher priority than CORE accesses

10 DMA accesses have the same priority as the CORE accesses

11 DMA accesses have lower priority than the CORE accesses
6 - 18 PROGRAM CONTROL UNIT MOTOROLA

6.3.11.9 Bus Release Timing (Bit 12)

The Bus Release Timing (BRT) bit is used to select between fast or slow bus release. If
BRT is cleared, a fast bus release mode is selected (i.e no additional cycles are added to
the access and BB# is not guaranteed to be the last port A pin that is tri-stated at the end
of the access). If BRT is set, a slow bus release mode is selected (i.e. additional one cycle
is added to the access, and BB# is the last port A pin that is tri-stated at the end of the
access). The BRT bit is cleared on hardware reset. For a detailed description of the Bus
Release Modes and their applications please refer to Chapter 2.

6.3.11.10 Reserved EOM Bits (Bits 15, 14 and 13)

These bits are reserved for future expansion; they will read as zero during DSP56300
Core read operations and should be written with zero for future compatibility. These bits
are also outputs of the DSP56300 core, with derivative-dependent functionality. The
outputs are mask programmed to one of the states mentioned in previous paragraph.

6.3.11.11 XY Select for Stack extension (Bit 16)

The XY Select bit for the Stack extension determines if the extension will be mapped onto
the X memory space or onto the Y memory space. If the bit is clear, than the stack
extension is mapped onto the X memory space. If it is set, the stack extension is mapped
to the Y memory space. This bit is cleared by hardware reset.

6.3.11.12 Extended Stack Underflow Flag (Bit 17)

The extended stack underflow (EUN) flag is set when a stack underflow occurs in the
stack extended mode. Extended stack underflow is recognized when a pull operation is
requested when SP equals to 0, and the extended mode is enabled by the EN bit. The
extended stack underflow flag is a “sticky bit” i.e. the only way to clear this bit is by
hardware reset or by an explicit move operation to the OMR. The transition of the extended
stack underflow flag from zero to one causes a priority level-3 stack error exception. The
extended stack underflow flag is cleared by hardware reset.

6.3.11.13 Extended Stack Overflow Flag (Bit 18)

The extended stack overflow (EOV) flag is set when a stack overflow occurs in the stack
extended mode. Extended stack overflow is recognized when a push operation is
requested while SP equals to SZ (Stack Size register), and the extended mode is enabled
by the EN bit. The extended stack overflow flag is a “sticky bit” i.e., the only way to clear
this bit is by hardware reset or by an explicit move operation to the OMR. The transition of
the extended stack overflow flag from zero to one causes a priority level-3 stack error
exception. The extended stack overflow flag is cleared by hardware reset.
MOTOROLA PROGRAM CONTROL UNIT 6 - 19

6.3.11.14 Extended Stack Wrap Flag (Bit 19)

The extended stack wrap (WR) flag is set when it is first recognized that a copy from the
on-chip hardware stack to the stack extension memory is needed. This flag may be used
during the debugging phase of the software as means of evaluating and increasing the
speed of the software implemented algorithms. The extended stack wrap flag is a “sticky
bit” i.e., the only way to clear this bit is by hardware reset or by an explicit move operation
to the OMR. The extended stack wrap flag is cleared by hardware reset.

6.3.11.15 Extended Stack Enable (Bit 20)

The extended stack enable (EN) bit is used to enable or to disable the stack extension in
the data memory. If the EN bit is set, the extension is enabled. This bit is cleared by
hardware reset, thus disabling the stack extension as default.

6.3.11.16 Reserved SCS Bits (Bits 21-23)

These OMR bits, reserved for future expansion, will read as zero during DSP56300 Core
read operations, and should be written with zero for future compatibility. These bits are not
outputs of the DSP56300 core.

6.4 SIXTEEN-BIT COMPATIBILITY MODE

When the SIXTEEN-BIT COMPATIBILITY mode bit (SC, see Figure 6-5 on page 6-10) is
set, move operations to/from any of the following PCU registers clear the 8 MSBits of the
destination: LA, LC, SP, SSL, SSH, EP, SZ, VBA and SC. This guarantees compatibility for
object code written for the DSP56000 Family of Digital Signal Processors.

If the source is either SR or OMR, then the 8 MSBits of the destination will also be cleared.
If the destination is either SR or OMR, then the 8 MSBits of the destination will be left
unchanged.

In order to change the value of one of the 8 MSBits of SR or OMR, the SIXTEEN-BIT
COMPATIBILITY mode bit (SC) should be cleared.

The LOOP count is also affected by the SIXTEEN-BIT COMPATIBILITY mode bit. If it is
cleared (normal operation), than loop count value of 0 will cause the loop body to be
skipped, and loop count value of 0xFFFFFF will cause execution of the loop the maximum
number of 224-1 times. If the bit is set, the loop count calue of 0 will cause the loop to be
executed 216 times, and loop count value of 0x00FFFF will cause execution of the loop the
maximum number of 216-1 times.

Due to pipelining, a change in the SC bit takes affect only after three instruction cycles.
Inserting three NOP instructions after the instruction that changes the value of this bit will
ensure proper operation.
6 - 20 PROGRAM CONTROL UNIT MOTOROLA

Figure 6-7. Central Processor Programming Model

55 A 0

47 Y 0

R7

R6

R5

R4

R3

R1

R2

R0

N7

N6

N5

N4

N3

N1

N2

N0

23 0

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

47 X 0

X1 X0 Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

B1 B0# B2

A1 A0# A2

DATA ARITHMETIC LOGIC UNIT

23 0

23 023 0

23 0 23 023 0

23 023 023 8 7 0

23 023 023 8 7 0

55 B 0

S
P

[3
:0

]

23 6 5 4 3 0

23 0

PROGRAM COUNTER
(PC)

48 SSH 2423 SSL 0

0

STATUS REGISTER
(SR)

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)

15
23 0

STACK SIZE (SZ)

23 0

23 0

23 1615 8 7 0

SYSTEM STACK

EMR MR CCR

OPERATING MODE
REGISTER (OMR)

23 1615 8 7 0

SCS EOM COM

23 8 7 0

VECTOR BASE
ADDRESS(VBA)

*

STACK COUNTER(SC)

PROGRAM CONTROL UNIT

EP

4 0
MOTOROLA PROGRAM CONTROL UNIT 6 - 21

6 - 22 PROGRAM CONTROL UNIT MOTOROLA

7 PROCESSING STATES

The DSP56300 Core is always in one of five processing states: normal, exception, reset,
wait, or stop. These states are described in the following paragraphs.

7.1 NORMAL PROCESSING STATE

The normal processing state is associated with instruction execution. Instructions are
executed using a seven-stage pipeline, which is described in the following paragraphs.

7.1.1 Instruction Pipeline

DSP56300 Core instruction execution is performed using a seven-stage pipeline, allowing
most instructions to execute at a rate of one instruction every clock cycle. However, certain
instructions require additional time to execute: all of the double-word instructions,
instructions using an addressing mode that requires more than one cycle for the address
calculation, and instructions causing a change of flow.

Instruction pipelining allows overlapping of instruction execution so that a pipeline stage
of a given instruction occurs concurrently with other pipeline stages of other instructions.
Only one word is fetched per cycle, so that in the case of double-word instructions, the
second word of an instruction will be fetched before the next instruction is fetched. Table
7-1 describes the DSP56300 Core pipeline. The pipeline consists of seven stages: fetch
1, fetch 2, decode, address generation 1, address generation 2, execute1 and execute 2.
n1 and n2 refer to first and second instructions respectively. The third instruction (n3),
which contains an instruction extension word (n3e) takes two clock cycles to execute. The
extension word will be either an absolute address or immediate data. Although it takes
seven clock cycles for the pipeline to fill and the first instruction to execute, further
instructions usually completes on each clock cycle.

Each instruction requires a minimum of seven clock cycles to be fetched, decoded, and
executed. This means that there is a delay of seven clock cycles on power-up to fill the
pipeline. A new instruction may begin immediately following the previous instruction. Two-
word instructions require a minimum of eight clock cycles to execute (seven cycles for the
first instruction word to move through the pipe and execute and one more cycle for the
second word to execute). For a complete description of the execution timing of the various
instructions, addressing modes etc., see Appendix B - INSTRUCTION EXECUTION
TIMING.
MOTOROLA PROCESSING STATES 7 - 1

Table 7-1. Instruction Pipeline

7.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. There are many sources for interrupts
to the DSP56300 Core; some of these sources can generate more than one interrupt. An
interrupt vector scheme with 128 vectors of predefined priorities is used to provide fast
interrupt service. The following list outlines how interrupts are processed by the
DSP56300 Core:

1. A hardware interrupt is synchronized with the DSP56300 Core clock, and
the interrupt pending flag for that particular hardware interrupt is set. An
interrupt source can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select which
interrupt will be processed. The arbiter automatically ignores any
interrupts with an Interrupt Priority Level (IPL) lower than the interrupt
mask level in the SR and selects the remaining interrupt with the highest
IPL.

3. The interrupt controller then freezes the program counter (PC) and fetches
two instructions at the two interrupt vector addresses associated with the
selected interrupt.

4. The interrupt controller inserts the two instructions into the instruction
stream and releases the PC, which is used for the next instruction fetch.
The next interrupt arbitration then begins.

If neither of the two instructions is a Jump To Subroutine (JSR) instruction (e.g. a JSCLR),
the state of the machine is not saved on the stack, and a fast interrupt is executed. A long
interrupt is executed if one of the interrupt instructions fetched is a JSR instruction. The
PC is immediately released, the SR and the PC are saved in the stack, and the jump
instruction controls where the next instruction is fetched from.

Operation

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11

PreFetch 1 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9 n10

PreFetch 2 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9

Decode n1 n2 n3 n3e n4 n5 n6 n7 n8

Address Gen 1 n1 n2 n3 n3e n4 n5 n6 n7

Address Gen 2 n1 n2 n3 n3e n4 n5 n6

Execute 1 n1 n2 n3 n3e n4 n5

Execute 2 n1 n2 n3 n3e n4
7 - 2 PROCESSING STATES MOTOROLA

Note: All the various types of Jump To Subroutine instructions may be used as
the “JSR” needed to make the interrupt long, e.g. JScc, BSSET etc.

In digital signal processing, one of the main uses of interrupts is to transfer data between
DSP memory or registers and a peripheral device. When such an interrupt occurs, a
limited context switch with minimum overhead is often desirable. This limited context
switch is accomplished by a fast interrupt. The long interrupt is used when a more complex
task must be accomplished to service the interrupt.

7.2.1 Interrupt Sources

Exceptions may originate from any of the 128 vector addresses listed in Table 7-2.
Exceptions may originate from one of two groups: core and peripherals. Table 7-2 lists
only the core-originating sources. The peripheral-originating sources are described in the
specific chip configuration specification document. The corresponding interrupt starting
address for each interrupt source is shown. These addresses are located in the 256
locations of program memory pointed to by the VBA (Vector Base Address) register in the
program control unit. When an interrupt is serviced, the instruction at the interrupt starting
address is fetched first. Because the program flow is directed to a different starting
address for each interrupt, the interrupt structure of the DSP56300 Core is said to be
vectored. A vectored interrupt structure has low overhead execution. If it is known a-priori
that certain interrupts will not be used, those interrupt vector locations can be used for
program or data storage.
MOTOROLA PROCESSING STATES 7 - 3

Table 7-2. Interrupt Sources

The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is not
maskable. Levels 0 – 2 are maskable. The interrupts within each level are prioritized
according to a predefined priority.

7.2.1.1 Hardware Interrupt Source

There are two types of hardware interrupts to the DSP56300 Core: internal and external.
The internal interrupts include the on-chip sources, namely: Stack Error, Illegal
Instruction, Debug Request, Trap, the DMAs and the peripherals. Each internal interrupt
source is serviced if it is not masked. When serviced, the interrupt request is cleared.
Each maskable internal hardware source has independent enable control.

Interrupt
Starting
Address

IPL Interrupt Source

VBA:$00 - Reserved
VBA:$02 3 Stack Error
VBA:$04 3 Illegal Instruction
VBA:$06 3 Debug Request Interrupt
VBA:$08 3 Trap
VBA:$0A 3 Non-Maskable Interrupt (NMI)
VBA:$0C 3 Reserved for Future Level-3 Interrupt Source
VBA:$0E 3 Reserved for Future Level-3 Interrupt Source
VBA:$10 0 - 2 IRQA
VBA:$12 0 - 2 IRQB
VBA:$14 0 - 2 IRQC
VBA:$16 0 - 2 IRQD
VBA:$18 0 - 2 DMA Channel 0
VBA:$1A 0 - 2 DMA Channel 1
VBA:$1C 0 - 2 DMA Channel 2
VBA:$1E 0 - 2 DMA Channel 3
VBA:$20 0 - 2 DMA Channel 4
VBA:$22 0 - 2 DMA Channel 5
VBA:$24 0 - 2 Peripheral interrupt request 1
VBA:$26 0 - 2 Peripheral interrupt request 2

: :
VBA:$FE 0 - 2 Peripheral interrupt request 110
7 - 4 PROCESSING STATES MOTOROLA

The external hardware interrupts include NMI, IRQA, IRQB, IRQC and IRQD. The NMI
interrupt is an edge triggered non-maskable interrupt that can be used for software
development, watch-dog, power fail detect etc. The IRQA, IRQB, IRQC and IRQD
interrupts can be programmed to be level sensitive or edge triggered. Since the level-
sensitive interrupts will not be cleared automatically when they are serviced, they must be
cleared by other means to prevent multiple interrupts, usually by an external hardware that
will detect the acknowledge of the core to the interrupt request. The edge-sensitive
interrupts are latched as pending on the high-to-low transition of the interrupt input and
are automatically cleared when the interrupt is serviced. IRQA, IRQB, IRQC and IRQD
can be programmed to one of three priority levels: 0, 1, or 2, all of which are maskable.
Additionally, these interrupts have independent enable control.

When the IRQA, IRQB, IRQC and IRQD interrupts are disabled in the interrupt priority
register, the pending request will be ignored, regardless of whether the interrupt input was
defined as level sensitive or edge sensitive. Additionally, if the interrupt is defined as edge
sensitive, its edge-detection latch will remain in the reset state as long as the interrupt is
disabled; if the interrupt is defined as level sensitive, its edge-detection latch will remain
in the reset state. If the level-sensitive interrupt is disabled while the interrupt is pending,
the pending interrupt will be cancelled. However, if the interrupt has been fetched, it
normally will not be cancelled.

Note: On all external, level-sensitive interrupt sources, the interrupt should be
serviced (i.e. clear the source for the interrupt) by the instruction at
Vector location, if it is a fast interrupt, or by a long interrupt.

7.2.1.2 Software Interrupt Source

There are two software interrupt sources — Illegal Instruction Interrupt (III) and TRAP.

 The III is a nonmaskable interrupt (IPL 3), which is serviced immediately following the
execution of the illegal instruction or the attempted execution of an illegal instruction (any
undefined operation code).

TRAP is a nonmaskable interrupt (IPL 3), which is serviced immediately following the
TRAP or TRAPcc (condition true) instruction execution.

7.2.2 Interrupt Priority Structure

Four levels of interrupt priority are provided. IPLs numbered 0, 1, and 2 are maskable
(level 0 is the lowest level). Level 3 (highest level) is nonmaskable. The IPL 3 interrupts
are: Hardware Reset, III, Stack Error and TRAP. The interrupt mask bits (I1, I0) in the SR
reflect the current processor priority level and indicate the IPL needed for an interrupt
source to interrupt the processor (see Table 7-3). Interrupts are inhibited for all priority
levels less than the current processor priority level. However, level 3 interrupts are not
maskable and therefore can always interrupt the processor.
MOTOROLA PROCESSING STATES 7 - 5

Table 7-3. Status Register Interrupt Mask Bits

7.2.2.1 Interrupt Priority Levels

There are two Interrupt priority registers in the DSP56300 Core: IPRC that is dedicated
for DSP56300 Core interrupt sources and IPRP that is dedicated for the specific chip
peripherals interrupt sources. These control registers are mapped on the internal X I/O
memory space.

The IPL for each interrupting source is software programmable. Each on-chip or external
peripheral device can be programmed to one of the three maskable priority levels (IPL 0,
1, or 2). IPLs are set by writing to the interrupt priority registers shown in Figure 7-1 and
Figure 7-2. These two read/write registers specify the IPL for each of the interrupting
devices. In addition, IPRC register specifies the trigger mode of each external interrupt
source and is used to enable or disable the individual external interrupts. These registers
are cleared on hardware RESET or by the RESET instruction. Table 7-4 defines the IPL
bits. Table 7-5 defines the external interrupt trigger mode bits.

Figure 7-1. Interrupt Priority Register C (IPRC)

I1 I0 Exceptions
Permitted

Exceptions Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

11 10 9 8 7 6 5 4 3 2 1 0

IDL2 IDL1 IDL0 ICL2 ICL1 ICL0 IBL2 IBL1 IBL0 IAL2 IAL1 IAL0

IxL2 IRQ A/B/C/D mode

IxL1:0 IRQ A/B/C/D IPL

23 22 21 20 19 18 17 16 15 14 13 12

D5L1 D5L0 D4L1 D4L0 D3L1 D3L0 D2L1 D2L0 D1L1 D1L0 D0L1 D0L0

DxL1:0 DMA 0/1/2/3/4/5 IPL
7 - 6 PROCESSING STATES MOTOROLA

Figure 7-2. Interrupt Priority Register P (IPRP)

Table 7-4. Interrupt Priority Level Bits

Table 7-5. External Interrupt Trigger Mode Bits

7.2.2.2 Exception Priorities within an IPL

If more than one exception is pending when an instruction is executed, the interrupt with
the highest priority level is serviced first. When multiple interrupt requests having the same
IPL are pending, a second fixed-priority structure within that IPL determines which
interrupt is serviced. The fixed priority of interrupts within an IPL and the interrupt enable
bits for all interrupts are shown in Table 7-6.

7.2.3 Instructions Preceding the Interrupt Instruction Fetch

Every instruction which takes more than one cycle to execute is aborted when it is fetched
in the cycle preceding the fetch of the first interrupt instruction word.

Aborted instructions are refetched again when program control returns from the interrupt
routine. The PC is adjusted appropriately before the end of the decode cycle of the
aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word-one-

11 10 9 8 7 6 5 4 3 2 1 0

Per6L1 Per6L0 Per5L1 Per5L0 Per4L1 Per4L0 Per3L1 Per3L0 Per2L1 Per2L0 Per1L1 Per1L0

23 22 21 20 19 18 17 16 15 14 13 12

PerCL1 PerCL0 PerBL1 PerBL0 PerAL1 PerAL0 Per9L1 Per9L0 Per8L1 Per8L0 Per7L1 Per7L0

xxL1 xxL0 Enabled IPL

0 0 No —

0 1 Yes 0

1 0 Yes 1

1 1 Yes 2

IxL2 Trigger Mode

0 Level

1 Negative Edge
MOTOROLA PROCESSING STATES 7 - 7

cycle instruction, that instruction will complete normally before the start of the interrupt
routine.

During an interrupt instruction fetch, two instruction words are fetched — the first from the
interrupt starting address and the second from the interrupt starting address +1 locations.

7.2.4 Interrupt Types

Two types of interrupt routines may be used: fast and long. The fast routine consists of the
two automatically inserted interrupt instruction words. These words can contain any
unrestricted, single two-word instruction or any two unrestricted one-word instructions.
Fast interrupt routines are never interruptible.

CAUTION

Status is not preserved during a fast interrupt routine; therefore, instructions
that modify status should not be used at the interrupt starting address and
interrupt starting address+1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed.
The following actions occur during execution of the JSR instruction when it occurs in the
interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.
2. The loop flag is reset.
3. The scaling mode bits are reset.
4. The sixteen-bit mode bit is reset.
5. The IPL is raised to disallow further interrupts of the same or lower levels

(except Illegal Instruction, stack error and TRAP that can always interrupt).

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptible by higher priority interrupts.

7.2.5 Interrupt Arbitration

External interrupts are internally synchronized with the processor clock before their
interrupt-pending flags are set. Each external interrupt and internal interrupt has its own
flag. After each instruction is executed, all interrupts are arbitrated — i.e., all hardware
interrupts that have been latched into their respective interrupt-pending flags and all
internal interrupts. During arbitration, each interrupt’s IPL is compared with the interrupt
mask in the SR, and the interrupt is either allowed or disallowed. The remaining interrupts
are prioritized according to the priority shown in Table 7-6, and the highest priority
interrupt is chosen. The interrupt vector is then calculated so that the program interrupt
controller can fetch the first interrupt instruction. The interrupt-pending flag for the chosen
interrupt is not cleared until the second interrupt vector of the chosen interrupt is being
fetched. A new interrupt from the same source will not be accepted for the next interrupt
arbitration until that time.
7 - 8 PROCESSING STATES MOTOROLA

Table 7-6. Exception Priorities within an IPL

Priority Exception

Level 3 (Nonmaskable)

Highest Stack Error

Illegal Instruction

Debug Request Interrupt

Trap

Non-Maskable Interrupt (NMI)

Lowest Non-Maskable Peripheral Interrupt

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt)

IRQB (External Interrupt)

IRQC (External Interrupt)

IRQD (External Interrupt)

DMA Channel 0 Interrupt

DMA Channel 1 Interrupt

DMA Channel 2 Interrupt

DMA Channel 3 Interrupt

DMA Channel 4 Interrupt

DMA Channel 5 Interrupt

Lowest Peripheral interrupt sources
MOTOROLA PROCESSING STATES 7 - 9

7.2.6 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which points to
the first instruction word of a two-word interrupt routine. This address is used for the next
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch
address +1 is used for the subsequent instruction fetch. While the interrupt instructions
are being fetched, the PC is inhibited from being updated. After the two interrupt words
have been fetched, the PC is used for any subsequent instruction fetches.

7.2.7 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the
interrupt service routine cause a change of flow. A JSR within a fast interrupt routine forms
a long interrupt, which is terminated with an RTI instruction to restore the PC and SR from
the stack and return to normal program execution. Reset is a special exception, which will
normally contain only a JMP instruction at the exception start address. At the
programmer’s option, almost any instruction can be used in the fast interrupt routine. A
fast interrupt routine may contain either two single-word instructions or one double-word
instruction. Table 7-7 shows the effect of a fast interrupt routine on the instruction pipeline.
The fast interrupt executes only two instructions (ii1 and ii2) and then automatically
resumes execution of the main program. Table 7-8 shows the effect of a long interrupt
routine on the instruction pipeline. A short JSR (ii1) is used to call the long interrupt routine
which includes the 4 instructions sr1, sr2, sr3 and an rti. Instructions ii2, n3, sr5 and sr6
are not decoded nor executed.

Table 7-7. Fast Interrupt Pipeline

Operation

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PreFetch 1 n1 n2 ii1 ii2 n3 n4

PreFetch 2 n1 n2 ii1 ii2 n3 n4

Decode n1 n2 ii1 ii2 n3 n4

Address Gen 1 n1 n2 ii1 ii2 n3 n4

Address Gen 2 n1 n2 ii1 ii2 n3 n4

Execute 1 n1 n2 ii1 ii2 n3 n4

Execute 2 n1 n2 ii1 ii2 n3 n4

n = normal instruction word

ii = interrupt instruction word
7 - 10 PROCESSING STATES MOTOROLA

Table 7-8. Long Interrupt Pipeline

Execution of a fast interrupt routine always conforms to the following rules:

1. The processor status is not saved.
2. The fast interrupt routine may modify the status of the normal instruction

stream e.g. use DO instruction, but such instructions should not be used
in order to assure proper operation.

3. The PC, which contains the address of the next instruction to be executed
in normal processing, remains unchanged during a fast interrupt routine.

4. The fast interrupt returns without an RTI.
5. Normal instruction fetching resumes using the PC following the completion

of the fast interrupt routine.
6. A fast interrupt is not interruptible.
7. A JSR instruction within the fast interrupt routine forms a long interrupt

routine.

Execution of a long interrupt routine always adheres to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at
one of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The
interrupt mask bits of the SR are updated to mask interrupts of the same
or lower priority. The loop flag and scaling mode bits are cleared.

3. The interrupt service routine can be interrupted — i.e., nested interrupts
are supported.

4. The long interrupt routine, which can be any length, should be terminated
by an RTI, which restores the PC and SR from the stack.

Operation

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PreFetch 1 n1 n2 ii1 ii2 n3 sr1 sr2 sr3 rti sr5 sr6 n3 n4 n5 n6 n7

PreFetch 2 n1 n2 jsr ii2 n3 sr1 sr2 sr3 rti sr5 sr6 n3 n4 n5 n6

Decode n1 n2 jsr - - sr1 sr2 sr3 rti - - n3 n4 n5

Address Gen 1 n1 n2 jsr - - sr1 sr2 sr3 rti - - n3 n4

Address Gen 2 n1 n2 jsr - - sr1 sr2 sr3 rti - - n3

Execute 1 n1 n2 jsr - - sr1 sr2 sr3 rti - -

Execute 2 n1 n2 jsr - - sr1 sr2 sr3 rti -

n = normal instruction word

ii = interrupt instruction word

sr = service routine word
MOTOROLA PROCESSING STATES 7 - 11

Either one of the two instructions of the fast interrupt can be the JSR instruction that forms
the long interrupt.

A REP instruction is treated as a single two-word instruction, regardless of how many
times it repeats the second instruction of the pair. Instruction fetches are suspended and
will be reactivated only after the LC is decremented to one. During the execution of the
repeated instruction, no interrupts will be serviced. When LC finally decrements to one,
the fetches are reinitiated, and pending interrupts can be serviced.

7.3 RESET PROCESSING STATE

The reset processing state is entered when the external RESET pin is asserted (a
hardware reset). Upon entering the reset state:

1. Internal peripheral devices are reset.
2. The modifier registers (M0-M7) are set to $FFFFFF.
3. The interrupt priority registers are cleared.
4. The Bus Control Register (BCR), the Address Attribute Registers (AAR3-

AAR0) and the Dram Control Register (DCR) are set to their initial values
as described in Chapter 2. The initial value causes a maximum number of
wait states to be added to every external memory access.

5. The Stack Pointer (SP) and the Stack Counter (SC) are cleared.
6. The scaling mode, loop flag, sixteen-bit mode, double precision mode and

condition code bits of the SR are cleared, and the interrupt mask bits of
the SR are set.

7. The Instruction Cache Controller is initialized as described in Chapter 5.
8. The cache-enable (CE) bit in SR and the burst-mode bit in OMR are

cleared.
9. The PLL Control register is initialized as described in Chapter 9.
10. The Vector Base Address (VBA) register is cleared.

The DSP56300 Core remains in the reset state until RESET is deasserted. Upon leaving
the reset state, the chip operating mode bits of the OMR are loaded from the external
mode select pins (MODA, MODB, MODC,MODD), and program execution begins at the
program memory address as described in Chapter 12.

7.4 WAIT PROCESSING STATE

The wait processing state is a low power-consumption state entered by execution of the
WAIT instruction. In the wait state, the internal clock is disabled from all internal circuitry
except the internal peripherals. All internal processing is halted until an unmasked
interrupt occurs, the DSP is reset, or DE is asserted. If exit from wait state was caused by
asserting DE, the processor will enter the debug mode.
7 - 12 PROCESSING STATES MOTOROLA

7.5 STOP PROCESSING STATE

The stop processing state is the lowest power consumption mode and is entered by the
execution of the STOP instruction. In the stop mode, the clock oscillator activity depends
on the PSTP bit in the PLL control register. If this bit is cleared, the clock oscillator is
turned off, while if the bit is set, the VCO remains active and the global clock to the entire
chip is gated off.

All activity in the processor is halted until one of the following actions occurs:

1. A low level is applied to the IRQA pin (IRQA asserted)
2. A low level is applied to the RESET pin (RESET asserted)
3. A low level is applied to the DE pin.

Either of these actions will gate on the oscillator and, after a clock stabilization delay,
clocks to the processor and peripherals will be re-enabled.

When the clocks to the processor and peripherals are re-enabled then the processor will
enter the reset processing state if the exit from stop state was caused by a low level on
the RESET pin.

If the exit from stop state was caused by a low level on the IRQA pin then the processor
will service the highest priority pending interrupt. If no interrupt is pending (i. e. IRQA was
negated before interrupts were arbitrated) or if no interrupt is enabled then the processor
resumes execution at the instruction following the STOP instruction that caused the entry
into the stop state.

If the exit from stop state was caused by a low level on the DE pin, the processor will enter
the debug mode.

For minimum power consumption during the STOP state at the cost of longer recovery
time, PSTP bit of the PLL Control register should be cleared. To enable rapid recovery
when exiting the STOP state, at the cost of higher power consumption, PSTP should be
set. PSTP is cleared by hardware reset.
MOTOROLA PROCESSING STATES 7 - 13

7 - 14 PROCESSING STATES MOTOROLA

8 DMA CONTROLLER

The Direct Memory Access (DMA) Controller is an on-chip device that permits data
transfers between internal/external memory and/or internal/external I/O in any
combination, without intervention of the program. Due to dedicated DMA address and
data buses as well as internal memories partition, a high level of isolation is achieved
where the DMA operation does not interfere or slow down the core operation.

The DMA Controller has six channels, each one having its own register set. All the
registers are memory-mapped in the internal I/O memory space.

Table 8-1 shows the various types of data transfers that the DMA Controller can perform.

Table 8-1. DMA Controller Data Transfers

Data transfer for one channel takes minimum two clock cycles per single word.

The DMA can execute data transfers with various types of address generation schemes
such as:

1. constant addressing, where the address is unchanged throughout the
data transfer.

2. uni-dimensional addressing, where one block is transferred using
consecutive addresses.

3. two-dimensional addressing, where equally spaced blocks are
transferred, using consecutive addresses within each block. The spacing
between the blocks is programmed into an offset register.

4. three-dimensional addressing, where equally spaced groups of equally
spaced blocks are transferred, using consecutive addresses within each
block. The two spacings are programmed into two offset registers.

Clock cycles per single
word transfer

Internal Memory → Internal Memory 2

External Memory ↔ Internal Memory 2+wait states

External Memory → External Memory 2+wait states

Internal Memory ↔ Internal I/O 2

External Memory ↔ Internal I/O 2+wait states

Internal I/O → Internal I/O 2
MOTOROLA DMA CONTROLLER 8 - 1

5. special cases of the above mentioned modes allow many other address
generation patterns such as linear buffers with non-unit stride, circular
buffers, etc.

8.1 DMA CONTROLLER PROGRAMMING MODEL

The registers comprising the DMA Controller are shown in Table 8-2 through Table 8-8.

Table 8-2. DMA Controller Programming Model - Channel 0

Table 8-3. DMA Controller Programming Model - Channel 1

Table 8-4. DMA Controller Programming Model - Channel 2

Table 8-5. DMA Controller Programming Model - Channel 3

DSR0 - DMA Source Address Register for channel 0
DDR0 - DMA Destination Address Register for channel 0
DCO0 - DMA Counter for channel 0
DCR0 - DMA Control Register for channel 0

DSR1 - DMA Source Address Register for channel 1
DDR1 - DMA Destination Address Register for channel 1
DCO1 - DMA Counter for channel 1
DCR1 - DMA Control Register for channel 1

DSR2 - DMA Source Address Register for channel 2
DDR2 - DMA Destination Address Register for channel 2
DCO2 - DMA Counter for channel 2
DCR2 - DMA Control Register for channel 2

DSR3 - DMA Source Address Register for channel 3
DDR3 - DMA Destination Address Register for channel 3
DCO3 - DMA Counter for channel 3
DCR3 - DMA Control Register for channel 3
8 - 2 DMA CONTROLLER MOTOROLA

Table 8-6. DMA Controller Programming Model - Channel 4

Table 8-7. DMA Controller Programming Model - Channel 5

Table 8-8. DMA Offset Registers

Table 8-9. DMA Status Register

8.1.1 DMA Source Address Register (DSR)

The DMA Source Address Register (DSR) is a 24-bit read/write register that contains the
source address for the next DMA transfer. The DMA controller has one source address
register for each DMA channel - DSR0, DSR1, DSR2, DSR3, DSR4 and DSR5.

8.1.2 DMA Destination Address Register (DDR)

The DMA Destination Address Register (DDR) is a 24-bit read/write register that contains
the destination address for the next DMA transfer. The DMA controller has one destination
address register for each DMA channel - DDR0, DDR1, DDR2, DDR3, DDR4 and DDR5.

8.1.3 DMA Offset Register (DOR)

The DMA Offset Register is a 24-bit read/write register that contains the offset value to be
used in some of the DMA addressing modes. The DMA controller has four common offset
registers (DOR0, DOR1, DOR2 and DOR3) that can be used by all the channels
according to their address generation mode.

DSR4 - DMA Source Address Register for channel 4
DDR4 - DMA Destination Address Register for channel 4
DCO4 - DMA Counter for channel 4
DCR4 - DMA Control Register for channel 4

DSR5 - DMA Source Address Register for channel 5
DDR5 - DMA Destination Address Register for channel 5
DCO5 - DMA Counter for channel 5
DCR5 - DMA Control Register for channel 5

DOR0 - DMA Offset Register 0
DOR1 - DMA Offset Register 1
DOR2 - DMA Offset Register 2
DOR3 - DMA Offset Register 3

DSTR - DMA Status Register
MOTOROLA DMA CONTROLLER 8 - 3

8.1.4 DMA Counter (DCO)

The DMA Counter is a 24-bit read/write register that contains the number of DMA data
transfers to be done. The DCO has five modes of operations determined by the DMA
channel’s address generation mode that are defined in the DMA channel’s Control
Register.

The following paragraphs explains the various modes of the DMA Counter. During DMA
operation, a Source Address Register (DSR) is associated with one of the counter modes,
while the Destination Address Register (DDR) can be associated with another counter
mode. The examples below use DSR as an example of the address register used, but the
same example is valid for the destination register also.

8.1.4.1 DMA counter mode A - single counter

In this mode of operation, the number of transfers is equal to the value loaded into DCO
plus one (DCO+1). Before each DMA transfer, the DCO is tested for zero, and the
following actions occur based on the test result:

• DCO > 0: A transfer is initiated with an address equal to the address
register, then DCO is decremented by one and the address register is
updated according to the address generation mode.

• DCO = 0: The last transfer is initiated with an address equal to the address
register, the address register is updated according to the address
generation mode and DCO is loaded with its preloaded value.

If, for example, DCO is preloaded with the value 5, DSR is loaded with the value S and the
address generation mode is postincrement by 1, the following DMA transfers will be
initiated by the DMA controller:

23 0
DCO

before the transfer after the transfer

DSR DCO transfer source address DSR DCO

S 5 S S+1 4

S+1 4 S+1 S+2 3

S+2 3 S+2 S+3 2

S+3 2 S+3 S+4 1

S+4 1 S+4 S+5 0

S+5 0 S+5 S+6 5
8 - 4 DMA CONTROLLER MOTOROLA

8.1.4.2 DMA counter mode B - dual counter

In this mode of operation, which is useful for two dimensional block transfers, the DCO is
separated to two sections: DCOL (bits 0-11) and DCOH (bits 12-23). Before each DMA
transfer the DCO is tested for zero and the following actions occur based on the test result:

• DCOL > 0: A transfer is initiated with an address equal to the address
register, then DCOL is decremented by one and the address register is
incremented by one.

• DCOH > 0; DCOL = 0: A transfer is initiated with an address equal to the
address register, the address register is incremented with the specified
offset register, DCOH is decremented by one and DCOL is loaded with its
preloaded value.

• DCOH = 0; DCOL = 0: The last transfer is initiated with an address equal
to the address register, the address register is incremented with the
specified offset register and both DCOH and DCOL are loaded with their
preloaded value.

The number of transfers in this mode is equal to (DCOL+1) x (DCOH+1).

If, for example, DCOH is preloaded with the value 1, DCOL is preloaded with the value 2,
DOR is preloaded with the value O and DSR with the value S, the following DMA transfers
will be initiated by the DMA controller:

8.1.4.3 DMA counter modes C, D and E- triple counter

In this mode of operation, which is useful for three dimensional block transfers, the DCO
is separated to three sections: DCOL, DCOM and DCOH. Before each DMA transfer the

23 12 11 0
DCOH DCOL

before the transfer after the transfer

DSR DCO transfer source address DSR DCO

S 1:2 S S+1 1:1

S+1 1:1 S+1 S+2 1:0

S+2 1:0 S+2 S+O+2 0:2

S+O+2 0:2 S+O+2 S+O+3 0:1

S+O+3 0:1 S+O+3 S+O+4 0:0

S+O+4 0:0 S+O+4 S+2O+4 1:2
MOTOROLA DMA CONTROLLER 8 - 5

DCO is tested for zero and the following actions occur based on the test result:

• DCOL > 0: A transfer is initiated with an address equal to the address
register, then DCOL is decremented by one and the address register is
incremented by one.

• DCOM > 0; DCOL = 0: A transfer is initiated with an address equal to the
address register, the address register is incremented with the first
specified offset register, DCOM is decremented by one and DCOL is
loaded with its preloaded value.

• DCOH > 0; DCOM = 0; DCOL = 0: A transfer is initiated with an address
equal to the address register, the address register is then incremented
with the second specified offset register, DCOH is decremented by one
and both DCOM and DCOL are loaded with their preloaded value.

• DCOH = 0; DCOM = 0; DCOL = 0: The last transfer is initiated with an
address equal to the address register, the address register is then
incremented with the second specified offset register and both DCOH,
DCOM and DCOL are loaded with their preloaded value.

The number of transfers in this mode is equal to (DCOL+1) x (DCOM+1) x (DCOH+1).

If, for example, DCOH is preloaded with the value 1, DCOM is also preloaded with the
value 1, DCOL is preloaded with the value 2, DOR0 is preloaded with the value O0, DOR1
is preloaded with the value O1 and DSR with the value S, the following DMA transfers will
be initiated by the DMA controller:
8 - 6 DMA CONTROLLER MOTOROLA

1. DMA counter mode C structure:
The structure of DMA counter mode C is as follows: DCOL (bits 0-5),
DCOM (bits 6-11) and DCOH (bits 12-23).

2. DMA counter mode D structure:
The structure of DMA counter mode D is as follows: DCOL (bits 0-5),
DCOM (bits 6-17) and DCOH (bits 18-23).

3. DMA counter mode E structure:
The structure of DMA counter mode E is as follows: DCOL (bits 0-11),
DCOM (bits 12-17) and DCOH (bits 18-23).

before the transfer after the transfer

DSR DCO
transfer source

address
DSR DCO

S 1:1:2 S S+1 1:1:1

S+1 1:1:1 S+1 S+2 1:1:0

S+2 1:1:0 S+2 S+O0+2 1:0:2

S+O0+2 1:0:2 S+O0+2 S+O0+3 1:0:1

S+O0+3 1:0:1 S+O0+3 S+O0+4 1:0:0

S+O0+4 1:0:0 S+O0+4 S+O0+O1+4 0:1:2

S+O0+O1+4 0:1:2 S+O0+O1+4 S+O0+O1+5 0:1:1

S+O0+O1+5 0:1:1 S+O0+O1+5 S+O0+O1+6 0:1:0

S+O0+O1+6 0:1:0 S+O0+O1+6 S+2O0+O1+6 0:0:2

S+2O0+O1+6 0:0:2 S+2O0+O1+6 S+2O0+O1+7 0:0:1

S+2O0+O1+7 0:0:1 S+2O0+O1+7 S+2O0+O1+8 0:0:0

S+2O0+O1+8 0:0:0 S+2O0+O1+8 S+2O0+2O1+8 1:1:2

23 12 11 6 5 0
DCOH DCOM DCOL

23 18 17 6 5 0
DCOH DCOM DCOL

23 18 17 12 11 0
DCOH DCOM DCOL
MOTOROLA DMA CONTROLLER 8 - 7

8.1.5 DMA Control Register (DCR)

The DMA Control Register (DCR) is a 24-bit read/write register that controls the DMA
operation. Each bit is shown in Figure 8-1 and described in the following paragraphs. All
DCR bits are cleared during processor reset.

Figure 8-1. DMA Control Register

8.1.5.1 DCR DMA Channel Enable Bit (DE) Bit 23

The DE bit enables the channel operation. Setting DE will trigger a single block DMA
transfer in the DMA transfer mode that uses DE as a trigger, and will enable a single block,
a single “line” or a single word DMA transfer in the transfer modes which use a requesting
device as a trigger. DE is cleared by Hardware Reset, and by the end of DMA transfer in
some of the transfer modes as defined by the DTM(2:0) bits. Clearing DE explicitly by
software during a DMA operation will stop the channel operation only after the current
DMA transfer has been completed (the current word has been stored into the destination).

8.1.5.2 DCR DMA Interrupt Enable Bit (DIE) Bit 22

When the DMA Interrupt Enable bit is set, a DMA interrupt will be generated at the end of
a DMA block transfer, that is after the counter is loaded with its preloaded value and the
DTD bit in the DMA status register is set. A DMA interrupt will also be generated when DE
is cleared explicitly by software during a DMA operation, as described in Section 8.1.5.1.

When DIE is cleared, the DMA interrupt is disabled.

8.1.5.3 DCR DMA Transfer Mode (DTM2-DTM0)- bits 21:19

DMA Transfer mode bits specify the modes of operation of the DMA channel.

23 22 21 20 19 18 17 16 15 14 13 12
DE DIE DTM2 DTM1 DTM0 DPR1 DPR0 DCON DRS4 DRS3 DRS2 DRS1

11 10 9 8 7 6 5 4 3 2 1 0
DRS0 D3D DAM5 DAM4 DAM3 DAM2 DAM1 DAM0 DDS1 DDS0 DSS1 DSS0

DE DMA Operation

0 Disabled

1 Enabled

DIE DMA Interrupt

0 Disabled

1 Enabled
8 - 8 DMA CONTROLLER MOTOROLA

When DTM2-DTM0=000, a block of data is transferred, the length of the block is
determined by the counter, the transfer is enabled by DE and initiated by the first DMA
request. The transfer is completed after the counter decrements to zero, then it reloads
itself with the original value and clears the DE bit.

Table 8-10. DMA Transfer Mode (DTM2-DTM0) Bits

When DTM2-DTM0=001, a block of data is transferred, the length of the block is
determined by the counter and each DMA request will transfer a single word while enabled
by DE. The transfer is completed after the counter decrements to zero, then it reloads itself
with the original value and clears the DE bit.

When DTM2-DTM0=010, a block of data is transferred, the length of the block is
determined by the counter and each DMA request will transfer a "line", i.e. the number of
words as defined at DCOL, while enabled by DE. The transfer is completed after the whole
counter decrements to zero, then it reloads itself with the original value and clears the DE
bit.

When DTM2-DTM0=011, a block of data is transferred, the length of the block is
determined by the counter and the transfer is initiated by setting DE. The transfer is
completed when the counter decrements to zero, then it reloads itself with the original
value and clears the DE bit.

When DTM2-DTM0=100, a block of data is transferred, the length of the block is
determined by the counter, the transfer is enabled by DE and initiated by the first DMA
request. The transfer is completed when the counter decrements to zero, then it reloads
itself with the original value. The DE bit is not cleared at the end of the block, therefore the
DMA channel is waiting for a new request.

DTM(2:0) triggered by
DE cleared at
end of block

Transfer Mode

000 request yes block transfer

001 request yes word transfer

010 request yes line transfer

011 DE yes block transfer

100 request no block transfer

101 request no word transfer

110 reserved

111 reserved
MOTOROLA DMA CONTROLLER 8 - 9

When DTM2-DTM0=101, a single word transfer is enabled by DE and initiated by every
DMA request. When the counter decrements to zero, it is reloaded with its original value.
The DE bit is not automatically cleared, therefore the DMA channel is waiting for a new
request.

8.1.5.4 DCR DMA Channel priority(DPR1-DPR0) - bits 18:17

The DMA Channel Priority control bits define the priority level of the DMA channel relative
to the other DMA channels as well as to the priority level of the core when external bus
access is required. When DMA transfers are pending, the DMA channel priority level of all
the channels are compared to decide which channel will be activated in the next word
transfer. This decision must be made since all channels use common resources such as
the DMA address generation logic, the address and data buses etc.

Table 8-11. DCR DMA Channel priority(DPR1-DPR0) Bits

If all or some of the channels have the same priority, then the channels will be activated
in a round-robin fashion: channel 0 will be activated to transfer one word out of its
programmed stream, followed by channel 1, followed be channel 2 and so on.

If the channel priorities are different, the channel with the highest priority will start
executing DMA transfers and will remain doing so as long as there are DMA transfers
pending. In the event that a lower priority channel is executing DMA transfers when a
higher priority channel receives a transfer request, the lower priority channel will finish the
transfer of the current word and arbitration will start again. If some channels with the same
priority are activated in a round-robin fashion and a new channel with higher priority
interferes, then after this channel finishes its pending transfers the order of the transfers
in the round-robin mode may change, but the algorithm remains the same.

The DPR(1:0) bits are also used to determine the DMA priority relative to the core priority
when an external bus access is required. This function involves the DMA priority level
defined by the current active DMA channel, the core priority defined by bits CP1-CP0 in
the DSP56300 Core Status Register (SR) and the core-DMA priority defined by bits
CDP1-CDP0 in the DSP56300 Core Operating Mode Register (OMR).

When the priority of the DMA is higher than the priority of the core (CDP=01; CDP=00 and

DPR(1:0) Channel Priority

00 Priority Level 0 (lowest)

01 Priority Level 1

10 Priority Level 2

11 Priority Level 3 (highest)
8 - 10 DMA CONTROLLER MOTOROLA

DPR > CP) and both the DMA and the core require an external access, the DMA will
perform the external bus access and the core will wait for the DMA to complete the
programmed current transfer.

When the priority of the DMA is equal to the priority of the core (CDP=10; CDP=00 and
DPR = CP) and both the DMA and the core require an external access, the core will
perform all its external accesses pertaining to the current instruction and than the DMA
will perform its access.

When the priority of the DMA is lower than the priority of the core (CDP=11; CDP=00 and
DPR < CP) and both the DMA and the core require an external access, the core will
always perform its external accesses and the DMA will wait for a free slot in which the core
does not require the external bus.

In the dynamic priority mode (CDP=00), it is possible that a DMA channel will be halted
before executing both the source and destination accesses when the core has higher
priority over the external bus. In this case, if another, higher priority DMA channel will
request an access, the halted channel will finish its previous access with the new higher
priority before the new requesting DMA channel will be serviced.

8.1.5.5 DCR DMA Continuous Mode (DCON) - bit 16

When DMA Continuous Mode bit is set the channel will enter the continuous transfer
mode, in which it will not be interrupted throughout the transfer by any other DMA channel
of equal priority. The DMA transfers in Continuous Mode of operation can be interrupted
if a DMA channel of higher priority has been enabled after the Continuous Mode transfer
was started. If the priority of the DMA is higher than the priority of the core (CDP=01;
CDP=00 and DPR>CP) and DCON bit is set, than if the DMA requires an external access,
it will get the external bus and the core will not be able to use the external bus in the next
cycle after the DMA access even if the DMA does not need the bus in this cycle. However,
if a refresh cycle from the DRAM controller is requested in such a case, the DMA will be
interrupted by the refresh cycle.
When the DCON bit is cleared the priority algorithm operates as described in the Section
8.1.5.4.

8.1.5.6 DCR DMA Request Source (DRS0-DRS4) Bits 15-11

The DMA Request Source bits encode the source of DMA requests used to trigger the
DMA transfers. The DMA request sources may be the internal peripherals, external
devices requesting service through the IRQA, IRQB, IRQC and IRQD pins or triggering
by transfer done from a DMA channel. All the request sources behave as edge-triggered
synchronous inputs.

Peripheral requests 18-21 (DRS[4:0]=111xx) are special because in addition to the
regular behavior of all the requesting devices, they can serve as “fast request sources”. In
a regular request from a peripheral, the trigger to the DMA remains set until the
appropriate register at the peripheral is accessed by the DMA, therefore the peripheral
MOTOROLA DMA CONTROLLER 8 - 11

cannot generate a second request until the first one was served. Another method is when
the peripheral (i.e. timer) gives a triggering pulse without taking care whether the DMA
served this trigger. The “fast peripheral” has a full duplex handshake to the DMA, enabling
a maximum throughput of a trigger every two clock cycles. This mode is functional only in
the “word transfer mode” (DTM = 001 or 101). In the “fast request mode” the DMA sets an
“enable line” to the peripheral. If the peripheral wants, he sends the DMA a one cycle
triggering pulse.This pulse resets the enable line. If the DMA decides by the priority
algorithm that this trigger will be served in the next cycle, the enable line is set again even
before the corresponding register in the peripheral is accessed.

8.1.5.7 DCR DMA three Dimensional mode (D3D)- bit 10

When this bit is set the addressing mode, determined by DAM(5:0) is three-dimensional.
When this bit is cleared the addressing mode is non three-dimensional.

8.1.5.8 DCR DMA Address Mode (DAM5-DAM0)- bits 9:4

These bits define the address generation mode for the DMA transfer. These bits are
encoded in two different ways according to D3D bit.

Non three dimensional modes (D3D = 0).

DMA Request Source Bits

DRS(4:0)

Requesting Device

00000 External (IRQA pin)

00001 External (IRQB pin)

00010 External (IRQC pin)

00011 External (IRQD pin)

00100 Transfer Done from channel 0

00101 Transfer Done from channel 1

00110 Transfer Done from channel 2

00111 Transfer Done from channel 3

01000 Transfer Done from channel 4

01001 Transfer Done from channel 5

01010 Peripheral Request MDRQ0

... ...

11111 Peripheral Request MDRQ21
8 - 12 DMA CONTROLLER MOTOROLA

In this case DAM bits are separated into two groups: DAM(5:3), that defines the address
generation mode for destination transfers and DAM(2:0), that defines the address
generation mode for source transfers.The encoding is defined in Table 8-12 and in Table
8-13. The address generation mode can be no update, postincrement by 1 or
two-dimensional.
 In the no update addressing mode the DMA is accessing a constant address for the entire
transfer. This addressing mode is useful when accessing peripheral devices as well as
other single address devices such as FIFOs.
In the postincrement by one addressing mode the DMA is accessing consecutive
addresses. This addressing mode is useful when accessing data structures in memories,
when the data elements are placed in successive memory locations.
In the two-dimensional addressing mode of operation the DMA is accessing data at
consecutive addresses for a given number of times (DCOL) and then an offset register is
added to the generated address. The entire process is repeated for another given number
of times (DCOH). DCOL and DCOH are the two sections of the DCO counter. See Section
8.1.4 for a detailed description of the DCO operation. This addressing mode is useful
when accessing two dimensional arrays of data.

Table 8-12. Source Address Generation Mode (D3D = 0)

Note: if the source address generation mode specify different counter mode
than the destination address generation mode, then the counter mode is
B.

DAM(2:0) addressing mode counter mode offset select

000 two-dimensional B DOR0

001 two-dimensional B DOR1

010 two-dimensional B DOR2

011 two-dimensional B DOR3

100 no update A N/A

101 post increment by 1 A N/A

110 reserved

111 reserved
MOTOROLA DMA CONTROLLER 8 - 13

Table 8-13. Destination Address Generation Mode (D3D = 0)

Note: if the destination address generation mode specify different counter
mode than the source address generation mode, then the counter mode
is B.

Three dimensional modes (D3D = 1).

In this case DAM bits are separated into three groups: DAM(1:0) that defines the DMA
counter mode, DAM2 that is the address mode select and DAM(5:3) that defines the
address generation mode. The encoding is defined in Table 8-14, Table 8-15 and Table
8-16. When D3D equals one, either the source addressing mode or the destination
addressing mode or both are three-dimensional.
In the three-dimensional address generation mode of operation the DMA is accessing
data at consecutive addresses for a given number of times (DCOL) and then an offset
register is added to the generated address. This process is repeated for another given
number of times (DCOM) after which another offset is added to the generated address.
The entire process is repeated for a given number of times (DCOH). DCOL, DCOM and
DCOH are the three sections of the DCO counter. See Section 8.1.4 for a detailed
description of the DCO operation. This addressing mode is useful when accessing a
number of two dimensional arrays of data.

DAM(5:3) addressing mode counter mode offset select

000 two-dimensional B DOR0

001 two-dimensional B DOR1

010 two-dimensional B DOR2

011 two-dimensional B DOR3

100 no update A N/A

101 post increment by 1 A N/A

110 reserved

111 reserved
8 - 14 DMA CONTROLLER MOTOROLA

Table 8-14. Counter Mode (D3D = 1)

Table 8-15. Address Mode Select (D3D = 1)

Table 8-16. Address Generation Mode (D3D = 1)

DAM(1:0) counter mode

00 mode C

01 mode D

10 mode E

11 reserved

DAM2 addressing mode offset select

0 source: three-dimensional source: DOR0 : DOR1

destination: defined by DAM(5:3) destination: defined by DAM(5:3)

1 source: defined by DAM(5:3) source: defined by DAM(5:3)

destination: three-dimensional destination: DOR2 : DOR3

DAM(5:3) addressing mode offset select

000 two-dimensional DOR0

001 two-dimensional DOR1

010 two-dimensional DOR2

011 two-dimensional DOR3

100 no update none

101 post increment by 1 none

110 three-dimensional DOR0 : DOR1

111 three-dimensional DOR2 : DOR3
MOTOROLA DMA CONTROLLER 8 - 15

The offset select in Tables 8-12, 8-13, 8-15 and 8-16 defines the offset registers that are
selected to increment the address register, when DCOL or DCOM:DCOL equals zero. In
two-dimensional mode only one offset register is needed to increment the address
register when DCOL equals zero. In three dimensional mode, two offset registers are
needed, DORi:DORj. When DCOL equals zero and DCOM does not equal zero, then
DORi is used to increment the address register. If both DCOL and DCOM equal zero, then
DORj is used to increment the address register.

8.1.5.9 DCR DMA Destination Space (DDS0-DDS1) Bits 3, 2

The DMA Destination Space control bits specify the memory space that will be referenced
as destination by the DMA.

Note: In Cache Mode, a DMA to P Memory Space has some limitations (as
described in Chapter 5).

8.1.5.10 DCR DMA Source Space (DSS0-DSS1) Bits 1, 0

The DMA Source Space control bits specify the memory that will be referenced as source
by the DMA.

Note: In Cache Mode, a DMA from P Memory Space has some limitations (as
described in Chapter 5).

8.1.6 DMA Status Register (DSTR)

The DMA Status Register (DSTR) is a 24-bit read only register that reflects the status of
the DMA operation. Each bit is shown in Figure 8-2 and described in the following
paragraphs.

DDS1 DDS0 DMA Destination Memory Space
0 0 X Memory Space
0 1 Y Memory Space
1 0 P Memory Space
1 1 Reserved

DSS1 DSS0 DMA Source Memory Space
0 0 X Memory Space
0 1 Y Memory Space
1 0 P Memory Space
1 1 Reserved
8 - 16 DMA CONTROLLER MOTOROLA

Figure 8-2. DMA Status Register

8.1.6.1 DSTR DMA Channel Transfer Done Status (DTD)- bits 5-0

The DMA Transfer Done status bits (DTD5-DTD0) are set when the last word during a
single block transfer is stored in the destination, stopping channel operation. At the same
time, the DE bit in the related DCR register, may be cleared according to the transfer mode
as defined by DTM(2:0). The last transfer is defined as the one where the DMA counter
reloads to its initial value, or when DE is explicitly cleared by software. If the DIE bit in the
related DCR is set, then the assertion of the DTD bit will cause a DMA interrupt request.
When the DMA Interrupt is disabled, the core may verify the channel status by polling this
bit. DTD bits are set by Hardware Reset. The DTD bit is reset by explicitly setting bit DE
at the corresponding DCR register by software.

Note1: Due to pipeline dependencies, after setting DE in a DCR register, the
corresponding DTD bit will be affected only after additional two
instruction cycles.

Note2: If the DMA channel works in a word transfer mode, than clearing DE will
set the corresponding DTD bit only after a trigger that was already
captured by the DMA is handled.

8.1.6.2 DSTR reserved bits - bits 23:12 and 7:6

These bits are reserved and are read as zero.

8.1.6.3 DSTR DMA Active state (DACT) - bit 8

The DMA Active state status bit is set if the DMA is in the middle of a transfer. This bit is
cleared if all the DMA channels are disabled or wait for DMA requests. This bit should be
polled and tested for zero before entering to a low power mode by executing a STOP
instruction. The DACT status bit is cleared by Hardware Reset

8.1.6.4 DSTR DMA Active Channel (DCH2-DCH0) - bits 11:9

The DMA Active Channel status bits are the encoding of the current active channel. These
bits are cleared at Hardware Reset. Their value is valid only if DACT=1.

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0
DCH2 DCH1 DCH0 DACT DTD5 DTD4 DTD3 DTD2 DTD1 DTD0

Reserved, read as zero.
MOTOROLA DMA CONTROLLER 8 - 17

Table 8-17. DCH Status bits encoding

8.2 DMA Restrictions

The following are some restrictions that apply to the DMA operation:

1. The user should take care when he needs to enter into the STOP
processing state. Before executing the STOP instruction, the Dma ACTive
(DACT) status bit should be polled until it is read as ‘0’. When the chip
enters the STOP state all the DMA triggers that were previously latched
are cleared.

2. The core will exit the WAIT processing state when a DMA channel accepts
a trigger that is programmed as the selected source trigger. The DMA will
prevent the core from entering WAIT processing state if the DMA is active.

3. Only the Transmit/Receive Data registers of the peripheral interfaces may
be accessed by the DMA Controller when specifying source or destination
in the internal I/O space.

4. If one of the DMA channels is accessing external memory and the access
is delayed due to bus arbitration or memory wait, the other DMA channels
will also stop, since the DMA mechanism does not distinguish between the
different channels.

5. The internal RAM is divided into 256-word banks. If the Core and DMA are
accessing different banks they will not interfere one with another, i.e. each
will continue operations at its maximum speed. If both Core and DMA are
accessing the same bank then the Core will always have priority and the
DMA will be delayed until a free slot will be available.

6. The DMA Address Registers (DSR, DDR, DOR) and the DMA Counter

DCH(2:0) Active channel

000 DMA Channel 0

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 DMA Channel 4

101 DMA Channel 5

110 reserved

111 reserved
8 - 18 DMA CONTROLLER MOTOROLA

(DCO) should be written only when the channel that uses them is disabled
(DE=0 and DTD=1). The operation of the DMA controller cannot be
guaranteed if one of these registers is written while the DMA channel that
uses them is busy.

7. A change in the request source should be initiated only when the
corresponding DMA channel is idle. If the channel is forced to enter the
idle state by clearing the Dma Enable (DE) control bit, the corresponding
Dma Transfer Done (DTD) status bit should be polled until it is read as ‘1’.

8. If a DMA channel is programmed to perform accesses in the word transfer
mode, the corresponding DTD status bit will be set only after the current
captured request will be serviced by an appropriate transfer. This will
assure that the last captured request will not be lost. Note that if this
channel’s priority is low, the DTD will be set only when it receives the
priority to perform its accesses. In order to shorten this time, the channel’s
priority may be raised before DE is cleared.

9. While a DMA channel is enabled (DE=1) the user should not modify any
of the channel’s DCR bits, but for the DE bit itself.

10. Due to the DSP56300 Core pipeline, after DE bit in DCRx is set, the
corresponding DTDx bit in DSTR will be cleared only after two instruction
cycles.
MOTOROLA DMA CONTROLLER 8 - 19

8 - 20 DMA CONTROLLER MOTOROLA

9 PLL AND CLOCK GENERATOR

9.1 INTRODUCTION

The DSP56300 Core features a PLL (phase-locked loop) clock oscillator in its central
processing module. The PLL allows the processor to operate at a high internal clock
frequency using a low frequency clock input, a feature which offers two immediate
benefits: Lower frequency clock input reduces the overall electromagnetic interference
generated by a system, and the ability to oscillate at different frequencies reduces costs
by eliminating the need to add additional oscillators to a system.

The clock generation in the DSP56300 Core is composed of two main blocks:

• Phase Locked Loop (PLL) that performs
• Clock input division
• Frequency multiplication
• Skew elimination

• CLOCK GENERATOR (CLKGEN) that performs
• Low power division
• Internal & External clock pulse generation

Figure 9-1. PLL & CLOCK Block Diagram

EXTAL

XTAL

EX.

(1)

Note (1): The clock source can be either an external source supplied to
EXTAL, or a clock oscillator connected to EXTAL and XTAL.

PLL CLKGEN

P
C

A
P

P
V

C
C

PLL

CHIP

CLKOUT

pre-divider

PDF:1 to 16

pll loop
frequency

multiplication

MF:1 to 4096

low power
divider

divide
by 2

P
E

N
=

1

DF:20 to 27

Fext
PDF
------------- Fext MF 2⋅ ⋅

PDF

Fext MF 2⋅ ⋅
PDF DF⋅-----------------------------------Fext

CLOCK

OUT

CLOCK

P
E

N
=

0

C
O

D

X
T

LD

P
G

N
D

P
V

C
C

+

2-PHASE
MOTOROLA PLL AND CLOCK GENERATOR 9 - 1

9.1.1 Clock Input Division

The PLL can divide the input frequency by any integer between 1 and 16. The combination
of input division and output low-power division (see Section 9.1.4) enables the user to
generate almost every frequency value out of the PLL. The division factor may be modified
by changing the value of the Pre-Division Factor Bits (PDF - PD3:0) in the PLL control
register. The output frequency of the pre-divider is

9.1.2 Frequency Multiplication

The PLL can multiply the input frequency by any integer between 1 and 4096. The
multiplication factor may be modified by changing the value of the Multiplication Factor
(MF) Bits MF[11:0] in the PLL control register. The output frequency of the PLL (“PLL
OUT” in figure 9-1) is

Notice that this is not the chip operating frequency but rather the input to the CLKGEN
block.

9.1.3 Skew Elimination

The PLL is capable of eliminating the skew between the external clock entering the chip
(EXTAL) and the internal clock phases and CLKOUT pin, making it useful for tighter
synchronous timings. Skew elimination is active only when the PLL is enabled and
programmed with a multiplication factor less than or equal to 4. When the PLL is disabled,
or when the multiplication factor is greater than 4, or when the pre division factor is greater
than 1, clock skew may exist.

Skew elimination is assured only if the input frequency (EXTAL) is greater than a minimum
frequency specified in a device’s Technical Data Sheet (typically 15 MHz).

Fext
PDF

Fext MF 2⋅ ⋅
PDF

--
9 - 2 PLL AND CLOCK GENERATOR MOTOROLA

9.1.4 Low Power Divide and Output Stage

The Clock-Generator has a divider connected to the output of the PLL. The output
frequency of the PLL may be divided by a factor of 2n (where 0 ≤ n ≤ 7). The division factor
may be modified by changing the value of the Division Factor Bits (DF - DF2:0) in the PLL
control register. This divider permits reducing or restoring the chip operating frequency
without losing the PLL lock.

The Output Stage of the Clock-Generator generates the clock signals to the core and the
chip peripherals, and drives the CLKOUT pin. The Output Stage divides the frequency by
2. The input source to the Output Stage is selected between:

• EXTAL itself (PEN=0 i.e. PLL disabled), that causes chip frequency to be

• Low Power Divider output (PEN=1 i.e. PLL enabled), that cause chip frequency
to be

9.2 PLL BLOCK DIAGRAM

The PLL block diagram is shown in Figure 9-2. The components of the PLL are described
in the following sections.
MOTOROLA PLL AND CLOCK GENERATOR 9 - 3

Figure 9-2. PLL Block Diagram

9.2.1 Frequency Pre-Divider

Clock input frequency division is accomplished by means of a frequency divider of the
input frequency. The programmable division factor ranges from 1 to 16.

9.2.2 Phase Frequency Detector and Charge Pump Loop Filter

The Phase Detector (PD) detects any phase difference between the external clock
(EXTAL) and an internal clock phase from the frequency multiplier. At the point where
there is negligible phase difference and the frequency of the two inputs is identical, the
PLL is in the “locked” state.

The charge pump loop filter receives signals from the PD, and either increases or
decreases the phase based on the PD signals. An external capacitor is connected to the
PCAP pin (described in Section 9.4) and determines the PLL operation. (See the
appropriate Technical Data Sheet for more detailed information about a particular device’s
capacitor value.)

After the PLL locks on to the proper phase/frequency, it reverts to the narrow bandwidth
mode, which is useful for tracking small changes due to frequency drift of the EXTAL
clock.

9.2.3 PLL Control Register (PCTL)

The PLL control register (PCTL) is an X-I/O mapped 24-bit read/write register used to
direct the operation of the on-chip PLL. The PCTL control bits are described in the

Phase

Detector

Loop

Filter
VCO

Frequency
Divider
1 to 4096

PLL OUTEXTAL

MF0-MF11

Pre
Divider

PD0-PD3
1 to 16

Divide
 by 2
9 - 4 PLL AND CLOCK GENERATOR MOTOROLA

following sections.

Figure 9-3. PLL Control Register (PCTL)

9.2.3.1 Multiplication Factor Bits (MF0-MF11) - Bits 0-11

The Multiplication Factor Bits MF0-MF11 define the multiplication factor MF that will be
applied to the PLL input frequency. The multiplication factor MF can be any integer from 1
to 4096. Table 9-1 shows how to program the MF0-MF11 bits. The VCO will oscillate at a
frequency of:

Where PDF is the division factor of the Pre-Divider.

The multiplication factor must be chosen to ensure that the resulting VCO output
frequency will lay in the range specified in the device’s Technical Data Sheet. Any time a
new value is written into the MF0-MF11 bits, the PLL will lose the lock condition. After a
time delay, the PLL will relock. The multiplication factor bits (MF0-MF11) are set to a
predetermined value during hardware reset; the value is implementation dependent and
may be found in each DSP56300 based derivative user’s manual.

11 10 9 8 7 6 5 4 3 2 1 0

MF11 MF10 MF9 MF8 MF7 MF6 MF5 MF4 MF3 MF2 MF1 MF0

23 22 21 20 19 18 17 16 15 14 13 12

PD3 PD2 PD1 PD0 COD PEN PSTP XTLD XTLR DF2 DF1 DF0
MOTOROLA PLL AND CLOCK GENERATOR 9 - 5

Table 9-1. Multiplication Factor Bits MF0-MF11

9.2.3.2 Division Factor Bits (DF2-DF0) - Bits 12-14

The Division Factor Bits DF2-DF0 define the divide factor DF of the low power divider.
These bits specify any power of two divide factor in the range from 20 to 27. Table 9-2
shows the programming of the DF2-DF0 bits. Changing the value of the DF2-DF0 bits will
not cause a loss of lock condition. Whenever possible, changes of the operating frequency
of the chip (for example, to enter a low power mode) should be made by changing the
value of the DF2-DF0 bits rather than changing the MF0-MF11 bits. For MF≤4, changing
DF2-DF0 may lengthen the instruction cycle following the PLL control register update; this
is done in order to keep synchronization between EXTAL and the internal chip clock. For
MF>4 such synchronization is not guaranteed and the instruction cycle is not lengthened.
These bits are cleared (division by one) by hardware reset.

MF11-MF0 Multiplication Factor MF

$000 1

$001 2

$002 3

•
•
•

•
•
•

$FFE 4095

$FFF 4096
9 - 6 PLL AND CLOCK GENERATOR MOTOROLA

Table 9-2. Division Factor Bits DF0-DF2

9.2.3.3 Crystal Range Bit (XTLR) - Bit 15

The Crystal Range (XTLR) bit controls the on-chip crystal oscillator transconductance. If
the external crystal frequency is less than 200kHz (“fork crystal”), this bit should be set in
order to decrease the transconductance of the input amplifier, otherwise the internal
clocks may not be stable. If the external crystal frequency is greater than 200kHz, this bit
should be cleared in order to have the full transconductance, otherwise the crystal
oscillator may not function at all. The XTLR bit is set to a predetermined value during
hardware reset; the value is implementation dependent and may vary between each
DSP56300 based derivative.

9.2.3.4 XTAL Disable Bit (XTLD) - Bit 16

The XTAL Disable (XTLD) bit controls the on-chip crystal oscillator XTAL output. When
XTLD is cleared, the XTAL output pin is active, permitting normal operation of the crystal
oscillator. When XTLD is set, the XTAL output pin is held in the high (“1”) state, disabling
the on-chip crystal oscillator. If the on-chip crystal oscillator is not used (EXTAL is driven
from an external clock source), it is recommended to set XTLD (disabling XTAL) to
minimize RFI noise and power dissipation. The XTLD bit is set to a predetermined value
during hardware reset; the value is implementation dependent and may vary between
each DSP56300 based derivative.

9.2.3.5 STOP Processing State Bit (PSTP) - Bit 17

The PSTP bit controls the behavior of the PLL and of the on-chip crystal oscillator during
the STOP processing state. When PSTP is set, the PLL and the on-chip crystal oscillator
will remain operating while the chip is in the STOP processing state. When PSTP is
cleared, the PLL and the on-chip crystal oscillator will be disabled when the chip enters

DF2-DF0 Division Factor DF

$0 20

$1 21

$2 22

•
•
•

•
•
•

$7 27
MOTOROLA PLL AND CLOCK GENERATOR 9 - 7

the STOP processing state. For minimum power consumption during the STOP state at
the cost of longer recovery time, PSTP should be cleared. To enable rapid recovery when
exiting the STOP state, at the cost of higher power consumption, PSTP should be set.
PSTP is cleared by hardware reset.

9.2.3.6 PLL Enable Bit (PEN) - Bit 18

The PEN bit enables the PLL operation. When this bit is set, the PLL is enabled and the
internal clocks will be derived from the PLL VCO output. When this bit is cleared, the PLL
is disabled and the internal clocks are derived directly from the clock connected to the
EXTAL pin. When the PLL is disabled, the VCO is not operating in order to minimize power
consumption. The PEN bit may be set or cleared by software any time during the chip
operation. During hardware reset this bit receives the value of the PLL’s PINIT pin, usually
connected to the chip’s PINIT pin.

A relationship exists between PSTP and PEN where PEN adjusts PSTP’s control of the
PLL operation. When PSTP is set and PEN (see Table 9-3.) is cleared, the on-chip crystal
oscillator remains operating in the STOP state, but the PLL is disabled. This power saving
feature enables rapid recovery from the STOP state when the user operates the chip with
an on-chip oscillator and with the PLL disabled.

Table 9-3. PSTP and PEN Relationship

9.2.3.7 Clock Output Disable Bit (COD) - Bit 19

The COD bit controls the output buffer of the clock at the CLKOUT pin. When this bit is
set, the CLKOUT pin is held in the high (“1”) state. When this bit is cleared, the CLKOUT
pin provides a 50% duty cycle clock synchronized to the internal core clock. If the
CLKOUT pin is not connected to external circuits, it is recommended to set COD (disabling
clock output) to minimize RFI noise and power dissipation. The COD bit is cleared by
hardware reset. CLKOUT pin oscillates at all the machine operating states except the
STOP processing state.

PSTP PEN Operation during STOP Recovery Time
from STOP

Power Consumption
during STOP

PLL Oscillator

0 x Disabled Disabled long minimal

1 0 Disabled Enabled short lower

1 1 Enabled Enabled short higher
9 - 8 PLL AND CLOCK GENERATOR MOTOROLA

9.2.3.8 PreDivider Factor Bits (PD0-PD3) - Bits 20-23

The PreDivider Factor Bits PD0-PD3 define the predivision factor PDF that will be applied
to the PLL input frequency. The predivision factor PDF can be any integer from 1 to 16.
Table 9-1 shows how to program the PD0-PD3 bits. The VCO will oscillate at a frequency
of

The predivision factor must be chosen to ensure that the resulting VCO output frequency
will lay in the range specified in the device’s Technical Data Sheet. Any time a new value
is written into the PD0-PD3 bits, the PLL will lose the lock condition. After a time delay, the
PLL will relock. The pre-divider factor bits (PD0-PD3) are set to a predetermined value
during hardware reset; the value is implementation dependent and may be found in each
DSP56300 based derivative user’s manual.

Table 9-4. Predivision Factor Bits PD0-PD3

9.2.4 Voltage Controlled Oscillator (VCO)

The VCO is capable of oscillating at frequencies from the minimum speed specified in a
device’s Technical Data Sheet (typically 30 MHz) up to the maximum allowed clock input

PD3-PD0 Predivision Factor PDF

$0 1

$1 2

$2 3

•
•
•

•
•
•

$E 15

$F 16
MOTOROLA PLL AND CLOCK GENERATOR 9 - 9

frequency.

Note: When the PLL is enabled, the chip operating frequency is half of the VCO
oscillating frequency.

If EXTAL frequency is less than the VCO’s minimum working frequency, the user should
hold PINIT pin low during hardware reset and then change (by software) MF to the desired
value and change PEN to 1.

9.2.5 Divide by 2

The output of the VCO is divided by 2. This results in a constant x2 multiplication of the
PLL clock output used to generate the special chip clock phases.

9.2.6 Frequency Divider

The Frequency Divider, connected in the feedback loop of the PLL, is used to multiply the
incoming external clock. In the PLL close-loop, the effect of the frequency divider is to
multiply the PLL input frequency by its division factor. The programmable division factor
ranges from 1 to 4096, resulting in frequency multiplication in the same range.

9.3 CLKGEN BLOCK DIAGRAM

The CLOCK GENERATOR block diagram is shown in Figure 9-4. The components of the
CLOCK GENERATOR are described in the following sections.

Figure 9-4. CLKGEN Block Diagram

9.3.1 Low Power Divider (LPD)

The Low Power Divider (LPD) divides the output frequency of the VCO by any power of 2
from 20 to 27. Since the LPD is not in the closed loop of the PLL, changes in the divide
factor will not cause a loss of lock condition. This fact is particularly useful for utilizing the

EXTAL

Low-Power
Divider

DF0-DF2
20 to 27

PLL OUT

Divide
 by 2

CHIP

CLOCK

CLKOUT

2-PHASE
9 - 10 PLL AND CLOCK GENERATOR MOTOROLA

LPD in low power consumption modes when the chip is not involved in intensive
calculations. This can result in significant power saving. When the chip is required to exit
the low power mode, it can immediately do so with no time needed for clock recovery or
PLL lock.

9.3.2 Divide by 2

The EXTAL clock and the output of the Low-Power Divider are selected according to the
PEN bit in the PLL control register (PCTL). The selected clock frequency is divided by two
and is driven to the internal chip activity and to the CLKOUT pin.

9.3.3 Operating Frequency

The operating frequency of the chip is governed by the frequency control bits in the PLL
control register as follows:

where MF is the multiplication factor defined by the MF0-MF11 bits, PDF is the predivision
factor defined by the PD0-PD3 bits and DF is the division factor defined by the DF0-DF2
bits. FCHIP is the chip operating frequency, and FEXT is the external input frequency to the
chip at the EXTAL pin.

9.3.4 Synchronization among EXTAL, CLKOUT, and the Internal Clock

When the PLL is enabled (PEN bit asserted), low clock skew between EXTAL and
CLKOUT is guaranteed if MF≤4. CLKOUT and the internal chip clock are fully
synchronized.

9.4 PLL PINS

Some of the PLL pins need not be implemented. The specific PLL pin configuration for
each DSP56300 Core chip implementation is available in the respective device’s user’s
manual. The following pins are dedicated to the PLL operation:

PVCC VCC dedicated to the analog PLL circuits. The voltage should be well
regulated and the pin should be provided with an extremely low

FCHIP

FEXT MF×
PDF DF×---------------------------

Fvco
DF

--------------= =
MOTOROLA PLL AND CLOCK GENERATOR 9 - 11

impedance path to the VCC power rail.

PGND GND dedicated to the analog PLL circuits. The pin should be provided
with an extremely low impedance path to ground.

PGND1 GND dedicated for isolating the analog PLL circuits. The pin should be
provided with an extremely low impedance path to ground.

CLVCC VCC for the CLKOUT output. The voltage should be well regulated and
the pin should be provided with an extremely low impedance path to the
VCC power rail. This pin doesn’t have to be a dedicated one if it can be
guaranteed that it is regulated enough.

CLGND GND for the CLKOUT output. The pin should be provided with an
extremely low impedance path to ground. This pin doesn’t have to be a
dedicated one if it can be guaranteed that it is regulated enough.

PCAP Off-chip capacitor for the PLL filter. One terminal of the capacitor is
connected to PCAP while the other terminal is connected to PVCC. The
capacitor value is specified in the particular device’s Technical Data
Sheet.

CLKOUT This output pin provides a 50% duty cycle output clock synchronized to
the internal processor clock when the PLL is enabled and locked. When
the PLL is disabled, the output clock at CLKOUT is derived from, and has
half the frequency of, EXTAL. This pin oscillates in all chip processing
states except STOP processing state and except a condition when bit
COD in the PCTL register is implicitly set. When the chip is in the WAIT
processing state, the CLKOUT pin continues to oscillate.

PINIT During the assertion of hardware reset, the value at the PINIT input pin
is written into the PEN bit of the PLL control register. After hardware
reset is negated, the PINIT pin is ignored by the PLL and can have a
different function in the chip.

PLOCK The PLOCK output originates from the Phase Detector. The chip asserts
PLOCK when the PLL is enabled and has locked on the proper phase
and frequency of EXTAL. The PLOCK output is deasserted by the chip
if the PLL is enabled and has not locked on the proper phase and
frequency. PLOCK is asserted if the PLL is disabled. PLOCK is a reliable
indicator of the PLL lock state only after exiting the hardware reset state.
This pin is optional and will not be implemented in all the DSP56300-
Core based derivatives.
9 - 12 PLL AND CLOCK GENERATOR MOTOROLA

10 ON-CHIP EMULATOR (OnCE™)

10.1 INTRODUCTION

The DSP56300 Core on-chip emulation (OnCE) circuitry provides a means of
interacting with the DSP56300 Core and its peripherals non-intrusively so that a user may
examine registers, memory or on-chip peripherals facilitating hardware/software
development on the DSP56300 Core processor. To achieve this, special circuits and
dedicated pins on the DSP56300 Core are defined to avoid sacrificing any user-
accessible on-chip resource. The OnCE resources can be accessed only after
executing the JTAG instruction ENABLE_ONCE (these resources are accessible even
when the chip is operating in Normal Mode). See Chapter 11 for a description of the JTAG
functionality and its relation to the OnCE. Figure 10-1 illustrates the block diagram of the
OnCE .

Figure 10-1. OnCE Block Diagram

10.2 ON-CHIP EMULATION (OnCE) PINS

Since the OnCE controller functionality is accessed through the JTAG port, there are no

Trace
Buffer Breakpoint

Logic

Pipeline
Information Trace Logic

OnCE
Controller

PAB
YAB
XAB

PDB PIL GDB

TDO

TRST

TDI

TCK

Tags
Buffer

CONTROL BUS

DE

DAB
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 1

dedicated OnCE pins for clock, data-in and data-out. The JTAG pins TCK, TDI and TDO
are used to shift in and out data and/or instructions. See Paragraph 11.2.1 for the
description of the JTAG pins. In order to facilitate emulation specific functions, one
additional pin, called DE, may be used. This pin is described bellow.

10.2.1 Debug Event (DE)

The bidirectional open drain debug event pin DE provides a fast means of entering the
Debug Mode of operation from an external command controller (when input) as well as a
fast means of acknowledging the entering the Debug Mode of operation to an external
command controller (when output). The assertion of this pin by a command controller
causes the DSP56300 Core to finish the current instruction being executed, save the
instruction pipeline information, enter the Debug Mode, and wait for commands to be
entered from the TDI line. If DE was used to enter the Debug Mode then DE must be
negated after the OnCE responds with an acknowledge and before sending the first
OnCE command. The assertion of this pin by the DSP56300 Core indicates that the
DSP has entered the Debug Mode and is waiting for commands to be entered from the
TDI line.

The DE pin also facilitates multiple processor connections as depicted in Figure 10-2.

Figure 10-2. OnCE Multiprocessor Configuration

In this way the user is able to stop all the devices in the system when one of the devices
has entered the Debug Mode. The user can also stop all the devices synchronously by
asserting the DE line.

10.3 OnCE CONTROLLER

The OnCE Controller contains the following blocks: OnCE command register, OnCE

TDI TDO TDI TDOTDI TDOTDI

TMS

TCK

DE

TDO. . .

TRST
10 - 2 ON-CHIP EMULATOR (OnCE™) MOTOROLA

decoder, and the status/control register. Figure 10-3 illustrates a block diagram of the
OnCE controller.

Figure 10-3. OnCE Controller

10.3.1 OnCE Command Register (OCR)

The OnCE Command Register is an 8-bit shift register that receives its serial data from
the TDI pin. It holds the 8-bit commands to be used as input for the OnCE Decoder. The
Command Register is shown in Figure 10-4.

Figure 10-4. OnCE Command Register

10.3.1.1 Register Select (RS4-RS0) Bits 0-4

The Register Select bits define which register is source/destination for the read/write
operation. See Table 10-1 for the OnCE register addresses.

10.3.1.2 Exit Command (EX) Bit 5

If the EX bit is set, leave Debug Mode and resume normal operation. The Exit command
is executed only if the Go command is issued, and the operation is write to OPDBR or
read/write to “No Register Selected”. Otherwise the EX bit is ignored.

EX Action

0 remain in Debug Mode

1 leave Debug Mode

OnCE COMMAND REGISTER
TDI
TCK

STATUS AND CONTROL
REGISTER

TDO

MODE SELECT

OnCE DECODER

ISDEBUG

ISBKPT

ISSWDBG

ISDR

ISTRACE

REG WRITEREG READ

..

.
.

update

RS0
0

RS1
1

RS2
2

RS3
3

RS4
4

EX
5

GO
6

R/W
7

MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 3

Table 10-1. OnCE Register Addressing.

RS4-RS0 Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 Memory Breakpoint Counter (OMBC)

00010 Breakpoint Control Register (OBCR)

00011 Reserved

00100 Reserved

00101 Memory Limit Register0 (OMLR0)

00110 Memory Limit Register1 (OMLR1)

00111 Reserved

01000 Reserved

01001 GDB Register (OGDBR)

01010 PDB Register (OPDBR)

01011 PIL Register (OPILR)

01100 PDB GO-TO Register (for GO TO command)

01101 Trace Counter (OTC)

01110 Tags Buffer (TAGB)

01111 PAB Register for Fetch (OPABFR)

10000 PAB Register for Decode (OPABDR)

10001 PAB Register for Execute (OPABEX)

10010 Trace Buffer and Increment Pointer

10011 Reserved Address

101xx Reserved Address

11xx0 Reserved Address

11x0x Reserved Address

110xx Reserved Address

11111 No Register Selected
10 - 4 ON-CHIP EMULATOR (OnCE™) MOTOROLA

10.3.1.3 Go Command (GO) Bit 6

If the GO bit is set, execute instruction which resides in the PIL register. To execute the
instruction, the core leaves the Debug Mode. The core will return to the Debug Mode
immediately after executing the instruction if the EX bit is cleared. The core goes on to
normal operation if the EX bit is set. The GO command is executed only if the operation
is write to OPDBR or read/write to “No Register Selected”. Otherwise the GO bit is
ignored.

10.3.1.4 Read/Write Command (R/W) Bit 7

The R/W bit specifies the direction of data transfer.

10.3.2 OnCE Decoder (ODEC)

The OnCE Decoder supervises the entire OnCE activity. It receives as input the 8-bit
command from the OCR, a signal from JTAG Controller (indicating that 8/24 bits have
been received and update of the selected data register must be performed) and a signal
indicating that the core was halted. The ODEC generates all the strobes required for
reading and writing the selected OnCE registers.

10.3.3 OnCE Status and Control Register (OSCR)

The Status and Control Register is a 24-bit register used to enable the trace mode of
operation and to indicate the cause of entering the Debug Mode. The control bits are read/
write while the status bits are read only. The OSCR bits are cleared on hardware reset.
The OSCR is shown in Figure 10-5.

Figure 10-5. OnCE Status and Control Register (OSCR)

GO Action

0 inactive (no action taken)

1 execute instruction in PIL

R/W Action

0 write the data associated with the command
into the register specified by RS4-RS0

1 read the data contained in the register
specified by RS4-RS0

23 8 7 6 5 4 3 2 1 0
........................... OS1 OS0 HIT TO MBO SWO IME TME

Reserved bit, read as zero, should be written with zero for future compatibility.
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 5

10.3.3.1 Trace Mode Enable (TME) Bit 0

The TME control bit, when set, enables the Trace Mode of operation.

10.3.3.2 Interrupt Mode Enable (IME) Bit 1

The IME control bit, when set, will cause the chip to execute a vectored interrupt to the
address VBA:$06 instead of entering the Debug Mode.

10.3.3.3 Software Debug Occurrence (SWO) Bit 2

This read-only status bit is set when the Debug Mode of operation is entered due to the
execution of the DEBUG or DEBUGcc instruction with condition true. This bit is cleared
when leaving the Debug Mode.

10.3.3.4 Memory Breakpoint Occurrence (MBO) Bit 3

This read-only status bit is set when the Debug Mode of operation is entered due to the
occurrence of a memory breakpoint. This bit is cleared when leaving the Debug Mode.

10.3.3.5 Trace Occurrence (TO) Bit 4

This read-only status bit is set when the Debug Mode of operation is entered when the
trace counter is zero while trace mode is enabled. This bit is cleared when leaving the
Debug Mode.

10.3.3.6 Cache Hit (HIT) Bit 5

This read only status bit is set when a cache hit has occurred when in cache mode and in
Debug Mode of operation. When in PRAM mode this bit will read as one.

10.3.3.7 Core Status (OS0,OS1) Bits 6-7

These read only status bits provide core status information. By examining the status bits
the user can determine whether the chip has entered the Debug Mode (examining SWO,
MBO and TO will identify the cause of entering the Debug Mode). The user can also
examine these bits and determine the cause why the chip has not entered the Debug
Mode after debug event assertion (DE) or as a result of the execution of the JTAG Debug
Request instruction (core waiting for the bus, STOP or WAIT instruction etc.). These bits
are also reflected in the JTAG instruction shift register which allows the polling of the core
status information at the JTAG level. This is useful for the case in which the DSP56300
Core executes the STOP instruction (and therefore there are no clocks) to allow the
reading of OSCR. See Table 10-4 for the definition of the OS0-OS1 bits.
10 - 6 ON-CHIP EMULATOR (OnCE™) MOTOROLA

Table 10-2. Core Status Bits Description.

10.3.3.8 Reserved Bits 8-23

These bits are reserved for future use. They read as zero and should be written with zero
for future compatibility.

10.4 OnCE MEMORY BREAKPOINT LOGIC

Memory breakpoints may be set on program memory or data memory locations. Also, the
breakpoint does not have to be in a specific memory address but within an approximate
address range of where the program may be executing. This significantly increases the
programmer’s ability to monitor what the program is doing in real-time.

The breakpoint logic, described in Figure 10-6., contains a latch for the addresses,
registers that store the upper and lower address limit, address comparators and a
breakpoint counter. Address comparators are useful in determining where a program may
be getting lost or when data is being written to areas that should not be written to. They
are also useful in halting a program at a specific point to examine/change registers or
memory. Using address comparators to set breakpoints enables the user to set
breakpoints in RAM or ROM and while in any operating mode. Memory accesses are
monitored according to the contents of the OBCR as specified in Section 10.4.6.

10.4.1 Memory Address Latch (OMAL)

The Memory Address Latch is a 24-bit register that latches the PAB, XAB, YAB or DAB on
every instruction cycle according to the MBS1-MBS0 bits in OBCR.

10.4.2 Memory Limit Register 0 (OMLR0)

The Memory Limit Register 0 is a 24-bit register that stores the memory breakpoint limit.
OMLR0 can be read or written through the JTAG port. Before enabling breakpoints,
OMLR0 must be loaded by the external command controller.

OS1 OS0 DESCRIPTION

0 0 DSP56300 Core is executing instructions

0 1 DSP56300 Core is in Wait or STOP

1 0 DSP56300 Core is waiting for bus

1 1 DSP56300 Core is in Debug Mode
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 7

Figure 10-6. OnCE Memory Breakpoint Logic 0

10.4.3 Memory Address Comparator 0 (OMAC0)

The Memory Address Comparator 0 compares the current memory address (stored in
OMAL) with the OMLR0 contents.

10.4.4 Memory Limit Register 1 (OMLR1)

The Memory Limit Register1 is a 24-bit register that stores the memory breakpoint limit.
OMLR1 can be read or written through JTAG port. Before enabling breakpoints, OMLR1
must be loaded by the external command controller.

10.4.5 Memory Address Comparator 1 (OMAC1)

The Memory Address Comparator 1 compares the current memory address (stored in
OMAL) with the OMLR1 contents.

10.4.6 Breakpoint Control Register (OBCR)

The Breakpoint Control Register is a 24-bit register used to define the memory breakpoint
events. OBCR can be read or written through the JTAG port. All the bits of the OBCR are

.

MEMORY ADDRESS LATCH

PAB XAB YAB

MEMORY BUS SELECT

MEMORY LIMIT REGISTER 1

ADDRESS COMPARATOR 1

MEMORY LIMIT REGISTER 0

ADDRESS COMPARATOR 0

TDI
TDO

TCK

BREAKPOINT COUNTER

MEMORY
BREAKPOINT
SELECTION

DEC

BREAKPOINT

COUNT=0 IS
B

K
P

T

OCCURRED

...

. .

..

N,V

N,V

BREAKPOINT CONTROL

TDI TDOTCK

DAB
10 - 8 ON-CHIP EMULATOR (OnCE™) MOTOROLA

cleared on hardware reset. The OBCR is described in Figure 10-7.

Figure 10-7. Breakpoint Control Register

10.4.6.1 Memory Breakpoint Select (MBS0-MBS1) Bits 0-1

These control bits enable memory breakpoints 0 and 1, allowing them to occur when a
memory access is performed on P, X or Y space or when a DMA access is performed. See
the following table for the definition of the MBS0-MBS1 bits.

Table 10-3. Memory Breakpoint 0 and 1 Select Table.

10.4.6.2 Breakpoint 0 Read/Write Select (RW00-RW01) Bits 2-3

These control bits define the memory breakpoints 0 to occur when a memory address
accesses is performed for read, write or both. See the following table for the definition of
the RW00-RW01 bits.

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

BT1 BT0 CC11 CC10 RW11 RW10 CC01 CC00 RW01 RW00 MBS1 MBS0

Reserved, read as zero, should be written with zero for future compatibility.

MBS1 MBS0 DESCRIPTION

0 0 Breakpoint on DMA access

0 1 Breakpoint on P access

1 0 Breakpoint on X access

1 1 Breakpoint on Y access

Table 10-4. Breakpoint 0 Read/Write Select Table

RW01 RW00 DESCRIPTION

0 0 Breakpoint disabled

0 1 Breakpoint on write access

1 0 Breakpoint on read access

1 1 Breakpoint on read or write access
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 9

10.4.6.3 Breakpoint 0 Condition Code Select (CC00-CC01) Bits4-5

These control bits define the condition of the comparison between the current memory
address (OMAL) and the memory limit register 0 (OMLR0). See the following table for the
definition of the CC00-CC01 bits.

10.4.6.4 Breakpoint1 Read/Write Select (RW10-RW11) Bits 6-7

These control bits define memory breakpoints 1 to occur when a memory address
accesses is performed for read, write or both. See the following table for the definition of
the RW10-RW11 bits.

10.4.6.5 Breakpoint1 Condition Code Select (CC10-CC11) Bits8-9

These control bits define the condition of the comparison between the current memory
address (OMAL) and the memory limit register 1 (OMLR1). See the following table for the
definition of the CC10-CC11 bits.

Table 10-5. Breakpoint 0 Condition Select Table

CC01 CC00 DESCRIPTION

0 0 Breakpoint on not equal

0 1 Breakpoint on equal

1 0 Breakpoint on less than

1 1 Breakpoint on greater than

Table 10-6. Breakpoint 1 Read/Write Select Table

RW11 RW10 DESCRIPTION

0 0 Breakpoint disabled

0 1 Breakpoint on write access

1 0 Breakpoint on read access

1 1 Breakpoint read or write access
10 - 10 ON-CHIP EMULATOR (OnCE™) MOTOROLA

10.4.6.6 Breakpoint 0 and 1 Event Select (BT1-BT0) Bits10-11

These control bits define the sequence between breakpoint 0 and 1. If the condition
defined by BT1-BT0 is met, then the Breakpoint Counter (OMBC) is decremented. See
the following table for the definition of the BT1-BT0 bits.

Table 10-8. Breakpoint 0 and 1 Event Select Table

10.4.7 Memory Breakpoint Counter (OMBC)

The Memory Breakpoint Counter is a 24-bit counter which is loaded with a value equal to
the number of times minus one that a memory access event should occur before a
memory breakpoint is declared. The memory access event is specified by the OBCR
register and by the memory limit registers. On each occurrence of the memory access
event, the breakpoint counter is decremented. When the counter has reached the value
of zero and a new occurrence takes place, the chip will enter the Debug Mode. The OMBC
can be read or written through the JTAG port. Every time that the limit register is changed,
or a different breakpoint event is selected in the OBCR, the breakpoint counter must be
written afterwards. This ensures that the OnCE breakpoint logic is reset and that no
previous events will affect the new breakpoint event selected. The breakpoint counter is
cleared by hardware reset.

Table 10-7. Breakpoint 1 Condition Select Table

CC11 CC10 DESCRIPTION

0 0 Breakpoint on not equal

0 1 Breakpoint on equal

1 0 Breakpoint on less than

1 1 Breakpoint on greater than

BT1 BT0 DESCRIPTION

0 0 Breakpoint 0 and Breakpoint 1

0 1 Breakpoint 0 or Breakpoint 1

1 0 Breakpoint 1 after Breakpoint 0

1 1 Breakpoint 0 after Breakpoint 1
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 11

10.5 CACHE SUPPORT

To keep track of the cache contents and status, the eight tags values, tags lock/unlock
status and LRU status can be read via the OnCE . Nine 24 bits registers are
implemented as a circular buffer with a 4-bit counter. All these registers have the same
address but any access to the tags buffer will cause the counter to increment thus pointing
to the next register in the circular buffer. When exiting the Debug Mode the counter is
cleared and therefore, when entering Debug Mode again, the first read from the tags
buffer address will always start from the first register of the nine (tag number 0) and will
continue circularly among these nine registers.

The registers mapping in the circular tags buffer is shown in Figure 10-8.

Determining the “next to be replaced sector”: In any time point at least one LRU bit in the
“LRU/LOCK status” register will be set. But it is possible for more than one of the LRU bits
to be set simultaneously. This is due to the fact that locked sectors could be “least recently
used” although they can not be replaced. Therefore the “next to be replaced sector” is the
only sector whose LRU bit is set and lock bit cleared. There is one exception to this rule
and this is the case where all the 8 sectors are locked and LRU, in which case there is no
“next to be replaced sector” since no sector will be replaced until at least one sector is
unlocked.
10 - 12 ON-CHIP EMULATOR (OnCE™) MOTOROLA

Figure 10-8. Circular Tags Buffer (TAGB)

10.6 OnCE TRACE LOGIC

Using the OnCE Trace logic, execution of instructions in single or multiple steps is
possible. The OnCE Trace logic causes the chip to enter the Debug Mode of operation
after the execution of one or more instructions and wait for OnCE commands from the
debug serial port. The OnCE Trace logic block diagram is shown in Figure 10-9.

The trace mode has a counter associated with it so that more than one instruction may be
executed before returning back to the Debug Mode of operation. The objective of the
counter is to allow the user to take multiple instruction steps real-time before entering the
Debug Mode. This feature helps the software developer debug sections of code which do
not have a normal flow or are getting hung up in infinite loops. The trace counter also
enables the user to count the number of instructions executed in a code segment.

TAG number 0

023

msb lsb 0 0

7 6

TAG number 1msb lsb 0 0

TAG number 2msb lsb 0 0

TAG number 3msb lsb 0 0

TAG number 4msb lsb 0 0

TAG number 5msb lsb 0 0

TAG number 6msb lsb 0 0

TAG number 7msb lsb 0 0

lock lock 0 0
0 0 1 7 7
lru lru lru LRU/LOCK status

23 22 21 811 7 0

lock
1

20
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 13

To enable the trace mode of operation the counter is loaded with a value, the program
counter is set to the start location of the instruction(s) to be executed real-time, the TME
bit is set in the OSCR and the DSP56300 Core exits the Debug Mode by executing the
appropriate command issued by the external command controller.

Upon exiting the Debug Mode, the counter is decremented after each execution of an
instruction. Interrupts are serviceable and all instructions executed (including fast interrupt
services and the execution of each repeated instruction) will decrement the trace counter.
Upon decrementing to zero, the DSP56300 Core will re-enter the Debug Mode, the trace
occurrence bit TO in the OSCR will be set, the Core Status bits OS1 and OS0 will be set
to 11 and the DE pin will be asserted to indicate that the DSP56300 Core has entered
Debug Mode and is requesting service.

Figure 10-9. OnCE Trace Logic Block Diagram

10.6.1 Trace Counter (OTC)

The Trace Counter (OTC) is a 24-bit counter that can be read or written through the JTAG
port. If N instructions are to be executed before entering the Debug Mode, the Trace
Counter should be loaded with N-1. The Trace Counter is cleared by hardware reset.

10.7 METHODS OF ENTERING THE DEBUG MODE

Entering the Debug Mode is acknowledged by the chip by setting the Core Status bits OS1
and OS0 and asserting the DE line. This informs the external command controller that the
chip has entered the Debug Mode and is waiting for commands.The DSP56300 Core may
disable the OnCE circuitry if the ROM Security option is implemented. If the ROM
Security is implemented, the OnCE will remain inactive until a write operation to the
OGDBR register is executed by the DSP56300 Core.

TDI

TDO

TCK

TRACE COUNTER
DEC

END OF INSTRUCTION

COUNT=0

ISTRACE

.

.

10 - 14 ON-CHIP EMULATOR (OnCE™) MOTOROLA

10.7.1 External Debug Request During RESET

Holding the DE line asserted during the assertion of RESET causes the chip to enter the
Debug Mode. After receiving the acknowledge, the external command controller must
negate the DE line before sending the first command. Note that in this case the chip does
not execute any instruction before entering the Debug Mode.

10.7.2 External Debug Request During Normal Activity

Holding the DE line asserted during normal chip activity causes the chip to finish the
execution of the current instruction and then enter the Debug Mode. After receiving the
acknowledge, the external command controller must negate the DE line before sending
the first command. Note that in this case the chip completes the execution of the current
instruction and stops after the newly fetched instruction enters the instruction latch. This
process is the same for any newly fetched instruction including instructions fetched by the
interrupt processing or instructions that will be aborted by the interrupt processing.

10.7.3 Executing the JTAG DEBUG_REQUEST Instruction

Executing the JTAG instruction DEBUG_REQUEST will assert an internal debug request
signal. Consequently, the chip will finish the execution of the current instruction and will
stop after the newly fetched instruction enters the instruction latch. After entering the
Debug Mode the Core Status bits OS1 and OS0 will be set and the DE line will be
asserted thus acknowledging the external command controller that the Debug Mode of
operation has been entered.

10.7.4 External Debug Request During STOP

Executing the JTAG instruction DEBUG_REQUEST (or asserting DE) while the chip is in
the STOP state (i. e., has executed a STOP instruction) causes the chip to exit the STOP
state and enter the Debug Mode. After receiving the acknowledge, the external command
controller must negate DE before sending the first command. Note that in this case, the
chip completes the execution of the STOP instruction and halts after the next instruction
enters the instruction latch.

10.7.5 External Debug Request During WAIT

Executing the JTAG instruction DEBUG_REQUEST (or asserting DE) while the chip is in
the WAIT state (i. e., has executed a WAIT instruction) causes the chip to exit the WAIT
state and enter the Debug Mode. After receiving the acknowledge, the external command
controller must negate DE before sending the first command. Note that in this case, the
chip completes the execution of the WAIT instruction and halts after the next instruction
enters the instruction latch.

10.7.6 Software Request During Normal Activity

Upon executing the DSP56300 Core instruction DEBUG (or DEBUGcc when the specified
condition is true), the chip enters the Debug Mode after the instruction following the
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 15

DEBUG instruction has entered the instruction latch.

10.7.7 Enabling Trace Mode

When the Trace Mode mechanism is enabled and the Trace Counter is greater than zero,
the Trace Counter is decremented after each instruction execution. Execution of an
instruction when the Trace Counter is zero will cause the chip to enter the Debug Mode
after completing the execution of the instruction. Only instructions actually executed cause
the Trace Counter to decrement, i.e. an aborted instruction will not decrement the Trace
Counter and will not cause the chip to enter the Debug Mode.

10.7.8 Enabling Memory Breakpoints

When the memory breakpoint mechanism is enabled with a Breakpoint Counter value of
zero, the chip enters the Debug Mode after completing the execution of the instruction that
caused the memory breakpoint to occur. In case of breakpoints on executed Program
memory fetches, the breakpoint will be acknowledged immediately after the execution of
the fetched instruction. In case of breakpoints on accesses to X, Y or P memory spaces
by MOVE instructions, the breakpoint will be acknowledged after the completion of the
instruction following the instruction that accessed the specified address.

10.8 PIPELINE INFORMATION AND GDB REGISTER

To restore the pipeline and to resume normal chip activity upon returning from the Debug
Mode, a number of on-chip registers store the chip pipeline status. Figure 10-10 shows
the block diagram of the Pipeline Information Registers with the exception of the PAB
registers which are shown in Figure 10-11.

Figure 10-10. OnCE Pipeline Information and GDB Registers

10.8.1 PDB Register (OPDBR)

The PDB Register is a 24-bit latch that stores the value of the Program Data Bus

PDB REGISTER (OPDBR)

GDB REGISTER (OGDBR)

TDI

TDO TCK

PIL REGISTER (OPILR)

PIL

PDB

GDB
10 - 16 ON-CHIP EMULATOR (OnCE™) MOTOROLA

generated by the last program memory access of the core before the Debug Mode is
entered. OPDBR can be read or written through the JTAG port. This register is affected by
the operations performed during the Debug Mode and must be restored by the external
command controller when returning to Normal Mode.

10.8.2 PIL Register (OPILR)

The PIL Register is a 24-bit latch that stores the value of the Instruction Latch before the
Debug Mode is entered. OPILR can only be read through the JTAG port.

Note: Since the Instruction Latch is affected by the operations performed
during the Debug Mode it must be restored by the external command
controller when returning to Normal Mode. Since there is no direct write
access to the Instruction Latch, the task of restoring is accomplished by
writing to OPDBR with no-GO and no-EX. In this case the data written
on PDB is transferred into the Instruction Latch

10.8.3 GDB Register (OGDBR)

The GDB Register is a 24-bit latch that can only be read through the JTAG port. OGDBR
is not actually required from a pipeline status restore point of view but is required as a
means of passing information between the chip and the external command controller.
OGDBR is mapped on the X internal I/O space at address $FFFFFC. Whenever the
external command controller needs the contents of a register or memory location, it will
force the chip to execute an instruction that brings that information to OGDBR. Then, the
contents of OGDBR will be delivered serially to the external command controller by the
command “READ GDB REGISTER”.

10.9 TRACE BUFFER

To ease debugging activity and keep track of program flow the DSP56300 Core provides
a number of on-chip dedicated resources. There are three read-only PAB registers which
give pipeline information when the Debug Mode is entered and a Trace Buffer which stores
the address of the last instruction that was executed as well as the addresses of the last
12 change of flow instructions.

10.9.1 PAB Register for Fetch (OPABFR)

The PAB Register for Fetch is a 24-bit register that stores the address of the last
instruction whose fetch was started before the Debug Mode was entered. OPABFR can
only be read through the JTAG port. This register is not affected by the operations
performed during the Debug Mode.

10.9.2 PAB Register for Decode (OPABDR)

The PAB Register for Decode is a 24-bit register that stores the address of the instruction
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 17

currently on the PDB. This is the instruction whose fetch was completed before the chip
has entered the Debug Mode. OPABDR can only be read through the JTAG port. This
register is not affected by the operations performed during the Debug Mode.

10.9.3 PAB Register for Execute (OPABEX)

The PAB Register for Execute is a 24-bit register that stores the address of the instruction
currently in the Instruction Latch. This is the instruction that would have been decoded and
executed if the chip would not have entered the Debug Mode. OPABEX can only be read
through the JTAG port. This register is not affected by the operations performed during the
Debug Mode.

10.9.4 Trace Buffer

The Trace Buffer stores the addresses of the last 12 change of flow instructions that were
executed as well as the address of the last executed instruction. The Trace Buffer is
implemented as a circular buffer containing 12 25-bit registers and one 4-bit counter. All
the registers have the same address but any read access to the Trace Buffer address will
cause the counter to increment thus pointing to the next Trace Buffer register. The
registers are serially available to the external command controller through their common
Trace Buffer address. Figure 10-11 shows the block diagram of the Trace Buffer. The Trace
Buffer is not affected by the operations performed during the Debug Mode except for the
Trace Buffer pointer increment when reading the Trace Buffer. When entering the Debug
Mode, the Trace Buffer counter will be pointing to the Trace Buffer register containing the
address of the last executed instructions. The first Trace Buffer read will obtain the oldest
address and the following Trace Buffer reads will get the other addresses from the oldest
to the newest (the order of execution).

Note 1: To ensure Trace Buffer coherence, a complete set of 12 reads of the
Trace Buffer must be performed. This is necessary due to the fact that
each read increments the Trace Buffer pointer thus pointing to the next
location. After 12 reads the pointer will point to the same location as
before starting the read procedure.

Note 2: On any change of flow instruction, the Trace Buffer stores both the
address of the change of flow instruction as well as the address of the
target of the change of flow instruction. In the case of conditional change
of flows, the address of the change of flow instruction is always stored
(regardless of the fact that the change of flow is true or false) but if the
conditional change of flow is false (i.e. not taken) the address of the
target is not stored. In order to facilitate the program trace reconstruction
every Trace Buffer location has an additional “invalid bit” (the 25th bit). If
a conditional change of flow instruction has a “condition false”, the
“invalid bit” will be set thus marking this instruction as “not taken”.
Therefore it is imperative to read 25 bits of data when reading the 12
Trace Buffer registers. Since data is read lsb first, the “invalid bit” is the
first bit to be read.
10 - 18 ON-CHIP EMULATOR (OnCE™) MOTOROLA

Figure 10-11. OnCE Trace Buffer

10.10 SERIAL PROTOCOL DESCRIPTION

To permit an efficient means of communication between the external command controller
and the DSP56300 Core chip, the following protocol is adopted. Before starting any
debugging activity, the external command controller has to wait for an acknowledge on the

FETCH ADDRESS (OPABFR)

PAB

DECODE ADDRESS (OPABDR)

CIRCULAR
BUFFER
POINTER

TRACE BUF SHIFT REGISTER
TDO
TCK

TRACE BUF REGISTER 0

TRACE BUF REGISTER 1

TRACE BUF REGISTER 2

TRACE BUF REGISTER 11

. .
 .

. .
 .

EXECUTE ADDRESS (OPABEX)
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 19

DE line indicating that the chip has entered the Debug Mode (optionally the external
command controller can poll the OS1, OS0 bits in JTAG instruction shift register). The
external command controller communicates with the chip by sending 8-bit commands that
may be accompanied by 24 bits of data. Both commands and data are sent or received
least significant bit first. After sending a command, the external command controller
should wait for the DSP56300 Core chip to acknowledge execution of the command. The
external command controller may send a new command only after the chip has
acknowledged execution of the previous command.

10.10.1 OnCE Commands

The OnCE commands may be classified as follows:

• read commands (when the chip will deliver the required data).

• write commands (when the chip will receive data and write the data in one
of the OnCE registers).

• commands that do not have data transfers associated with them.

The commands are 8 bits long and have the format shown in Figure 10-4.

10.11 TARGET SITE DEBUG SYSTEM REQUIREMENTS

A typical debug environment consists of a target system where the DSP56300 Core
based device resides in the user defined hardware. The JTAG port interfaces to the
external command controller over a 8-wire link consisting of the five JTAG wires, one
OnCE wires, a ground and a reset wire. The reset wire is optional and is only used to
reset the DSP56300 Core based device and its associated circuitry.

The external command controller acts as the medium between the DSP56300 Core target
system and a host computer. The external command controller circuit acts as a JTAG port
driver and host computer command interpreter. The controller issues commands based
on the host computer inputs from a user interface program which communicates with the
user.

10.12 EXAMPLES OF USING THE OnCE

Following are some examples of debugging procedures. Note that all the examples
assume that the DSP is the only device in the JTAG chain. If there are more than one
device in the chain (other DSP’s or even other devices), the other devices can be forced
to execute the JTAG BYPASS instruction such as their effect in the serial stream will be
one bit per additional device. The events “select-DR”, “select-IR”, “update-DR”, “shift-DR”
10 - 20 ON-CHIP EMULATOR (OnCE™) MOTOROLA

etc. refer to bringing the JTAG TAP in the corresponding state. Please refer to Chapter 11
for a detailed description of the JTAG protocol.

10.12.1 Checking whether the chip has entered the Debug Mode

There are two methods of verifying that the chip has entered the Debug Mode:

1. Every time the chip enters the Debug Mode, a pulse is generated on the
DE line. A pulse will also be generated every time the chip acknowledges
the execution of an instruction while in Debug Mode. An external
command controller can connect the DE line to an interrupt pin in order to
sense the acknowledge.

2. An external command controller can poll the JTAG instruction shift register
for the status bits OS1-OS0. When the chip is in Debug Mode these bits
are set to the value 11.

Note: In the following paragraphs, the ACK notation denotes the operation
performed by the command controller to check whether the Debug Mode
has been entered (either by sensing DE or by polling JTAG instruction
shift register).

10.12.2 Polling the JTAG instruction shift register

In order to poll the core status bits in the JTAG instruction shift register the following
sequence must be performed:

1. Select shift-IR. Passing through capture-IR loads the core status bits into
the instruction shift register.

2. Shift in ENABLE_ONCE. While shifting-in the new instruction the captured
status information is shifted-out. Pass through update-IR.

3. . Return to Run-Test/Idle.

The external command controller can analyze the information shifted out and detect
whether the chip has entered the Debug Mode.

10.12.3 Saving Pipeline Information

The debugging activity is accomplished by means of DSP56300 Core instructions
supplied from the external command controller. Therefore the current state of the
DSP56300 Core pipeline must be saved prior to starting the debug activity and of course
the state must be restored prior to returning to the Normal Mode of operation. Following
is the description of the saving procedure (assume that ENABLE_ONCE has been
executed and Debug Mode has been entered and verified as described in 10.12.1):

1. Select shift-DR. Shift in the “Read PDB”. Pass through update-DR.
2. Select shift-DR. Shift out the 24 bit OPDB register. Pass through update-

DR.
3. Select shift-DR. Shift in the “Read PIL”. Pass through update-DR.
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 21

4. Select shift-DR. Shift out the 24 bit OPILR register. Pass through update-
DR.

Note that there is no need to verify acknowledge between steps 1 and 2 as well as 3 and
4 because completion is guaranteed by design.

10.12.4 Reading the Trace Buffer

An optional step during debugging activity is reading the information associated with the
Trace Buffer in order to enable an external program to reconstruct the full trace of the
executed program. Following is the description of the read Trace Buffer procedure
(assume that all actions described in 10.12.3 have been executed):

1. Select shift-DR. Shift in the “Read PABFR”. Pass through update-DR.
2. Select shift-DR. Shift out the 24 bit OPABFR register. Pass through

update-DR.
3. Select shift-DR. Shift in the “Read PABDR”. Pass through update-DR.
4. Select shift-DR. Shift out the 24 bit OPABDR register. Pass through

update-DR.
5. Select shift-DR. Shift in the “Read PABEX”. Pass through update-DR.
6. Select shift-DR. Shift out the 24 bit OPABEX register. Pass through

update-DR.
7. Select shift-DR. Shift in the “Read FIFO”. Pass through update-DR.
8. Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-

DR.
9. Repeat steps 7 and 8 for the entire FIFO (12 times).

Note that the user must read the entire FIFO since each read will increment the FIFO
pointer thus pointing to the next FIFO location. At the end of this procedure the FIFO
pointer will point back to the beginning of the FIFO.

The information that has been read by the external command controller contains now the
address of the newly fetched instruction, the address of the instruction currently on the
PDB, the address of the instruction currently on the instruction latch as well as the
addresses of the last 12 instructions that have been executed and are change of flow. A
user program can now reconstruct the flow of a full trace based on this information and on
the original source code of the currently running program.

10.12.5 Displaying a specified register

The DSP56300 must be in Debug Mode and all actions described in 10.12.3 have been
executed. The sequence of actions is:

1. Select shift-DR. Shift in the “Write PDB with GO no-EX”. Pass through up-
date-DR.

2. Select shift-DR. Shift in the 24 bit opcode: “MOVE reg, X:OGDB”. Pass
through update-DR to actually write OPDBR and thus begin executing the
MOVE instruction.
10 - 22 ON-CHIP EMULATOR (OnCE™) MOTOROLA

3. Wait for DSP to reenter Debug Mode (wait for DE or poll core status).
4. Select shift-DR and shift in “READ GDB REGISTER”. Pass through

update-DR (this will select OGDBR as the data register for read).
5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR.

Wait for next command.

10.12.6 Displaying X memory area starting at address $xxxxxx

The DSP56300 must be in Debug Mode and all actions described in 10.12.3 have been
executed. Since R0 will be used as pointer for the memory, R0 will be first saved. The
sequence of actions is:

1. Select shift-DR. Shift in the “Write PDB with GO no-EX”. Pass through up-
date-DR.

2. Select shift-DR. Shift in the 24 bit opcode: “MOVE R0, X:OGDB”. Pass
through update-DR to actually write OPDBR and thus begin executing the
MOVE instruction.

3. Wait for DSP to reenter Debug Mode (wait for DE or poll core status).
4. Select shift-DR and shift in “READ GDB REGISTER”. Pass through

update-DR (this will select OGDBR as the data register for read).
5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR.

R0 is now saved.
6. Select shift-DR. Shift in the “Write PDB with no-GO no-EX”. Pass through

update-DR.
7. Select shift-DR. Shift in the 24 bit opcode: “MOVE #$xxxxxx,R0”. Pass

through update-DR to actually write OPDBR.
8. Select shift-DR. Shift in the “Write PDB with GO no-EX”. Pass through

update-DR.
9. Select shift-DR. Shift in the second word of the 24 bit opcode: “MOVE

#$xxxxxx,R0” (the $xxxxxx field). Pass through update-DR to actually
write OPDBR and execute the instruction. R0 is loaded with the base
address of the memory block to be read.

10. Wait for DSP to reenter Debug Mode (wait for DE or poll core status).
11. Select shift-DR. Shift in the “Write PDB with GO no-EX”. Pass through

update-DR.
12. Select shift-DR. Shift in the 24 bit opcode: “MOVE X:(R0)+, X:OGDB”.

Pass through update-DR to actually write OPDBR and thus begin
executing the MOVE instruction.

13. Wait for DSP to reenter Debug Mode (wait for DE or poll core status).
14. Select shift-DR and shift in “READ GDB REGISTER”. Pass through

update-DR (this will select OGDBR as the data register for read).
15. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR.

The memory contents of address $xxxxxx has been read.
16. Select shift-DR. Shift in the “NO SELECT with GO no-EX”. Pass through

update-DR. This will execute again the same “MOVE X:(R0)+, X:OGDB”
instruction.

17. Repeat from step #14 to complete the reading of the entire block. When
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 23

finished, restore the original value of R0.

10.12.7 Returning from Debug Mode to Normal Mode to current program

This is the case in which the user has finished examining the current state of the machine,
changed some of the registers and wishes to return and continue execution of its program
form the point where it stopped. Therefore the user has to restore the pipeline of the
machine end enable normal instruction execution. The sequence of actions is:

1. Select shift-DR. Shift in the “Write PDB with no-GO no-EX”. Pass through
update-DR.

2. Select shift-DR. Shift in the 24 bit of saved PIL (instruction latch value).
Pass through update-DR to actually write the Instruction Latch.

3. Select shift-DR. Shift in the “Write PDB with GO and EX”. Pass through
update-DR.

4. Select shift-DR. Shift in the 24 bit of saved PDB. Pass through update-DR
to actually write the PDB. At the same time the internally saved value of
the PAB is driven back from the PABFR register onto the PAB, the ODEC
releases the chip from Debug Mode and the normal flow of execution is
continued.

10.12.8 Returning from Debug Mode to Normal Mode to a new program

This is the case in which the user has finished examining the current state of the machine,
changed some of the registers and wishes to start the execution of a new program (the
GOTO command). Therefore the user has to force a “change of flow” to the starting
address of the new program ($xxxxxx). The sequence of actions is:

1. Select shift-DR. Shift in the “Write PDB with no-GO no-EX”. Pass through
update-DR.

2. Select shift-DR. Shift in the 24 bit “$0AF080” which is the opcode of the
JUMP instruction. Pass through update-DR to actually write the Instruction
Latch.

3. Select shift-DR. Shift in the “Write PDB-GO-TO with GO and EX”. Pass
through update-DR.

4. Select shift-DR. Shift in the 24 bit of “$xxxxxx”. Pass through update-DR
to actually write the PDB. At this time the ODEC releases the chip from
Debug Mode and the execution is started from the address $xxxxxx.

Note that if the entering of the Debug Mode happened during a DO LOOP, REP instruction
or other special cases like interrupt processing, STOP, WAIT, conditional branching etc. it
is mandatory that the user will first reset the DSP56300 and only afterwards proceed with
the execution of the new program.
10 - 24 ON-CHIP EMULATOR (OnCE™) MOTOROLA

10.13 EXAMPLES OF JTAG-OnCE INTERACTION

This paragraph exemplifies the details of the JTAG-OnCE interaction by describing the
TMS sequencing required in order to achieve the communication depicted in the
Paragraph 10.12.

The external command controller can force the DSP56300 into Debug Mode by executing
the JTAG instruction DEBUG_REQUEST. In order to check that the DSP56300 has
entered the Debug Mode the external command controller must poll the status by reading
the OS1,OS0 bits in the JTAG instruction shift register. The TMS sequencing is depicted
in Table 10-9.

The sequencing of enabling the OnCE is described in Table 10-10.

After executing the JTAG instructions DEBUG_REQUEST and ENABLE_ONCE and after
the core status was polled to verify that the chip is in Debug Mode, the pipeline saving
procedure must take place. The TMS sequencing for this procedure is depicted in Table
10-9.
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 25

Table 10-9. TMS Sequencing for DEBUG_REQUEST and poll the status

In “step n” the external command controller verifies that the OS1-OS0 have the value 11
indicating that the chip has entered the Debug Mode. If the chip has not yet entered the
Debug Mode the external command controller will go to “step b”, “step c” etc. until the
Debug Mode is acknowledged.

step TMS JTAG OnCE Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 1 Select-IR-Scan Idle

d 0 Capture-IR Idle status is sampled in shifter

e 0 Shift-IR Idle the 4 bits of the JTAG
DEBUG_REQUEST

(0111)are shifted in while
status is shifted-out

..

e 0 Shift-IR Idle

f 1 Exit1-IR Idle

g 1 Update-IR Idle debug req is generated

h 1 Select-DR-Scan Idle

i 1 Select-IR-Scan Idle

j 0 Capture-IR Idle status is sampled in shifter

k 0 Shift-IR Idle the 4 bits of the JTAG
DEBUG_REQUEST

(0111)are shifted in while
status is shifted-out

..

k 0 Shift-IR Idle

l 1 Exit1-IR Idle

m 1 Update-IR Idle

n 0 Run-Test/Idle Idle This step is repeated
enabling an external com-
mand controller to poll the

status

..

n 0 Run-Test/Idle Idle
10 - 26 ON-CHIP EMULATOR (OnCE™) MOTOROLA

Table 10-10. TMS Sequencing for ENABLE_ONCE

step TMS JTAG OnCE Note

a 1 Test-Logic-Reset Idle

b 0 Run-Test/Idle Idle

c 1 Select-DR-Scan Idle

d 1 Select-IR-Scan Idle

e 0 Capture-IR Idle capture core status bits

f 0 Shift-IR Idle the 4 bits of the JTAG
ENABLE_ONCE instruction

(0110) are shifted into the
JTAG instruction register
while status is shifted-out

g 0 Shift-IR Idle

h 0 Shift-IR Idle

i 0 Shift-IR Idle

j 1 Exit1-IR Idle

k 1 Update-IR Idle OnCE is enabled

l 0 Run-Test/Idle Idle This step can be repeated
enabling an external command

controller to poll the status..

l 0 Run-Test/Idle Idle
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 27

Table 10-11. TMS Sequencing for reading pipeline registers

step TMS JTAG OnCE Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 0 Capture-DR Idle

d 0 Shift-DR Idle the 8 bits of the OnCE
 “Read PIL” (10001011)are

shifted-in ..

d 0 Shift-DR Idle

e 1 Exit1-DR Idle

f 1 Update-DR Execute “Read PIL” PIL value is loaded in shifter

g 1 Select-DR-Scan Idle

h 0 Capture-DR Idle

i 0 Shift-DR Idle the 24 bits of the PIL are
shifted-out (24 steps)

..

i 0 Shift-DR Idle

j 1 Exit1-DR Idle

k 1 Update-DR Idle

l 1 Select-DR-Scan Idle

m 0 Capture-DR Idle

n 0 Shift-DR Idle the 8 bit of the OnCE
 “Read PDB” (10001010)are

shifted-in ..

n 0 Shift-DR Idle

o 1 Exit1-DR Idle

p 1 Update-DR Execute “Read PDB” PDB value is loaded in shifter

q 1 Select-DR-Scan Idle

r 0 Capture-DR Idle
10 - 28 ON-CHIP EMULATOR (OnCE™) MOTOROLA

During “step v” the external command controller stores the pipeline information and
afterwards it can proceed with the debug activities as requested by the user.

s 0 Shift-DR Idle the 24 bits of the PDB are
shifted-out (24 steps)

..

s 0 Shift-DR Idle

t 1 Exit1-DR Idle

u 1 Update-DR Idle

v 0 Run-Test/Idle Idle This step can be repeated
enabling an external com-

mand controller to analyze the
information.

..

v 0 Run-Test/Idle Idle

step TMS JTAG OnCE Note
MOTOROLA ON-CHIP EMULATOR (OnCE™) 10 - 29

10 - 30 ON-CHIP EMULATOR (OnCE™) MOTOROLA

11 JTAG (IEEE 1149.1) Test Access Port

11.1 INTRODUCTION

The DSP56300 Core provides a dedicated user-accessible test access port (TAP) that is
fully compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan
Architecture. Problems associated with testing high density circuit boards have led to
development of this proposed standard under the sponsorship of the Test Technology
Committee of IEEE and the Joint Test Action Group (JTAG). The DSP56300 Core
implementation supports circuit-board test strategies based on this standard.

The test logic includes a test access port (TAP) consisting of four dedicated signal pins, a
16-state controller, and three test data registers. A boundary scan register links all device
signal pins into a single shift register. The test logic, implemented utilizing static logic
design, is independent of the device system logic. The DSP56300 Core implementation
provides the following capabilities:

1. Perform boundary scan operations to test circuit-board electrical
continuity (EXTEST).

2. Bypass the DSP56300 Core for a given circuit-board test by effectively
reducing the boundary scan register to a single cell (BYPASS).

3. Sample the DSP56300 Core based device system pins during operation
and transparently shift out the result in the boundary scan register.
Preload values to output pins prior to invoking the EXTEST instruction
(SAMPLE/PRELOAD).

4. Disable the output drive to pins during circuit-board testing (HIGHZ).
5. Provide a means of accessing the OnCE controller and circuits to control

a target system (ENABLE_ONCE).
6. Provide a means of entering the Debug Mode of operation

(DEBUG_REQUEST).
7. Query identification information (manufacturer, part number and version)

from an DSP56300 Core based device (IDCODE).
8. Force test data onto the outputs of an DSP56300 Core based device while

replacing its boundary-scan register in the serial data path with a single bit
register (CLAMP).

11.2 OVERVIEW

This section, which includes aspects of the JTAG implementation that are specific to the
MOTOROLA JTAG (IEEE 1149.1) Test Access Port 11 - 1

DSP56300 Core, is intended to be used with the supporting IEEE 1149.1 document. The
discussion includes those items required by the standard to be defined and, in certain
cases, provides additional information specific to the DSP56300 Core implementation.
For internal details and applications of the standard, refer to the IEEE 1149.1 document.
The block diagram of the DSP56300 Core implementation of JTAG is shown in Figure
11-1.

Figure 11-1. JTAG Block Diagram

Boundary scan register

Bypass

M
U
X

Decoder

4-bit Instruction register
M
U
X

TDO

Tap
Ctrl

TDI

TMS

TCK

023

0TBD

031

1

OnCE Logic

ID register

TRST~
11 - 2 JTAG (IEEE 1149.1) Test Access Port MOTOROLA

The DSP56300 Core implementation includes a 4-bit instruction register and three test
registers: a 1-bit bypass register, a 32-bit identification register and a TBD-bit boundary
scan register. This implementation includes a dedicated TAP and four pins.

11.2.1 JTAG PINS

11.2.1.1 Test Clock (TCK)

The test clock input (TCK) pin is used to synchronize the test logic.

11.2.1.2 Test Mode Select (TMS)

The test mode select input (TMS) pin is used to sequence the test controller’s state
machine. The TMS is sampled on the rising edge of TCK and it has an internal pullup
resistor.

11.2.1.3 Test Data Input (TDI)

Serial test instruction and data are received through the test data input (TDI) pin. TDI is
sampled on the rising edge of TCK and it has an internal pullup resistor.

11.2.1.4 Test Data Output (TDO)

The test data output TDO pin is the serial output for test instructions and data. TDO is
three-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO
changes on the falling edge of TCK.

11.2.1.5 Test Reset (TRST~)

The test reset input (TRST~) pin is used to asynchronously initialize the test controller.The
TRST~ has an internal pullup resistor.

11.2.2 TAP CONTROLLER

The TAP controller is responsible for interpreting the sequence of logical values on the
TMS signal. It is a synchronous state machine that controls the operation of the JTAG
logic. The state machine is shown in Figure . The value shown adjacent to each arc
represents the value of the TMS signal sampled on the rising edge of TCK signal. For a
description of the TAP controller states, please refer to the IEEE 1149.1 document.
MOTOROLA JTAG (IEEE 1149.1) Test Access Port 11 - 3

Figure 11-2. TAP Controller State Machine

11.2.3 BOUNDARY SCAN REGISTER

The boundary scan register (BSR) in the DSP56300 Core JTAG implementation contains
bits for all device signal and clock pins and associated control signals. All DSP56300 Core
bidirectional pins have a single register bit in the boundary scan register for pin data, and
are controlled by an associated control bit in the boundary scan register.

The boundary scan bit definitions varies according to the specific chip implementation of
the DSP56300 core and is described in it’s specification document.

TEST LOGIC

RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

UPDATE-IR

0 0

0

0

1

1

1

0 0

0

0

1

111

1

0

0

1

1

11

0

0

0

0

11 - 4 JTAG (IEEE 1149.1) Test Access Port MOTOROLA

11.2.4 INSTRUCTION REGISTER

The DSP56300 Core JTAG implementation includes the three mandatory public
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS), and also supports the
optional CLAMP instruction defined by IEEE 1149.1. The public instruction (HI-Z) provides
the capability for disabling all device output drivers. The public instruction
(ENABLE_ONCE) enables the JTAG port to communicate with the OnCE circuitry. The
public instruction (DEBUG_REQUEST) enables the JTAG port to force the DSP56300
Core into the Debug Mode of operation. The DSP56300 Core includes a 4-bit instruction
register without parity consisting of a shift register with four parallel outputs. Data is
transferred from the shift register to the parallel outputs during the update-IR controller
state. The four bits are used to decode the eight unique instructions shown in Table 11-1.
All other encodings are reserved for future enhancements and will be decoded as
BYPASS.

Table 11-1. JTAG Instructions

The parallel output of the instruction register is reset to 0010 in the test-logic-reset
controller state which is equivalent to the IDCODE instruction.

During the capture-IR controller state, the parallel inputs to the instruction shift register are
loaded with the code 01 in the least significant bits as required by the standard. The two
most significant bits are loaded with the values of the core status bits OS1 and OS0 from
the OnCE controller. See Chapter 10 ON-CHIP EMULATOR (OnCE™) for a description
of the status bits. Figure 11-3 shows the Instruction Register configuration.

Code Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD

0 0 1 0 IDCODE

0 0 1 1 CLAMP

0 1 0 0 HI-Z

0 1 0 1 RESERVED

0 1 1 0 ENABLE_ONCE

0 1 1 1 DEBUG_REQUEST

1 x x x BYPASS
MOTOROLA JTAG (IEEE 1149.1) Test Access Port 11 - 5

Figure 11-3. Instruction Register

11.2.4.1 EXTEST

The external test (EXTEST) instruction selects the TBD-bit boundary scan register.
EXTEST also asserts internal reset for the DSP56300 Core system logic to force a
predictable internal state while performing external boundary scan operations.

By using the TAP, the register is capable of:

1. scanning user-defined values into the output buffers,
2. capturing values presented to input pins
3. controlling the direction of bidirectional pins,
4. controlling the output drive of three-stateable output pins.

For more details on the function and use of EXTEST, please refer to the IEEE 1149.1
document.

11.2.4.2 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction provides two separate functions. First, it provides a
means to obtain a snapshot of system data and control signals. The snapshot occurs on
the rising edge of TCK in the capture-DR controller state. The data can be observed by
shifting it transparently through the boundary scan register.

Note: Since there is no internal synchronization between the JTAG clock (TCK)
and the system clock (CLK), the user must provide some form of external
synchronization to achieve meaningful results.

The second function of SAMPLE/PRELOAD is to initialize the boundary scan register
output cells prior to selection of EXTEST. This initialization ensures that known data will
appear on the outputs when entering the EXTEST instruction.

11.2.4.3 BYPASS

The BYPASS instruction selects the single-bit bypass register as shown in Figure 11-4.
This creates a shift-register path from TDI to the bypass register and, finally, to TDO,
circumventing the TBD-bit boundary scan register. This instruction is used to enhance test
efficiency when a component other than the DSP56300 Core based device becomes the
device under test.

When the bypass register is selected by the current instruction, the shift-register stage is
set to a logic zero on the rising edge of TCK in the capture-DR controller state. Therefore,

3 2 1 0

OS1 OS0 0 1
11 - 6 JTAG (IEEE 1149.1) Test Access Port MOTOROLA

the first bit to be shifted out after selecting the bypass register will always be a logic zero.

Figure 11-4. Bypass Register

11.2.4.4 IDCODE

The IDCODE instruction selects the ID register. This instruction is provided as a public
instruction to allow the manufacturer, part number and version of a component to be
determined through the TAP. Figure 11-3 shows the ID register configuration.

Figure 11-5. Identification Register Configuration

One application of the ID register is to distinguish the manufacturer(s) of components on
a board when multiple sourcing is used. As more components emerge which conform to
the IEEE 1149.1 standard, it is desirable to allow for a system diagnostic controller unit to
blindly interrogate a board design in order to determine the type of each component in
each location. This information is also available for factory process monitoring and for
failure mode analysis of assembled boards.

Motorola’s Manufacturer Identity is 00000001110. The Customer Part Number consists of
two parts: Motorola Design Center Number (bits 27:22) and a sequence number (bits
21:12). MSIL Design Center Number is 000110.

Once the IDCODE instruction is decoded, it will select the ID register which is a 32-bit data
register. Since the bypass register loads a logic 0 at the start of a scan cycle, whereas the
ID register loads a logic 1 into its least significant bit, examination of the first bit of data
shifted out of a component during a test data scan sequence immediate following exit from
Test-Logic-Reset controller state will show whether such a register is included in the
design. When the IDCODE instruction is selected, the operation of the test logic shall have
no effect on the operation of the on-chip system logic as required by the IEEE 1149.1
standard.

11.2.4.5 HI-Z

The HI-Z instruction is not included in the IEEE 1149.1 standard. It is provided as a
manufacturer’s optional public instruction to prevent having to backdrive the output pins
during circuit-board testing. When HI-Z is invoked, all output drivers, including the

31 28 27 12 11 1 0

Version Information Customer Part Number Manufacturer Identity 1

1

1
Mux

G1

C

D TO TDO
FROM TDI

0

SHIFT DR
MOTOROLA JTAG (IEEE 1149.1) Test Access Port 11 - 7

two-state drivers, are turned off (i.e., high impedance). The instruction selects the bypass
register. The HI-Z instruction also asserts internal reset for the DSP56300 Core system
logic to force a predictable internal state while performing external boundary scan
operations

11.2.4.6 CLAMP

The CLAMP instruction is not included in the IEEE 1149.1 standard. It is provided as a
public instruction that selects the 1-bit bypass register as the serial path between TDI and
TDO while allowing signals driven from the component pins to be determined from the
boundary scan register. During testing of ICs on PCB, it may be necessary to place static
guarding values on signals that control operation of logic not involved in the test. The
EXTEST instruction could be used for this purpose, but since it selects the boundary-scan
register the required guarding signals would be loaded as part of the complete serial data
stream shifted in, both at the start of the test and each time a new test pattern is entered.
Since the CLAMP instruction allows guarding values to be applied using the
boundary-scan register of the appropriate ICs while selecting their bypass registers, it
allows much faster testing than does the EXTEST instruction. Data in the boundary scan
cell remains unchanged until a new instruction is shifted in or the JTAG state machine is
set to its reset state. The CLAMP instruction also asserts internal reset for the DSP56300
Core system logic to force a predictable internal state while performing external boundary
scan operations.

11.2.4.7 ENABLE_ONCE

The ENABLE_ONCE instruction is not included in the IEEE 1149.1 standard. It is provided
as a public instruction to allow the user to perform system debug functions. When the
ENABLE_ONCE instruction is decoded the TDI and TDO pins are connected directly to
the OnCE registers. The particular OnCE register connected between TDI and TDO at a
given time is selected by the OnCE controller depending on the OnCE instruction being
currently executed. All communication with the OnCE controller is done through the
Select-DR-Scan path of the JTAG TAP Controller. See Chapter 10 ON-CHIP EMULATOR
(OnCE™) for more information.

11.2.4.8 DEBUG_REQUEST

The DEBUG_REQUEST instruction is not included in the IEEE 1149.1 standard. It is
provided as a public instruction to allow the user to generate a debug request signal to the
DSP56300 Core. When the DEBUG_REQUEST instruction is decoded the TDI and TDO
pins are connected to the Instruction Registers. Due to the fact that in the capture-IR state
of the TAP the OnCE status bits are captured in the Instruction shift register, the external
JTAG controller must continue to shift-in the DEBUG_REQUEST instruction while polling
the status bits that are shifted-out until the Debug Mode of operation is entered
(acknowledged by the combination 11 on OS1-OS0). After the acknowledgment of the
Debug Mode is received, the external JTAG controller must issue the ENABLE_ONCE
instruction to allow the user to perform system debug functions. See Chapter 10
ON-CHIP EMULATOR (OnCE™) for more information.
11 - 8 JTAG (IEEE 1149.1) Test Access Port MOTOROLA

11.3 DSP56300 RESTRICTIONS

The control afforded by the output enable signals using the boundary scan register and
the EXTEST instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. The user must avoid situations in which the DSP56300
Core output drivers are enabled into actively driven networks.

There are two constraints related to the JTAG interface. First, the TCK input does not
include an internal pullup resistor and should not be left unconnected to preclude
mid-level inputs. The second constraint is to ensure that the JTAG test logic is kept
transparent to the system logic by forcing TAP into the test-logic-reset controller state,
using either of two methods. During power-up, TRST~ must be externally asserted to
force the TAP controller into this state. After power-up is concluded, TMS must be sampled
as a logic one for five consecutive TCK rising edges. If TMS either remains unconnected
or is connected to VCC, then the TAP controller cannot leave the test-logic-reset state,
regardless of the state of TCK.

The DSP56300 Core features a low-power stop mode, which is invoked using an
instruction called STOP. The interaction of the JTAG interface with low-power stop mode
is as follows:

1. The TAP controller must be in the test-logic-reset state to either enter or
remain in the low-power stop mode. Leaving the TAP controller
test-logic-reset state negates the ability to achieve low-power, but does not
otherwise affect device functionality.

2. The TCK input is not blocked in low-power stop mode. To consume
minimal power, the TCK input should be externally connected to VCC or
ground.

3. The TMS and TDI pins include on-chip pullup resistors. In low-power stop
mode, these two pins should remain either unconnected or connected to
VCC to achieve minimal power consumption.

Since during STOP state all DSP56300 Core clocks are disabled, the JTAG interface
provides the means of polling the device status (sampled in the capture-IR state). For an
DSP56300 derivative that does not include the DE pin, the JTAG interface provides the
software means of entering the Debug Mode by executing the DEBUG_REQUEST in-
struction.
MOTOROLA JTAG (IEEE 1149.1) Test Access Port 11 - 9

11 - 10 JTAG (IEEE 1149.1) Test Access Port MOTOROLA

12 OPERATING MODES AND MEMORY SPACES

12.1 CHIP OPERATING MODES

The DSP56300 Core mode pins, MODA, MODB, MODC and MODD determine the reset
vector address that should point to the start-up procedure when the chip leaves the reset
state. The MODA, MODB, MODC and MODD pins are sampled as the chip leaves the
reset state. The sampled state of these pins is subject to a mask programmed look-up
table that may be used as a filter to disable the user from entering to some of the operating
modes. This filtered state is written to MD,MC,MB and MA bits in the chip Operating Mode
Register (OMR). When the reset state is exited, the MODA, MODB, MODC and MODD
pins become general-purpose interrupt pins, IRQA, IRQB, IRQC and IRQD, respectively.
When not in the RESET state, the OMR mode bits (MA, MB, MC and MD) can be changed
by software.

Table 12-1 depicts the mode assignments in the DSP56300 core. The reset vector is
chosen from three mask programmed addresses: RESET1, RESET2 and RESET3. Each
reset vector is mask programmed to one of two different values, according to Table 12-1.

Table 12-1. DSP56300 Core reset vectors

Table 12-2. DSP56300 Core operating modes

RESET1 possible values RESET2 possible values RESET3 possible values

$000000 $004000 $000000

$C00000 $008000 $FF0000

MOD{D:A}
Operating

mode
Description Reset Vector

0000 0 Expanded Mode RESET1

0001-0111 1-7 System Configuration Mode 1-7 RESET3

1000 8 Expanded Mode RESET2

1001-1111 9-F System Configuration Mode 8-14 RESET3
MOTOROLA OPERATING MODES AND MEMORY SPACES 12 - 1

12.1.1 Expanded Modes (Modes 0 and 8)

In the Expanded Modes 0 and 8, a hardware reset causes the DSP56300 Core to jump to
the mask programmed external program memory location RESET1 or RESET2
respectively, and execute the code fetched from this location.

12.1.2 System Configuration Modes 1-15 (Mode 1-7 and 9-F)

In the System Configuration Modes 1-15, a hardware reset causes the DSP56300 Core
to jump to the mask programmed internal program memory (usually ROM) location
RESET3, and execute the code fetched from this location.

12.2 DSP56300 CORE MEMORY MAP

The memory space of the DSP56300 Core is partitioned into program memory space (P),
X data memory space and Y data memory space. The data memory space is divided into
X data memory and to Y data memory in order to work with the two address arithmetic
logic units (ALUs) and to feed two operands simultaneously to the data ALU. Each
memory space may include internal RAM, internal ROM and can be expanded off-chip
under software control. The three independent memory spaces of the DSP56300 Core: X
data, Y data, and program, are shown in Figure 12-1.

Figure 12-1. DSP56300 Core Memory Map

12.2.1 X Data Memory Space

The X data memory space is divided into five parts:

• Internal X I/O space. The on-chip peripheral registers (X I/O) occupy the
top 128 locations of the X data memory space ($FFFF80–$FFFFFF) and
can be accessed by MOVE, MOVEP instructions and by bit oriented

BOOTSTRAP ROM

PROGRAM
$FFFFFF

$000000

INTERNAL
P-MEMORY

EXTERNAL

X DATA
$FFFFFF

$000000

EXTERNAL

X-MEMORY

INTERNAL X-I/O

Y DATA
$FFFFFF

$000000

EXTERNAL

INTERNAL Y-I/O

ICACHE 1K or 2K

$FFFF80 $FFFF80

P-MEMORY

INTERNAL

P-MEMORY X-MEMORY Y-MEMORY

INTERNAL
Y-MEMORY
INTERNAL

OR EXTERNAL
INTERNAL X-I/O

or EXTERNAL Y-I/O

$FF0000

RESERVED
FOR INTERNAL

X-MEMORY
OR EXTERNAL
INTERNAL Y-I/O

Y-MEMORY$FFF000 $FFF000

X-MEMORY

RESERVED
FOR INTERNAL

Y-MEMORY

RESERVED
FOR INTERNAL

$FF0000 $FF0000

maximum
$00FFFF

maximum
$00FFFF

$FF00C0
192-Words

maximum
$00FFFF
12 - 2 OPERATING MODES AND MEMORY SPACES MOTOROLA

instructions (BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR,
BSSET, JCLR, JSET, JSCLR and JSSET). Some of the DSP56300 Core
registers are mapped onto the internal X I/O space, as described in Table
12-3.

Table 12-3. Internal X I/O Space Map

Register BLOCK Address Register Name and Description

IPRC PIC $FFFFFF INTERRUPT PRIORITY REGISTER CORE

IPRP $FFFFFE INTERRUPT PRIORITY REGISTER PERIPHERAL

PCTL PLL $FFFFFD PLL CONTROL REGISTER

OGDB OnCE $FFFFFC ONCE GDB REGISTER

BCR PORT A $FFFFFB BUS CONTROL REGISTER

DCR $FFFFFA DRAM CONTROL REGISTER

AAR0 $FFFFF9 ADDRESS ATTRIBUTE REGISTER 0

AAR1 $FFFFF8 ADDRESS ATTRIBUTE REGISTER 1

AAR2 $FFFFF7 ADDRESS ATTRIBUTE REGISTER 2

AAR3 $FFFFF6 ADDRESS ATTRIBUTE REGISTER 3

IDR $FFFFF5 ID REGISTER

DSTR DMA $FFFFF4 DMA STATUS REGISTER

DOR0 $FFFFF3 DMA OFFSET REGISTER 0

DOR1 $FFFFF2 DMA OFFSET REGISTER 1

DOR2 $FFFFF1 DMA OFFSET REGISTER 2

DOR3 $FFFFF0 DMA OFFSET REGISTER 3

DSR0 DMA
Channel 0

$FFFFEF DMA SOURCE ADDRESS REGISTER

DDR0 $FFFFEE DMA DESTINATION ADDRESS REGISTER

DCO0 $FFFFED DMA COUNTER

DCR0 $FFFFEC DMA CONTROL REGISTER
MOTOROLA OPERATING MODES AND MEMORY SPACES 12 - 3

• Switchable Internal X I/O or External X-I/O Memory. The X memory

DSR1 DMA
Channel 1

$FFFFEB DMA SOURCE ADDRESS REGISTER

DDR1 $FFFFEA DMA DESTINATION ADDRESS REGISTER

DCO1 $FFFFE9 DMA COUNTER

DCR1 $FFFFE8 DMA CONTROL REGISTER

DSR2 DMA
Channel 2

$FFFFE7 DMA SOURCE ADDRESS REGISTER

DDR2 $FFFFE6 DMA DESTINATION ADDRESS REGISTER

DCO2 $FFFFE5 DMA COUNTER

DCR2 $FFFFE4 DMA CONTROL REGISTER

DSR3 DMA
Channel 3

$FFFFE3 DMA SOURCE ADDRESS REGISTER

DDR3 $FFFFE2 DMA DESTINATION ADDRESS REGISTER

DCO3 $FFFFE1 DMA COUNTER

DCR3 $FFFFE0 DMA CONTROL REGISTER

DSR4 DMA
Channel 4

$FFFFDF DMA SOURCE ADDRESS REGISTER

DDR4 $FFFFDE DMA DESTINATION ADDRESS REGISTER

DCO4 $FFFFDD DMA COUNTER

DCR4 $FFFFDC DMA CONTROL REGISTER

DSR5 DMA
Channel 5

$FFFFDB DMA SOURCE ADDRESS REGISTER

DDR5 $FFFFDA DMA DESTINATION ADDRESS REGISTER

DCO5 $FFFFD9 DMA COUNTER

DCR5 $FFFFD8 DMA CONTROL REGISTER

Reserved On-Chip
X-I/O

mapped
Registers

$FFFFD7 Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

$FFFF80 Reserved for On-Chip X- I/O mapped Register

Register BLOCK Address Register Name and Description
12 - 4 OPERATING MODES AND MEMORY SPACES MOTOROLA

space located at locations $FFF000-$FFFF7F can mask configured to be
either external X-memory or internal X-I/O for on-chip memory-mapped
peripheral registers.

• Reserved Space for X ROM or RAM. The X memory space located at
locations $FF0000-$FFEFFF is reserved for inclusion of X data ROM or
RAM modules, 2048 locations each.
The importance of modular organization of the X ROM/RAM is visible in
case of DMA access to the internal X memory simultaneous to core
access to the same space. DMA and CORE accesses to different banks
can be completed at full speed, while accesses to the same bank halt the
DMA until a P memory slot will be available.

• External X Memory. The X memory space located at locations $000000-
$FEFFFF is used for expanding to external X memory. The starting
address of the external X memory space is mask programmed.

• Internal X RAM. The X memory space located at locations $000000-
$00FFFF is used for internal X RAM modules, 256 locations each. The last
address of the internal X memory is mask programmed and is dependent
on the amount of X memory modules in the chip.
The importance of modular organization of the X RAM is visible in case of
DMA access to the internal X memory simultaneous to core access to the
same space. DMA and CORE accesses to different banks can be
completed at full speed, while accesses to the same bank halt the DMA
until a P memory slot will be available.

12.2.2 Y Data Memory Space

The Y data memory space is divided into five parts:

• Internal/External Y-I/O space. The off-chip or on-chip peripheral registers
(Y-I/O) occupy the top 128 locations of the Y data memory space
($FFFF80–$FFFFFF) and can be accessed by MOVE, MOVEP
instructions and by bit oriented instructions (BCHG, BCLR, BSET, BTST,
BRCLR, BRSET, BSCLR, BSSET, JCLR, JSET, JSCLR and JSSET).
This space is partitioned into eight equal parts, 16 locations each. Each
part can be mask programmed to be either external Y-I/O or internal Y-I/O.

• Switchable Internal Y-I/O or External Y-I/O Memory. The Y memory
space located at locations $FFF000-$FFFF7F can be mask configured to
be either external Y-memory or internal Y-I/O for on-chip memory-mapped
peripheral registers.

• Reserved Space for Y ROM or RAM. The Y memory space located at
MOTOROLA OPERATING MODES AND MEMORY SPACES 12 - 5

locations $FF0000-$FFEFFF is reserved for inclusion of Y data ROM or
RAM modules, 2048 locations each.
The importance of modular organization of the Y ROM/RAM is visible in
case of DMA access to the internal Y memory simultaneous to core
access to the same space. DMA and CORE accesses to different banks
can be completed at full speed, while accesses to the same bank halt the
DMA until a P memory slot will be available.

• External Y Memory. The Y memory space located at locations $000000-
$FEFFFF is used for expanding to external Y memory. The starting
address of the external Y memory space is mask programmed.

• Internal Y RAM. The Y memory space located at locations $000000-
$00FFFF is used for internal Y RAM modules, 256 locations each. The last
address of the internal Y memory is mask programmed and is dependent
on the amount of Y memory modules in the chip.
The importance of modular organization of the Y RAM is visible in case of
DMA access to the internal Y memory simultaneous to core access to the
same space. DMA and CORE accesses to different banks can be
completed at full speed, while accesses to the same bank halt the DMA
until a P memory slot will be available.

12.2.3 Program Memory

The Program memory space is divided into four parts:

• 192-Words Bootstrap ROM. The P memory space located at locations
$FF0000-$FF00BF is used for the internal Bootstrap ROM. The ROM
contains 192 words combining the bootstrap program for the DSP56300-
based derivative. The Bootstrap ROM cannot be accessed by DMA.

• Reserved Space for Program ROM. The P memory space located at
locations $FF00C0-$FFFFFF is reserved for inclusion of Program ROM
modules, 2048 locations each. Program ROM may be used to contain
some operating-system program or other application-specific pre-defined
user programs.
The importance of modular organization of the P ROM is visible in case of
DMA access to the internal P memory simultaneous to core access to the
same space. DMA and CORE accesses to different banks can be
completed at full speed, while accesses to the same bank halt the DMA
until a P memory slot will be available.

• External Program Memory. The Program memory space located at
locations $000000-$FEFFFF is used for expanding to external Program
memory. The starting address of the external Program memory space is
12 - 6 OPERATING MODES AND MEMORY SPACES MOTOROLA

mask programmed and is dependent on the amount of on-chip Program
RAM or ICACHE in the chip.

• Internal Program RAM. The Program memory space located at locations
$000000-$00FFFF is used for internal Program RAM modules, 256
locations each. The last address of the internal Program RAM is masked
programmed.
The importance of modular organization of the P RAM is visible in case of
DMA access to the internal P memory simultaneous to core access to the
same space. DMA and CORE accesses to different banks can be
completed at full speed, while accesses to the same bank halt the DMA
until a P memory slot will be available.
Program RAM provides a method of changing the program dynamically,
allowing efficient overlaying of DSP software algorithms.

• Internal Instruction Cache (ICACHE) RAM. The Program memory space
located at locations $000000-$00FFFF is used for internal Instruction
Cache RAM modules, 256 locations each. The size of the Icache is mask
programmed and can be either 1024 or 2048 words (4 or 8 RAM modules).
The starting address of the Icache space is above the internal Program
RAM and is also mask programmed. The Icache can be disabled by
clearing the CE bit (Cache Enable) in the chip SR. If CE bit is cleared, the
Icache ram becomes the high part of the internal program ram.
The Instruction Cache is used to minimize the contention with accesses to
external program memory space. A complete description of the Instruction
Cache is provided in Chapter 5.

12.3 SIXTEEN-BIT COMPATIBILITY MODE

When the SIXTEEN-BIT COMPATIBILITY mode bit (see Figure 6-5 on page 6-10) is set,
the memory map is changed to allow easy access to memory mapped I/O, as described
in the following figure:
MOTOROLA OPERATING MODES AND MEMORY SPACES 12 - 7

Figure 12-2. DSP56300 Core Memory Map (SC = 1)

For more information about this mode, its effects on the AGU, and restrictions, refer to
Section 4.2.

12.4 MEMORY SWITCH MODE

when the MEMORY SWITCH MODE bit (see Figure 6-6 on page 6-17) is set, addresses
of internal data memory (X, Y or both) become part of the chip internal program ram. The
addresses are in the higher part of the internal ram which resides in the lower part of the
data memory, and the amount of addresses is a multiplication of 256 and determined by
via programing.

Due to pipelining, a change in the bit takes affect only after the following four instruction
cycles. Inserting four NOP instructions after the instruction that changes the value of this
bit will guarantee proper operation.

PROGRAM
$FFFF

$0000
INTERNAL

P-MEMORY

EXTERNAL

X DATA
$FFFF

$0000

EXTERNAL

X-RAM

INTERNAL X-I/O

Y DATA
$FFFF

$0000

EXTERNAL

INTERNAL Y-I/O

ICACHE 1K or 2K

$FF80 $FF80

INTERNAL

P-MEMORY X-MEMORY Y-MEMORY

INTERNAL
Y-RAM

INTERNAL

OR EXTERNAL
INTERNAL X-I/O

or EXTERNAL Y-I/O

X-I/O MEMORY
OR EXTERNAL
INTERNAL Y-I/O

Y-I/O MEMORY$F000 $F000
12 - 8 OPERATING MODES AND MEMORY SPACES MOTOROLA

MOTOROLA INSTRUCTION SET A - 3

Appendix A INSTRUCTION SET

A-1 INTRODUCTION

The programming model indicates that the DSP56300 Core central processor
architecture can be viewed as three functional units operating in parallel: data arithmetic
logic unit (ALU), address generation unit (AGU), and program control unit. The goal of the
instruction set is to provide the capability to keep each of these units busy each instruction
cycle, achieving maximum speed and minimum program size.

This section introduces the DSP56300 Core instruction set and instruction format. The
complete range of instruction capabilities combined with the flexible addressing modes
used in this processor provide a very powerful assembly language for implementing digital
signal processing (DSP) algorithms. The instruction set has been designed to allow
efficient coding for DSP high-level language compilers such as the C compiler. Execution
time is minimized by the hardware looping capabilities, use of an instruction pipeline, and
parallel moves.

A-2 INSTRUCTION FORMATS AND SYNTAX

The DSP56300 Core instructions consist of one or two 24-bit words – an operation word
and an optional extension word. This extension word can be either effective address
extension word or an immediate data extension word. General formats of the instruction
word are shown in Figure A-1 Most instructions specify data movement on the XDB, YDB,
and data ALU operations in the same operation word. The DSP56300 Core is designed
to perform each of these operations in parallel.

The data bus movement field provides the operand reference type, which selects the type
of memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and/or YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An extension word
following the operation word is used to provide immediate data, absolute address or
address displacement, if required. Examples of operations that may include the extension
word include move operation such as: MOVE X:$100,X0

A - 4 INSTRUCTION SET MOTOROLA

Figure A-1. General Formats of an Instruction

Word

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed.

The operation codes form a very versatile microcontroller unit (MCU) style instruction set,
providing highly parallel operations in most programming situations.

The instruction syntax has two formats - Parallel and NonParallel, as shown in Table A-1
and Table A-2. Parallel instruction is organized into five columns: opcode, operands, and
two parallel-move fields, each of them is optional, and an optional condition field. The
condition field is used to disable the execution of the opcode if the condition is not true,
and cannot be used in conjunction with the parallel move fields. Assembly-language
source codes for some typical one-word instructions are shown in Table A-1. Because of
the multiple bus structure and the parallelism of the DSP56300 Core, up to three data
transfers can be specified in the instruction word – one on the X data bus (XDB), one on
the Y data bus (YDB), and one within the data ALU. These transfers are explicitly
specified. A fourth data transfer is implied and occurs in the program control unit
(instruction word prefetch, program looping control, etc.). The opcode column indicates
the data ALU operation to be performed but may be excluded if only a MOVE operation is
needed. The operands column specifies the operands to be used by the opcode. The XDB
and YDB columns specify optional data transfers over the XDB and/or YDB and the
associated addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which
address space is being referenced.

NON-PARALLEL OPERATION CODE

DATA BUS MOVEMENT

 23 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

OPTIONAL IMMEDIATE DATA EXTENSION

 23 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

 23 8 7 0

X X X X X X X X

X X X X X X X X

OPCODE

OPCODE
DATA BUS MOVEMENT

MOTOROLA INSTRUCTION SET A - 5

Table A-1. Parallel Instructions Format

NonParallel instruction is basically organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown in
Table A-2. Nonparallel instructions include all the program control, looping and peripherals
read/write instructions. They also include some Data ALU instructions that are impossible
to be encoded in the opcode field of the Parallel format.

Table A-2. NonParallel Instructions Format

A-2.1 Operand Sizes

Operand sizes are defined as follows: a byte is 8 bits long, a word is 24 bits long, a long
word is 48 bits long, and an accumulator is 56 bits long (see following diagram). The
operand size for each instruction is either explicitly encoded in the instruction or implicitly
defined by the instruction operation.

Opcode Operands XDB YDB Condition

Example 1: MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

Example 2: MOVE X:-(R1),X1

Example 3: MAC X1,Y1,B

Example 4: MPY X0,Y0,A IF eq

Opcode Operands

Example 1: JEQ (R5)

Example 2: MOVEP #data,X:ipr

Example 3: RTS

BYTE

WORD

LONG WORD

ACCUMULATOR
55 0

47 0

23 0

7 0

A - 6 INSTRUCTION SET MOTOROLA

When in Sixteen Bit Arithmetic mode the operand sizes are as follows: a byte is 8 bits long,
a word is 16 bits long, a long word is 32 bits long, and an accumulator is 40 bits long.

A-2.2 Data Organization in Registers

The ten data ALU registers support 8- or 24-bit data operands, and 16-bit data in Sixteen
Bit mode. Instructions also support 48- or 56-bit data operands (32- or 40-bit in Sixteen
Bit mode) by concatenating groups of specific data ALU registers. The eight address
registers in the AGU support 24-bit address or data operands. The eight AGU offset
registers support 24-bit offsets or may support 24-bit address or data operands. The eight
AGU modifier registers support 24-bit modifiers or may support 24-bit address or data
operands. The program counter (PC) supports 24-bit address operands. The status
register (SR) and operating mode register (OMR) support 8,16 or 24-bit data operands.
Both the loop counter (LC) and loop address (LA) registers support 24-bit address
operands.

A-2.3 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register; long-
word operands occupy two concatenated registers. The least significant bit (LSB) is the
right-most bit (bit 0); whereas, the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). When in Sixteen Bit mode, the least
significant bit (LSB) is bit 8; bits 24 to 31 are ignored for long-word operands; whereas,
the most significant bit (MSB) is the left-most bit.

The two accumulator extension registers are eight bits wide. When an accumulator
extension register is used as a source operand, it occupies the low-order portion (bits 0–
7) of the word; the high-order portion (bits 8–23) is sign extended (see Table A-2). When
used as a destination operand, this register receives the low-order portion of the word,
and the high-order portion is not used. Accumulator operands occupy an entire group of
three registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit 0 for 24 bit
mode and bit 8 for Sixteen Bit mode), and the MSB is the left-most bit (bit 55).

When a 56-bit accumulator (A or B) is specified as a

source

 operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in

BYTE

WORD

LONG WORD

ACCUMULATOR
55 0

47 0

23 0

7 0

MOTOROLA INSTRUCTION SET A - 7

the destination is limited to a maximum positive or negative saturation constant to
minimize truncation error. Limiting does not occur if an individual 24-bit accumulator
register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a

destination

 operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by sign
extending the MS bit of the source operand (bit 23) and appending the source operand
with 24 LS zeros. Note that for 24-bit source operands both the automatic sign-extension
and zeroing features may be disabled by specifying the destination register to be one of
the individual 24-bit accumulator registers (A1 or B1).

Figure A-2. Reading and Writing the ALU Extension Registers

When in Sixteen Bit mode, the move operations associated with Data ALU registers are
altered. For further details refer to Section 3.4.1.

A-2.4 AGU Registers

The 24 AGU registers, which are 24 bits wide, may be accessed as word operands for
address, address offset, address modifier, and data storage. The notation Rn is used to
designate one of the eight address registers, R0–R7; the notation Nn is used to designate
one of the eight address offset registers, N0–N7; and the notation Mn is used to designate
one of the eight address modifier registers, M0–M7.

A-2.5 Program Control Registers

The 24-bit OMR has the chip operating mode register (COM) occupying the low-order
eight bits and the extended chip operating mode register (EOM) occupying the middle-
order eight bits and the system stack control status register (SCS) occupying the high-
order eight bits. The Operating Mode Register (OMR) and the Vector Base Address (VBA)
are accessed as word operands; however, not all of their bits are defined. These bits read
as zero and should be written with zero for future compatibility. The 24-bit SR has the user
condition code register (CCR) occupying the low-order eight bits and the system mode

 23 8 7 0

BUS

NOT USED
LSB OF
WORD

A2/B2

BUS

REGISTER A2, B2 USED
AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

SIGN EXTENSION
OF A2/B2

CONTENTS
OF A2/B2

NOT USED
REGISTER A2, B2

 23 8 7 0

 23 8 7 0

A - 8 INSTRUCTION SET MOTOROLA

register (MR) occupying the middle-order eight bits and the extended mode register
(EMR) occupying the high-order eight bits. The SR may be accessed as a word operand.
The MR and CCR may be accessed individually as word operands (see Figure A-3). The
Loop Counter (LC), Loop Last Address (LA), stack size (SZ), system stack high (SSH),
and system stack low (SSL) registers are 24 bits wide and are accessed as word
operands. The system stack pointer (SP) is a 24-bit register that is accessed as a word
operand. The PC, a special 24-bit-wide program counter register, is generally referenced
implicitly as a word operand, but may also be referenced explicitly (by all PC-relative
operation codes) also as a word operand.

A-2.6 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 48-bit system stack (SS) can store the concatenated PC and SR
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-
wide X and Y memories can store word and byte operands. When in Sixteen Bit Arithmetic
mode the X and Y memories can store 16-bit words, that occupy the low-portion of the
memory word. Byte operands, which usually occupy the low-order portion of the X or Y
memory word, are either zero extended or sign extended on the XDB or YDB.

Figure A-3. Reading and Writing Control Registers

A-3 INSTRUCTION GROUPS

The instruction set is divided into the following groups:
• Arithmetic
• Logical
• Bit Manipulation

23 8 7
BUS

NOT USED LSB

BUS

MR, CCR, COM and SCS
AS A DESTINATION

 AS A SOURCE
MR, CCR, COM and SCS

MR, CCR, COM and SCS

ZERO FILL

23 8 7

MOTOROLA INSTRUCTION SET A - 9

• Loop
• Move
• Program Control

Each instruction group is described in the following paragraphs.

A-3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the data ALU.
These instructions may affect all of the CCR bits. Arithmetic instructions are register
based (register direct addressing modes used for operands) so that the data ALU
operation indicated by the instruction does not use the XDB, the YDB, or the global data
bus (GDB). Optional data transfers may be specified with most arithmetic instructions,
which allows for parallel data movement over the XDB and YDB or over the GDB during a
data ALU operation. This parallel movement allows new data to be prefetched for use in
subsequent instructions and allows results calculated in previous instructions to be
stored.A

✔

 sign in a table cell in the “Parallel Instruction” column indicates that the
corresponding instruction is a parallel instruction, while a blank table cell indicates that the
instruction is not a parallel instruction. The move operation that can be specified in parallel
to the instruction marked is one of the parallel instructions listed in Table A-7. Arithmetic
instructions can be executed conditionally, based on the condition codes generated by the
previous instructions. Conditional arithmetic instructions don’t allow parallel data
movement over the various data busses. Table A-3 lists the arithmetic instructions.

Table A-3. Arithmetic Instructions

Mnemonic Description
Parallel

Instruction

ABS Absolute Value

✔

ADC Add Long with Carry

✔

ADD Add

✔

ADD (imm.) Add (immediate operand)

ADDL Shift Left and Add

✔

ADDR Shift Right and Add

✔

ASL Arithmetic Shift Left

✔

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)

ASR Arithmetic Shift Right

✔

ASR (mb.) Arithmetic Shift Right (multi-bit)

A - 10 INSTRUCTION SET MOTOROLA

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand

✔

CMP Compare

✔

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude

✔

CMPU Compare Unsigned

DEC Decrement Accumulator

DIV Divide Iteration

DMAC Double Precision Multiply-Accumulate

INC Increment Accumulator

MAC Signed Multiply-Accumulate

✔

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate (immediate operand)

MACR Signed Multiply-Accumulate and Round

✔

MACRI Signed Multiply-Accumulate and Round (immediate
operand)

MAX Transfer By Signed Value

✔

MAXM Transfer By Magnitude

✔

MPY Signed Multiply

✔

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply (immediate operand)

MPYR Signed Multiply and Round

✔

MPYRI Signed Multiply and Round (immediate operand)

NEG Negate Accumulator

✔

NORM Normalize

NORMF Fast Accumulator Normalize

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 11

A-3.2 Logical Instructions

The logical instructions, which execute in one instruction cycle, perform all of the logical
operations within the data ALU (except ANDI and ORI). They may affect all of the CCR
bits and, like the arithmetic instructions, are register based. Optional data transfers may
be specified with most logical instructions, allowing parallel data movement over the XDB
and YDB or over the GDB during a data ALU operation. This parallel movement allows
new data to be prefetched for use in subsequent instructions and allows results calculated
in previous instructions to be stored. A

✔

 sign in a table cell in the “Parallel Instruction”
column indicates that the corresponding instruction is a parallel instruction, while a blank
table cell indicates that the instruction is not a parallel instruction. The move operation that
can be specified in parallel to the instruction marked is one of the parallel instructions
listed in Table A-7. Table A-4 lists the logical instructions.

Table A-4. Logical Instructions

RND Round

✔

SBC Subtract Long with Carry

✔

SUB Subtract

✔

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract

✔

SUBR Shift Right and Subtract

✔

Tcc Transfer Conditionally

TFR Transfer Data ALU Register

✔

TST Test an Operand

✔

Mnemonic Description
Parallel

Instruction

AND Logical AND

✔

AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

EOR Logical Exclusive OR

✔

EOR (imm.) Logical Exclusive OR (immediate operand)

Mnemonic Description
Parallel

Instruction

A - 12 INSTRUCTION SET MOTOROLA

A-3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location and
then optionally set, clear, or invert the bit. The carry bit of the CCR will contain the result
of the bit test. Table A-5 lists the bit manipulation instructions.

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field (immediate operand)

LSL Logical Shift Left

✔

LSL (mb.) Logical Shift Left (multi-bit)

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right

✔

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement

✔

OR Logical Inclusive OR

✔

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate to Control Register

ROL Rotate Left

✔

ROR Rotate Right

✔

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 13

Table A-5. Bit Manipulation Instructions

A-3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles – i.e., it runs as fast as straight-
line code. Replacing straight-line code with DO loops can significantly reduce program
memory. The loop instructions control hardware looping by 1) initiating a program loop and
establishing looping parameters or by 2))restoring the registers by pulling the SS when
terminating a loop. Initialization includes saving registers used by a program loop (LA and
LC) on the SS so that program loops can be nested. The address of the first instruction in
a program loop is also saved to allow no-overhead looping. Table A-6 lists the loop
instructions.

Table A-6. Loop Instructions

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

A-3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the GDB.

Mnemonic Description
Parallel

Instruction

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Mnemonic Description
Parallel

Instruction

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DOR Start Hardware Loop to PC-Related End-Of-Loop
Location

DO FOREVER Start Forever Hardware Loop

DOR FOREVER Start Forever Hardware Loop to PC-Related End-
Of-Loop Location

ENDDO Abort and Exit from Hardware Loop

A - 14 INSTRUCTION SET MOTOROLA

Move instructions, most of which allow Data ALU opcode in parallel, do not affect the CCR
except the limit bit L if limiting is performed when reading a data ALU accumulator register.
Table A-7 lists the move instructions.

MOTOROLA INSTRUCTION SET A - 15

Table A-7. Move Instructions

A-3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC, SS and the program Cache. Program control instructions may affect the
CCR bits as specified in the instruction. Optional data transfers over the XDB and YDB
may be specified in some of the program control instructions. Table A-8 lists the program
control instructions.

Table A-8. Program Control Instructions

Mnemonic Description
Parallel

Instruction

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register

✔

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

U MOVE Update Move

✔

Mnemonic Description
Parallel

Instruction

IFcc.U Execute Conditionally and Update CCR

IFcc Execute Conditionally

Bcc Branch Conditionally

BRA Branch Always

BRCLR Branch if Bit Clear

BRSET Branch if Bit Set

BScc Branch to Subroutine Conditionally

BSR Branch to Subroutine Always

BSCLR Branch to Subroutine if Bit Clear

BSSET Branch to Subroutine if Bit Set

A - 16 INSTRUCTION SET MOTOROLA

DEBUGcc Enter into the Debug Mode Conditionally

DEBUG Enter into the Debug Mode Always

Jcc Jump Conditionally

JMP Jump Always

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally

JSR Jump to Subroutine Always

JSCLR Jump to Subroutine if Bit Clear

JSSET Jump to Subroutine if Bit Set

NOP No Operation

PLOCK Lock Program Cache Sector

PUNLOCK Unlock Program Cache Sector

PLOCKR Lock PC-Related Program Cache Sector

PUNLOCKR Unlock PC-Related Program Cache Sector

PFREE Unlock all Program Cache Locked Sectors

PFLUSH Reset Program Cache State

PFLUSHUN Reset Program Cache State to all Unlocked Sectors

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

TRAPcc Trap Conditionally

TRAP Trap Always

WAIT Wait for Interrupt (Low-Power Standby)

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 17

A-4 INSTRUCTION GUIDE

The following information is included in each instruction description:

1.

Name and Mnemonic:

 The mnemonic is highlighted in

bold

 type for easy
reference.

2.

Assembler Syntax and Operation:

 For each instruction syntax, the
corresponding operation is symbolically described. If there are several
operations indicated on a single line in the operation field, those
operations do not necessarily occur in the order shown but are generally
assumed to occur in parallel. If a parallel data move is allowed, it will be
indicated in parenthesis in both the assembler syntax and operation fields.
If a letter in the mnemonic is optional, it will be shown in parenthesis in the
assembler syntax field.

3.

Description:

 A complete text description of the instruction is given
together with any special cases and/or condition code anomalies of which
the user should be aware when using that instruction.

4.

Condition Codes:

 The status register is depicted with the condition code
bits which can be affected by the instruction. Not all bits in the status
register are used. Those which are reserved are indicated with a gray box
covering its area.

5.

Instruction Format: The instruction fields, the instruction opcode, and the
instruction extension word are specified for each instruction syntax. When
the extension word is optional, it is so indicated. The values which can be
assumed by each of the variables in the various instruction fields are
shown under the instruction field’s heading.

A-4.1 NOTATION

Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-9 lists the symbols used and their respective meanings. Depending
on the context, registers refer to either the register itself or the contents of the register.

Table A-9. Instruction Description Notation

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 Bits)

Yn Input Register Y1 or Y0 (24 Bits)

An Accumulator Registers A2, A1, A0 (A2 — 8 Bits, A1 and A0 — 24 Bits)

Bn Accumulator Registers B2, B1, B0 (B2 — 8 Bits, B1 and B0 — 24 Bits)

X Input Register X = X1: X0 (48 Bits)

A - 18 INSTRUCTION SET MOTOROLA

Y Input Register Y = Y1: Y0 (48 Bits)

A Accumulator A = A2: A1: A0 (56 Bits)

B Accumulator B = B2: B1: B0 (56 BIts)

AB Accumulators A and B = A1: B1 (48 Bits)

BA Accumulators B and A = B1: A1 (48 Bits)

A10 Accumulator A = A1: A0 (48 Bits)

B10 Accumulator B= B1:B0 (48 bits)

Program Control Unit Registers Operands

PC Program Counter Register (24 Bits)

EMR Extended Mode Register (8 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register = EMR:MR:CCR (24 Bits)

SCS System Stack Control Status Register (8 Bits)

EOM Extended Chip Operating Mode Register (8 Bits)

COM Chip Operating Mode Register (8 Bits)

OMR Operating Mode Register = SCS:EOM:COM (24 Bits)

SZ System Stack Size Register (24 Bits)

SC System Stack Counter Register (5 Bits)

VBA Vector Base Address (24 Bits, 8 of them are always zero)

LA Hardware Loop Address Register (24 Bits)

LC Hardware Loop Counter Register (24 Bits)

SP System Stack Pointer Register (24 Bits)

SSH Upper Portion of the Current Top of the Stack (24 Bits)

SSL Lower Portion of the Current Top of the Stack (24 Bits)

SS System Stack RAM = SSH: SSL (16 Locations by 32 Bits)

Data ALU Registers Operands

MOTOROLA INSTRUCTION SET A - 19

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute or Long Displacement Address (24 Bits)

xxx Short or Short Displacement Jump Address (12 Bits)

xxx Short Displacement Jump Address (9 Bits)

aaa Short Displacement Address (7 Bits Sign Extended)

aa Absolute Short Address (6 Bits, Zero Extended)

pp High I/O Short Address (6 Bits, Ones Extended)

qq Low I/O Short Address (6 Bits)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 Bits)

#xx Immediate Short Data (8 Bits)

#xxx Immediate Short Data (12 Bits)

#xxxxxx Immediate Data (24 Bits)

r Rounding Constant

#bbbbb Operand Bit Select (5 Bits)

Unary Operands

- Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

A - 20 INSTRUCTION SET MOTOROLA

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

| | Absolute Value Operator

Binary Operands

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

➞ “Is Transferred To” Operator

: Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress

DM Double Precision Multiply Bit Indicating if the Chip is in Double Precision Multiply Mode

SB Sixteen Bit Arithmetic Mode

RM Rounding Mode

Unary Operands

MOTOROLA INSTRUCTION SET A - 21

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use

U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the Data ALU Result is Set

Z Zero Bit Indicating if the Data ALU Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in Data ALU

C Carry Bit Indicating if a Carry or Borrow Occurred in Data ALU Result

() Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Address ALU Registers Operands

Rn Address Registers R0 - R7 (24 Bits)

Nn Address Offset Registers N0 - N7 (24 Bits)

Mn Address Modifier Registers M0 - M7 (24 Bits)

Mode Register Symbols

A - 22 INSTRUCTION SET MOTOROLA

A-5 CONDITION CODE COMPUTATION

The condition code register (CCR) portion of the status register (SR) consists of eight
defined bits.

Condition Codes:

S — Scaling Bit N — Negative Bit

L — Limit Bit Z — Zero Bit

E — Extension Bit V — Overflow Bit

U — Unnormalized Bit C — Carry Bit

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the
result of a data ALU operation. These condition code bits are not “sticky” and are not
affected by address ALU calculations or by data transfers over the X, Y, or global data
buses. The L bit is a “sticky” overflow bit which indicates that an overflow has occurred
in the data ALU or that data limiting has occurred when moving the contents of the A and/
or B accumulators. The S bit is a “sticky” bit used in block floating point operations to
indicate the need to scale the number in A or B.

The full description of every instruction contains an illustration showing how the instruction
affects the various condition codes.

7 6 5 4 3 2 1 0

S L E U N Z V C

CCR

MOTOROLA INSTRUCTION SET A - 23

An instruction can affect a condition code according to three different rules:

The standard definition of the condition code bits follows.

S (Scaling Bit) This bit is computed, according to the logical equations in the table
below, when an instruction or a parallel move reads the contents of
accumulator A or B to XDB or YDB. It is a “sticky” bit, cleared only by
an instruction that specifically clears it, or hardware reset.

The scaling bit (S) is used to detect data growth, which is required in
Block Floating Point FFT operation. The scaling bit will be set if the
absolute value in the accumulator, before scaling, was greater or equal
to 0.25 and smaller than 0.75. Typically, the bit is tested after each pass
of a radix 2 decimation-in-time FFT and, if it is set, the appropriate
scaling mode should be activated in the next pass. The Block Floating
Point FFT algorithm is described in the Motorola application note
APR4/D, “Implementation of Fast Fourier Transforms on Motorola’s
DSP56000/DSP56001 and DSP96002 Digital Signal Processors.”

 L (Limit Bit) Set if the overflow bit V is set or if an instruction or a parallel move
causes the data shifter/limiters to perform a limiting operation while
reading the contents of accumulator A or B to XDB or YDB. In
Arithmetic Saturation Mode, the limit bit is also set when an arithmetic
saturation occurs in the Data ALU result. Not affected otherwise. This
bit is “sticky” and must be cleared only by an instruction that specifically
clears it, or hardware reset.

 E (Extension Bit) Cleared if all the bits of the signed integer portion of the Data ALU

standard
mark

The affect on the condition code

✕ Unchanged by the instruction

✔ Changed by the instruction, according to the standard definition of the condition code

● Changed by the instruction, according to a special definition of the condition code,
depicted as part of the instruction full description

S0 S1
Scaling
Mode

S bit equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR B45) OR S (previous)

0 1 Scale down S = (A47 XOR A46) OR (B47 XOR B46) OR S (previous)

1 0 Scale up S = (A45 XOR A44) OR (B45 XOR B44) OR S (previous)

1 1 Reserved S undefined

A - 24 INSTRUCTION SET MOTOROLA

result are the same – i.e., the bit patterns are either 00. . . 00 or 11. . .
11. Set otherwise.
The signed integer portion is defined by the scaling mode as shown in
the following table:

Note that the signed integer portion of an accumulator IS NOT
necessarily the same as the extension register portion of that
accumulator. The signed integer portion of an accumulator consists of
the MS 8, 9, or 10 bits of that accumulator, depending on the scaling
mode being used. The extension register portion of an accumulator
(A2 or B2) is always the MS 8 bits of that accumulator. The E bit refers
to the signed integer portion of an accumulator and NOT the
extension register portion of that accumulator. For example, if the
current scaling mode is set for no scaling (i.e., S1=S0=0), the signed
integer portion of the A or B accumulator consists of bits 47 through
55. If the A accumulator contained the signed 56-bit value
$00:800000:000000 as a result of a data ALU operation, the E bit
would be set (E=1) since the 9 MS bits of that accumulator were not
all the same (i.e., neither 00.. 00 nor 11.. 11). This means that data
limiting will occur if that 56-bit value is specified as a source operand
in a move-type operation. This limiting operation will result in either a
positive or negative, 24-bit or 48-bit saturation constant being stored in
the specified destination. The only situation in which the signed integer
portion of an accumulator and the extension register portion of an
accumulator are the same is in the “Scale Down” scaling mode (i.e.,
S1=0 and S0=1).

S1 S0
Scaling
Mode

Integer Portion

0 0 No Scaling Bits 55,54..............48,47

0 1 Scale Down Bits 55,54..............49,48

1 0 Scale Up Bits 55,54..............47,46

MOTOROLA INSTRUCTION SET A - 25

U (Unnormalized Bit) Set if the two MS bits of the MSP portion of the Data ALU result are
the same. Cleared otherwise. The MSP portion is defined by the
scaling mode. The U bit is computed as follows:

The result of calculating the U bit in this fashion is that the definition
of positive normalized number, p, is 0.5 ≤ p < 1.0 and the definition
of negative normalized number, n, is -1.0 ≤ n < -0.5.

N (Negative Bit) Set if the MS bit (bit 55 in arithmetic instructions or bit 47 in logical
instructions) of the Data ALU result is set. Cleared otherwise.

Z (Zero Bit) Set if the Data ALU result equals zero. Cleared otherwise.

V (Overflow Bit) Set if an arithmetic overflow occurs in the 56-bit Data ALU result
(40-bit result in Sixteen Bit mode). Cleared otherwise. This
indicates that the result cannot be represented in the 56-bit (40-bit)
accumulator; thus, the accumulator has overflowed.
In Arithmetic Saturation Mode, an arithmetic overflow occurs if the
Data ALU result is not representable in the accumulator without the
extension part, i.e. 48-bit accumulator (32-bit in Sixteen Bit Mode).

C (Carry Bit) Set if a carry is generated out of the MS bit of the Data ALU result
of an addition or if a borrow is generated out of the MS bit of the
Data ALU result of a subtraction. Cleared otherwise. The carry or
borrow is generated out of bit 55 of the Data ALU result. The carry
bit is also affected by bit manipulation, rotate, shift and compare
instructions. The carry bit is not affected by the Arithmetic
Saturation Mode.

S1 S0
Scaling
Mode

U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

A - 26 INSTRUCTION SET MOTOROLA

A-6 INSTRUCTIONS DESCRIPTIONS

The following section describes each instruction in the DSP56300 Core instruction set in
complete detail. Instructions which allow parallel moves include the notation “(parallel
move)” in both the Assembler Syntax and the Operation fields. The MOVE instruction is
equivalent to a NOP with parallel moves. Therefore, a detailed description of each parallel
move is given with the MOVE instruction details.

Whenever an instruction uses an accumulator as both a destination operand for data ALU
operation and as a source for a parallel move operation, the parallel move operation will
use the value in the accumulator prior to execution of any data ALU operation.

MOTOROLA INSTRUCTION SET A - 27

A-6.1 Absolute Value (ABS)

Description: Take the absolute value of the destination operand D and store the result in
the destination accumulator.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ABS ABS
Absolute Value

Operation: Assembler Syntax:

| D | ➞ D (parallel move) ABS D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ABS D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 28 INSTRUCTION SET MOTOROLA

A-6.2 Add Long with Carry (ADC)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long-
word operands if the extension register of the destination accumulator
(A2 or B2) is the sign extension of bit 47 of the destination accumulator
(A or B).

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADC ADC
Add Long with Carry

Operation: Assembler Syntax:

S+C+D ➞ D (parallel move) ADC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADC S,D DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-11 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 29

A-6.3 Add (ADD)

Description: Add the source operand S to the destination operand D and store the result
in the destination accumulator. The source can be a register (word - 24 bits, long word -
48 bits or accumulator - 56 bits), short immediate (6 bits) or long immediate (24 bits).

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Note: The carry bit is set correctly using word or long-word source operands if
the extension register of the destination accumulator (A2 or B2) is the
sign extension of bit 47 of the destination accumulator (A or B). Thus, the
carry bit is always set correctly using accumulator source operands, but
can be set incorrectly if A1, B1, A10, B10 or immediate operand are used
as source operands and A2 and B2 are not replicas of bit 47.

Condition Codes:

ADD ADD
Add

Operation: Assembler Syntax:

S+D➞D (parallel move) ADD S,D (parallel move)

#xx+D➞D ADD #xx,D

#xxxxxx+D➞D ADD #xxxxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 30 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

ADD S,D DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0

ADD #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-14 on page A-240)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 31

A-6.4 Shift Left and Add Accumulators (ADDL)

Description: Add the source operand S to two times the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addition
operation. The carry bit is set correctly if the source operand does not overflow as a result
of the left shift operation. The overflow bit may be set as a result of either the shifting or
addition operation (or both). This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADDL ADDL
Shift Left and Add Accumulators

Operation: Assembler Syntax:

S+2∗ D➞D (parallel move) ADDL S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✔

CCR

● V Set if overflow has occurred in A or B result or the MS bit of the destination
operand is changed as a result of the instruction’s left shift

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADDL S,D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

A - 32 INSTRUCTION SET MOTOROLA

A-6.5 Shift Right and Add Accumulators (ADDR)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition
operation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the addition operation and not by an overflow due to the
initial shifting operation. This instruction is useful for efficient divide and decimation in time
(DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADDR ADDR
Shift Right and Add Accumulators

Operation: Assembler Syntax:

S+D / 2➞D (parallel move) ADDR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADDR S,D DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

MOTOROLA INSTRUCTION SET A - 33

A-6.6 Logical AND (AND)

Description: Logically AND the source operand S with bits 47-24 of the destination
operand D and store the result in bits 47-24 of the destination accumulator. The source
can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This instruction is
a 24-bit operation. The remaining bits of the destination operand D are not affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

AND AND
Logical AND

Operation: Assembler Syntax:

S • D[47:24]➞D[47:24] (parallel move) AND S,D (parallel move)

#xx • D[47:24]➞D[47:24] AND #xx,D

#xxxxxx • D[47:24]➞D[47:24] AND #xxxxxx,D

where •denotes the logical AND operator

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✕ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 34 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

AND S,D DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0

AND #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 35

A-6.7 AND Immediate with Control Register (ANDI)

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register (CCR) is specified as
the destination operand.

Condition Codes:

Instruction Formats and opcodes:

ANDI ANDI
AND Immediate with Control Register

Operation: Assembler Syntax:
#xx • D➞D AND(I) #xx,D
where •denotes the logical AND operator

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For CCR Operand:
● S Cleared if bit 7 of the immediate operand is cleared
● L Cleared if bit 6 of the immediate operand is cleared
● E Cleared if bit 5 of the immediate operand is cleared
● U Cleared if bit 4 of the immediate operand is cleared
● N Cleared if bit 3 of the immediate operand is cleared
● Z Cleared if bit 2 of the immediate operand is cleared
● V Cleared if bit 1 of the immediate operand is cleared
● C Cleared if bit 0 of the immediate operand is cleared
For MR and OMR Operands: The condition codes are not affected using these
operands.

23 16 15 8 7 0

AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E

A - 36 INSTRUCTION SET MOTOROLA

Instruction fields:

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-13 on
page A-239)

{#xx} iiiiiiii Immediate Short Data

MOTOROLA INSTRUCTION SET A - 37

A-6.8 Arithmetic Shift Accumulator Left (ASL)

Assembler Syntax:

ASL D (parallel move)

ASL #ii,S2,D

ASL S1,S2,D

Description:

Single bit shift:

Arithmetically shift the destination accumulator D one bit to the left and store the result in
the destination accumulator. The MS bit of D prior to instruction execution is shifted into
the carry bit C and a zero is shifted into the LS bit of the destination accumulator D.

Multi-bit shift:

The contents of the source accumulator S2 are shifted left #ii bits. Bits shifted out of
position 55 are lost, but for the last bit which is latched in the carry bit C. Zeros are supplied
to the vacated positions on the right. The result is placed into destination accumulator D.
The number of bits to shift is determined by the 6-bit immediate field in the instruction, or
by the 6-bit unsigned integer located in the 6 LSBs of the control register S1. If a zero shift
count is specified, the carry bit is cleared. The difference between ASL and LSL is that
ASL operates on the entire 56 bits of the accumulator and therefore sets the V bit if the
number overflowed.

This is a 56 bit operation.

ASL ASL
Arithmetic Shift Accumulator Left

47
Operation:

0 C

0

2355

A - 38 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ●

CCR

● V Set if bit 55 is changed any time during the shift operation. Cleared otherwise.
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero.
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 8 7 0

ASL D DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0

ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

Example: ASL #7,A, B

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0

4
4
7

2
Shift left 7

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Shift left 7

0

0

0

C

0 1 0 0 1 1 0 0

1 0 1 0 1 0 0 0A

B

MOTOROLA INSTRUCTION SET A - 39

Instruction Fields:

In the control register S1: bits 5-0 (LSB) are used as #ii field, and the rest of the register
is ignored.

{S2} S Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiiii 6 bit unsigned integer [0-55] denoting the shift amount

A - 40 INSTRUCTION SET MOTOROLA

A-6.9 Arithmetic Shift Accumulator Right (ASR)

Assembler Syntax:

ASR D (parallel move)

 ASR #ii,S2,D

ASR S1,S2,D

Description:

Single bit shift:

Arithmetically shift the destination operand D one bit to the right and store the result in the
destination accumulator. The LS bit of D prior to instruction execution is shifted into the
carry bit C, and the MS bit of D is held constant.

Multi-bit shift:

The contents of the source accumulator S2 are shifted right #ii bits. Bits shifted out of
position 0 are lost, but for the last bit which is latched in the carry bit. Copies of the MSB
are supplied to the vacated positions on the left. The result is placed into destination
accumulator D. The number of bits to shift is determined by the 6-bit immediate field in the
instruction, or by the 6-bit unsigned integer located in the 6 LSBs of the control register
S1. If a zero shift count is specified, the carry bit is cleared.

This is a 56- or 40-bit operation, depending on SA bit value in status register.

Note: if the number of shifts indicated by the 6 LSBs of the control register or by the
immediate field, exceeds the value of 56 (40 in sixteen bit arithmetic mode), then the result
would be undefined.

ASR ASR
Arithmetic Shift Accumulator Right

Operation:
0 C55 47 23

MOTOROLA INSTRUCTION SET A - 41

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 8 7 0

ASR D DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0

ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

Example: ASR X0,A,B

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x 0 0 0 0 1 1

0
2
3

shift = 3

X0

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1

0

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0

Shift right 3 Shift right 3

A

B 0

c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

5
5

5
5

A - 42 INSTRUCTION SET MOTOROLA

Instruction Fields:

In the control register S1: bits 5-0 (LSB) are used as #ii field, and the rest of the register
is ignored.

{S2} S Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiiii 6 bit unsigned integer [0-55] denoting the shift amount

MOTOROLA INSTRUCTION SET A - 43

A-6.10 Branch Conditionally (Bcc)

Description: If the specified condition is true, program execution continues at location
PC+displacement. If the specified condition is false, the PC is incremented and program
execution continues sequentially. The displacement is a 2’s complement 24-bit integer that
represents the relative distance from the current PC to the destination PC. Short
Displacement, Long Displacement and Address Register PC Relative addressing modes
may be used. The Short Displacement 9-bit data is sign extended to form the PC relative
displacement.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Bcc Bcc
Branch Conditionally

Operation: Assembler Syntax:

If cc, then PC+xxxx ➞ PC Bcc xxxx
else PC+1 ➞ PC

If cc, then PC+xxx ➞ PC Bcc xxx
else PC+1 ➞ PC

If cc, then PC+Rn ➞ PC Bcc Rn
else PC+1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

A - 44 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

Bcc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 C C C C

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

MOTOROLA INSTRUCTION SET A - 45

A-6.11 Bit Test and Change (BCHG)

Description: Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. The bit to be tested is selected by an immediate bit number from
0–23. This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a test-
and-change capability which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes:

BCHG BCHG
Bit Test and Change

Operation: Assembler Syntax:

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:ea

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:aa

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:pp

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:qq

D[n] ➞ C D[n] ➞ D[n] BCHG #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For destination operand SR:
● C Complemented if bit 0 is specified. Not affected otherwise.
● V Complemented if bit 1 is specified. Not affected otherwise.
● Z Complemented if bit 2 is specified. Not affected otherwise.
● N Complemented if bit 3 is specified. Not affected otherwise.
● U Complemented if bit 4 is specified. Not affected otherwise.
● E Complemented if bit 5 is specified. Not affected otherwise.
● L Complemented if bit 6 is specified. Not affected otherwise.
● S Complemented if bit 7 is specified. Not affected otherwise.

A - 46 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.
MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise
For other destination operands: MR status bits are not affected.

23 16 15 8 7 0

BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b

MOTOROLA INSTRUCTION SET A - 47

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X /Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

A - 48 INSTRUCTION SET MOTOROLA

A-6.12 Bit Test and Clear (BCLR)

Description: Test the nth bit of the destination operand D, clear it and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0–23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-clear
capability which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

Condition Codes:

BCLR BCLR
Bit Test and Clear

Operation: Assembler Syntax:

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:ea

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:aa

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:pp

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:qq

D[n] ➞ C 0 ➞ D[n] BCLR #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

CCR Condition Codes:
For destination operand SR:
● C Cleared if bit 0 is specified. Not affected otherwise.
● V Cleared if bit 1 is specified. Not affected otherwise.
● Z Cleared if bit 2 is specified. Not affected otherwise.
● N Cleared if bit 3 is specified. Not affected otherwise.
● U Cleared if bit 4 is specified. Not affected otherwise.

MOTOROLA INSTRUCTION SET A - 49

● E Cleared if bit 5 is specified. Not affected otherwise.
● L Cleared if bit 6 is specified. Not affected otherwise.
● S Cleared if bit 7 is specified. Not affected otherwise.

For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.

MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise

A - 50 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

MOTOROLA INSTRUCTION SET A - 51

A-6.13 Branch Always (BRA)

Description:

Program execution continues at location PC+displacement. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. Short Displacement, Long Displacement and Address Register PC
Relative addressing modes may be used. The Short Displacement 9-bit data is sign
extended to form the PC relative displacement.

Condition Codes

:

BRA BRA

Branch Always

Operation: Assembler Syntax:

PC+xxxx

➞

 Pc BRA xxxx

PC+xxx

➞

 Pc BRA xxx

PC+Rn

➞

 Pc BRA Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

A - 52 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes

:

Instruction Fields

:

23 16 15 8 7 0

BRA xxxx

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRA xxx

0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0

BRA Rn

0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0

{xxxx}

24-bit PC Relative Long Displacement

{xxx} aaaaaaaaa

Signed PC Relative Short Displacement

{Rn} RRR

Address register [R0-R7]

MOTOROLA INSTRUCTION SET A - 53

A-6.14 Branch if Bit Clear (BRCLR)

Description:

The nth bit in the source operand is tested. If the tested bit is cleared,
program execution continues at location PC+displacement. If the tested bit is set, the PC
is incremented and program execution continues sequentially. However, the address
register specified in the effective address field is always updated independently of the
condition. The displacement is a 2’s complement 24-bit integer that represents the relative
distance from the current PC to the destination PC. The 24-bit displacement is contained
in the extension word of the instruction. All memory alterable addressing modes may be
used to reference the source operand. Absolute Short, I/O Short and Register Direct
addressing modes may also be used. Note that if the specified source operand S is the
SSH, the stack pointer register will be decremented by one. The bit to be tested is selected
by an immediate bit number 0-23.

BRCLR BRCLR

Branch if bit Clear

Operation: Assembler Syntax:

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:ea,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y],aa,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:pp,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:qq,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,S,xxxx
else PC+ 1

➞

PC

A - 54 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

BRCLR #n,[X or Y]:ea,xxxx

0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:aa,xxxx

0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:pp,xxxx

0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:qq,xxxx

0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,S,xxxx

0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 0 b b b b b

PC RELATIVE DISPLACEMENT

MOTOROLA INSTRUCTION SET A - 55

Instruction Fields

:

{#n} bbbbb

Bit number [0-23]

{ea} MMMRRR

Effective Address (see Table A-19 on page A-242)

{X/Y} S

Memory Space [X,Y] (see Table A-17 on page A-241)

{xxxx}

24-bit PC relative displacement

{aa} aaaaaa

Absolute Address [0-63]

{pp} pppppp

I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]

{qq} qqqqqq

I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{S} DDDDDD

Source register [all on-chip registers] (see Table A-22 on page A-
243)

A - 56 INSTRUCTION SET MOTOROLA

A-6.15 Exit Current Do Loop Conditionally (BRKcc)

Description:

 Exit conditionally the current hardware DO loop before the current loop
counter (LC) equals one. It also terminates the DO FOREVER (or DOR FOREVER) loop.
If the value of the current DO loop counter (LC) is needed, it must be read before the
execution of the BRKcc instruction. Initially, the PC is updated from the LA, the loop flag
(LF) and the ForeVer flag (FV) are restored and the remaining portion of the status register
(SR) is purged from the system stack. The loop address (LA) and the loop counter (LC)
registers are then restored from the system stack.

The conditions that the term “

cc

” can specify are listed on Table A-43 on page A-251.

Condition Codes

:

Instruction Formats and opcodes:

Instruction Fields

:

BRKcc BRKcc

Exit Current Do Loop Conditionally

Operation: Assembler Syntax:

If cc LA+1

➞

PC; SSL(LF,FV)

➞

 SR; SP-1

➞

 SP BRKcc
SSH

 ➞

 LA; SSL

➞

 LC; SP-1

➞

 SP
else PC+1

➞

 PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

BRKcc

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C

{cc} CCCC

Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 57

A-6.16 Branch if Bit Set (BRSET)

Description:

The nth bit in the source operand is tested. If the tested bit is set, program
execution continues at location PC+displacement. If the tested bit is cleared, the PC is
incremented and program execution continues sequentially. However, the address
register specified in the effective address field is always updated independently of the
condition. The displacement is a 2’s complement 24-bit integer that represents the relative
distance from the current PC to the destination PC. The 24-bit displacement is contained
in the extension word of the instruction. All memory alterable addressing modes may be
used to reference the source operand. Absolute Short, I/O Short and Register Direct
addressing modes may also be used. Note that if the specified source operand S is the
SSH, the stack pointer register will be decremented by one. The bit to be tested is selected
by an immediate bit number 0-23.

BRSET BRSET

Branch if bit Set

Operation: Assembler Syntax:

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:ea,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y],aa,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:pp,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:qq,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,S,xxxx
else PC+ 1

➞

PC

A - 58 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BRSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 1 b b b b b

PC RELATIVE DISPLACEMENT

MOTOROLA INSTRUCTION SET A - 59

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

A - 60 INSTRUCTION SET MOTOROLA

A-6.17 Branch to Subroutine Conditionally (BScc)

Description: If the specified condition is true, the address of the instruction immediately
following the BScc instruction and the status register are pushed onto the stack. Program
execution then continues at location PC+displacement. If the specified condition is false,
the PC is incremented and program execution continues sequentially. The displacement
is a 2’s complement 24-bit integer that represents the relative distance from the current
PC to the destination PC. Short Displacement, Long Displacement and Address Register
PC Relative addressing modes may be used. The Short Displacement 9-bit data is sign
extended to form the PC relative displacement.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

BScc BScc
Branch to Subroutine Conditionally

Operation: Assembler Syntax:

If cc, then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BScc xxxx
else PC+1➞PC

If cc, then PC ➞SSH;SR ➞SSL;PC+xxx ➞PC BScc xxx
else PC+1➞PC

If cc, then PC ➞SSH;SR ➞SSL;PC+Rn ➞PC BScc Rn
else PC+1➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 61

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BScc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 C C C C

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0

BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

A - 62 INSTRUCTION SET MOTOROLA

A-6.18 Branch to Subroutine if Bit Clear (BSCLR)

Description: The nth bit in the source operand is tested. If the tested bit is cleared, the
address of the instruction immediately following the BSCLR instruction and the status
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is set, the PC is incremented and program execution
continues sequentially. However, the address register specified in the effective address
field is always updated independently of the condition. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes may be used to reference the source
operand. Absolute Short, I/O Short and Register Direct addressing modes may also be
used. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one; if the condition is true, the push operation will write over the stack
level where the SSH value was taken. The bit to be tested is selected by an immediate bit
number 0-23.

BSCLR BSCLR
Branch to Subroutine if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:ea,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y],aa,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:pp,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:qq,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,S,xxxx
else PC+1➞PC

MOTOROLA INSTRUCTION SET A - 63

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 0 b b b b b

PC RELATIVE DISPLACEMENT

A - 64 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 65

A-6.19 Bit Test and Set (BSET)

Description: Test the nth bit of the destination operand D, set it, and store the result in the
destination location. The state of the nth bit is stored in the carry bit C of the condition code
register. The bit to be tested is selected by an immediate bit number from 0–23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-set
capability which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

When this instruction performs a bit manipulation/test on either the A or B 56-bit
accumulator, it optionally shifts the accumulator value according to scaling mode bits S0
and S1 in the system status register (SR). In the data out of the shifter indicates that the
accumulator extension register is in use, the instruction will act on the limited value (limited
on the maximum positive or negative saturation constant). In addition the “L” flag in the SR
will be set accordingly.

Condition Codes:

BSET BSET
Bit Test and Set

Operation: Assembler Syntax:

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:ea

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:aa

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:pp

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:qq

D[n] ➞ C 1➞ D[n] BSET #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

A - 66 INSTRUCTION SET MOTOROLA

CCR Condition Codes:
For destination operand SR:
● C Set if bit 0 is specified. Not affected otherwise.
● V Set if bit 1 is specified. Not affected otherwise.
● Z Set if bit 2 is specified. Not affected otherwise.
● N Set if bit 3 is specified. Not affected otherwise.
● U Set if bit 4 is specified. Not affected otherwise.
● E Set if bit 5 is specified. Not affected otherwise.
● L Set if bit 6 is specified. Not affected otherwise.
● S Set if bit 7 is specified. Not affected otherwise.
For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.

MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise
For other destination operands: MR status bits are not affected.

MOTOROLA INSTRUCTION SET A - 67

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

A - 68 INSTRUCTION SET MOTOROLA

A-6.20 Branch to Subroutine (BSR)

Description: The address of the instruction immediately following the BSR instruction
and the status register are pushed onto the stack. Program execution then continues at
location PC+displacement. The displacement is a 2’s complement 24-bit integer that
represents the relative distance from the current PC to the destination PC. Short
Displacement, Long Displacement and Address Register PC Relative addressing modes
may be used. The Short Displacement 9-bit data is sign extended to form the PC relative
displacement.

Condition Codes:

BSR BSR
Branch to Subroutine

Operation: Assembler Syntax:

PC ➞SSH;SR ➞SSL;PC+xxxx➞PC BSR xxxx

PC ➞SSH;SR ➞SSL;PC+xxx➞PC BSR xxx

PC ➞SSH;SR ➞SSL;PC+Rn➞PC BSR Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 69

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BSR xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0

BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0

{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

A - 70 INSTRUCTION SET MOTOROLA

A-6.21 Branch to Subroutine if Bit Set (BSSET)

Description: The nth bit in the source operand is tested. If the tested bit is set, the
address of the instruction immediately following the BSSET instruction and the status
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is cleared, the PC is incremented and program
execution continues sequentially. However, the address register specified in the effective
address field is always updated independently of the condition. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes may be used to reference the source
operand. Absolute Short, I/O Short and Register Direct addressing modes may also be
used. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one; if the condition is true, the push operation will write over the stack
level where the SSH value was taken. The bit to be tested is selected by an immediate bit
number 0-23.

BSSET BSSET
Branch to Subroutine if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:ea,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y],aa,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:pp,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:qq,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,S,xxxx
else PC+1➞PC

MOTOROLA INSTRUCTION SET A - 71

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 1 b b b b b

PC RELATIVE DISPLACEMENT

A - 72 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 73

A-6.22 Bit Test (BTST)

Description: Test the nth bit of the destination operand D. The state of the nth bit is stored
in the carry bit C of the condition code register. The bit to be tested is selected by an
immediate bit number from 0–23. This instruction is useful for performing serial to parallel
conversion when used with the appropriate rotate instructions. This instruction can use all
memory alterable addressing modes.

Condition Codes:

BTST BTST
Bit Test

Operation: Assembler Syntax:

D[n] ➞ C BTST #n,[XorY]:ea

D[n] ➞ C BTST #n,[XorY]:aa

D[n] ➞ C BTST #n,[XorY]:pp

D[n] ➞ C BTST #n,[XorY]:qq

D[n] ➞ C BTST #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

● C Set if bit tested is set. Cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
SP — Stack Pointer:
For destination operand SSH: SP — Decrement by 1.
For other destination operands: Not affected

A - 74 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

MOTOROLA INSTRUCTION SET A - 75

A-6.23 Count Leading Bits (CLB)

Description: Count leading zeros or ones according to bit 55 of the source accumulator.
Scan bits 55-0 of the source accumulator starting from bit 55. The MSP of the destination
accumulator is loaded with 9 minus the number of consecutive leading ones or zeros
found. The result is a signed integer in MSP whose range of possible values is from +8 to
-47. This is a 56-bit operation. The LSP of the destination accumulator D is filled with
zeros. The EXP of the destination accumulator D is sign extended.

Notes:

1) If the source accumulator is all zeros then the result will be zero.

2) When in sixteen bit arithmetic mode, the count ignores the unused 8 least significant
bits of the MSP and LSP of the source accumulator. Therefore the result is a signed
integer whose range of possible values is from +8 to -31.

3) This instruction may be used in conjunction with NORMF instruction, to specify the shift
direction and amount needed for normalization.

Condition Codes:

CLB CLB
Count Leading Bits

Operation: Assembler Syntax:

If S[55]=0 then
9 - (Number of consecutive leading zeros in S[55:0]) ➞ D[47:24]

CLB S,D

else
 9 - (Number of consecutive leading ones in S[55:0]) ➞ D[47:24]

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set. Cleared otherwise
● Z Set if bits 47-24 of the result are zero.
● V Always cleared
✕ This bit is unchanged by the instruction

A - 76 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} S Source accumulator [A,B] (see Table A-10 on page A-239)

Example: CLB B,A

5 Leading ones

Result in A is 9 - 5 = 4

0 1 0 0

4
4
7

2

1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0

B

A

1 1 1 1 1 0 1 1

0 0

0

0 0 0 0 0 0 0 0

MOTOROLA INSTRUCTION SET A - 77

A-6.24 Clear accumulator (CLR)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

CLR CLR
Clear Accumulator

Operation: Assembler Syntax:

0➞ D (parallel move) CLR D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ● ● ● ● ● ✕

CCR

● E Always cleared
● U Always set
● N Always cleared
● Z Always set
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

CLR D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 78 INSTRUCTION SET MOTOROLA

A-6.25 Compare (CMP)

Description: Subtract the source one operand from the source two accumulator, S2, and
update the condition code register. The result of the subtraction operation is not stored.

The source one operand can be a register (word - 24 bits or accumulator - 56 bits), short
immediate (6 bits) or long immediate (24 bits). When using 6-bit immediate data, the data
is interpreted as an unsigned integer. That is, the 6 bits will be right aligned and the
remaining bits will be zeroed to form a 24-bit source operand.

Note: This instruction subtracts 56-bit operands. When a word is specified as the
source one operand, it is sign extended and zero filled to form a valid 56-bit
operand. For the carry to be set correctly as a result of the subtraction, S2 must
be properly sign extended. S2 can be improperly sign extended by writing A1
or B1 explicitly prior to executing the compare so that A2 or B2, respectively,
may not represent the correct sign extension. This note particularly applies to
the case where it is extended to compare 24-bit operands such as X0 with A1.

Condition Codes:

CMP CMP
Compare

Operation: Assembler Syntax:

S2 – S1 (parallel move) CMP S1, S2 (parallel move)

S2 – #xx CMP #xx, S2

S2 – #xxxxxx CMP #xxxxxx , S2

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 79

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

CMP S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0

CMP #xxxxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

IMMEDIATE DATA EXTENSION

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{S2} d Source two accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

A - 80 INSTRUCTION SET MOTOROLA

A-6.26 Compare Magnitude (CMPM)

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the condition code
register. The result of the subtraction operation is not stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as
S1, it is sign extended and zero filled to form a valid 56-bit operand. For
the carry to be set correctly as a result of the subtraction, S2 must be
properly sign extended. S2 can be improperly sign extended by writing
A1 or B1 explicitly prior to executing the compare so that A2 or B2, re-
spectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit
operands such as X0 with A1.

Condition Codes:

Instruction Formats and opcodes:

CMPM CMPM
Compare Magnitude

Operation: Assembler Syntax:

|S2| – |S1|(parallel move) CMPM S1, S2 (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

CMPM S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 81

Instruction Fields:

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{S2} d Source two accumulator [A,B] (see Table A-10 on page A-239)

A - 82 INSTRUCTION SET MOTOROLA

A-6.27 Compare Unsigned (CMPU)

Description: Subtract the source one operand, S1, from the source two accumulator, S2,
and update the condition code register. The result of the subtraction operation is not
stored.

Note: This instruction subtracts a 24 or 48-bit unsigned operand from a 48-bit
unsigned operand. When a 24-bit word is specified as S1 it is aligned to the left
and zero filled to form a valid 48-bit operand. If an accumulator is specified as
an operand, the value in the EXP does not affect the operation.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

CMPU CMPU
Compare Unsigned

Operation: Assembler Syntax:

S2 – S1 CMPU S1, S2

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✔ ● ● ✔

CCR

● V Always cleared
● Z Set if bits 47-0 of the result are zero
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d

{S1} ggg Source one register [A,B,X0,Y0,X1,Y1] (see Table A-15 on page A-240)
{S2} d Source two accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 83

A-6.28 Enter Debug Mode (DEBUG)

Description: Enter the debug mode and wait for OnCE commands.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

DEBUG DEBUG
Enter Debug Mode

Operation: Assembler Syntax:

Enter the debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

A - 84 INSTRUCTION SET MOTOROLA

A-6.29 Enter Debug Mode Conditionally (DEBUGcc)

Description: If the specified condition is true, enter the debug mode and wait for OnCE
commands. If the specified condition is false, continue with the next instruction.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

DEBUGcc DEBUGcc
Enter Debug Mode Conditionally

Operation: Assembler Syntax:

If cc, then enter the debug mode DEBUGcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 85

A-6.30 Decrement by One (DEC)

Description: Decrement by one the specified operand and store the result in the
destination accumulator. One is subtracted from the LSB of D.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

DEC DEC
Decrement by One

Operation: Assembler Syntax:

D - 1➞ D DEC D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEC D 0 1 0 1 d

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 86 INSTRUCTION SET MOTOROLA

A-6.31 Divide Iteration (DIV)

Operation: IfD[55]⊕ S[23]=1,

Assembler Syntax: DIV S,D

Description:

Divide the destination operand D by the source operand S and store the result in the
destination accumulator D. The 48-bit dividend must be a positive fraction which has
been sign extended to 56-bits and is stored in the full 56-bit destination
accumulator D. The 24-bit divisor is a signed fraction and is stored in the source
operand S. Each DIV iteration calculates one quotient bit using a nonrestoring fractional
division algorithm (see description on the next page). After the execution of the first DIV
instruction, the destination operand holds both the partial remainder and the formed
quotient. The partial remainder occupies the high-order portion of the destination
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (A0 or B0) and is a positive fraction. One bit of
the formed quotient is shifted into the LS bit of the destination accumulator at the start of
each DIV iteration. The formed quotient is the true quotient if the true quotient is positive.
If the true quotient is negative, the formed quotient must be negated. Valid results are
obtained only when |D| < |S| and the operands are interpreted as fractions. Note that
this condition ensures that the magnitude of the quotient is less than one (i.e., is fractional)
and precludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous

DIV DIV
Divide Iteration

55 47 23 0

C+Sthen

55 47 23 0

C–Selse

Destination Accumulator D

Destination Accumulator D

where ⊕ denotes the logical exclusive OR operator

D

D

MOTOROLA INSTRUCTION SET A - 87

partial remainder. To produce an N-bit quotient, the DIV instruction is executed N times
where N is the number of bits of precision desired in the quotient, 1;leN;le24. Thus, for a
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the DIV
instruction N times produces an N-bit quotient and a 48-bit remainder which has (48–N)
bits of precision and whose N MS bits are zeros. The partial remainder is not a true
remainder and must be corrected due to the nonrestoring nature of the division algorithm
before it may be used. Therefore, once the divide is complete, it is necessary to reverse
the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of the
following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive
OR operation is performed on bit 55 of the destination operand D and bit
23 of the source operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination ac-
cumulator D is shifted one bit to the left. The carry bit C is moved into the
LS bit (bit 0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-
bit source operand S (signed divisor) is either added to or subtracted from
the MSP portion of the destination accumulator (A1 or B1), and the result
is stored back into the MSP portion of that destination accumulator. If the
result of the exclusive OR operation previously described was a “1” (i.e.,
the sign bits were different), the source operand S is added to the accu-
mulator. If the result of the exclusive OR operation was a “0” (i.e., the sign
bits were the same), the source operand S is subtracted from the accumu-
lator. Due to the automatic sign extension of the 24-bit signed divisor, the
addition or subtraction operation correctly sets the carry bit C of the con-
dition code register with the next quotient bit.

For extended precision division (i.e., for N-bit quotients where N>24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For further
information on division algorithms, refer to pages 524–530 of Theory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 of
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages 213–
223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang (John
Wiley and Sons, 1979), or other references as required.

A - 88 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ● ✕ ✕ ✕ ✕ ● ●

CCR

● L Set if overflow bit V is set
● V Set if the MS bit of the destination operand is changed as a result of the

instruction’s left shift operation
● C Set if bit 55 of the result is cleared.
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 89

A-6.32 Double Precision MAC with 24 bit Right Shift (DMAC)

Description: Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D, which has been previously
shifted 24 bits to the right. The multiplication can be performed on signed numbers (ss),
unsigned numbers (uu), or mixed (unsigned ∗ signed, (su)). The “–” sign option is used to
negate the specified product prior to accumulation. The default sign option is “+”. This
instruction is optimized for multiprecision multiplication support.

Condition Codes:

Instruction Formats and opcodes:

DMAC DMAC
Double (Multi) Precision Multiply Accumulate

with Right Shift

Operation: Assembler Syntax:

[D>>24]±S1∗ S2➞D
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D>>24]±S1∗ S2➞D
(S1 signed, S2 unsigned)

DMACsu (±)S2,S1,D (no parallel move)

[D>>24]±S1∗ S2➞D
(S1 unsigned, S2 unsigned)

DMACuu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q

A - 90 INSTRUCTION SET MOTOROLA

Instruction Fields:

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
 (see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±±} k Sign [+,-] (see Table A-29 on page A-244)
{ss,su,uu} ss [ss,su,uu] (see Table A-39 on page A-248)

MOTOROLA INSTRUCTION SET A - 91

A-6.33 Start Hardware Loop (DO)

Description: Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is terminated
by the destination operand (previously shown as “expr”). No overhead other than the
execution of this DO instruction is required to set up this loop. DO loops can be nested
and the loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the loop
counter (LC) registers are pushed onto the system stack. The DO instruction’s source
operand is then loaded into the loop counter (LC) register. The LC register contains the
remaining number of times the DO loop will be executed and can be accessed from inside
the DO loop subject to certain restrictions. If LC initial value is zero and the 16-bit
compatibility mode bit (bit 13, SC, in the Chip Status Register) is cleared, the DO loop is
not executed. If LC initial value is zero but SC is set, the DO loop will be executed 65,536
times. All address register indirect addressing modes may be used to generate the
effective address of the source operand. If immediate short data is specified, the 12 LS
bits of LC are loaded with the 12-bit immediate value, and the 12 MS bits of LC are

DO DO
Start Hardware Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DO [Xor Y]:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[Xor Y]:aa ➞ LC DO [Xor Y]:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DO #xxx,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DO S,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

End of Loop:
SSL(LF) ➞ SR;SP–1 ➞ SP
SSH ➞ LA;SSL ➞ LC;SP – 1 ➞ SP

A - 92 INSTRUCTION SET MOTOROLA

cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO loops.
The DO instruction’s destination operand (shown as “expr”) is then loaded into the loop
address (LA) register. This 24 bit operand is located in the instruction’s 24-bit absolute
address extension word as shown in the opcode section. The value in the program counter
(PC) register pushed onto the system stack is the address of the first instruction following
the DO instruction (i.e., the first actual instruction in the DO loop). This value is read (i.e.,
copied but not pulled) from the top of the system stack to return to the top of the loop for
another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the “end-
of-loop” processing begins.

When executing a DO loop, the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-loop addresses must also be nested and are not allowed to
be equal. The assembler generates an error message when DO loops are improperly
nested.

Note: The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop ex-
pression “expr” and subtracting one. This is done to accommodate the
case where the last word in the DO loop is a two-word instruction. Thus,
the end-of-loop expression “expr” in the source code must represent the
address of the instruction AFTER the last instruction in the loop.

During the “end-of-loop” processing, the loop flag (LF) from the lower portion (SSL) of SP
is written into the status register (SR), the contents of the loop address (LA) register are
restored from the upper portion (SSH) of (SP–1), the contents of the loop counter (LC) are
restored from the lower portion (SSL) of (SP–1) and the stack pointer (SP) is decremented
by two. Instruction fetches now continue at the address of the instruction following the last
instruction in the DO loop. Note that LF is the only bit in the status register (SR) that is
restored after a hardware DO loop has been exited.

Note: The loop flag (LF) is cleared by a hardware reset.

MOTOROLA INSTRUCTION SET A - 93

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ✕ ✕ ✕ ✕ ✕ ✕

CCR

● S Set if the instruction sends A/B accumulator contents to XDB or YDB.
● L Set if data limiting occurred [see note 2]
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{expr} 24-bit Absolute Address in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registers, except SSH] (see Table A-

22 on page A-243)

A - 94 INSTRUCTION SET MOTOROLA

Note:

For DO SP, expr The actual value that will be loaded into the loop counter
(LC) is the value of the stack pointer (SP) before the
execution of the DO instruction, incremented by 1.

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

For DO SSL, expr The loop counter (LC) will be loaded with its previous value
which was saved on the stack by the DO instruction itself.

MOTOROLA INSTRUCTION SET A - 95

A-6.34 Start Infinite Loop (DO FOREVER)

Description: Begin a hardware DO loop that is to be repeated for ever and whose range
of execution is terminated by the destination operand (shown above as “expr”). No
overhead other than the execution of this DO FOREVER instruction is required to set up
this loop. DO FOREVER loops can be nested. During the first instruction cycle, the current
contents of the Loop Address (LA) and the Loop Counter (LC) registers are pushed onto
the system stack. The loop counter (LC) register is pushed onto the stack but is not
updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter (PC)
register and the Status Register (SR) are pushed onto the system stack. Stacking the LA,
LC, PC, and SR registers permits nesting DO FOREVER loops. The DO FOREVER in-
struction’s destination operand (shown as “expr”) is then loaded into the Loop Address
(LA) register . This 24-bit operand is located in the instruction’s 24-bit absolute address
extension word as shown in the opcode section. The value in the Program Counter (PC)
register pushed onto the system stack is the address of the first instruction following the
DO FOREVER instruction (i.e., the first actual instruction in the DO FOREVER loop). This
value is read (i.e., copied but not pulled) from the top of the system stack to return to the
top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. This
results in the PC being repeatedly compared with LA to determine if the last instruction in
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is loaded into the PC to fetch the first instruction in the loop again. The
loop counter (LC) register is then decremented by one without being tested. This register
can be used by the programer to count the number of loops already executed.

When executing a DO FOREVER loop, the instructions are actually fetched each time
through the loop. Therefore, a DO FOREVER loop can be interrupted. DO FOREVER
loops can also be nested. When DO FOREVER loops are nested, the end of loop
addresses must also be nested and are not allowed to be equal. The assembler generates
an error message when DO FOREVER loops are improperly nested.

DO FOREVER DO FOREVER
Start Infinite Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL DO FOREVER,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF; 1 ➞FV

A - 96 INSTRUCTION SET MOTOROLA

Note: The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop ex-
pression “expr” and subtracting one. This is done to accommodate the
case where the last word in the DO loop is a two-word instruction. Thus,
the end-of-loop expression “expr” in the source code must represent the
address of the instruction AFTER the last instruction in the loop.

The loop counter (LC) register is never tested by the DO FOREVER in-
struction and the only way of terminating the loop process is to use either
the ENDDO or BRKcc instructions. LC is decremented every time
PC=LA so that it can be used by the programmer to keep track of the
number of times the DO FOREVER loop has been executed. If the
programer wants to initialize LC to a particular value before the DO
FOREVER, care should be taken to save it before if the DO loop is
nested. If so, LC should also be restored immediately after exiting the
nested DO FOREVER loop.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None.

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

ABSOLUTE ADDRESS EXTENSION WORD

MOTOROLA INSTRUCTION SET A - 97

A-6.35 Start PC Relative Hardware Loop (DOR)

Description:

This instruction initiates the beginning of a PC relative hardware program loop. The
current loop address (LA) and loop counter (LC) values are pushed onto the system stack.
With proper system stack management, this allows unlimited nested hardware DO loops.
The PC and SR are pushed onto the system stack. The PC is added to the 24-bit address
displacement extension word and the resulting address is loaded into the loop address
register (LA). The effective address specifies the address of the loop count which is loaded
into the loop counter (LC). The DO loop is executed LC times. If LC initial value is zero and
the 16-bit compatibility mode bit (bit 13, SC, in the Chip Status Register) is cleared, the
DO loop is not executed. If LC initial value is zero but SC is set, the DO loop will be
executed 65,536 times. All address register indirect addressing modes (less Long
Displacement) may be used. Register Direct addressing mode may also be used. If
immediate short data is specified, the LC is loaded with the zero extended 12-bit
immediate data.

During hardware loop operation, each instruction is fetched each time through the
program loop. Therefore, instructions being executed in a hardware loop are interruptible
and may be nested. The value of the PC pushed onto the system stack is the location of

DOR DOR
Start PC relative Hardware Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DOR [Xor Y]:ea,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DOR [Xor Y]:aa,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DOR #xxx,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DOR S,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

A - 98 INSTRUCTION SET MOTOROLA

the first instruction after the DOR instruction. This value is read from the top of the system
stack to return to the start of the program loop. When DOR instructions are nested, the
end of loop addresses must also be nested and are not allowed to be equal.

The assembler calculates the end of loop address LA (PC relative address extension word
xxxx) by evaluating the end of loop expression and subtracting one. Thus the end of loop
expression in the source code represents the “next address” after the end of the loop. If a
simple end of loop address label is used, it should be placed after the last instruction in
the loop.

Since the end of loop comparison is at fetch time and ahead of the end of loop execution,
instructions which change program flow or change the system stack may not be used near
the end of the loop without some restrictions. Proper hardware loop operation is
guaranteed if no instruction starting at address LA-2, LA-1 or LA specifies the program
controller registers SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or
specifies SSH as a source or destination register. Also, SSH cannot be specified as a
source register in the DOR instruction itself. The assembler will generate a warning if the
restricted instructions are found within their restricted boundaries.

Implementation Notes:

 DOR SP,xxxx The actual value that will be loaded in the LC is the value of the SP before
the DOR instruction incremented by one.

 DOR SSL,xxxx The LC will be loaded with its previous value that was saved in the stack
by the DOR instruction itself.

Condition Codes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ✕ ✕ ✕ ✕ ✕ ✕

CCR

● S Set if the instruction sends A/B accumulator contents to XDB or YDB.
● L Set if data limiting occurred
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 99

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

DOR [X or Y]:ea,label 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR [X or Y]:aa,label 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR #xxx, label 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 1 h h h h

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR S, label 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{label} 24-bit Address Displacement in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registers except SSH] (see Table A-22

on page A-243)

A - 100 INSTRUCTION SET MOTOROLA

A-6.36 Start PC Relative Infinite Loop (DOR FOREVER)

Description: Begin a hardware DO loop that is to be repeated for ever and whose range
of execution is terminated by the destination operand (shown above as label). No
overhead other than the execution of this DOR FOREVER instruction is required to set up
this loop. DOR FOREVER loops can be nested. During the first instruction cycle, the
current contents of the Loop Address (LA) and the Loop Counter (LC) registers are
pushed onto the system stack. The loop counter (LC) register is pushed onto the stack but
is not updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter (PC)
register and the Status Register (SR) are pushed onto the system stack. Stacking the LA,
LC, PC, and SR registers permits nesting DOR FOREVER loops. The DOR FOREVER
instruction’s destination operand (shown as label) is then loaded into the Loop Address
(LA) register after having been added to the PC. This 24-bit operand is located in the in-
struction’s 24-bit relative address extension word as shown in the opcode section. The
value in the Program Counter (PC) register pushed onto the system stack is the address
of the first instruction following the DOR FOREVER instruction (i.e., the first actual instruc-
tion in the DOR FOREVER loop). This value is read (i.e., copied but not pulled) from the
top of the system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. This
results in the PC being repeatedly compared with LA to determine if the last instruction in
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is read (i.e copied but not pulled) into the PC to fetch the first instruction
in the loop again. The loop counter (LC) register is then decremented by one without being
tested. This register can be used by the programer to count the number of loops already
executed.

When executing a DOR FOREVER loop, the instructions are actually fetched each time
through the loop. Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER
loops can also be nested. When DOR FOREVER loops are nested, the end of loop

DOR FOREVER DOR FOREVER
Start PC Relative Infinite Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL DOR FOREVER,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF; 1 ➞FV

MOTOROLA INSTRUCTION SET A - 101

addresses must also be nested and are not allowed to be equal. The assembler generates
an error message when DOR FOREVER loops are improperly nested.

Note: The assembler calculates the end of loop address LA (PC relative
address extension word xxxx) by evaluating the end of loop expression
and subtracting one. Thus the end of loop expression in the source code
represents the “next address” after the end of the loop. If a simple end of
loop address label is used, it should be placed after the last instruction
in the loop.

The loop counter (LC) register is never tested by the DOR FOREVER in-
struction and the only way of terminating the loop process is to use either
the ENDDO or BRKcc instructions. LC is decremented every time
PC=LA so that it can be used by the programmer to keep track of the
number of times the DOR FOREVER loop has been executed. If the
programer wants to initialize LC to a particular value before the DOR
FOREVER, care should be taken to save it before if the DO loop is
nested. If so, LC should also be restored immediately after exiting the
nested DOR FOREVER loop.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None.

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DOR FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

PC RELATIVE DISPLACEMENT

A - 102 INSTRUCTION SET MOTOROLA

A-6.37 End Current DO Loop (ENDDO)

Description: Terminate the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is restored
from the system stack and the remaining portion of the status register (SR) and the
program counter (PC) are purged from the system stack. The loop address (LA) and the
loop counter (LC) registers are then restored from the system stack.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

ENDDO ENDDO
End Current DO Loop

Operation: Assembler Syntax:

SSL(LF) ➞ SR;SP – 1➞ SP ENDDO
SSH ➞ LA; SSL ➞ LC;SP –1 ➞ SP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

MOTOROLA INSTRUCTION SET A - 103

A-6.38 Logical Exclusive OR (EOR)

Description: Logically exclusive OR the source operand S with bits 47–24 of the
destination operand D and store the result in bits 47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

EOR EOR
Logical Exclusive OR

Operation: Assembler Syntax:

S ⊕ D[47:24]➞D[47:24] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[47:24]➞D[47:24] EOR #xx,D

#xxxxxx ⊕ D[47:24]➞D[47:24] EOR #xxxxxx,D

where ⊕ denotes the logical XOR operator

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero

● V Always cleared

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

EOR S,D DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

EOR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0

EOR #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

IMMEDIATE DATA EXTENSION

{S} JJ Source register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word
A - 104 INSTRUCTION SET MOTOROLA

A-6.39 Bit Field (EXTRACT)

Description: Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 17-12 in S1 register or in immediate control word #CO. The offset from
the least significant bit is specified by bits 5-0 in S1 register or in immediate control word
#CO. The extracted field is placed in the destination accumulator D, aligned to the right.
The construction of the control register can be done by using the MERGE instruction.

This is a 56 bit operation. Bits outside the field are filled with sign extension according to
the most significant bit of the extracted bit field.

Notes:

1) In 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction.

2) In 16 bit arithmetic mode, when the width value is zero, then the result will be undefined.

3) If offset + width exceeds the value of 56, the result will be undefined.

EXTRACT EXTRACT
Extract Bit Field

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACT S1,S2,D
Width = S1[17:12]

S2[(offset+width-1):offset] ➞ D[(width-1):0]
S2[offset+width-1] ➞ D[55:width] (sign extension)

Offset = #CO[5:0]
Width = #CO[17:12]

EXTRACT #CO,S2,D

S2[(offset+width-1):offset] ➞ D[(width-1):0]
S2[offset+width-1] ➞ D[55:width] (sign extension)
MOTOROLA INSTRUCTION SET A - 105

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Always cleared
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

EXTRACT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0

EXTRACT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

Example: EXTRACT B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11Width = 5

x x x x x x x x 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A1 A0

1 0 1 0 11 1

4
7 0

A1 A0

11 1 1 1 1 1 1 1

x x x x x x x x

5
5

5
5

5
1

1
1

A - 106 INSTRUCTION SET MOTOROLA

Instruction Fields:

{S2} s Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#CO} Control word extension.
MOTOROLA INSTRUCTION SET A - 107

A-6.40 Extract Unsigned Bit Field (EXTRACTU)

Description: Extract an unsigned bit-field from source accumulator S2. The bit-field width
is specified by bits 17-12 in S1 register or in immediate control word #CO. The offset from
the least significant bit is specified by bits 5-0 in S1 register or in immediate control word
#CO. The extracted field is placed in the destination accumulator D, aligned to the right.
The construction of the control register can be done by using the MERGE instruction.

This is a 56 bits operation. Bits outside the field are filled with zeros.

Notes:

1) in 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction.

2) If offset + width exceeds the value of 56, the result will be undefined.

EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[17:12]

S2[(offset+width-1):offset] ➞ D[(width-1):0]
zero ➞ D[55:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[17:12]

S2[(offset+width-1):offset] ➞ D[(width-1):0]
zero ➞ D[55:width]
A - 108 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Always cleared
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

EXTRACTU S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0

EXTRACTU #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

Example :EXTRACTU B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11width = 7

x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A

A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 10 0

4
7 0

A

A1 A0

00 0 0 0 0 0 0 0

x x x x x x x x

5
5

5
5

MOTOROLA INSTRUCTION SET A - 109

Instruction Fields:

{S2} s Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#CO} Control word extension.
A - 110 INSTRUCTION SET MOTOROLA

A-6.41 Execute Conditionally without CCR Update (IFcc)

Description: If the specified condition is true, execute and store result of the specified
Data ALU operation. If the specified condition is false, no destination is altered. The CCR
is never updated with the condition codes generated by the Data ALU operation.

The instructions that can conditionally be executed by using IFcc are the arithmetic and
logical instructions that are considered as “parallel” instructions. See Table A-3 and Table
A-4 for a list of those instructions.

The conditions that the term “cc” may specify are listed on Table A-42 on page A-250

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

IFcc IFcc
Execute Conditionally without CCR Update

Operation: Assembler Syntax:
If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

IFcc 0 0 1 0 0 0 0 0 0 0 1 0 C C C C INSTRUCTION OPCODE

{cc} CCCC Condition code (see Table A-43 on page A-251)
MOTOROLA INSTRUCTION SET A - 111

A-6.42 Execute Conditionally with CCR Update (IFcc.U)

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data ALU
operation. If the specified condition is false, no destination is altered and the CCR is not
affected.

The instructions that can conditionally be executed by using IFcc.U are the arithmetic and
logical instructions that are considered as “parallel” instructions. See Table A-3 and Table
A-4 for a list of those instructions.

The conditions that the term “cc” may specify are listed on Table A-42 on page A-250

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

IFcc.U IFcc.U
Execute Conditionally with CCR Update

Operation: Assembler Syntax:
If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

● If the specified condition is true changed according to the instruction. Not
changed otherwise.

23 16 15 8 7 0

IFcc.U 0 0 1 0 0 0 0 0 0 0 1 1 C C C C INSTRUCTION OPCODE

{cc} CCCC Condition code (see Table A-43 on page A-251)
A - 112 INSTRUCTION SET MOTOROLA

A-6.43 Illegal Instruction Interrupt (ILLEGAL)

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Normal
instruction execution is suspended and illegal instruction exception processing is initiated.
The interrupt vector address is located at address P:$3E. The interrupt priority level (I1,
I0) is set to 3 in the status register if a long interrupt service routine is used. The purpose
of the ILLEGAL instruction is to force the DSP into an illegal instruction exception for test
purposes. Exiting an illegal instruction is a fatal error. A long exception routine should be
used to indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA–1 is being
interrupted, then LC will be decremented twice due to the same mechanism that causes
LC to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP,
etc. at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt not
being initiated until after completion of the REP. After servicing the interrupt, program
control will return to the address of the second word following the ILLEGAL instruction. Of
course, the ILLEGAL interrupt service routine should abort further processing, and the
processor should be reinitialized.

Condition Codes:

ILLEGAL ILLEGAL
Illegal Instruction Interrupt

Operation: Assembler Syntax:
Begin Illegal Instruction exception processing Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 113

Instruction Formats and opcodes:

Instruction Fields: None

23 16 15 8 7 0

ILLEGAL 0 1 0 1
A - 114 INSTRUCTION SET MOTOROLA

A-6.44 Increment by One (INC)

Description: Increment by one the specified operand and store the result in the
destination accumulator. One is added from the LSB of D.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

INC INC
Increment by One

Operation: Assembler Syntax:

D +1➞ D INC D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

INC D 0 1 0 0 d

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
MOTOROLA INSTRUCTION SET A - 115

A-6.45 Insert Bit field (INSERT)

Description: Insert a bit-field into the destination accumulator D. The bit-field whose width
is specified by bits 17-12 in S1 register, begins at the least significant bit of the S2 register.
This bit-field is inserted in the destination accumulator D, with an offset according to bits
5-0 in S1 register. S1 operand can be an immediate control word #CO. Width specified by
S1 should not exceed value of 24. The construction of the control register can be done by
using the MERGE instruction.
This is a 56 bit operation. Any bits outside the field remain unchanged.

Notes:

1) In 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction. Width specified by S1 should not
exceed value of 16.

2) In 16 bit arithmetic mode, the offset value, located in the offset field, should be the
needed offset pre-incremented by the user by a bias of 16.

2) If offset + width exceeds the value of 56, the result will be undefined.

INSERT INSERT
Insert Bit Field

Operation: Assembler Syntax:

Offset =S1[5:0]
Width =S1[17:12]

INSERT S1,S2,D

S2[(width-1):0] ➞ D[(offset+width-1):offset]

Offset = #CO[5:0]
Width = #CO[17:12]

INSERT #CO,S2,D

S2[(width-1):0] ➞ D[(offset+width-1):offset]
A - 116 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Always cleared
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0

INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

CONTROL WORD EXTENSION

Example: INSERT B1,X0,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

4
7

2
4

Offset =10width = 5

x x x x x x x x x x x x x x x x x x x 1 0 0 1 0

4
4
7

X0

2

x x x x x x x x x 1 0 0 1 0 x x x x x x x x x xx x

4
7 0

A

A1 A0

x x x x x x x x
MOTOROLA INSTRUCTION SET A - 117

Instruction Fields:

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (see Table A-15 on page A-240)
{#CO} Control word extension.
A - 118 INSTRUCTION SET MOTOROLA

A-6.46 Jump Conditionally (JCC)

Description: Jump to the location in program memory given by the instruction’s effective
address if the specified condition is true. If the specified condition is false, the program
counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory alterable addressing modes may be used for the effective
address. A Fast Short Jump addressing mode may also be used. The 12-bit data is zero
extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Jcc Jcc
Jump Conditionally

Operation: Assembler Syntax:

If cc, then 0xxx ➞PC Jcc xxx
else PC+1 ➞PC

If cc, then ea ➞PC Jcc ea
else PC+1 ➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 119

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
A - 120 INSTRUCTION SET MOTOROLA

A-6.47 Jump if Bit Clear (JCLR)

Description: Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not clear, the program counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of the nth bit. All address register indirect
addressing modes may be used to reference the source operand S. Absolute Short and
I/O Short addressing modes may also be used.

Condition Codes:

JCLR JCLR
Jump if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,S,xxxx
else PC+ 1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 121

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)
A - 122 INSTRUCTION SET MOTOROLA

A-6.48 Jump (JMP)

Description: Jump to the location in program memory given by the instruction’s effective
address. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

JMP JMP
Jump

Operation: Assembler Syntax:

0xxx ➞ Pc JMP xxx

ea➞ Pc JMP ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
MOTOROLA INSTRUCTION SET A - 123

A-6.49 Jump to Subroutine Conditionally (JScc)

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address if the specified condition is true. If the specified condition is
true, the address of the instruction immediately following the JScc instruction (PC) and the
system status register (SR) are pushed onto the system stack. Program execution then
continues at the specified effective address in program memory. If the specified condition
is false, the program counter (PC) is incremented, and any extension word is ignored.
However, the address register specified in the effective address field is always updated
independently of the specified condition. All memory alterable addressing modes may be
used for the effective address. A fast short jump addressing mode may also be used. The
12-bit data is zero extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

JScc JScc
Jump to Subroutine Conditionally

Operation: Assembler Syntax:

If cc, then SP+1➞SP; PC ➞SSH;SR ➞SSL;0xxx ➞PC JScc xxx
else PC+1➞PC

If cc, then SP+1➞SP; PC ➞SSH;SR ➞SSL;ea ➞PC JScc ea
else PC+1➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
A - 124 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
MOTOROLA INSTRUCTION SET A - 125

A-6.50 Jump to Subroutine if Bit Clear (JSCLR)

Description: Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not clear, the program
counter (PC) is incremented and the extension word is ignored. However, the address
register specified in the effective address field is always updated independently of the
state of the nth bit. All address register indirect addressing modes may be used to
reference the source operand S. Absolute short and I/O short addressing modes may also
be used.

JSCLR JSCLR
Jump to Subroutine if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:ea,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y],aa,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:pp,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:qq,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,S,xxxx

else PC+1➞PC
A - 126 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET A - 127

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)
A - 128 INSTRUCTION SET MOTOROLA

A-6.51 Jump if Bit Set (JSET)

Description: Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not set, the program counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of the nth bit. All address register indirect
addressing modes may be used to reference the source operand S. Absolute short and I/
O short addressing modes may also be used.

Condition Codes:

JSET JSET
Jump if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,S,xxxx
else PC+ 1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 129

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Absolute Address in extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)
A - 130 INSTRUCTION SET MOTOROLA

A-6.52 Jump to Subroutine (JSR)

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system status register (SR) is pushed onto the system stack.
Program execution then continues at the specified effective address in program memory.
All memory alterable addressing modes may be used for the effective address. A fast
short jump addressing mode may also be used. The 12-bit data is zero extended to form
the effective address.

Condition Codes:

Instruction Formats and opcodes:

JSR JSR
Jump to Subroutine

Operation: Assembler Syntax:

SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JSR xxx

SP+1➞SP; PC➞SSH; SR➞SSL; ea➞PC JSR ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a
MOTOROLA INSTRUCTION SET A - 131

Instruction Fields:

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
A - 132 INSTRUCTION SET MOTOROLA

A-6.53 Jump to Subroutine if Bit Set (JSSET)

Description: Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit of
the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not set, the program
counter (PC) is incremented, and the extension word is ignored. However, the address
register specified in the effective address field is always updated independently of the
state of the nth bit. All address register indirect addressing modes may be used to
reference the source operand S. Absolute short and I/O short addressing modes may also
be used.

JSSET JSSET
Jump to Subroutine if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:ea,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y],aa,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:pp,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:qq,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,S,xxxx

else PC+1➞PC
MOTOROLA INSTRUCTION SET A - 133

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION
A - 134 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit PC absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)
MOTOROLA INSTRUCTION SET A - 135

A-6.54 Load PC Relative Address (LRA)

Description: The PC is added to the specified displacement and the result is stored in
destination D. The displacement is a 2’s complement 24-bit integer that represents the
relative distance from the current PC to the destination PC. Long Displacement and
Address Register PC Relative addressing modes may be used. Note that if D is SSH, the
SP will be preincremented by one.

Condition Codes:

Instruction Formats and opcode:

LRA LRA
Load PC Relative Address

Operation: Assembler Syntax:

PC+Rn➞D LRA Rn,D

PC+xxxx➞D LRA xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0

LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

LONG DISPLACEMENT
A - 136 INSTRUCTION SET MOTOROLA

Instruction Fields:

{Rn} RRR Address register [R0-R7]
{D} ddddd Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-

R7,N0-N7] (see Table A-31 on page A-245)
{xxxx} 24-bit PC Long Displacement
MOTOROLA INSTRUCTION SET A - 137

A-6.55 Logical Shift Left (LSL)

Assembler Syntax:

LSL D (parallel move)

 LSL #ii,D

LSL S,D

Description:

Single-bit shift:

Logically shift bits 47–24 of the destination operand D one bit to the left and store the
result in the destination accumulator. Prior to instruction execution, bit 47 of D is shifted
into the carry bit C, and a zero is shifted into bit 24 of the destination accumulator D.

Multi-bit shift:

The contents of bits 47-24 of the destination accumulator D are shifted left #ii bits. Bits
shifted out of position 47 are lost, but for the last bit which is latched in the carry bit. Zeros
are supplied to the vacated positions on the right. The result is placed into bits 47-24 of
the destination accumulator D. The number of bits to shift is determined by the 5-bit
immediate field in the instruction, or by the unsigned integer located in the control register
S. If a zero shift count is specified, the carry bit is cleared.

This is a 24 bit operation. The remaining bits of the destination accumulator are not
affected.

Note: The number of shifts should not exceed the value of 24.

LSL LSL
Logical Shift Left

47

Operation:

24C

0

A - 138 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise.Cleared

for a shift count of zero.
✕ This bit is unchanged by the instruction

23 8 7 0

LSL D DATA BUS MOVE FIELD 0 0 1 1 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0

LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

Example: LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

A1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

4
4
7

2
Shift left 7

0
C

MOTOROLA INSTRUCTION SET A - 139

Instruction Fields:

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiii 5bit unsigned integer [0-23] denoting the shift amount
A - 140 INSTRUCTION SET MOTOROLA

A-6.56 Logical Shift Right (LSR)

Assembler Syntax:

LSR D (parallel move)

 LSR #ii,D

LSR S,D

Description:

Single-bit shift:

Logically shift bits 47–24 of the destination operand D one bit to the right and store the
result in the destination accumulator. Prior to instruction execution, bit 24 of D is shifted
into the carry bit C, and a zero is shifted into bit 47 of the destination accumulator D.

Multi-bit shift:

The contents of bits 47-24 of the destination accumulator D are shifted right #ii bits. Bits
shifted out of position 24 are lost, but for the last bit which is latched in the carry bit. Zeros
are supplied to the vacated positions on the left. The result is placed into bits 47-24 of the
destination accumulator D. The number of bits to shift is determined by the 5-bit immediate
field in the instruction, or by the unsigned integer located in the control register S. If a zero
shift count is specified, the carry bit is cleared.

This is a 24 bit operation. The remaining bits of the destination register are not affected.

Note: The number of shifts should not exceed the value of 24.

LSR LSR
Logical Shift Right

47 24

0

C

 Operation:
MOTOROLA INSTRUCTION SET A - 141

Condition Codes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero
✕ This bit is unchanged by the instruction

Example: LSR X0,B

B1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

B1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x x 0 0 0 1 1

0
2
3

SH field

X0

1

c

Shift right 3
A - 142 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 8 7 0

LSR D DATA BUS MOVE FIELD 0 0 1 0 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0

LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiii 5 bit unsigned integer [0-23] denoting the shift amount
MOTOROLA INSTRUCTION SET A - 143

A-6.57 Load Updated Address (LUA)

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address are
specified by the effective address (ea). Note that the source address register specified
in the effective address is not updated. This is the only case where an address
register is not updated although stated otherwise in the effective address mode
bits. Only the following addressing modes may be used: Post+N, Post-N, Post+1, Post-1.

Condition Codes:

LUA LUA
Load Updated address

Operation: Assembler Syntax:

ea➞D (No update performed) LUA ea,D

Rn+aa➞D LUA (Rn+aa),D

ea➞D (No update performed) LEA ea,D

Rn+aa➞D LEA (Rn+aa),D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
A - 144 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Note: LEA is a synonym for LUA. The simulator on-line disassembly will
translate the opcodes into LUA.

Instruction Fields:

Note: RRR refers to a source address register (R0-R7), while dddd/ddddd
refer to a destination address register R0-R7 or N0-N7.

23 16 15 8 7 0

LUA/
LEA

ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0

LUA/
LEA

(Rn+aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d

{ea} MMRRR Effective address (see Table A-20 on page A-242)
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7] (see Table A-
31 on page A-245)

{D} dddd Destination address register [R0-R7,N0-N7] (see Table A-25 on
page A-244)

{aa} aaaaaaa 7-bit sign extended short displacement address
{Rn} RRR Source address register [R0-R7]
MOTOROLA INSTRUCTION SET A - 145

A-6.58 Signed Multiply-Accumulate (MAC)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract
the product to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MAC X1, Y0, A MAC X1, Y0, B

MAC X0, Y1, A MAC X0, Y1, B

MAC Y1, X1, A MAC Y1, X1, B

Condition Codes:

MAC MAC
Signed Multiply Accumulate

Operation: Assembler Syntax:

D±S1∗ S2➞D (parallel move) MAC (±)S1,S2,D (parallel move)

D±S1∗ S2➞D (parallel move) MAC (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)➞D (no parallel move) MAC (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 146 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MAC (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

MAC (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MAC (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)
MOTOROLA INSTRUCTION SET A - 147

A-6.59 Signed MAC with Immediate Operand (MACI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S and add/
subtract the product to/from the specified 56-bit destination accumulator D. The “–” sign
option is used to negate the specified product prior to accumulation. The default sign
option is “+”.

condition Codes:

Instruction Formats and opcode:

Instruction Fields:

MACI MACI
Signed Multiply-Accumulate

with Immediate Operand

Operation: Assembler Syntax:

D±#xxxxxx∗ S➞D MACI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MACI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word
A - 148 INSTRUCTION SET MOTOROLA

A-6.60 Mixed Multiply-Accumulate (MAC su/uu)

Description: Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

MAC(su,uu) MAC(su,uu)
Mixed Multiply Accumulate

Operation: Assembler Syntax:

D±S1∗ S2➞D (S1 unsigned, S2 unsigned) MACuu (±)S1,S2,D (no parallel move)

D±S1∗ S2➞D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
 (see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{s} [ss,us] (see Table A-40 on page A-249)
MOTOROLA INSTRUCTION SET A - 149

A-6.61 Signed MAC and Round (MACR)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and then round the result
using either convergent or two’s complement rounding. The rounded result is stored in the
destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MACR MACR
Signed Multiply Accumulate and Round

Operation: Assembler Syntax:

D±S1∗ S2+r➞D (parallel move) MACR (±)S1,S2,D (parallel move)

D±S1∗ S2+r➞D (parallel move) MACR (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)+r➞D (no parallel move) MACR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 150 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MACR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

MACR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MACR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)
MOTOROLA INSTRUCTION SET A - 151

A-6.62 Signed MAC and Round with Immediate Operand (MACRI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S, add/subtract
the product to/from the specified 56-bit destination accumulator D, and then round the
result using either convergent or two’s complement rounding. The rounded result is stored
in the destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MACRI MACRI
Signed Multiply-Accumulate and Round

with Immediate Operand

Operation: Assembler Syntax:

D±#xxxxxx∗ S➞D MACRI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 152 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

MACRI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word
MOTOROLA INSTRUCTION SET A - 153

A-6.63 Transfer by Signed Value (MAX)

Description: Subtract the signed value of the source accumulator from the signed value
of the destination accumulator. If the difference is negative or zero
(i.e. A ≥ B) then transfer the source accumulator to destination accumulator, otherwise do
not change destination accumulator.

This is a 56 bit operation.

Note: The Carry condition code signifies that a transfer has been performed.

Condition Codes:

Instruction Formats and opcodes:

MAX MAX
Transfer by Signed Value

Operation: Assembler Syntax:

If B – A ≤ 0 then A ➞ B MAX A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

● C Cleared if the conditional transfer was performed. Set otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MAX A, B DATA BUS MOVE FIELD 0 0 0 1 1 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 154 INSTRUCTION SET MOTOROLA

A-6.64 Transfer by Magnitude (MAXM)

Description: Subtract the absolute value (magnitude) of the source accumulator from the
absolute value of the destination accumulator. If the difference is negative or zero
(i.e. |A| ≥ |B|) then transfer the source accumulator to destination accumulator, otherwise
do not change destination accumulator.

This is a 56 bit operation.

Note: The Carry condition code signifies that a transfer has been performed.

Condition Codes:

Instruction Formats and opcodes:

MAXM MAXM
Transfer by Magnitude

Operation: Assembler Syntax:

If |B| – |A| ≤ 0 then A ➞ B MAXM A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

● C Cleared if the conditional transfer was performed. Set otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MAXM A, B DATA BUS MOVE FIELD 0 0 0 1 0 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET A - 155

A-6.65 Merge Two Half Words (MERGE)

Description: The contents of bits 11-0 of the source register are concatenated to the
contents of bits 35-24 of the destination accumulator. The result is stored in the destination
accumulator. This instruction is a 24-bit operation. The remaining bits of the destination
accumulator D are not affected.

Notes:
1) This instruction may be used in conjunction with EXTRACT or INSERT instructions to
concatenate width and offset fields into a control word.
2) In 16 bit arithmetic mode the contents of bits 15-8 of the source register are
concatenated to the contents of bits 39-32 of the destination accumulator. The result is
placed in bits 47-32 of the destination accumulator.

Condition Codes:

MERGE MERGE
Merge Two Half Words

Operation: Assembler Syntax:

{S[11:0],D[35:24]} ➞ D[47:24] MERGE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
A - 156 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

MERGE S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)

Example: MERGE X0,B

X0 x x x x x x x x x x x x 1 0 1 0 1 0 1 0 0 0 1 0

0
2
3

B1 x x x x x x x x x x x x 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

B1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

MOTOROLA INSTRUCTION SET A - 157

A-6.66 Move Data (MOVE)

Description: Move the contents of the specified data source S to the specified destination
D. This instruction is equivalent to a data ALU NOP with a parallel data move.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

See Parallel Move Descriptions for data bus move field encoding.

Parallel Move Descriptions: Thirty of the sixty-two instructions allow an optional parallel
data bus movement over the X and/or Y data bus. This allows a data ALU operation to be
executed in parallel with up to two data bus moves during the instruction cycle. Ten types
of parallel moves are permitted, including register to register moves, register to memory
moves, and memory to register moves. However, not all addressing modes are allowed
for each type of memory reference. The following section contains detailed descriptions
about each type of parallel move operation.

MOVE MOVE
Move Data

Operation: Assembler Syntax:

S➞D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MOVE S,D DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 158 INSTRUCTION SET MOTOROLA

A-6.67 NO Parallel Data Move

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Many instructions in the instruction set allow parallel moves. The parallel
moves have been divided into 10 opcode categories. This category is a parallel move NOP
and does not involve data bus move activity.

Condition Codes:

Instruction Formats and opcodes:

Instruction Format:

(defined by instruction)

No Parallel Data Move

Operation: Assembler Syntax:

(.) (.)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET A - 159

A-6.68 Immediate Short Data Move (I)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit
immediate short operand is interpreted as an unsigned integer and is stored in the
specified destination register. That is, the 8-bit data is stored in the eight LS bits of the
destination operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand
is interpreted as a signed fraction and is stored in the specified destination register. That
is, the 8-bit data is stored in the eight MS bits of the destination operand, and the
remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

Condition Codes:

I I
Immediate Short Data Move

Operation: Assembler Syntax:

(.), #xx➞D (.) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
A - 160 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

(.) #xx,D 0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE

{#xx} iiiiiiii 8-bit Immediate Short Data
{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-

N7] (see Table A-31 on page A-245)
MOTOROLA INSTRUCTION SET A - 161

A-6.69 Register to Register Data Move (R)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Note: The MOVE A,B operation will result in a 24-bit positive or negative satu-
ration constant being stored in the B1 portion of the B accumulator if the
signed integer portion of the A accumulator is in use.

R R
Register to Register Data Move

Operation: Assembler Syntax:

(.); S➞D (.) S,D
A - 162 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.) S,D 0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

{S} eeeee Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
(see Table A-31 on page A-245)

{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-
N7] (see Table A-31 on page A-245)
MOTOROLA INSTRUCTION SET A - 163

A-6.70 Address Register Update (U)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

U U
Address Register Update

Operation: Assembler Syntax:

(.); ea➞Rn (.) ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

{ea} MMRRR Effective Address (see Table A-20 on page A-242)
A - 164 INSTRUCTION SET MOTOROLA

A-6.71 X Memory Data Move (X:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the

X: X:
X Memory Data Move

Operation: Assembler Syntax:

(.); X:ea➞D (.) X:ea,D

(.); X:aa➞D (.) X:aa,D

(.); S➞X:ea (.) S,X:ea

(.); S➞X:aa (.) S,X:aa

X:(Rn+xxx)➞D MOVE X:(Rn+xxx),D

X:(Rn+xxxx)➞D MOVE X:(Rn+xxxx),D

D➞X:(Rn+xxx) MOVE D,X:(Rn+xxx)

D➞X:(Rn+xxxx) MOVE D,X:(Rn+xxxx)
MOTOROLA INSTRUCTION SET A - 165

parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Condition Codes:

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative
saturation constant being stored in the specified 24-bit X memory
location if the signed integer portion of the A accumulator is in use.

Instruction Formats and opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)X:ea,D 23 16 15 8 7 0

(.)S,X:ea 0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.)#xxxxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)X:aa,D 23 16 15 8 7 0

(.)S,X:aa 0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
 (see Table A-31 on page A-245)

{aa} aaaaaa 6-bit Absolute Short Address
A - 166 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE X:(Rn+xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D

MOVE S,X:(Rn+xxxx) Rn RELATIVE DISPLACEMENT

MOVE X:(Rn+xxx),D 23 16 15 8 7 0

MOVE S,X:(Rn+xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D

W Read S / Write D bit (see Table A-33 on page A-246)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0-R7)
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]

(see Table A-34 on page A-246)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-22

on page A-243)
MOTOROLA INSTRUCTION SET A - 167

A-6.72 X Memory and Register Data Move (X:R)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The
register to register move (S2,D2) allows a data ALU accumulator to be moved to a data
ALU input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and one-
word operand from data ALU register X0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1 in the
parallel data bus move operation. Thus, if the opcode-operand portion of the instruction
specifies the 56-bit A accumulator as its destination, the parallel data bus move portion of
the instruction may not specify A0, A1, A2, or A as its destination D1. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,

X:R X:R
X Memory and Register Data Move

Operation: Assembler Syntax:

Class I
(.); X:ea➞D1; S2➞D2 (.) X:ea,D1 S2,D2

(.); S1➞X:ea; S2➞D2 (.) S1,X:ea S2,D2

(.); #xxxxxx➞D1; S2➞D2 (.) #xxxxxx,D1 S2,D2

Class II
(.); A➞X:ea; X0➞A (.) A,X:ea X0,A

(.); B➞X:ea; X0➞B (.) B,X:ea X0,B
A - 168 INSTRUCTION SET MOTOROLA

B2, or B as its destination D1. That is, duplicate destinations are NOT allowed within
the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Class I Instruction Formats and opcodes:

Instruction Fields:

Class II Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.) X:ea,D1 S2,D2 23 16 15 8 7 0

(.) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R INSTRUCTION OPCODE

(.) #xxxxxx,D1 S2,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S1 / Write D1 bit (see Table A-33 on page A-246)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (see Table A-35 on page A-247)
{S2} d S2 accumulator [A,B] (see Table A-10 on page A-239)
{D2} F D2 input register [Y0,Y1] (see Table A-35 on page A-247)

23 16 15 8 7 0

(.)A➞X:ea X0➞A 0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

(.)B➞X:ea X0➞B OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
d Move opcode (see Table A-37 on page A-247)
MOTOROLA INSTRUCTION SET A - 169

A-6.73 Y Memory Data Move (Y:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the

Y: Y:
Y Memory Data Move

Operation: Assembler Syntax:

(.); Y:ea➞D (.) Y:ea,D

(.); Y:aa➞D (.) Y:aa,D

(.); S➞Y:ea (.) S,Y:ea

(.); S➞Y:aa (.) S,Y:aa

Y:(Rn+xxx)➞D MOVE Y:(Rn+xxx),D

Y:(Rn+xxxx)➞D MOVE Y:(Rn+xxxx),D

D➞Y:(Rn+xxx) MOVE D,Y:(Rn+xxx)

D➞Y:(Rn+xxxx) MOVE D,Y:(Rn+xxxx)
A - 170 INSTRUCTION SET MOTOROLA

parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Condition Codes:

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative
saturation constant being stored in the specified 24-bit Y memory
location if the signed integer portion of the A accumulator is in use.

Instruction Formats and opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)Y:ea,D 23 16 15 8 7 0

(.)S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.)#xxxxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)Y:aa,D 23 16 15 8 7 0

(.)S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S / Write D bit (see Table A-33 on page A-246)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
 (see Table A-31 on page A-245)

{aa} aaaaaa Absolute Short Address
MOTOROLA INSTRUCTION SET A - 171

Instruction Formats and opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE Y:(Rn+xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D

MOVE D,Y:(Rn+xxxx) Rn RELATIVE DISPLACEMENT

MOVE Y:(Rn+xxx),D 23 16 15 8 7 0

MOVE D,Y:(Rn+xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D

W Read S / Write D bit (see Table A-33 on page A-246)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0-R7)
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]

(see Table A-34 on page A-246)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-22

on page A-243)
A - 172 INSTRUCTION SET MOTOROLA

A-6.74 Register and Y Memory Data Move (R:Y)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The
register to register move (S1,D1) allows a data ALU accumulator to be moved to a data
ALU input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and one-
word operand from data ALU register Y0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used. Class II move operations have been added to the
R:Y parallel move (and a similar feature has been added to the X:R parallel move) as an
added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D2 in the
parallel data bus move operation. Thus, if the opcode-operand portion of the instruction
specifies the 56-bit A accumulator as its destination, the parallel data bus move portion of
the instruction may not specify A0, A1, A2, or A as its destination D2. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its

R:Y R:Y
Register and Y Memory Data Move

Operation: Assembler Syntax:

Class I
(.); S1➞D1; Y:ea➞D2 (.) S1,D1 Y:ea,D2

(.); S1➞D1; S2➞Y:ea (.) S1,D1 S2,Y:ea

(.); S1➞D1; #xxxxxx➞D2 (.) S1,D1 #xxxxxx,D2

Class II
(.); Y0 ➞A; A➞Y:ea (.) Y0,A A,Y:ea

(.); Y0➞B; B➞Y:ea (.) Y0,B B,Y:ea
MOTOROLA INSTRUCTION SET A - 173

destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D2. That is, duplicate destinations are NOT allowed within the
same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Class I Instruction Formats and opcodes:

Instruction Fields :

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)S1,D1 Y:ea,D2 23 16 15 8 7 0

(.)S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

(.)S1,D1 #xxxxxx,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S2 / Write D2 bit (see Table A-33 on page A-246)

{S1} d S1 accumulator [A,B] (see Table A-10 on page A-239)
{D1} e D1 input register [X0,X1] (see Table A-36 on page A-247)
{S2,D2} ff S2/D2 register [Y0,Y1,A,B] (see Table A-36 on page A-247)
A - 174 INSTRUCTION SET MOTOROLA

Class II Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

(.)Y0 ➞ A A ➞ Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE

(.)Y0 ➞ B B ➞ Y:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

MMMRRR ea=6-bit Effective Address (see Table A-19 on page A-242)
d Move opcode (see Table A-37 on page A-247)
MOTOROLA INSTRUCTION SET A - 175

A-6.75 Long Memory Data Move (L:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data ALU
registers are concatenated to form the 48-bit long-word operand. This allows efficient
moving of both double-precision (high:low) and complex (real:imaginary) data from/to one
effective address in L (X:Y) memory. The same effective address is used for both the X
and Y memory spaces; thus, only one effective address is required. Note that the A, B,
A10, and B10 operands reference a single 48-bit signed (double-precision) quantity while
the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary) 24-bit
signed quantities. All memory alterable addressing modes may be used. Absolute short
addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A, A10, AB, or BA as
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B, B10, AB, or BA as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate

L: L:
Long Memory Data Move

Operation: Assembler Syntax:

(.); X:ea ➞ D1; Y:ea ➞ D2 (.) L:ea,D

(.); X:aa ➞ D1; Y:aa ➞ D2 (.) L:aa,D

(.); S1 ➞ X:ea; S2 ➞ Y:ea (.) S,L:ea

(.); S1 ➞ X:aa; S2 ➞ Y:aa (.) S,L:aa
A - 176 INSTRUCTION SET MOTOROLA

sources are allowed within the same instruction.

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit
long memory move as previously described. These operands may not be
used in any other type of instruction or parallel move.

Condition Codes:

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative
saturation constant being stored in the specified 24-bit X and Y memory
locations if the signed integer portion of the A accumulator is in use. The
MOVE AB,L:ea operation will result in either one or two 24-bit positive
and/or negative saturation constant(s) being stored in the specified 24-
bit X and/or Y memory location(s) if the signed integer portion of the A
and/or B accumulator(s) is in use.

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.)L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

(.)S,L:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)L:aa,D 23 16 15 8 7 0

(.)S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{L} LLL Two data ALU registers (see Table A-23 on page A-243)
{aa} aaaaaa Absolute Short Address
MOTOROLA INSTRUCTION SET A - 177

A-6.76 XY Memory Data Move (X: Y:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
(<eax> and <eay>) where one of the effective addresses uses the lower bank of address
registers (R0–R3) while the other effective address uses the upper bank of address
registers (R4–R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction may not specify A as its
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B as its destination D1 or D2. That is, duplicate destinations
are NOT allowed within the same instruction. D1 and D2 may not specify the same
register.

If the instruction specifies an access to an internal X-I/O and internal Y-I/O modules
(reflected by the address of the X memory space and of the Y memory space), than only
the access to the internal X-I/O module will be executed. The access to the Y-I/O module
will be discarded.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or

X: Y: X: Y:
XY Memory Data Move

Operation: Assembler Syntax:

(.); X:<eax> ➞ D1; Y:<eay> ➞ D2 (.) X:<eax>,D1 Y:<eay>,D2

(.); X:<eax> ➞ D1; S2 ➞ Y:<eay> (.) X:<eax>,D1 S2,Y:<eay>

(.); S1 ➞ X:<eax>; Y:<eay> ➞ D2 (.) S1,X:<eax> Y:<eay>,D2

(.); S1 ➞ X:<eax>; S2 ➞ Y:<eay> (.) S1,X:<eax> S2,Y:<eay>
A - 178 INSTRUCTION SET MOTOROLA

S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields :

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)X:<eax>,D1 Y:<eay>,D2
(.)X:<eax>,D1 S2,Y:<eay>
(.)S1,X:<eax> Y:<eay>,D2 23 16 15 8 7 0

(.)S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE

{<eax>} MMRRR 5-bit X Effective Address (R0–R3 or R4–R7)
{<eay>} mmrr 4-bit Y Effective Address (R4–R7 or R0–R3)
{S1,D1} ee S1/D1 register [X0,X1,A,B]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff: see Table A-38 on page A-248
W X move Operation Control (See Table A-33 on page A-246)
w Y move Operation Control (See Table A-33 on page A-246)
MOTOROLA INSTRUCTION SET A - 179

A-6.77 Move Control Register (MOVEC)

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination or move the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 register
set and consist of the address ALU modifier registers and the program controller registers.
These registers may be moved to or from any other register or memory space. All memory
addressing modes, as well as an immediate short addressing mode, may be used.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEC MOVEC
Move Control Register

Operation: Assembler Syntax:

[X or Y]:ea➞D1 MOVE(C) [Xor Y]:ea,D1

[X or Y]:aa➞D1 MOVE(C) [Xor Y]:aa,D1

S1➞[X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1➞[X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1➞D2 MOVE(C) S1,D2

S2➞D1 MOVE(C) S2,D1

#xxxx➞D1 MOVE(C) #xxxx,D1

#xx➞D1 MOVE(C) #xx,D1
A - 180 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D1 or D2=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D1 and D2≠SR operand :
● S Set if data growth been detected
● L Set if data limiting has occurred during the move

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d

MOVE(C) #xxxx,D1 OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0

MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0

MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
MOTOROLA INSTRUCTION SET A - 181

Instruction Fields:

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S / Write D bit (see Table A-33 on page A-246)

{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{S1,D1} ddddd Program Controller register

 [M0-M7,EP,VBA,SZ,SR,OMR,SP,SSH,SSL,LA,LC] (see Table A-
41 on page A-249)

{aa} aaaaaa aa=6-bit Absolute Short Address
{S2,D2} eeeeee S2/D2 register [all on-chip registers] (see Table A-22 on page A-

243)
{#xx} iiiiiiii #xx=8-bit Immediate Short Data
A - 182 INSTRUCTION SET MOTOROLA

A-6.78 Move Program Memory (MOVEM)

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
S and D may be any register. All memory alterable addressing modes may be used as
well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEM MOVEM
Move Program Memory

Operation: Assembler Syntax:

S➞P:ea MOVE(M) S,P:ea

S➞P:aa MOVE(M) S,P:aa

P:ea➞D MOVE(M) P:ea,D

P:aa➞D MOVE(M) P:aa,D
MOTOROLA INSTRUCTION SET A - 183

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D≠SR operand :
● S Set if data growth been selected
● L Set if data limiting has occurred during the move

23 16 15 8 7 0

MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

MOVE(M) P:ea,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(M) S,P:aa 23 16 15 8 7 0

MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d

{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{ S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-22 on
page A-243)

{aa} aaaaaa Absolute Short Address
A - 184 INSTRUCTION SET MOTOROLA

A-6.79 Move Peripheral Data (MOVEP)

Description: Move the specified operand from/to the specified X or Y I/O peripheral. The
I/O short addressing mode is used for the I/O peripheral address. All memory addressing
modes may be used for the X or Y memory effective address; all memory alterable
addressing modes may be used for the P memory effective address. ALL the I/O space
($FFFF80-$FFFFFF) can be accessed, except for the P: reference opcode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEP MOVEP
Move Peripheral Data

Operation: Assembler Syntax:

[X or Y]:pp ➞ D MOVEP [X or Y]:pp,D

[X or Y]:qq ➞ D MOVEP [X or Y]:qq,D

[X or Y]:pp ➞ [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq ➞ [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp ➞ P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq ➞ P:ea MOVEP [X or Y]:qq,P:ea

S ➞ [X or Y]:pp MOVEP S,[X or Y]:pp

S ➞ [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea ➞ [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea ➞ [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea ➞ [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea ➞ [X or Y]:qq MOVEP P:ea,[X or Y]:qq
MOTOROLA INSTRUCTION SET A - 185

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D≠SR operand :
● S Set if data growth been selected
● L Set if data limiting has occurred during the move

X: or Y: Reference (high I/O address)
23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p

MOVEP [X or Y]:ea,[X or Y]:pp OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q

MOVEP [X or Y]:ea,X:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q

MOVEP [X or Y]:ea,Y:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 186 INSTRUCTION SET MOTOROLA

Instruction Fields:

P: Reference (high I/O address)
MOVEP P:ea,[X or Y]:pp 16 15 8 7 0

MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)
MOVEP P:ea,[X or Y]:qq 16 15 8 7 0

MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)
MOVEP S,[X or Y]:pp 23 16 15 8 7 0

MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)
MOVEP S,X:qq 23 16 15 8 7 0

MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)
MOVEP S,Y:qq 23 16 15 8 7 0

MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q

{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{X/Y} S Memory space [X,Y] (see Table A-17 on page A-241)
{X/Y} s Peripheral space [X,Y] (see Table A-17 on page A-241)

W Read/write-peripheral (see Table A-33 on page A-246)
{S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-22

on page A-243)
MOTOROLA INSTRUCTION SET A - 187

A-6.80 Signed Multiply (MPY)

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n and store the
resulting product in the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MPY Y0, X0, A MPY Y0, X0, B

Condition Codes:

MPY MPY
Signed Multiply

Operation: Assembler Syntax:

±S1∗ S2➞D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1∗ S2➞D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1∗ 2-n)➞D (no parallel move) MPY (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 188 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MPY (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

MPY (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±+/-} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MPY (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 0

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)
MOTOROLA INSTRUCTION SET A - 189

A-6.81 Mixed Multiply (MPY su/uu)

Description: Multiply the two 24-bit source operands S1 and S2 and store the resulting
product in the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcodes :

Instruction Fields:

MPY(su,uu) MPY(su,uu)
Mixed Multiply

Operation: Assembler Syntax:

±S1∗ S2➞D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1∗ S2➞D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MPYsu (±)S1,S2,D 23 16 15 8 7 0

MPYuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
(see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{s} [ss,us] (see Table A-40 on page A-249)
A - 190 INSTRUCTION SET MOTOROLA

A-6.82 Signed Multiply with Immediate Operand (MPYI)

Description: Multiply the immediate 24-bit source operand #xxxxxx with the 24-bit
register source operand S and store the resulting product in the specified 56-bit
destination accumulator D. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields:

MPYI MPYI
Signed Multiply with Immediate Operand

Operation: Assembler Syntax:

±#xxxxxx∗ S➞D MPYI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MPYI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word
MOTOROLA INSTRUCTION SET A - 191

A-6.83 Signed Multiply and Round (MPYR)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using either convergent or two’s complement rounding, and store it in the specified 56-bit
destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign option
is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MPYR MPYR
Signed Multiply and Round

Operation: Assembler Syntax:

±S1∗ S2+r➞D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1∗ S2+r➞D (parallel move) MPYR (±)S2,S1,D (parallel move)

±(S1∗ 2-n)+r➞D (no parallel move) MPYR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 192 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 1:

Instruction Fields 1:

Instruction Formats and opcode 2:

Instruction Fields 2:

23 16 15 8 7 0

MPYR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MPYR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)
MOTOROLA INSTRUCTION SET A - 193

A-6.84 Signed Multiply and Round with Immediate Operand (MPYRI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S, round the
result using either convergent or two’s complement rounding, and store it in the specified
56-bit destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign option
is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MPYRI MPYRI
Signed Multiply and Round

with Immediate Operand

Operation: Assembler Syntax:

±#xxxxxx∗ S+r ➞D MPYRI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 194 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

MPYRI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word
MOTOROLA INSTRUCTION SET A - 195

A-6.85 Negate Accumulator (NEG)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

NEG NEG
Negate Accumulator

Operation: Assembler Syntax:

0–D ➞ D (parallel move) NEG D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NEG D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
A - 196 INSTRUCTION SET MOTOROLA

A-6.86 No Operation (NOP)

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields : None

NOP NOP
No Operation

Operation: Assembler Syntax:

PC+1➞PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NOP 0
MOTOROLA INSTRUCTION SET A - 197

A-6.87 Norm Accumulator Iteration (NORM)

where E denotes the logical complement of E, and
where • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand D,
update the specified address register Rn based upon the results of that iteration, and store
the result back in the destination accumulator. This is a 56-bit operation. If the accumulator
extension is not in use, the accumulator is unnormalized, and the accumulator is not zero,
the destination operand is arithmetically shifted one bit to the left, and the specified
address register is decremented by 1. If the accumulator extension register is in use, the
destination operand is arithmetically shifted one bit to the right, and the specified address
register is incremented by 1. If the accumulator is normalized or zero, a NOP is executed
and the specified address register is not affected. Since the operation of the NORM
instruction depends on the E, U, and Z condition code register bits, these bits must
correctly reflect the current state of the destination accumulator prior to executing the
NORM instruction.

Condition Codes:

NORM NORM
Norm Accumulator Iteration

Operation: Assembler Syntax:

If E • U • Z=1, then ASL D and Rn–1➞Rn
else if E=1, then ASR D and Rn+1➞R
else NOP

NORM Rn,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● Set if bit 55 is changed as a result of a left shift
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
A - 198 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

NORM Rn,D 0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{Rn} RRR Address register [R0-R7]
MOTOROLA INSTRUCTION SET A - 199

A-6.88 Fast Accumulator Normalization (NORMF)

Description: Arithmetically shift the destination accumulator either left or right as
specified by the source operand sign and value. If the source operand is negative then the
accumulator is left shifted, and if the source operand is positive then it is right shifted. The
source accumulator value should be between +56 to -55 (or +40 to -39 in sixteen bit
mode). This instruction can be used to normalize the specified accumulator D, by
arithmetically shifting it either left or right so as to bring the leading one or zero to bit
location 46. The number of needed shifts is specified by the source operand. This number
could be calculated by a previous CLB instruction. For normalization the source
accumulator value should be between +8 to -47 (or +8 to -31 in sixteen bit mode).

This is a 56 bit operation.

Condition Codes:

NORMF NORMF
Fast Accumulator Normalization

Operation: Assembler Syntax:

If S[23]=0 then ASR S,D
else ASL -S,D

NORMF S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● V Set if bit 55 is changed any time during the shift operation. Cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction.
A - 200 INSTRUCTION SET MOTOROLA

Example:

CLB A,B ;Count leading bits.

NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands.

MOVE B1,N1 ;Update N1 with shift amount

MOVE (R1)+N1 ;Increment or decrement exponent

Explanation of example: Prior to execution, the 56-bit A accumulator contains the value
$20:000000:000000. The CLB instruction updates the B accumulator to the number of
needed shifts, 7 in this example. The NORMF instruction performs 7 shifts to the right on
A accumulator, and normalization of A is achieved. The exponent register is updated
according to the number of shifts.

Instruction Formats and opcode

Instruction Fields:

23 16 15 8 7 0

NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)

$20:000000:000000

B: $00:000007:000000

A:

Before execution

$20:000000:000000

After execution

A: $00:400000:000000

A:CLB A,B

NORMF B1,A
MOTOROLA INSTRUCTION SET A - 201

A-6.89 Logical Complement (NOT)

where “—” denotes the logical NOT operator

Description: Take the ones complement of bits 47–24 of the destination operand D and
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

NOT NOT
Logical Compliment

Operation: Assembler Syntax:

D[47:24] ➞ D[47:24] (parallel move) NOT D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NOT D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
A - 202 INSTRUCTION SET MOTOROLA

A-6.90 Logical Inclusive OR (OR)

where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47–24 of the
destination operand D and store the result in bits 47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

OR OR
Logical Inclusive OR

Operation: Assembler Syntax:

S+D[47:24] ➞ D[47:24] (parallel move) OR S,D (parallel move)

#xx+D[47:24] ➞ D[47:24] OR #xx,D

#xxxxxx+D[47:24] ➞ D[47:24] OR #xxxxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 203

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

OR S,D DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0

OR #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word
A - 204 INSTRUCTION SET MOTOROLA

A-6.91 OR Immediate with Control Register (ORI)

where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register is specified as the
destination operand.

Condition Codes:

ORI ORI
OR Immediate with Control register

Operation: Assembler Syntax:

#xx+D ➞ D OR(I) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For CCR Operand:
● S Set if bit 7 of the immediate operand is set
● L Set if bit 6 of the immediate operand is set
● E Set if bit 5 of the immediate operand is set
● U Set if bit 4 of the immediate operand is set
● N Set if bit 3 of the immediate operand is set
● Z Set if bit 2 of the immediate operand is set
● V Set if bit 1 of the immediate operand is set
● C Set if bit 0 of the immediate operand is set
For MR and OMR Operands: The condition codes are not affected using these
operands.
MOTOROLA INSTRUCTION SET A - 205

Instruction Formats and opcodes:

Instruction fields:

23 16 15 8 7 0

OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-13 on
page A-239)

{#xx} iiiiiiii Immediate Short Data
A - 206 INSTRUCTION SET MOTOROLA

A-6.92 Program-Cache Flush (PFLUSH)

Description: Flush the whole instruction cache, unlock all cache sectors, set the LRU
stack and tag registers to their default values.

The PFLUSH instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFLUSH PFLUSH
Program Cache Flush

Operation: Assembler Syntax:

Flush instruction cache PFLUSH

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFLUSH 0 1 1
MOTOROLA INSTRUCTION SET A - 207

A-6.93 Program-Cache Flush Unlock Sectors(PFLUSHUN)

Description: Flush the instruction cache sectors which are unlocked, set the LRU stack
to its default value and set the unlocked tag registers to their default values.

The PFLUSHUN instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFLUSHUN PFLUSHUN
Program Cache Flush Unlocked Sectors

Operation: Assembler Syntax:

Flush Unlocked instruction cache sectors PFLUSHUN

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFLUSHUN 0 1
A - 208 INSTRUCTION SET MOTOROLA

A-6.94 Program-Cache Global Unlock (PFREE)

Description: Unlock all the locked cache sectors in the instruction cache.

The PFREE instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFREE PFREE
Program Cache Global Unlock

Operation: Assembler Syntax:

Unlock all locked sectors PFREE

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFREE 0 1 0
MOTOROLA INSTRUCTION SET A - 209

A-6.95 Lock Instruction Cache Relative Sector (PLOCKR)

Description: Lock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, then load the 17 most significant
bits of the sum into the least recently used cache sector tag, and then lock that cache
sector. Update the LRU stack accordingly.

The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the address to be locked.

The PLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

PLOCKR PLOCKR
Lock Instruction Cache Relative Sector

Operation: Assembler Syntax:

Lock sector by PC+xxxx PLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PLOCKR xxxx 0 1 1 1 1

ADDRESS EXTENSION WORD
A - 210 INSTRUCTION SET MOTOROLA

A-6.96 Unlock instruction Cache Sector (PUNLOCK)

Description: Unlock the cache sector to which the specified effective address belongs. If
the specified effective address does not belong to any cache sector, and is therefore
definitely unlocked, nevertheless, load the least recently used cache sector tag with the17
most significant bits of the specified address. Update the LRU stack accordingly. All
memory alterable addressing modes may be used for the effective address, but not a short
absolute address.

The PUNLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

PUNLOCK PUNLOCK
Unlock Instruction Cache Sector

Operation: Assembler Syntax:

Unlock sector by effective address PUNLOCK ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PUNLOCK ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 1

ADDRESS EXTENSION WORD

{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
MOTOROLA INSTRUCTION SET A - 211

A-6.97 Unlock instruction Cache Relative Sector (PUNLOCKR)

Description: Unlock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, and is therefore definitely
unlocked, nevertheless, load the least recently used cache sector tag with the 17 most
significant bits of the sum. Update the LRU stack accordingly.

The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the address to be locked.

The PUNLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

PUNLOCKR PUNLOCKR
Unlock Instruction Cache Relative Sector

Operation: Assembler Syntax:

Unlock sector by PC+xxxx PUNLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PUNLOCKR xxxx 0 1 1 1 0

ADDRESS EXTENSION WORD
A - 212 INSTRUCTION SET MOTOROLA

A-6.98 Repeat Next Instruction (REP)

Description: Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 24-bit loop counter (LC) register. The
single-word instruction is then executed the specified number of times, decrementing the
loop counter (LC) after each execution until LC=1. When the REP instruction is in effect,
the repeated instruction is fetched only one time, and it remains in the instruction register
for the duration of the loop count. Thus, the REP instruction is not interruptible
(sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes may be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 24-bit value that is to be loaded into the loop counter (LC).

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

REP REP
Repeat Next Instruction

Operation: Assembler Syntax:

LC ➞ TEMP; [X or y]:ea ➞ LC REP [X or Y]:ea
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; [X or Y]:aa ➞ LC REP [X or Y]:aa
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP;S ➞ LC REP S
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP;#xxx ➞ LC REP #xxx
Repeat next instruction until LC=1
TEMP ➞ LC
MOTOROLA INSTRUCTION SET A - 213

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

REP [X or Y]:ea 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP [X or Y]:aa 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP #xxx 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

REP S 0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Short Address
{#xxx} hhhhiiiiiiii Immediate Short Data
{S} dddddd Source register [all on-chip registers] (see Table A-22 on page A-

243)
A - 214 INSTRUCTION SET MOTOROLA

A-6.99 Reset On-Chip Peripheral Devices (RESET)

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip
peripherals and the interrupt structure are affected. The processor state is not affected,
and execution continues with the next instruction. All interrupt sources are disabled except
for the stack error, NMI, illegal instruction, Trap, Debug request and hardware reset
interrupts.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

RESET RESET
Reset On-Chip Peripherals Devices

Operation: Assembler Syntax:

Reset the interrupt priority register and all
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
MOTOROLA INSTRUCTION SET A - 215

A-6.100 Round Accumulator (RND)

Description: Round the 56-bit value in the specified destination operand D and store the
result in the destination accumulator (A or B). The contribution of the LS bits of the
operand is rounded into the upper portion of the operand by adding a rounding constant
to the LS bits of the operand. The upper portion of the destination accumulator contains
the rounded result. The boundary between the lower portion and the upper portion is
determined by the scaling mode bits S0 and S1 in the status register (SR).

Two types of rounding can be used: convergent rounding (also called round to nearest
(even)) or two’s complement rounding. The type of rounding is selected by the rounding
mode bit (RM) in the MR portion of the status register.

In both these rounding modes a rounding constant is first added to the unrounded result.
The value of the rounding constant added is determined by the scaling mode bits S0 and
S1 in the status register (SR). A “1” is positioned in the rounding constant aligned with the
most significant bit of the current LS portion, i.e. the rounding constant weight is actually
equal to half the weight of the upper’s portion least significant bit.

The following table shows the rounding position and rounding constant as determined by
the scaling mode bits:

Secondly, if convergent rounding is used, the result of this addition is tested and if all the
bits of the result to the right of, and including, the rounding position are cleared, then the
bit to the left of the rounding position is cleared in the result. This ensures that the result
will not be biased.

RND RND
Round Accumulator

Operation: Assembler Syntax:

D+r ➞ D (parallel move) RND D (parallel move)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
A - 216 INSTRUCTION SET MOTOROLA

Thirdly, in both rounding modes, the least significant bits of the result are cleared. The
number of least significant bits cleared is determined by the scaling mode bits in the status
register. All bits to the right of, and including, the rounding position are cleared in the
result.

In Sixteen Bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is
rounded and stored in the destination accumulator (A or B). This implies that the boundary
between the lower portion and upper portion is in a different position then in 24 bit mode.
The following table shows the rounding position and rounding constant in sixteen bit
arithmetic mode, as determined by the scaling mode bits:

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

RND D DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 33 32 23 22 21 - 8

0 0 No Scaling 31 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 32 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 30 0. . . .0 0 0 1 0. . . .0
MOTOROLA INSTRUCTION SET A - 217

A-6.101 Rotate Left (ROL)

Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the left and store
the result in the destination accumulator.The carry bit receives the previous value of bit 47
of the operand.The previous value of the carry bit is shifted into bit 24 of the operand.This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Condition Codes:

Instruction Formats and opcodes:

ROL ROL
Rotate Left

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
● C Set if bit 47 of the destination operand is set, cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ROL D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

47 24

C (parallel move)Operation:
A - 218 INSTRUCTION SET MOTOROLA

Instruction Fields:

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
MOTOROLA INSTRUCTION SET A - 219

A-6.102 Rotate Right (ROR)

Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the right and store
the result in the destination accumulator.The carry bit receives the previous value of bit 24
of the operand.The previous value of the carry bit is shifted into bit 47 of the operand. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Condition Codes:

ROR ROR
Rotate Right

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
● C Set if bit 24 of the destination operand is set, cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

47 24

C (parallel move)Operation:
A - 220 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

ROR D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
MOTOROLA INSTRUCTION SET A - 221

A-6.103 Return from Interrupt (RTI)

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

RTI RTI
Return from Interrupt

Operation: Assembler Syntax:

SSH ➞ PC; SSL ➞ SR; SP–1 ➞ SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

● All All the Status Register bits are set according to the value pulled from the stack

23 16 15 8 7 0

RTI 0 1 0 0
A - 222 INSTRUCTION SET MOTOROLA

A-6.104 Return from Subroutine (RTS)

Description: Pull the program counter (PC) from the system stack. The previous program
counter is lost. The status register (SR) is not affected.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

RTS RTS
Return from Subroutine

Operation: Assembler Syntax:

SSH ➞ PC; SP–1 ➞ SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

RTS 0 1 1 0 0
MOTOROLA INSTRUCTION SET A - 223

A-6.105 Subtract Long with Carry (SBC)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination
accumulator. Long words (48 bits) are subtracted from the (56-bit) destination
accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-
word operands if the extension register of the destination accumulator
(A2 or B2) is the sign extension of bit 47 of the destination accumulator
(A or B).

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

SBC SBC
Subtract Long with Carry

Operation: Assembler Syntax:

D–S–C ➞ D (parallel move) SBC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SBC S,D DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-11 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
A - 224 INSTRUCTION SET MOTOROLA

A-6.106 Stop Instruction Processing (STOP)

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET,DE or IRQA pin is asserted or the Debug Request JTAG command is
detected. The clock oscillator is gated off internally. The STOP processing state is a low-
power standby state.

During the STOP state, the destination port is in an idle state with the control signals held
inactive, the data pins are high impedance, and the address pins are unchanged from the
previous instruction.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the
processor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. If no interrupt is pending, the processor will resume
program execution at the instruction following the STOP instruction that caused the entry
into the STOP state. Program execution (interrupt or normal flow) will resume after an
internal delay counter counts:

• If the Stop Delay (SD, OMR[6]) bit is cleared - 131,070 clock cycles

• If the Stop Delay (SD, OMR[6]) bit is set - 24 clock cycles

• If the STOP Processing State (PSTP, PCTL[17]) is set - 8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval. If the IRQA pin is
asserted when the STOP instruction is executed, the clock will not be gated off, and only
the internal delay counter will be started.

STOP STOP
Stop Instruction Processing

Operation: Assembler Syntax:

Enter the stop processing state and stop the
clock oscillator

STOP
MOTOROLA INSTRUCTION SET A - 225

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
A - 226 INSTRUCTION SET MOTOROLA

A-6.107 Subtract (SUB)

Description: Subtract the source operand from the destination operand D and store the
result in the destination operand D. The source can be a register (word - 24 bits, long word
- 48 bits or accumulator - 56 bits), short immediate (6 bits) or long immediate (24 bits).

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Note: The carry bit is set correctly using word or long-word source operands if
the extension register of the destination accumulator (A2 or B2) is the
sign extension of bit 47 of the destination accumulator (A or B). The carry
bit is always set correctly using accumulator source operands.

Condition Codes:

SUB SUB
Subtract

Operation: Assembler Syntax:

D–S ➞ D (parallel move) SUB S, D (parallel move)

D–#xx ➞ D SUB #xx, D

D–#xxxxxx ➞ D SUB #xxxxxx ,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
MOTOROLA INSTRUCTION SET A - 227

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

SUB S,D DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

SUB #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0

SUB #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-14 on page A-240)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word
A - 228 INSTRUCTION SET MOTOROLA

A-6.108 Shift Left and Subtract Accumulators (SUBL)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the
subtraction operation. The carry bit is set correctly if the source operand does not overflow
as a result of the left shift operation. The overflow bit may be set as a result of either the
shifting or subtraction operation (or both). This instruction is useful for efficient divide and
decimation in time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

SUBL SUBL
Shift Left and Subtract Accumulators

Operation: Assembler Syntax:

2∗ D–S ➞ D (parallel move) SUBL S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✔

CCR

● V Set if overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SUBL S,D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET A - 229

Instruction Fields:

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B
A - 230 INSTRUCTION SET MOTOROLA

A-6.109 Shift Right and Subtract Accumulators (SUBR)

Description: Subtract the source operand S from one-half the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the subtraction
operation. In contrast to the SUBL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the subtraction operation, and not by an overflow due to
the initial shifting operation. This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

SUBR SUBR
Shift Right and Subtract Accumulators

Operation: Assembler Syntax:

D/2 –S ➞ D (parallel move) SUBR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SUBR S,D DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B
MOTOROLA INSTRUCTION SET A - 231

A-6.110 Transfer Conditionally (Tcc)

Description: Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source register
S2 and a second destination register D2 are also specified, transfer data from address
register S2 to address register D2 if the specified condition is true. If the specified
condition is false, a NOP is executed.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

When used after the CMP or CMPM instructions, the Tcc instruction can perform many
useful functions such as a “maximum value,” “minimum value,” “maximum absolute value,”
or “minimum absolute value” function. The desired value is stored in the destination
accumulator D1. If address register S2 is used as an address pointer into an array of data,
the address of the desired value is stored in the address register D2. The Tcc instruction
may be used after any instruction and allows efficient searching and sorting algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths. The
Tcc instruction does not affect the condition code bits.

Condition Codes:

Tcc Tcc
Transfer Conditionally

Operation: Assembler Syntax:

If cc, then S1 ➞ D1 Tcc S1,D1

If cc, then S1 ➞ D1 and S2 ➞ D2 Tcc S1,D1 S2,D2

If cc, then S2 ➞ D2 Tcc S2,D2

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction
A - 232 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0

Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0

Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T

{cc} CCCC Condition code (see Table A-43 on page A-251)
{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{D1} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{S2} ttt Source address register [R0-R7]
{D2} TTT Destination Address register [R0-R7]
MOTOROLA INSTRUCTION SET A - 233

A-6.111 Transfer Data ALU Register (TFR)

Description: Transfer data from the specified source data ALU register S to the specified
destination data ALU accumulator D. TFR uses the internal data ALU data paths; thus,
data does not pass through the data shifter/limiters. This allows the full 56-bit contents of
one of the accumulators to be transferred into the other accumulator without data shifting
and/or limiting. Moreover, since TFR uses the internal data ALU data paths, parallel
moves are possible.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

TFR TFR
Transfer Data ALU Register

Operation: Assembler Syntax:

S➞D (parallel move) TFR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TFR S,D DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
A - 234 INSTRUCTION SET MOTOROLA

A-6.112 Software Interrupt (TRAP)

Description: Suspend normal instruction execution and begin TRAP exception
processing. The interrupt priority level (I1,I0) is set to 3 in the status register (SR) if a long
interrupt service routine is used.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

TRAP TRAP
Software Interrupt

Operation: Assembler Syntax:

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TRAP 0 1 1 0
MOTOROLA INSTRUCTION SET A - 235

A-6.113 Conditional Software Interrupt (TRAPcc)

Description:

If the specified condition is true, normal instruction execution is suspended and software
exception processing is initiated. The interrupt priority level (I1,I0) is set to 3 in the status
register if a long interrupt service routine is used. If the specified condition is false,
instruction execution continues with the next instruction.

The conditions that the term “cc” may specify are listed on Table A-42 on page A-250.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields:

TRAPcc TRAPcc
Conditional Software Interrupt

Operation: Assembler Syntax:

If cc then Begin software exception processing TRAPcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)
A - 236 INSTRUCTION SET MOTOROLA

A-6.114 Test Accumulator (TST)

Description: Compare the specified source accumulator S with zero and set the condition
codes accordingly. No result is stored although the condition codes are updated.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

TST TST
Test Accumulator

Operation: Assembler Syntax:

S–0 (parallel move) TST S (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TST S DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} d Source accumulator [A,B] (see Table A-10 on page A-239)
MOTOROLA INSTRUCTION SET A - 237

A-6.115 Wait for interrupt (WAIT)

Description: Enter the low-power standby WAIT processing state. The internal clocks to
the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs or an enabled DMA channel receives a
request. The clock oscillator and the internal I/O peripheral clocks remain active. If WAIT
is executed when an interrupt is pending, the interrupt will be processed; the effect will be
the same as if the processor never entered the WAIT state. If WAIT is executed when the
DMA is active, the effect will be the same as if the processor never entered the WAIT state.
When an unmasked interrupt or external (hardware) processor RESET occurs, the
processor leaves the WAIT state and begins exception processing of the unmasked
interrupt or RESET condition. The processor will exit from the WAIT state also when a
Debug Request (DE) pin is asserted or when a Debug Request JTAG command is
detected.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

WAIT WAIT
Wait for Interrupt or DMA request

Operation: Assembler Syntax:

Disable clocks to the processor core and
enter the WAIT processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
A - 238 INSTRUCTION SET MOTOROLA

A-7 INSTRUCTION PARTIAL ENCODING

This section gives the encodings for (1) various groupings of registers used in the instruc-
tion encodings, (2) condition code combinations, (3) addressing, and (4) addressing
modes. The symbols used in decoding the various fields of an instruction are identical to
those used in the Opcode section of the individual instruction descriptions.

A-7.1 Partial Encodings for Use in Instruction Encoding

Table A-10. Destination Accumulator Encoding

Table A-11. Data ALU Operands Encoding

Table A-12. Data ALU Source Operands Encoding

Table A-13. Program Control Unit Register Encoding

D/ d/S/D

A 0

B 1

S J
X 0
Y 1

S JJ
X0 00
Y0 01
X1 10
Y1 11

Register EE
MR 00

CCR 01
COM 10
EOM 11
MOTOROLA INSTRUCTION SET A - 239

Table A-14. Data ALU Operands Encoding

* The source accumulator is B if the destination accumulator (selected by the d bit in the
opcode) is A, or A if the destination accumulator is B.

Table A-15. Data ALU operands encoding

* The selected accumulator is B if the source two accumulator (selected by the d bit in the
opcode) is A, or A if the source two accumulator is B.

S J J J
B/A* 001

X 010
Y 011
X0 100
Y0 101
X1 110
Y1 111

SSS/sss S,D qqq S,D ggg S,D

000 reserved 000 reserved 000 B/A*

001 reserved 001 reserved 001 reserved

010 A1 010 A0 010 reserved

011 B1 011 B0 011 reserved

100 X0 100 X0 100 X0

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1
A - 240 INSTRUCTION SET MOTOROLA

Table A-16. Effective Addressing Mode Encoding #1

“rrr” refers to an address register R0-R7

Table A-17. Memory/Peripheral Space

Table A-18. Effective Addressing Mode Encoding #2

“rrr” refers to an address register R0-R7

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

Space S
X Memory 0
Y Memory 1

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Absolute address 1 10 0 0 0
MOTOROLA INSTRUCTION SET A - 241

Table A-19. Effective Addressing Mode Encoding #3

“rrr” refers to an address register R0-R7

Table A-20. Effective Addressing Mode Encoding #4

“rrr” refers to an address register R0-R7

Table A-21. Triple-Bit Register Encoding

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Effective
Addressing Mode

MMRRR

(Rn)-Nn 0 0 r r r
(Rn)+Nn 0 1 r r r

(Rn)- 1 0 r r r
(Rn)+ 1 1 r r r

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 - A0 R0 N0 M0 - VBA SZ

001 - B0 R1 N1 M1 - SC SR

010 - A2 R2 N2 M2 EP - OMR

011 - B2 R3 N3 M3 - - SP

100 X0 A1 R4 N4 M4 - - SSH

101 X1 B1 R5 N5 M5 - - SSL

110 Y0 A R6 N6 M6 - - LA

111 Y1 B R7 N7 M7 - - LC
A - 242 INSTRUCTION SET MOTOROLA

Table A-22. Six-Bit Encoding For all On-Chip Registers

See Table A-21 for the specific encodings.

Table A-23. Long Move Register Encoding

Table A-24. Data ALU Source Registers Encoding

* The source accumulator is B if the destination accumulator (selected by the d bit in the
opcode) is A, or A if the destination accumulator is B.

Destination Register
D D D D D D /

d d d d d d
4 registers in Data ALU 0001DD

8 accumulators in Data ALU 001DDD
8 address registers in AGU 010TTT

8 address offset registers in AGU 011NNN
8 address modifier registers in AGU 100FFF

1address register in AGU 101EEE
2 program controller register 110VVV
8 program controller registers 111GGG

S S1 S2
S

S/L
D D1 D2

D
Sign Ext

D
Zero

LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

S J J J
B/A* 000
X0 100
Y0 101
X1 110
Y1 111
MOTOROLA INSTRUCTION SET A - 243

Table A-25. AGU Address and Offset Registers Encoding

Table A-26. Data ALU Multiply Operands Encoding #1

Note: Only the indicated S1*S2 combinations are valid.X1*X1 and Y1*Y1 are not valid.

Table A-27. Data ALU Multiply Operands Encoding #2

Table A-28. Data ALU Multiply Operands Encoding #3

Table A-29. Data ALU Multiply Sign Encoding

Dest. Addr. Reg. D dddd
R0-R7 onnn
N0-N7 1nnn

S1*S2 Q Q Q S1*S2 Q Q Q
X0,X0 0 0 0 X0,Y1 1 0 0
Y0,Y0 0 0 1 Y0,X0 1 0 1
X1,X0 0 1 0 X1,Y0 1 1 0
Y1,Y0 0 1 1 Y1,X1 1 1 1

S Q Q
Y1 00
X0 01
Y0 10
X1 11

S qq
X0 00
Y0 01
X1 10
Y1 11

Sig
n

k

+ 0
- 1
A - 244 INSTRUCTION SET MOTOROLA

Table A-30. Data ALU Multiply Operands Encoding #3

Table A-31. 5-Bit Register Encoding #1

“rrr”=Rn number, “nnn”=Nn number

S1*S2 Q Q Q Q S1*S2 Q Q Q Q
X0,X0 0 0 0 0 X0,Y1 01 0 0
Y0,Y0 0 0 0 1 Y0,X0 01 0 1
X1,X0 0 0 1 0 X1,Y0 01 1 0
Y1,Y0 0 0 1 1 Y1,X1 01 1 1
X1,X1 1 0 0 0 Y1,X0 1 1 0 0
Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1
X0,X1 1 0 1 0 Y0,X1 1 1 1 0
Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1

D/S
ddddd /
eeeee

D/S
ddddd /
eeeee

X0 00100 B2 01011
X1 00101 A1 01100
Y0 00110 B1 01101
Y1 00111 A 01110
A0 01000 B 01111
B0 01001 R0-R7 10 r r r
A2 01010 N0-N7 11 n n n
MOTOROLA INSTRUCTION SET A - 245

Table A-32. Immediate Data ALU Operand Encoding

Table A-33. Write Control Encoding

Table A-34. ALU Registers Encoding

See Table A-21 for the specific encodings.

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Operation W
Read Register or Peripheral 0
Write Register or Peripheral 1

Destination Register D D D D
4 registers in Data ALU 01DD

8 accumulators in Data ALU 1DDD
A - 246 INSTRUCTION SET MOTOROLA

Table A-35. X:R Operand Registers Encoding

Table A-36. R:Y Operand Registers Encoding

Table A-37. Single-Bit Special Register Encoding Tables

S1,
D1

f f D2 F

X0 00 Y0 0
X1 01 Y1 1
A 10
B 11

D1 e
S2,
D2

f f

X0 0 Y0 00
X1 1 Y1 01

A 10
B 11

d X:R Class II Opcode R:Y Class II Opcode
0 A ➞ X:<ea> , X0 ➞ A Y0 ➞ A , A ➞ Y:<ea>
1 B ➞ X:<ea> , X0 ➞ B Y0 ➞ B , B ➞ Y:<ea>
MOTOROLA INSTRUCTION SET A - 247

Table A-38. X:Y: Move Operands Encoding Tables

where “sss” refers to an address register R0-R7

where “tt” refers to an address register R4-R7 or R0-R3 which is in the opposite address
register bank from the one used in the X effective address

Table A-39. Signed/Unsigned partial encoding #1

X Effective
Addressing

Mode
MMRRR

(Rn)+Nn 01sss
(Rn)- 10sss
(Rn)+ 11sss
(Rn) 00sss

Y Effective
Addressing

Mode
mmrr

(Rn)+Nn 01tt
(Rn)- 10tt
(Rn)+ 11tt
(Rn) 00tt

S1,D1 e e S2,D2 f f
X0 00 Y0 00
X1 01 Y1 01
A 10 A 10
B 11 B 11

ss/su/uu ss
ss 00
su 10
uu 11

reserved 01
A - 248 INSTRUCTION SET MOTOROLA

Table A-40. Signed/Unsigned partial encoding #2

Table A-41. 5-Bit Register Encoding

where “nnn”=Mn number (M0-M7)

su/uu s
su 0
uu 1

S1,D1 ddddd
M0-M7 00nnn

EP 01010
VBA 10000
SC 10001
SZ 11000
SR 11001

OMR 11010
SP 11011

SSH 11100
SSL 11101
LA 11110
LC 11111
MOTOROLA INSTRUCTION SET A - 249

Table A-42. Condition Codes Computation Equations

where

U denotes the logical complement of U,

+ denotes the logical OR operator,

• denotes the logical AND operator, and

⊕ denotes the logical Exclusive OR operator

“cc” Mnemonic Condition

CC(HS) carry clear (higher or same) C=0

CS(LO) carry set (lower) C=1

EC extension clear E=0

EQ equal Z=1

ES extension set E=1

GE greater than or equal N ⊕ V=0

GT greater than Z+(N ⊕ V)=0

LC limit clear L=0

LE less than or equal Z+(N ⊕ V)=1

LS limit set L=1

LT less than N ⊕ V=1

MI minus N=1

NE not equal Z=0

NR normalized Z+(U•E)=1

PL plus N=0

NN not normalized Z+(U•E)=0
A - 250 INSTRUCTION SET MOTOROLA

Table A-43. Condition Codes Encoding

The condition code computation equations are listed on Table A-42

A-7.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided into
the multiply and nonmultiply instruction encodings shown in the following subsection.

A-7.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction’s operation code.

The 8-bit operation code=1QQQ dkkk where

QQQ=selects the inputs to the multiplier (see Table A-26)
kkk = three unencoded bits k2, k1, k0
d = destination accumulator
d = 0 ➞ A
d = 1 ➞ B

Table A-44. Operation Code K0-2 Decode

Mnemonic CCCC Mnemonic CCCC

CC(HS) 0000 CS(LO) 1000

GE 0001 LT 1001

NE 0010 EQ 1010

PL 0011 MI 1011

NN 0100 NR 1100

EC 0101 ES 1101

LC 0110 LS 1110

GT 0111 LE 1111

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round
MOTOROLA INSTRUCTION SET A - 251

A-7.2.2 NonMultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina-
tion accumulator register.

The 8-bit operation code = 0JJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
D=0 ➞ A
D=1 ➞ B

Table A-45. Nonmultiply Instruction Encoding

Note: * = Reserved

1 = Special Case #1

Table A-46. Special Case #1

JJJ
D = 0
Src

Oper

D = 1
Src

Oper

kkk

000 001 010 011 100 101 110 111

000 B A MOVE
1

TFR ADDR TST * CMP SUBR CMPM

001 B A ADD RND ADDL CLR SUB * SUBL NOT

010 B A — — ASR LSR — — ABS ROR

011 B A — — ASL LSL — — NEG ROL

010 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

011 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —

100 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

101 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

110 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

111 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

OPERCODE Operation

00000000 MOVE

00001000 reserved
A - 252 INSTRUCTION SET MOTOROLA

Appendix B INSTRUCTION EXECUTION TIMING

B-1 INTRODUCTION

This section describes the various aspects of execution timing analysis for each instruc-
tion mnemonic and for various instruction sequences. The section consists of the following
tables and information:

1. Tables showing how to calculate DSP56300 Core instruction timing for
each instruction mnemonic (instruction timing)

2. Tables showing the number of instruction program words for each instruc-
tion mnemonic (instruction program words).

3. Description of various sequences that cause timing delays and stalls in the
execution (instruction sequence delays).

4. Description of various instruction sequences that are forbidden and will
cause undefined operation (instruction sequence restrictions).

B-2 INSTRUCTION TIMING

The number of oscillator clock cycles per instruction depends on many factors, including
the number of words per instruction, the addressing mode, whether the instruction fetch
pipeline is full or not, the number of external bus accesses, cache hit/miss/burst, and the
number of wait states inserted in each external access.

The timing table is based on the following assumptions:

1. All instruction cycles are counted in clock cycles.
2. The instruction fetch pipeline is full.

The following terms are used inside the table:

1. T - clock cycles for the normal case:
• All the instructions are fetched from the Instruction Cache (hit) or

from the internal program memory.
• All accesses to data memory are to the internal X and/or Y internal

ROMs or RAMs.
• The previous instructions access internal data memory only.
• No interlocks with previous instructions.
• The stack extension mode is disabled.
• Addressing mode is the Post-Update mode (post increment, post
MOTOROLA INSTRUCTION EXECUTION TIMING B - 3

decrement and post offset by N) or the No-Update mode.
2. + pru - PRe Update - clocks cycles added for using the pre-update ad-

dressing modes (pre decrement & offset by N addressing modes).
3. + lab - Long ABsolute - clock cycles added for using the long absolute ad-

dress mode.
4. + lim - Long IMmediate - clock cycles added for using the long immediate

data addressing mode.

Note: A ‘-’ sign under one or more of the columns pru, lab or lim indicates that
this column is not applicable to the corresponding instruction.

Table B-1. Instruction Timing, Word Count and encoding

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

ADD ADD #iiiiii,D 2 - - -

ADD #iii,D 1 - - -

AND AND #iiiiii,D 2 - - -

AND #iii,D 1 - - -

ANDI ANDI EE 3 - - -

ASL ASL #ii,S,D 1 - - -

ASL sss,S,D 1 - - -

ASR ASR sss,S,D 1 - - -

ASR #ii,S,D 1 - - -

Bcc Bcc (PC+Rn) 4 - - -

Bcc (PC+aaaa) 5 - - -

Bcc (PC+aa) 4 - - -

BCHG BCHG #bbbbb,S:<aa> 2 - - -

BCHG #bbbbb,S:<ea> 2 1 1 -

BCHG #bbbbb,S:<pp> 2 - - -

BCHG #bbbbb,S:<qq> 2 - - -

BCHG #bbbbb,DDDDDD 2 - - -
B - 4 INSTRUCTION EXECUTION TIMING MOTOROLA

BCLR BCLR #bbbbb,S:<pp> 2 - - -

BCLR #bbbbb,S:<ea> 2 1 1 -

BCLR #bbbbb,S:<aa> 2 - - -

BCLR #bbbbb,S:<qq> 2 - - -

BCLR #bbbbb,DDDDDD 2 - - -

BRA BRA (PC+Rn) 4 - - -

BRA (PC+aaaa) 5 - - -

BRA (PC+aa) 4 - - -

BRCLR BRCLR #bbbbb,S:<pp>,(PC+aaaa) 5 - - -

BRCLR #bbbbb,S:<qq>,(PC+aaaa) 5 - - -

BRCLR #bbbbb,S:<ea>,(PC+aaaa) 5 1 - -

BRCLR #bbbbb,S:<aa>,(PC+aaaa) 5 - - -

BRCLR #bbbbb,DDDDDD,(PC+aaaa) 5 - - -

BRKcc BRKcc 5 - - -

BRSET BRSET #bbbbb,S:<pp>,(PC+aaaa) 5 - - -

BRSET #bbbbb,S:<ea>,(PC+aaaa) 5 1 - -

BRSET #bbbbb,S:<aa>,(PC+aaaa) 5 - - -

BRSET #bbbbb,DDDDDD,(PC+aaaa) 5 - - -

BRSET #bbbbb,S:<qq>,(PC+aaaa) 5 - - -

BScc BScc (PC+aaaa) 5 - - -

BScc (PC+Rn) 4 - - -

BScc (PC+aa) 4 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

MOTOROLA INSTRUCTION EXECUTION TIMING B - 5

BSCLR BSCLR #bbbbb,S:<ea>,(PC+aaaa) 5 1 - -

BSCLR #bbbbb,S:<aa>,(PC+aaaa) 5 - - -

BSCLR #bbbbb,S:<pp>,(PC+aaaa) 5 - - -

BSCLR #bbbbb,DDDDDD,(PC+aaaa) 5 - - -

BSCLR #bbbbb,S:<qq>,(PC+aaaa) 5 - - -

BSET BSET #bbbbb,S:<pp> 2 - - -

BSET #bbbbb,S:<ea> 2 1 1 -

BSET #bbbbb,S:<aa> 2 - - -

BSET #bbbbb,DDDDDD 2 - - -

BSET #bbbbb,S:<qq> 2 - - -

BSR BSR (PC+Rn) 4 - - -

BSR (PC+aaaa) 5 - - -

BSR (PC+aa) 4 - - -

BSSET BSSET #bbbbb,S:<pp>,(PC+aaaa) 5 - - -

BSSET #bbbbb,S:<ea>,(PC+aaaa) 5 1 - -

BSSET #bbbbb,S:<aa>,(PC+aaaa) 5 - - -

BSSET #bbbbb,DDDDDD,(PC+aaaa) 5 - - -

BSSET #bbbbb,S:<qq>,(PC+aaaa) 5 - - -

BTST BTST #bbbbb,S:<pp> 2 - - -

BTST #bbbbb,S:<ea> 2 1 1 -

BTST #bbbbb,S:<aa> 2 - - -

BTST #bbbbb,DDDDDD 2 - - -

BTST #bbbbb,S:<qq> 2 - - -

CLB CLB S,D 1 - - -

CMP CMP #iiiiii,D 2 - - -

CMP #iii,D 1 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

B - 6 INSTRUCTION EXECUTION TIMING MOTOROLA

CMPU CMPU ggg,D 1 - - -

DEBUG/DEBUGcc DEBUG 1 - - -

DEBUGcc 5 - - -

DEC DEC 1 - - -

DIV DIV 1 - - -

DMAC DMAC S1,S2,D (ss,su,uu) 1 - - -

DO DO #xxx,aaaa 5 - - -

DO DDDDDD,aaaa 5 - - -

DO S:<ea>,aaaa 5 1 - -

DO S:<aa>,aaaa 5 - - -

DO FOREVER DO FOREVER,(aaaa) 4 - - -

DOR DOR #xxx,(PC+aaaa) 5 - - -

DOR DDDDDD,(PC+aaaa) 5 - - -

DOR S:<ea>,(PC+aaaa) 5 1 - -

DOR S:<aa>,(PC+aaaa) 5 - - -

DOR FOREVER DOR FOREVER,(PC+aaaa) 4 - - -

ENDDO ENDDO 1 - - -

EOR EOR #iiiiii,D 2 - - -

EOR #iii,D 1 - - -

EXTRACT EXTRACT SSS,s,D 1 - - -

EXTRACT #iiii,s,D 2 - - -

EXTRACTU EXTRACTU SSS,s,D 1 - - -

EXTRACTU #iiii,s,D 2 - - -

IFcc IFcc(.U) 1 - - -

ILLEGAL ILLEGAL 5 - - -

INC INC 1 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

MOTOROLA INSTRUCTION EXECUTION TIMING B - 7

INSERT INSERT SSS,qqq,D 1 - - -

INSERT #iiii,qqq,D 2 - - -

Jcc Jcc aa 4 - - -

Jcc ea 4 0 0 -

JCLR JCLR #bbbbb,S:<ea>,aaaa 4 1 - -

JCLR #bbbbb,S:<pp>,aaaa 4 - - -

JCLR #bbbbb,S:<aa>,aaaa 4 - - -

JCLR #bbbbb,DDDDDD,aaaa 4 - - -

JCLR #bbbbb,S:<qq>,aaaa 4 - - -

JMP JMP aa 3 - - -

JMP ea 3 1 1 -

JScc JScc aa 4 - - -

JScc ea 4 0 0 -

JSCLR JSCLR #bbbbb,S:<pp>,aaaa 4 - - -

JSCLR #bbbbb,S:<ea>,aaaa 4 1 - -

JSCLR #bbbbb,S:<aa>,aaaa 4 - - -

JSCLR #bbbbb,DDDDDD,aaaa 4 - - -

JSCLR #bbbbb,S:<qq>,aaaa 4 - - -

JSET JSET #bbbbb,S:<pp>,aaaa 4 - - -

JSET #bbbbb,S:<ea>,aaaa 4 1 - -

JSET #bbbbb,S:<aa>,aaaa 4 - - -

JSET #bbbbb,DDDDDD,aaaa 4 - - -

JSET #bbbbb,S:<qq>,aaaa 4 - - -

JSR JSR aa 3 - - -

JSR ea 3 1 1 -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

B - 8 INSTRUCTION EXECUTION TIMING MOTOROLA

JSSET JSSET #bbbbb,S:<pp>,aaaa 4 - - -

JSSET #bbbbb,S:<ea>,aaaa 4 1 - -

JSSET #bbbbb,S:<aa>,aaaa 4 - - -

JSSET #bbbbb,DDDDDD,aaaa 4 - - -

JSSET #bbbbb,S:<qq>,aaaa 4 - - -

LSL LSL sss,D 1 - - -

LSL #ii,D 1 - - -

LSR LSR #ii,D 1 - - -

LSR sss,D 1 - - -

LRA LRA (PC+Rn)->0DDDDD 3 - - -

LRA (PC+aaaa)->0DDDDD 3 - - -

LUA, LEA LUA ea->0DDDDD 3 - - -

LUA (Rn+aa)->01DDDD 3 - - -

MACI MACI +/- #iiiiii,QQ,D 2 - - -

MAC MAC +/- 2**s,QQ,d 1 - - -

MAC S1,S2,D (su,uu) 1 - - -

MAX MAX A,B 1 - - -

MAXM MAXM A,B 1 - - -

MACRI MACRI +/- #iiiiii,QQ,D 2 - - -

MACR MACR +/- 2**s,QQ,d 1 - - -

MERGE MERGE SSS,D 1 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

MOTOROLA INSTRUCTION EXECUTION TIMING B - 9

MOVE No parallel data Move (DALU) 1 - - -

MOVE #xx --> DDDDD 1 - - -

MOVE ddddd --> DDDDD 1 - - -

U move 1 - - -

MOVE S:<ea>,DDDDD 1 1 1 1

MOVE S:<aa>,DDDDD 1 - - -

MOVE S:<Rn+aa>,DDDD 2 - - -

MOVE S:<Rn+aaaa>,DDDDDD 3 - - -

MOVE d -> X Y:<ea>,YY 1 1 1 1

MOVE X:<ea>,XX & d ->Y 1 1 1 1

MOVE A -> X:<ea> X0 A 1 1 - -

MOVE B -> X:<ea> X0 B 1 1 - -

MOVE Y0 -> A A Y:<ea> 1 1 - -

MOVE Y0 -> B B Y:<ea> 1 1 - -

MOVE L:<ea>,LLL 1 1 1 -

MOVE L:<aa>,LLL 1 - - -

MOVE X:<ea>,XX & Y:<ea>,YY 1 - - -

MOVEC MOVEC #xx -> 1DDDDD 1 - - -

MOVEC S:<ea>,1DDDDD 1 1 1 1

MOVEC S:<aa>,1DDDDD 1 - - -

MOVEC DDDDDD,1ddddd 1 - - -

MOVEM MOVEM P:<ea>,DDDDDD 6 1 1 -

MOVEM P:<aa>,DDDDDD 6 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

B - 10 INSTRUCTION EXECUTION TIMING MOTOROLA

MOVEP MOVEP S:<pp>,s:<ea> 2 1 1 0

MOVEP S:<pp>,P:<ea> 6 1 1 -

MOVEP S:<pp>,DDDDDD 1 - - -

MOVEP X:<qq>,s:<ea> 2 1 1 0

MOVEP Y:<qq>,s:<ea> 2 1 1 0

MOVEP X:<qq>,DDDDDD 1 - - -

MOVEP Y:<qq>,DDDDDD 1 - - -

MOVEP S:<qq>,P:<ea> 6 1 1 -

MPY MPY S1,S2,D (su,uu) 1 - - -

MPY +/- 2**s,QQ,d 1 - - -

MPYI MPYI +/- #iiiiii,QQ,D 2 - - -

MPYR MPYR +/- 2**s,QQ,d 1 - - -

MPYRI MPYRI +/- #iiiiii,QQ,D 2 - - -

NOP NOP 1 - - -

NORM NORM 5 - - -

NORMF NORMF SSS,D 1 - - -

OR OR #iiiiii,D 2 - - -

OR #iii,D 1 - - -

ORI ORI EE 3 - - -

PFLUSH PFLUSH 1 - - -

PFLUSHUN PFLUSHUN 1 - - -

PFREE PFREE 1 - - -

PLOCK PLOCK <ea> 2 1 1 -

PLOCKR PLOCKR (PC+aaaa) 4 - - -

PUNLOCK PUNLOCK <ea> 2 1 1 -

PUNLOCKR PUNLOCKR (PC+aaaa) 4 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

MOTOROLA INSTRUCTION EXECUTION TIMING B - 11

REP REP #xxx 5 - - -

REP DDDDDD 5 - - -

REP S:<ea> 5 1 - -

REP S:<aa> 5 - - -

RESET RESET 7 - - -

RTI/RTS RTI 3 - - -

RTS 3 - - -

STOP STOP 10 - - -

SUB SUB #iiiiii,D 2 - - -

SUB #iii,D 1 - - -

Tcc Tcc JJJ -> D ttt TTT 1 - - -

Tcc JJJ -> D 1 - - -

Tcc ttt -> TTT 1 - - -

TRAP/TRAPcc TRAP 9 - - -

TRAPcc 9 - - -

WAIT WAIT 10 - - -

Instruction Mnemonic Instruction Format T
+
p
r
u

+
l
a
b

+
l
i

m

B - 12 INSTRUCTION EXECUTION TIMING MOTOROLA

B-3 INSTRUCTION SEQUENCE DELAYS

Due to the pipeline nature of the DSP56300 Core, there are certain instruction sequences
that cause a delay in the execution of instructions involved in that sequences. Most of
these sequences are caused by a source-destination conflict or by the need to access the
external bus.

There are six types of sequence delays:

1. External Bus Wait States.
2. External Bus Contention.
3. Instruction fetch delays.
4. Data ALU Interlock.
5. Address Generation Interlock.
6. Stack Extension delays.
7. Pipeline interlocks.

B-3.1 External Bus Wait States

An External Bus Wait State is caused by an instruction accessing the external bus for data
read or write. In this case, the execution time of the instruction is increased by the number
of clock cycles equal to the number of wait states that is programmed for that external data
access. The exact number of wait states depends on the type of memory accessed, as
described in Chapter 2 of this document.

B-3.2 External Bus Contention

An External Bus Contention is caused by an attempt to simultaneously access the
external bus with more than one source (REFRESH request from the internal DRAM con-
troller, X memory space, Y memory space, P memory space or a DMA channel). In this
case, the execution time of the instructions that reside in the pipeline at that time is
lengthen by a number of clock cycles that is equal to the number of simultaneous requests
minus 1. For every request, additional wait states will be added according to the memory
speed, as described in Section B-3.1 above. If one of these requests is a REFRESH
request, than this request will be the first to receive mastership over the external bus. If
one of these requests is the DMA, then the following cases should be distinguished:

1. The DMA has higher priority than the CORE. In this case, the DMA will re-
ceive full control over the external bus and will hold that control for all its
transfers, provided that they are all external. After the DMA finished its
transfers, the bus will be given to the memory space in the order of P (first),
X (second) and Y (last).

2. The DMA has a priority equal to the CORE. In this case, the bus will be
given to the memory space in the order of P (first), X (second), Y (third)
and DMA (last).

3. The DMA has lower priority than the CORE. In this case, the DMA will wait
MOTOROLA INSTRUCTION EXECUTION TIMING B - 13

for a free external bus slot and the bus will be given to the memory space
in the order of P (first), X (second) and Y (last).

B-3.3 Instruction Fetch delays

An external Instruction Fetch is caused by one of the following two cases:

• Instruction Cache is disabled and a fetch to an external address is initiat-
ed. In this case, an external fetch will be initiated.

• Instruction Cache is enabled and a program fetch to an instruction that
does not exist in the instruction cache is initiated. This produces a miss in-
dication from the instruction cache control unit, and an external fetch will
be initiated.

In both cases, if the external memory is an SSRAM (Synchronous Static RAM), one cycle
delay is inserted after the external access. The effective number of stall states in the
pipeline will be the number specified in the Bus Control Register (BCR) + 1. If the external
memory is either SRAM or DRAM, this one cycle delay will not be inserted.

During the operation of the Instruction Cache Controller, the following special cases
should be distinguished:

1. When two identical locations are fetched one after another, and the first
one is detected as miss, the second one will also be detected as miss al-
though it was written to the cache memory. The number of wait states add-
ed will be the same as the general miss case.

2. When the Burst Mode is enabled, than upon detection of miss, up to 4
fetch requests will be initiated by the core. The exact number of fetch re-
quests depends on the two least significant bits of the address of the initi-
ating fetch that was detected as miss -

All these requests will be considered as one for the detection of contention
states.

2 List Significant
bits

Number of generated fetches Number of clock cycles added

11 1 0, as if Burst is Disabled

10 2 2

01 3 3

00 4 4
B - 14 INSTRUCTION EXECUTION TIMING MOTOROLA

B-3.4 Data ALU Interlock

A Data ALU Interlock may be caused by one of the following sequences:

B-3.4.1 Arithmetic Stall

This interlock is caused by an instruction that uses one of the data ALU accumulators or
accumulator-parts (A0, A1, A2, B0, B1, B2) as a source register to the move portion of
that instruction, while the preceding instruction was an arithmetic instruction (i.e. an in-
struction that uses the internal Data-ALU data paths) that used the same accumulator as
its destination. The execution of the initiating instruction will be delayed by one clock cycle.

B-3.4.2 Transfer Stall

This interlock is caused by an instruction that uses one of the data ALU registers (A0, A1,
A2, B0, B1 or B2) or accumulators (A or B) as a source register to the move portion of that
instruction, while the preceding instruction used the corresponding accumulator (A or B)
or one of the data ALU registers (A0, A1, A2, B0, B1 or B2) that comprise this accumulator
as its destination register in the move portion of that instruction. The execution of the ini-
tiating instruction will be delayed by one instruction cycle.

B-3.4.3 Status Stall

This interlock is caused by an instruction that reads the contents of the Status Register
(SR) for either move operation or bit testing, while the preceding or the second
preceding instruction was an arithmetic instruction (i.e. an instruction that uses the
internal Data-ALU data paths). The execution of the initiating instruction will be delayed by
two or one (respectively) instruction cycles.

B-3.5 Address Registers Interlocks

B-3.5.1 Conditional Transfer Interlock

This interlock is caused by a Transfer On-Condition (Tcc) instruction followed by an in-
struction that explicitly specifies one of the address generation registers: R0..R7 as its
source operand. The execution of the second instruction will be delayed by one instruction
cycle.

B-3.5.2 Address Generation Interlock

An Address Generation Interlock is caused by a move portion of an instruction that uses
one of the AGU registers R0-R7 for address generation or for address calculation, while
one of the three preceding instruction cycles used one of the register-set (Ri, Ni or Mi)
members as a destination register in its move portion. For example, consider the following
code:
MOTOROLA INSTRUCTION EXECUTION TIMING B - 15

In this example, the instruction I6 will cause an Address Generation interlock because it
used R0 as the source for address generation on the X Address Bus while the preceding
instruction, I5, used N0 as its destination.

Three types of Address Generation Interlock exist - type0, type1 and type2, depending on
the distance, in term of clock cycles, between the instruction causing the interlock and the
preceding instruction that used the AGU register as a destination. The following figure
describes an example to each of the types:

When an Address Generation Interlock of Type0 is detected (during the decoding of I2 in
the example), three nop clock cycles will be automatically inserted before the execution
of the instruction starts. When an Address Generation Interlock of Type1 is detected
(during the decoding of I3 in the example), two nop clock cycles will be automatically
inserted before the execution of the instruction starts. When an Address Generation
Interlock of Type2 is detected (during the decoding of I4 in the example), one nop clock
cycle will be automatically inserted before the execution of the instruction starts.

Note that only clock cycles are counted to determine when interlock cycles should be
inserted. Whenever an instruction using one of the AGU registers as an Address Gener-
ation enters the decoding stage of the DSP56300 Core, the distance from that instruction
to the preceding instruction that used the register as destination is measured in term of
clock cycles to determine the existence and type of Address Generation Interlock. Once
an Address Generation Interlock is detected, the appropriate number of nop clock cycles
is inserted. The following instructions take these additional cycles into account for the

 I1 MOVE #$addr,R0

 I2 NOP

 I3 NOP

 I4 NOP

 I5 MOVE #$offset,N0

 I6 MOVE X:(R0)+,Y1

 Type0 Interlock

 I1 MOVE #$addr,R0

 I2 MOVE X:(R0)+,Y1

 Type1 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 MOVE X:(R0)+,Y1

 Type2 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 INC B

 I4 MOVE X:(R0)+,Y1
B - 16 INSTRUCTION EXECUTION TIMING MOTOROLA

detection of a possible new Address Generation Interlock. The following example demon-
strates this feature.

In this example, a type1 Address Generation Interlock is detected during the decoding
phase of I3 and two nop cycles are inserted before the execution of that instruction. During
the decoding of I4, no Address Generation Interlock is detected - no nop cycles are
inserted! If, however, I3 would have been an instruction that does not use R0, a type2
Address Generation Interlock would have been detected during the decoding phase of I4
and one nop cycle would have been inserted before the execution of that instruction.

B-3.6 Stack Extension Delays

Some instructions access the System Stack as part of their normal activity. If, however,
the stack is full, or if it is empty, the special stack extension mechanism is engaged and
the access will be completed only after an access to data memory is automatically per-
formed. This will delay the decoding and the execution phases of that instruction. A stack-
full or stack-empty states are defined by the contents of the SC (Stack Counter) register.
When the stack counter equals 14, it means that the on-chip hardware stack has 14 words
(a stack word is a 48-bit long word combined from the low and the high portions of the
stack) inside. The stack is declared as stack-full, and any additional push operation will
activate the stack extension mechanism. When the stack counter equals 2, it means that
the on-chip hardware stack has only 2 words inside. The stack is declared as stack-empty,
and any additional pop operation will activate the stack extension mechanism.

The following instructions/cases causes an access to the system stack and may engage
the stack extension mechanism:

SUBcc This denotes all the conditional and unconditional ‘Jump to Sub-
routine’ instructions e.g. JSR, JSSET, BRCLR etc. These instructions perform a stack
PUSH operation that stores the PC and the SR on top of the stack, for the use of the
‘Return from Subroutine’ instruction that will terminate the subroutine execution.

RET This denotes the two ‘Return from Subroutine’ instructions RTS
and RTI. These instructions perform a stack POP operations that pulls the PC and (op-
tionally) the SR out from the top of stack in order to return back to the calling procedure
and to restore the status bits and loop flag state.

END-OF-DO This is a condition achieved by the internal hardware inside the
Program Control Unit. This hardware detects the case where a fetch from the last address
of a loop is initiated when the Loop Counter equals 1. This condition defines the end of

I1 MOVE #$addr,R0

I2 CLR A

I3 MOVE X:(R0)+,Y1

I4 MOVE X:(R0)+,Y0
MOTOROLA INSTRUCTION EXECUTION TIMING B - 17

the loop, thus performs a stack POP operation. This POP operation restores the loop flag,
purges the top of stack (PC:SR) and pulls LA and LC from the new top of stack.

LOOP This denotes all the hardware-loop initiating instructions e.g. DO,
DOR with all their options. These instructions perform a stack double-PUSH operation that
first stores the previous values of LA and LC on top of the stack. Then the DO instruction
stores the contents of SR and PC on the new top of stack. This PC value is used every
loop iteration in order to go back to the top of loop location and start fetch from there. DO
performs two accesses to the stack instead of the normal single access done by most
stack operations.

ENDDO This is a special instruction that forces an end-of-do condition
during a hardware loop. Like END-OF-DO, ENDDO performs two accesses to the stack
instead of the normal single access done by most stack operations.

SSHWR This denotes all the explicit stack PUSH instructions that uses
SSH as their destination, e.g. the instruction MOVE R0,SSH.

SSHRD This denotes all the explicit stack POP instructions that uses SSH
as their source, e.g. the instruction MOVE SSH,Y1.

The following table describes how many clock cycles are added in the various instructions/
cases described above:

B-3.7 Program Flow-Control delays

During the execution of flow-control instructions, some boundary cases exist and
introduce interlocks to the program flow. These interlocks lengthen the decoding phase of

Table B-2. Stack Extension Delays

CASE
Stack Full Condition

(+ clock cycles)
Stack Empty Condition

(+ clock cycles)

SUBcc 2 -

RET - 3

END-OF-DO - 5

DO 4 -

ENDDO - 5

SSHWR 2 -

SSHRD - 3
B - 18 INSTRUCTION EXECUTION TIMING MOTOROLA

the instructions thus delays the execution of them.

Legend:

• I1 - An address of an instruction, where I2, I3, I4 are used to indicate the next in-
structions in the program flow.

• MOVE - any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG,
BCLR,BTST.

• (LA) - the last address of a DO LOOP.

• (LA-i) - the address of an instruction word located at LA-i.

• CR - Control Register, every one of the registers LA, LC, SR, SP, SC, SSH, SSL, OMR.

Note: The sequences described in this section represent very unusual opera-
tions which probably would never be used. The detection of these cases
and hence the generation of interlocks is done in order to maintain an
object code compatibility between the DSP56300 Core and the 56k
Family of Digital Signal Processors.

B-3.7.1 MOVE to CR

Whenever I1 is a MOVE to CR and it is located at (LA-3), (LA-4) or (LA-5) then the
decoding phase of I3 is delayed by 3 clock cycles. The decoding of the instruction
following (LA) will be also delayed by an additional 1 clock cycle.

B-3.7.2 MOVE from CR

Whenever I1 is a MOVE from CR and it is located at (LA-2) then the decoding phase of
the instruction following the instruction at (LA) will be delayed by 1 clock cycle.

B-3.7.3 MOVE to SP/SC

Whenever I1 is a MOVE to SP or to SC then the decoding phase of I3 will be delayed by
up to 3 clock cycles.

B-3.7.4 MOVE to LA register

Whenever I1 is a MOVE to the LA register and the preceding instruction was a MOVE to
SR then the decoding phase of I3 will be delayed by 3 clock cycles.

B-3.7.5 MOVE to SR

Whenever I1 is a MOVE to SR then the decoding phase of I2 will be delayed by 1 clock
cycle.

B-3.7.6 MOVE to SSH/SSL

Whenever I1 is a MOVE to SSH or to SSL and I3 is any one of the instructions DO, DOR,
RTI, RTS, ENDDO or BRKcc then the decoding phase of I3 will be delayed by 3 clock
MOTOROLA INSTRUCTION EXECUTION TIMING B - 19

cycles.

B-3.7.7 JMP to (LA) or to (LA-1)

Whenever I1 is any type of JMP with the target address equals to (LA) or to (LA-1) then
the decoding phase of the instruction following the instruction at (LA) will be delayed by 2
or 1 clock cycles respectively.

B-3.7.8 RTI to (LA) or to (LA-1)

Whenever I1 is an RTI instruction whose return address is (LA) or (LA-1) then the
decoding phase of the instruction following the instruction at (LA) will be delayed by 2 or
1 clock cycles respectively.

B-3.7.9 MOVE from SSH

Whenever I1 is a MOVE from SSH and it is located at (LA-2) then the decoding phase of
the instruction following the instruction at (LA) will be delayed by 1 clock cycle.

B-3.7.10 Conditional Instructions

Whenever I1 is a conditional change of flow instruction e.g. Jcc and the condition is false
then the decoding phase of I2 will be delayed by 1 clock cycle.

B-3.7.11 Interrupt Abort

Whenever I1 is an instruction which its decoding phase is longer than 1 cycle then it may
be aborted by the interrupt control unit. In this case, 1 clock cycle “hole” will be inserted
to the pipeline after which the instruction at the interrupt vector will be decoded.

B-3.7.12 Degenerated DO loop

Whenever I1 is a DO loop but the loop contains only one instruction then the decoding
phase of I1 is lengthen by 1 clock cycle.

B-3.7.13 Annulled REP and DO

If the repeat count of a REP or DO instruction is 0 then the decoding phase of the REP or
the DO instruction is lengthen by 1 or 3 clock cycles respectively.

Note: Annulled REP or DO can be executed only when the Sixteen-Bit compat-
ibility mode in the Status Register (SR[13]) is cleared. When this bit is
set, a annulled REP will execute 2**16 times.
B - 20 INSTRUCTION EXECUTION TIMING MOTOROLA

B-4 INSTRUCTION SEQUENCE RESTRICTIONS

Due to the pipelined nature of the DSP56300 Core central processor, there are certain
instruction sequences that are forbidden and will cause undefined operation. Most of
these restricted sequences would cause contention for an internal resource, such as the
stack register. The DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably would
never be used but are listed only for completeness.

Legend:

• MOVE - any type of MOVE, MOVEM, MOVEP, MOVEC.

• LA - the last address of a DO LOOP

• Two-words <inst> - a double-word instruction in which the 2nd word is used as an
immediate data or absolute address

• Single-word <inst> - an instruction with an addressing mode that does not need
a 2nd word extension

B-4.1 Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed if an instruction sequence similar to one of
the sequences described below is used.

B-4.1.1 At LA-3

The following instructions should not start at address LA-3:
• MOVE to {LA}

• BCHG, BSET, BCLR on {LA}

• Two-words MOVE to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• Two-words MOVE from SSH

• Two-words PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.1.2 At LA-2

The following instructions should not start at address LA-2:
• DO, DOR, DOFOREVER

• MOVE to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE from SSH

• BCHG, BSET, BCLR on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• REP on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BTST on SSH

• JCLR, JSET, JSCLR, JSSET, BRCLR, BRSET, BSCLR, BSSET on SSH

• Two-words MOVE from {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}
MOTOROLA INSTRUCTION EXECUTION TIMING B - 21

• ANDI, ORI on MR

• BRKcc
• PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.1.3 At LA-1

The following instructions should not start at address LA-1:
• DO, DOR, DOFOREVER

• MOVE to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE from {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• REP on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BCHG, BSET, BCLR, BTST on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• JCLR, JSET, JSCLR, JSSET on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BRCLR, BRSET, BSCLR, BSSET on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• ANDI, ORI on MR

• BRKcc

• ENDDO

• PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.1.4 At LA

The following instructions should not start at address LA:
• Any Two-word instruction

• MOVE to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE from SSH

• BCHG, BSET, BCLR on {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BTST on SSH

• ANDI, ORI on MR

• BRKcc

• JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc

• REP

• RESET, STOP, WAIT

• RTI, RTS

• ENDDO

• PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.2 General DO Restrictions

A DO loop should be initialized and aborted by using only the following instructions: DO,
DOR, ENDDO and BREAKcc. The LF and the FV bits in the Status Register (SR) should
not be explicitly changed by using one of the MOVE, BCHG, BSET, BCLR, ANDI or ORI
instructions.

Proper DO loop operation is not guaranteed if an instruction sequence similar to one of
B - 22 INSTRUCTION EXECUTION TIMING MOTOROLA

the sequences described below is used.
• SSH can not be used as the source for the Loop-Count for a DO or DOR instruction

• The following instructions should not appear immediately before a DO, DOR or DOFOREVER:
• MOVE from SSH
• BTST on SSH
• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SR, SP, SC, SSH, SSL}
• JSR, JScc, JSSET, JSCLR to LA whenever LF is set
• BSR, BScc, BSSET, BSCLR, to LA whenever LF is set

B-4.3 ENDDO Restrictions

The instructions in the following list should not appear immediately before an ENDDO in-
struction:
• ANDI, ORI on MR

• MOVE from SSH

• BTST on SSH

• BCHG, BCLR, BSET, MOVE on/to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

B-4.4 BRKcc Restrictions

The instructions in the following list should not appear immediately before a BRKcc in-
struction:
• Every arithmetic instruction

• IFcc, Tcc

• BCHG, BCLR, BSET, MOVE on/to {LA, LC, SR, SP, SC, SSH, SSL, SZ, VBA, OMR}

B-4.5 RTI and RTS Restrictions

The instructions in the following list should not appear immediately before an RTI instruc-
tion:
• MOVE, BCHG, BCLR, BSET on {SR, SSH, SSL, SP, SC}

• MOVE, BTST from/on SSH

• ANDI, ORI on {MR, CCR}

The instructions in the following list should not appear immediately before an RTS instruc-
tion:
• MOVE, BCHG, BCLR, BSET on {SR, SSH, SSL, SP, SC}

• MOVE, BTST from/on SSH

B-4.6 SP, SC and SSH/SSL Manipulation Restrictions

The instructions in the following list #a should not appear immediately before any of the
instructions from the following list #b.

List #a:
• MOVE to {SP,SC}
MOTOROLA INSTRUCTION EXECUTION TIMING B - 23

• BCHG, BSET, BCLR on {SP,SC}

List #b:
• MOVE from {SSH,SSL}

• BTST, BCHG, BSET, BCLR on {SSH,SSL}

• JSET, JCLR, JSSET, JSCLR, BRSET, BRCLR, BSSET, BSCLR on {SSH,SSL}

B-4.7 Fast Interrupt Routines

The following instructions may not be used in a fast interrupt routine:
• DO, DOR, DOFOREVER, REP

• ENDDO, BRKcc,

• RTI, RTS

• STOP, WAIT

• TRAP, TRAPcc

• ANDI, ORI on {MR, CCR}

• MOVE from SSH

• BTST on SSH

• MOVE to {LA, LC, SR, SP, SC, SSH, SSL}

• BCHG, BSET, BCLR on {LA, LC, SR, SP, SC, SSH, SSL}

• PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.8 REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruction
itself and any instruction that changes program flow. The following instructions are not
allowed to follow a REP instruction (can not be repeated):
• REP, DO, DOR, DOFOREVER

• ENDDO, BRKcc

• JMP, Jcc, JCLR, JSET

• JSR, JScc, JSCLR, JSSET

• BRA, Bcc, BRSET, BRCLR

• BSR, BScc, BSSET, BSCLR

• RTS, RTI

• TRAP, TRAPcc

• WAIT, STOP

• PLOCK, PUNLOCK, PLOCKR, PUNLOCKR

B-4.9 Stack Extension Restrictions

The following instructions, related to the operation of the on-chip hardware stack exten-
sion, may not be used whenever the stack extension is enabled:
• MOVE to EP

• BCHG, BSET, BCLR on EP
B - 24 INSTRUCTION EXECUTION TIMING MOTOROLA

• MOVE to SC with a value greater than 15

B-4.10 Instruction Cache General Restrictions

The following instructions may not be used whenever the Instruction Cache is disabled.
Using these instructions when the Instruction Cache is disabled will generate an illegal in-
terrupt.
• PLOCK, PLOCKR

• PUNLOCK, PUNLOCKR

• PFREE, PFLUSH, PFLUSHUN

B-5 PERIPHERAL PIPELINE RESTRICTIONS

The DSP56300 Core is based on a highly optimized pipeline engine. Despite the relatively
deep pipeline (seven stages) the latency effects normally associated with long pipelines
have been kept to a minimum such as, in fact, these effects are transparent to the user.
Design techniques, such as forwarding and interlocking, alleviate the need for the user to
have a thorough knowledge of the machine’s pipeline in order to avoid data dependencies.
This knowledge becomes relevant only when further optimization of the code is pursued.
Therefore the pipeline is hidden from the user for the vast majority of the application
development stage.

There is, however, an aspect of the machine’s pipeline that is exposed to the user and this
is the area of peripheral activity. This section describes the cases in which the user must
take precautions in order to achieve the desired functionality.

B-5.1 Polling a peripheral device for write

When writing data to a peripheral device there is a two cycle pipeline delay until any status
bits affected by this operation are updated. For example, the operates a peripheral port
using the polling technique. The user will look for the data empty flag set. After this status
bit is set, the user will write new data to the transmit data register. If the user attempts to
read the status bit within the next two cycles, due to the pipeline delays associated with
the peripheral operations, the user will mistakenly read the flag as set. Therefor the user
will assume that the transmit data register is empty and will write a new data word that will
in fact overwrite the previously written data. In order to achieve the correct functionality the
user must wait (at least) two cycles before attempting to read the status register following
a write to the transmit data register. Following is an example of the correct sequence for
transmit operations:
MOTOROLA INSTRUCTION EXECUTION TIMING B - 25

B-5.2 Writing to a read-only register

Writing to a read-only register is an operation that basically has no effect but if a read
operation from the same register is attempted within the following two cycles, the value of
the read data will be the value of the data that was written instead of the unchanged data
of the read-only register. In order to ensure that the correct data is read after the write
operation, the user should wait (at least) two cycles before performing the read.

send

movep x:(r0)+,x:STX ; send new data

nop ; pipeline delay

nop ; pipeline delay

poll

jclr #TDE,x:SCSR,poll ; wait for data empty

jmp send ; go to send data
B - 26 INSTRUCTION EXECUTION TIMING MOTOROLA

Appendix C BENCHMARK PROGRAMS

C-1 INTRODUCTION

The following benchmarks illustrate the source code syntax and programming techniques
for the DSP56300 Core. The assembly language source is organized into 6 columns as
shown below.

The Label column is used for program entry points and end of loop indication. The Opcode
column indicates the Data ALU, Address ALU or Program Controller operation to be per-
formed. The Operands column specifies the operands to be used by the opcode. The X
Bus Data specifies an optional data transfer over the X Bus and the addressing mode to
be used. The Y Bus Data specifies an optional data transfer over the Y Bus and the ad-
dressing mode to be used. The Comment column is used for documentation purposes
and does not affect the assembled code. The Opcode column must always be included in
the source code.

C-2 SET OF BENCHMARKS

C-2.1 Real Multiply

C-2.2 N Real Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment

FIR MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0 ;Do each tap

Prog
wrds

Clock
Cycles

move x:(r0),x0 y:(r4),y0 ; 1 1
mpyr x0,y0,a ; 1 1
move a,x:(r1) ; 1 2 i’lock

Totals 3 4

c a b×=

c i() a i() b i()× i 1 2 … N, , ,==
MOTOROLA BENCHMARK PROGRAMS C - 3

Memory map:

C-2.3 Real Update

C-2.4 N Real Updates

pointer X mem Y mem

r0 a(i)

r4 b(i)

r1 c(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
do #N-1,end ; 2 5
mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0 ; 1 1
move x:(r0)+,x0 ; 1 1

end ;
move a,x:(r1)+ ; 1 1

Totals 7 2N+8

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r2
move x:(r0),x0 y:(r4),y0 ; 1 1
move x:(r1),a ; 1 1
macr x0,y0,a ; 1 1
move a,x:(r2) ; 1 2 i’lock

Totals 4 5

d c a b×+=

d i() c i() a i() b i()×+= i 1 2 … N, , ,=
C - 4 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.5 Real Correlation Or Convolution (FIR Filter)

Memory map:

pointer X mem Y mem

r0 a(i)

r4 b(i)

r1 c(i)

r5 d(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r5
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
move x:(r1)+,a ; 1 1
move x:(r1)+,b ; 1 1
do #N/2,end ; 2 5
macr x0,y0,a x:(r0)+,x1 y:(r4)+,y1 ; 1 1
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1
move x:(r1)+,a a,y:(r5)+ ; 1 1
move x:(r1)+,b b,y:(r5)+ ; 1 1

end
Totals 9 2N+8

pointer X mem Y mem

r0 a(i)

r4 b(i)

c n() a i() b n i–()×[]
i 0=

N 1–

∑=
MOTOROLA BENCHMARK PROGRAMS C - 5

Memory map:

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4 ;
move #N-1,m4 ;
move m4,m0 ;
movep y:input,y:(r4) ; 1 2
clr a x:(r0)+,x0 y:(r4)-,y0 ; 1 1
rep #N-1 ; 1 5
mac x0,y0,a x:(r0)+,x0 y:(r4)-,y0 ; 1 1
macr x0,y0,a (r4)+ ; 1 1
movep a,y:output ; 1 2 i’lock

Totals 6 N+14

pointer X mem Y mem

r0 a(i)

r1 b(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r1 ;
move #N-1,m1 ;
move m1,m0 ;
movep y:input,x:(r1) ; 1 2
clr a x:(r0)+,x1 ; 1 1
do #N-1,end ; 2 5
move x:(r1)-,x0 ; 1 1
mac x0,x1,a x:(r0)+,x1 ; 1 1

end ;
move x:(r1)-,x0 ; 1 1
macr x0,x1,a (r1)+ ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 9 2N+10
C - 6 BENCHMARK PROGRAMS MOTOROLA

C-2.6 Real * Complex Correlation Or Convolution (FIR Filter)

Memory map:

C-2.7 Complex Multiply

pointer X mem Y mem

r0 ar(i) ai(i)

r4 b(i)

r1 cr(n) ci(n)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #N-1,m4 ;
move m4,m0 ;
movep y:input,x:(r4) ; 1 2
clr a x:(r0),x0 ; 1 1
clr b x:(r4)-,x1 y:(r0)+,y0 ; 1 1
do #N-1,end ; 2 5
mac x0,x1,a x:(r0),x0 ; 1 1
mac y0,x1,b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

end
macr x0,x1,a ; 1 1
macr y0,x1,b (r4)+ ; 1 1
move a,x:(r1) ; 1 1
move b,y:(r1) ; 1 1

Totals 11 2N+11

cr n() jci n() ar i() jai i()+() b n i–()×[]
i 0=

N 1–

∑= =

cr n() ar i() b n i–()×
i 0=

N 1–

∑= ci n() ai i() b n i–()×
i 0=

N 1–

∑=

cr jci+ ar jai+() br jbi+()×=

cr ar br ai bi×–×= ci ar bi ai br×+×=
MOTOROLA BENCHMARK PROGRAMS C - 7

Memory map:

C-2.8 N Complex Multiplies

Memory map:

pointer X mem Y mem

r0 ar ai

r4 br bi

r1 cr ci

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move x:(r0),x1 y:(r4),y0 ; 1 1
mpy y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1
macr x0,y1,b ; 1 1
mpy x0,x1,a ; 1 1
macr -y0,y1,a b,y:(r1) ; 1 1
move a,x:(r1) ; 1 2 i'lock

Totals 6 7

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r5 cr(i) ci(i)

cr i() jci i()+ ar i() jai i()+() br i() jbi i()+()×= i 1 2 … N, , ,=

cr i() ar i() br i() ai i() bi× i()–×=

ci i() ar i() bi i() ai i() br×+× i()=
C - 8 BENCHMARK PROGRAMS MOTOROLA

C-2.9 Complex Update

Memory map:

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR-1,r5 ;
move x:(r0),x1 y:(r4),y0 ; 1 1
move x:(r5),a ; 1 1
do #N,end ; 2 5
mpy y0,x1,b x:(r4)+,x0 y:(r0)+,y1 ; 1 1
macr x0,y1,b a,x:(r5)+ ; 1 1
mpy -y0,y1,a y:(r4),y0 ; 1 1
macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

end
move a,x:(r5) ; 1 2 i'lock

Totals 9 4N+9

pointer X mem Y mem

r0 ar ai

r4 br bi

r1 cr ci

r2 dr di

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r2
move y:(r1),b ; 1 1
move x:(r0),x1 y:(r4),y0 ; 1 1
mac y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1
macr x0,y1,b x:(r1),a ; 1 1
mac x0,x1,a ; 1 1
macr -y0,y1,a b,y:(r2) ; 1 1
move a,x:(r2) ; 1 2 i'lock

Totals 7 8

dr jdi+ cr jci+() ar jai+() br jbi+()×+=

dr cr ar br ai bi×–×+= di ci ar bi ai br×+×+=
MOTOROLA BENCHMARK PROGRAMS C - 9

C-2.10 N Complex Updates

Memory map:

pointer X mem Y mem

r0 ar(i) ; ai(i)

r4 br(i) ; bi(i)

r1 cr(i) ; ci(i)

r5 dr(i) ; di(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #DADDR-1,r5 ;
move x:(r0)+,x1 y:(r4)+,y0 ; 1 1
move x:(r1)+,b y:(r5),a ; 1 1
do #N,end ;25 ; 2 5
mac y0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1
macr -x0,y1,b x:(r1)+,a a,y:(r5)+ ; 1 1
mac x0,y0,a x:(r1)+,b b,y:(r5)+ ; 1 2 i'lock
macr x1,y1,a x:(r0)+,x1 y:(r4)+,y0 ; 1 1

end
move a,y:(r5)+ ; 1 2 i'lock

Totals 9 5N+9

dr i() jdi i()+ cr i() jci i()+() ar i() jai i()+() br i() jbi i()+()×+=

dr i() cr i() ar i() br i() ai i() bi× i()–×+=

di i() ci i() ar i() bi i() ai i() br× i()+×+=

i 1 2 … N, , ,=
C - 10 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.11 Complex Correlation Or Convolution (FIR Filter)

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

r5 dr(i) di(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #DADDR-1,r5 ;
move x:(r5),a ; 1 1
move x:(r0),x1 y:(r4),y0 ; 1 1
move x:(r4)+,x0 y:(r1),b ; 1 1
do #N,end ; 2 5
mac y0,x1,b a,x:(r5)+ y:(r0)+,y1 ; 1 1
macr x0,y1,b x:(r1)+,a ; 1 1
mac -y0,y1,a y:(r4),y0 ; 1 1
macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1
move x:(r4)+,x0 y:(r1),b ; 1 1

end
move a,x:(r5) ; 1 1

Totals 11 5N+9

cr n() jci n()+ ar i() jai i()+() br n i–() jbi n i–()+()×[]
i 0=

N 1–

∑=

cr n() ar i() br n i–() ai i() bi n i–()×–×[]
i 0=

N 1–

∑=

ci n() ar i() bi n i–() ai i() br n i–()×+×[]
i 0=

N 1–

∑=
MOTOROLA BENCHMARK PROGRAMS C - 11

Memory map:

C-2.12 Nth Order Power Series (Real)

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1
move #N-1,m4
move #m4,m0
movep y:input,x:(r4) 1 2
movep y:input,y:(r4) 1 2
clr a ; 1 1
clr b x:(r0),x1 y:(r4),y0 ; 1 1
do #N-1,end ; 2 5
mac y0,x1,b x:(r4)-,x0 y:(r0)+,y1 ; 1 1
mac x0,y1,b ; 1 1
mac x0,x1,a ; 1 1
mac -y0,y1,a x:(r0),x1 y:(r4),y0 ; 1 1

end
mac y0,x1,b x:(r4),x0 y:(r0)+,y1 ; 1 1
macr x0,y1,b ; 1 1
mac x0,x1,a ; 1 1
macr -y0,y1,a ; 1 1
move b,y:(r1) ; 1 1
move a,x:(r1) ; 1 1

Totals 16 4N+13

c a i() bi×[]
i 0=

N 1–

∑=
C - 12 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.13 2nd Order Real Biquad IIR Filter

Memory map:

pointer X mem Y mem

r0 a(i)

r4 b

r1 c

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4
move #CADDR,r1
move x:(r0)+,a ; 1 1
move y:(r4),x0 1 1
mpyr x0,x0,b x:(r0)+,y0 ; 1 1
move b,y1 ; 1 2 i'lock
do #N-1,end ; 2 5
mac y0,x0,a x:(r0)+,y0 ; 1 1
mpyr x0,y1,b b,x0 ; 1 1

end
macr y0,x0,a ; 1 1
move a,x:(r1) ; 1 2 i'lock

Totals 10 2N+11

pointer X mem Y mem

r0 w(n-2), w(n-1)

r4 a2/2, a1/2, b2/2, b1/2

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=
MOTOROLA BENCHMARK PROGRAMS C - 13

C-2.14 N Cascaded Real Biquad IIR Filter

Prog
wrds

Clock
Cycles

ori #$08,mr ;
move #AADDR,r0 ;
move #BADDR,r4 ;
move #1,m0
move #3,m4
movep y:input,a ; 1 1
rnd a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1
mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1
mac y0,x0,a a,x:(r0) y:(r4),y0 ; 1 2 i'lock
macr y0,x1,a ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 7 9

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=
C - 14 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.15 N Radix-2 FFT Butterflies (DIT, in-place algorithm)

Memory map:

pointer X mem Y mem

r0 w(n-2)1, w(n-1)1, w(n-2)2, ...

r4 (a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...

Prog
wrds

Clock
Cycles

ori #$08,mr ;
move #AADDR,r0 ;
move #BADDR,r4 ;
move #(2N-1),m0 ;
move #(4N-1),m4 ;
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
movep y:input,a ; 1 1
do #N,end ; 2 5
mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1
mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1
mac y0,x0,a a,x:(r0)+ y:(r4)+,y0 ; 1 2 i’lock
mac y0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

end
rnd a ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 10 5N+10

pointer X mem Y mem

r0 ar(i) ai(i)

r1 br(i) bi(i)

r6 cr(i) ci(i)

r4 ar’(i) ai’(i)

r5 br’(i) bi’(i)

ar' ar cr br ci bi×–×+= br' ar cr br ci bi×+×– 2 ar a–× r'= =

ai' ai ci br cr bi×+×+= bi' ai ci br cr bi×–×– 2 ai a–× i'= =
MOTOROLA BENCHMARK PROGRAMS C - 15

C-2.16 True (Exact) LMS Adaptive Filter

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r1 ;
move #CADDR,r6 ;
move #ATADDR,r4 ;
move #BTADDR-1,r5 ;
move x:(r1),x1 y:(r6),y0 ; 1 1
move x:(r5),a y:(r0),b 1 1
do #N,end ; 2 5
mac y0,x1,b x:(r6)+n,x0 y:(r1)+,y1 ; 1 1
macr x0,y1,b a,x:(r5)+ y:(r0),a ; 1 1
subl b,a ; 1 1
move x:(r0),b b,y:(r4) ; 1 1
mac x0,x1,b x:(r0)+,a a,y:(r5) ; 1 1
macr -y0,y1,b x:(r1),x1 y:(r6),y0 ; 1 1
subl b,a b,x:(r4)+ y:(r0),b ; 1 2 i'lock

end
move a,x:(r5)+ ; 1 2 i'lock

Totals 12 8N+9

x(n) x(n-1) x(n-2) x(n-3)
z-1 z-1 z-1

d(n)

f(n)

e(n)

h(1) h(2)
h(3)h(0)
C - 16 BENCHMARK PROGRAMS MOTOROLA

Notation and symbols:

System equations:

LMS Algorithm:

Memory map:

x(n) - Input sample at time n.

d(n) - Desired signal at time n.

f(n) - FIR filter output at time n.

H(n) - Filter coefficient vector at time n. H={h0,h1,h2,h3}

X(n) - Filter state variable vector at time N, X={x(n),x(n-1),x(n-2),x(n-3)}.

u - Adaptation gain.

NTAPS - Number of coefficient taps in the filter. For this example, ntaps=4.

True LMS Algorithm Delayed LMS Algorithm

e(n)=d(n)-H(n)X(n) e(n)=d(n)-H(n)X(n)

H(n+1)=H(n)+uX(n)e(n) H(n+1)=H(n)+uX(n-1)e(n-1)

True LMS Algorithm Delayed LMS Algorithm

Get input sample Get input sample

Save input sample Save input sample

Do FIR Do FIR

Get d(n), find e(n) Update coefficients

Update coefficients Get d(n), find e(n)

Output f(n) Output f(n)

Shift vector X Shift vector X

pointer X mem Y mem

r0 x(n), x(n-1), x(n-2), x(n-3)

r4, r5 h(0), h(1), h(2), h(3)
MOTOROLA BENCHMARK PROGRAMS C - 17

C-2.17 Delayed LMS Adaptive Filter

Prog
wrds

Clock
Cycles

move #-2,n0 ;
move n0,n4
move #NTAPS-1,m0 ;
move m0,m4 ;
move m0,m5 ;
move #AADDR+NTAPS-1,r0 ;
move #BADDR,r4 ;
move r4,r5 ;

_getsmp
movep y:input,x0 ;get input sample 1 1
clr a x0,x:(r0)+ y:(r4)+,y0 ;save 1 1

;X(n), get h0
rep #NTAPS-1 ;do fir 1 5

;do taps
mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;last tap
macr x0,y0,b ; 1 1

;Get d(n), subtract fir output, multiply by "u",
;put the result in y1.
;This section is application dependent.

move x:(r0)+,x0 y:(r4)+,a 1 1
movep b,y:output ;output fir if desired 1 1
move y:(r4)+,b 1 1
do #NTAPS/2,cup ; 2 5
macr x0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
macr x0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1
tfr y0,a a,y:(r5)+ 1 1
tfr y0,b b,y:(r5)+ 1 1

cup
move x:(r0)+n0,x0 y:(r4)+n4,y0 ; 1 1

;continue looping (jmp _getsmp)
Total 15 3N+16
C - 18 BENCHMARK PROGRAMS MOTOROLA

• error signal is in y1

• FIR sum in a = a + h(k)old*x(n-k)

• h(k)new in b = h(k)old + error*x(n-k-1)

Memory map:

pointer X mem Y mem

r0 x(n), x(n-1), x(n-2), x(n-3), x(n-4)

r5, r4 dummy, h(0), h(1), h(2), h(3)

Prog
wrds

Clock
Cycles

move #STATE,r0 ;start of X
move #2,n0 ;used for pointer update
move #NTAPS,m0 ;number of filter taps
move #COEF+1,r4 ;start of H
move m0,m4 ;number of filter taps
move #COEF,r5 ;start of H-1
move m4,m5 ;number of filter taps
movep y:input,a ;get input sample 1 1
move a,x:(r0) ;save input sample 1 1
clr a x:(r0)+,x0 ;x0<-x(n) 1 1
move x:(r0)+,x1 y:(r4)+,y0 1 1

;x1<-x(n-1); y0<-h(0)
do #TAPS/2,lms ; 2 5
;a<-h(0)*x(n) b<-h(0) Y<-dummy
mac x0,y0,a y0,b b,y:(r5)+ 1 2 i’lock
;b<-H(0)=h(0)+e*x(n-1), x0<-x(n-2), y0<-h(1)
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1
;a<-a+h(1)*x(n-1); b<-h(1); Y(0)<-H(0)
mac x1,y0,a y0,b b,y:(r5)+ ; 1 2 i’lock
;b<-H(1)=h(1)+e*x(n-2); x1<-x(n-3); y0<-h(2)
macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ; 1 1

lms
movep a,y:output 1 1
move b,y:(r5)+ ;Y<-last coef 1 1
move (r0)-n0 ;update pointer 1 1

Totals 13 3N+12
MOTOROLA BENCHMARK PROGRAMS C - 19

C-2.18 FIR Lattice Filter

Memory map:

pointer X mem Y mem
r0 s1, s2, s3, sx
r4 k1, k2, k3

Prog
wrds

Clock
cycles

move #S,r0 ;point to s
move #N,m0 ;N=number of k coefficients
move #K,r4 ;point to k coefficients
move #N-1,m4 ;mod for k's
movep y:datin,b ;get input 1 1
move b,a ;save first state 1 1
move x:(r0),x0 y:(r4)+,y0 ;get s, get k 1 1
do #N,_elat ; 2 5
macr x0,y0,b b,y1 ;s*k+t,copy t for mul 1 1
tfr x0,a a,x:(r0)+ ;save s', copy next s 1 1
macr y1,y0,a x:(r0),x0 y:(r4)+,y0 ;t*k+s, get s, get k 1 1

_elat
move a,x:(r0)+ y:(r4)-,y0 ;adj r4,dummy load 1 1
movep b,y:datout ;output sample 1 1

Totals 10 3N+10

input

z-1 z-1 z-1

s2s1 s3 sx

output

k1

k1

k2

k2

k3

k3

B (in)

z-1 z-1 z-1

s2s1 s s'

t'

k1 k2

k2k1

t

Single Section: t' = s*k + t, t' --> t
 s' = t*k + s

k

k

C - 20 BENCHMARK PROGRAMS MOTOROLA

C-2.19 All Pole IIR Lattice Filter

Memory map:

pointer X mem Y mem

r0 k3, k2, k1

r4 s3, s2, s1

Z-1 Z-1 Z-1

output

s1s2s3

input

-k3

k2

-k2 -k1

k1

Z-1

s

t t'

s'

Single section:

t' = t - k*s
s' = s + k*t'
t' --> t

k

-k
MOTOROLA BENCHMARK PROGRAMS C - 21

_en

;sa
C-2.20 General Lattice Filter

Prog
wrds

Clock
Cycles

move #k+N-1,r0 ;point to k
move #N-1,m0 ;number of k's-1
move #STATE,r4 ;point to filter states
move m0,m4 ;mod for states
move #1,n4 ;
movep y:datin,a y:(r4)+,b ;get input 1 1
move x:(r0)-,x0 y:(r4)+,y0 ;get s, get k 1 1
macr -x0,y0,a x:(r0)-,x0 y:(r4),y0 ;s*k+t 1 1
do #N-1,_endlat ;do sections 2 5
macr -x0,y0,a y:(r4)+,y1 ; 1 1
tfr y1,b a,x1 b,y:(r4) ; 1 2 i'lock
macr x1,x0,b x:(r0)-,x0 y:(r4),y0 1 1

dlat
movep a,y:datout 1 1
move x:(r0)+,x0 y:(r4)+,r0 ;output sample 1 1
move b,y:(r4)+ ;save s' 1 1

ve last s', update r4
move a,y:(r4) 1 1

Totals 12 4N+8

output

input

z-1 z-1 z-1
-k3

k3

w3

w2
w1

k2

-k2

w0

k1

-k1
C - 22 BENCHMARK PROGRAMS MOTOROLA

_

Memory map:

pointer X mem Y mem

r0 k3, k2, k1, w3, w2, w1, w0

r4 s4, s3, s2, s1

Prog
wrds

Clock
Cycles

move #K,r0 ;point to coefficients
move #2*N,m0 ;mod 2*(# of k's)+1
move #STATE,r4 ;point to filter states
move #-2,n4
move #N,m4 ;mod on filter states
movep y:datin,a ;get input 1 1
move x:(r0)+,x0 y:(r4)-,y0 1 1
do #N,_endlat 2 5
macr -x0,y0,a ; 1 1
tfr y0,b a,x1 b,y:(r4)+n4 ; 1 2 i'lock
macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ; 1 1

endlat
move b,y:(r4)+ ;save s' 1 2 i'lock
clr a a,y:(r4)+ ;save last s', update r4 1 1
move y:(r4)+,y0 1 1
rep #N ; 1 5
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;s*w+out, get s, get w 1 1
macr x0,y0,a ;last mac 1 1
movep a,y:datout ;output sample 1 2 i’lock

Totals 14 5N+19

t

z-1

t'

s

s'

w

Single section:

t' = t - k*s
s' = s + k*t'
t' --> t
output = ∑(w*s')

k

-k
MOTOROLA BENCHMARK PROGRAMS C - 23

C-2.21 Normalized Lattice Filter

Memory map:

pointer X mem Y mem

r0 q2, k2, q1, k1, q0, k0, w3, w2, w1, w0

r4 sx, s2, s1, s0

Prog
wrds

Clock
Cycles

move #COEF,r0 ;point to coefficients
move #3*N,m0 ;mod on coefficients
move #STATE+1,r4 ;point to state variables
move #N,m4 ;mod on filter states
movep y:datin,y0 ;get input sample 1 1
move x:(r0)+,x1 ;get q in the table 1 1
do #N,_elat 2 5
mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ;q*t,get k,get s 1 1
macr -x0,y1,a b,y:(r4)+ ;q*t-k*s,save new s 1 1

z-1

t
q

 k -k

q
u'

t'

u

w

Single Section:

t' = t*q - k*s
u' = t*k + s*q
t' --> t

output = ∑(w*u')

z-1z-1z-1

output

input
q2

k2 -k2

q2

k1 -k1

q1

q1

w3

w2 w1

w0

k0

q0

q0

-k0
C - 24 BENCHMARK PROGRAMS MOTOROLA

_e

_

_

_

C-2.22 [1x3][3x3] Matrix Multiplication

C-2.23 N Point 3x3 2-D FIR Convolution

The two dimensional FIR uses a [3x3] coefficient mask:

mpy x0,y0,b ;k*t 1 1
macr x1,y1,b x:(r0)+,x1 a,y0 ;k*t+q*s,get next q,set t' 1 1

lat
move b,y:(r4)+ ;save second last

state
1 2 i'lock

move a,y:(r4)+ ;save last state 1 1
clr a y:(r4)+,y0 ;clear a, get first state 1 1
rep #N 1 5
mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 ;fir taps 1 1
macr x1,y0,a (r4)+ ; round, adj pointer 1 1
movep a,y:datout ;output sample 1 2 i'lock

Total 15 5N+19

Prog
wrds

Clock
Cycles

init
move #MAT_A,r0 ;point to A matrix
move #MAT_B,r4 ;point to B matrix
move #MAT_X,r1 ;output X matrix
move #2,m0 ;mod 3
move #8,m4 ;mod 9
move m0,m1 ;mod 3

start
move x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
move a,y:(r1)+ 1 1
mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
move b,y:(r1)+ 1 1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,a 1 1
move a,y:(r1)+ 1 2 i’lock

end
Totals 13 14
MOTOROLA BENCHMARK PROGRAMS C - 25

 c(1,1) c(1,2) c(1,3)

 c(2,1) c(2,2) c(2,3)

 c(3,1) c(3,2) c(3,3)

stored in Y memory in the order:

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3).

The image is an array of 512x512 pixels. To provide boundary conditions for the FIR fil-
tering, the image is surrounded by a set of zeros such that the image is actually stored as
a 514x514 array. i.e.

The image (with boundary) is stored in row major storage. The first element of the array
image(,) is image(1,1) followed by image(1,2). The last element of the first row is im-
age(1,514) followed by the beginning of the next column image(2,1). These are stored
sequentially in the array "im" in X memory:

Image(1,1) maps to index 0, image(1,514) maps to index 513;

Image(2,1) maps to index 514 (row major storage).

Although many other implementations are possible, this is a realistic type of image envi-
ronment where the actual size of the image may not be an exact power of 2. Other pos-
sibilities include storing a 512x512 image but computing only a 511x511 result, computing
a 512x512 result without boundary conditions but throwing away the pixels on the border,
etc.

Memory map:

r0 --> image(n,m)
image(n,m+1)
image(n,m+2)

Image Area
[512x512]

514

51
4

- Area of zeros
C - 26 BENCHMARK PROGRAMS MOTOROLA

;lef

;ad

;firs

;pre

;ou

col
; ad
;ad
r1 --> image(n+514,m)
image(n+514,m+1)
image(n+514,m+2)

r2 --> image(n+2*514,m)
image(n+2*514,m+2)
image(n+2*514,m+3)

r4 --> FIR coefficients

r5 --> output image

Prog
wrds

Clock
Cycles

move #MASK,r4 ;point to coeffi-
cients

move #8,m4 ;mod 9
move #IMAGE,r0 ;top boundary
move #IMAGE+514,r1 ;left of first pixel

t of first pixel 2nd row
move #IMAGE+2*514,r2 ;

just. for end of row
move #2,n1 ;
move n1,n2 ;
move #IMAGEOUT,r5 ;output image

t element, c(1,1)
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
do #512,row ; 2 5
do #512,col ; 2 5
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1
mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1
mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1
mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1
mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1
mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1
mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1
mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

load, get c(1,1)
macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

tput image sample
move a,y:(r5)+ ; 1 2 i'lock

just pointers for frame boundary
j r0,r5 w/dummy loads
MOTOROLA BENCHMARK PROGRAMS C - 27

;ad

;ad

row
C-2.24 Parsing data stream

This routine implements parsing of data stream for MPEG audio.
The data stream, composed by concatenated words of variable length, is allocated in con-
secutive memory words. The words lengths reside in another memory buffer.
The routine extracts words from data stream according to their length.
Two consecutive words are read from the stream buffer and are concatenated in the ac-
cumulator. Using bit offset and the specified length, a field of variable length can be ex-
tracted. The decision whether to load a new memory word into the accumulator from the
stream is determined when bit offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:
• r0 - pointer to the buffer in X memory containing the variable length

stream.
• r5 - pointer to buffer in Y memory where the length of each field is stored.
• r4 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r3 - pointer to a location storing the constant 24.
• r1 - used as temporary storage (no need to initialize).
• y1 - stores the length of the field to be extracted.
• x0 - stores 24.

Memory map:

move x:(r0)+,x0 y:(r5)+,y1 ; 1 1
j r1,r5 w/dummy loads

move x:(r1)+n1,x
0

y:(r5)+,y1 ; 1 1

j r2 (dummy load y1), preload x0 for next pass
move x:(r0)+,x0 ; 1 1
move y:(r2)+n2,y1 ; 1 1

Total 19
(prog. words)

11N2+8N+7
(clock cycles)

pointer X mem Y mem

r0 stream buffer

r5 length buffer

r4 "bits offset"

r3 ‘24‘
C - 28 BENCHMARK PROGRAMS MOTOROLA

i

G

C-2.25 Creating data stream

This routine implements creation of data stream for MPEG audio.
Words of variable length are concatenated and stored in consecutive memory words.
The words for generating the stream are allocated in a memory buffer, and are aligned to

nit_ ;this is the initialization code
move #stream_buffer,r0
move #length_buffer,r5
move #bits_offset,r4
move #boundary,r3
move #>48,b
move #>24,x0
move x0,x:(r3) b,y:(r4)

Prog
wrds

Clock
Cycles

et_bits
;bring length of next field and ‘24‘

move x:(r3),x0 y:(r5)+,y1 1 1
;bring word for parsing and "bits offset"

move x:(r0)+,a y:(r4),b 1 1
;bring next word for parsing, point back to first word

move x:(r0)-,a0 1 1
;calculate new "bits offset", r1 points to current word

sub y1,b r0,r1 1 1
;save "bits offset" in x1

move b,x1 1 2
;merge width and offset

merge y1,b 1 1
;extract the field according to b, place it in a

extract b1,a,a 1 1
;restore "bits offset", r0 points to next word

tfr x1,b (r0)+ 1 1
;compare "bits offset" to 24, extracted word to a1

cmp x0,b a0,a 1 1
;if "bits offset" is less or equal 24 another word is
needed - update "bits offset" and point to next word

add x0,b ifle 1 1
tgt r1,r0 1 1

;save "bits field" in memory
move b1,y:(r4) 1 1

Totals 12 13
MOTOROLA BENCHMARK PROGRAMS C - 29

i

the right. The words lengths reside in another memory buffer.
The word and its length are loaded for insertion. A word is read from the stream buffer into
the accumulator. Using a bit offset and the specified length, a field of variable length is
inserted into the accumulator. The accumulator is stored back containing the new concat-
enated field. The decision whether to read a new word from the stream is determined
when bit offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:

• r0 - pointer to a buffer in X memory, containing the variable length codes.
The code is right aligned at each location.

• r2 - pointer to a buffer in X memory containing the stream generated.
• r4 - pointer to a buffer in Y memory where the actual length of each field is

stored.
• r3 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r5 - pointer to a location storing the constant 24.
• r1 - used as temporary storage (no need to initialize).
• x0 - stores the current word to be inserted
• y1 - stores the length of the code brought in x0.
• y0 - stores 24.

Memory map:

pointer X mem Y mem

r0 data buffer

r2 stream buffer

r4 length buffer

r3 "bits offset"

r5 24

nit_ ;this is the initialization code
move #data_buffer,r0
C - 30 BENCHMARK PROGRAMS MOTOROLA

P

C-2.26 Parsing Hoffman code data stream

This routine implements the parsing of Hoffman code data stream.

move #stream_buffer,r2
move #length_buffer,r4
move #bits_offset,r3
move #boundary,r5
move #>48,b
move #>24,y0
move b,x:(r3) y0,y:(r5)

Prog
wrds

Clock
Cycles

ut_bits
;bring code and its length

move x:(r0)+,x0 y:(r4)+,y1 1 1
;bring "bits offset" and ‘24‘

move x:(r3),b y:(r5),y0 1 1
;calculate new "bits offset", bring current word from
stream buffer

sub y1,b x:(r2),a 1 1
;save "bits offset" in x1

move b,x1 1 2
;merge width and offset

merge y1,b 1 1
;insert the field according to b, place it in a

insert b1,x0,a 1 1
;restore "bits offset", r1 points to current word

tfr x1,b r2,r1 1 1
;compare "bits offset " to 24, send new word to
stream buffer

cmp y0,b a1,x:(r2)+ 1 1
;send a0 to next location in stream buffer in case of
crossing boundary

move a0,x:(r2) 1 2
;if "bits offset" is less or equal 24 then update "bits
offset " and point to the next word in stream buffer

add y0,b ifle 1 1
tgt r1,r2 1 1

;save "bits offset" in memory
move b1,y:(r4) 1 1

Totals 12 14
MOTOROLA BENCHMARK PROGRAMS C - 31

The routine extracts a bit field from the stream. Two consecutive words are brought to the
accumulator from the stream buffer. An address word is extracted using a bit offset and a
field length. The field length is determined by the number of bits needed by the address
of the two Hoffman code lookup tables. A word is loaded from the first lookup table. If the
hit bit in the word is not set then a field of variable length is extracted. The length of the
extracted field is specified in the length field in the word. The bit offset is updated
according to the length of the extracted word.
If the hit bit in the word is set then a new address word is read from the stream. A word is
brought from the second lookup table. The bit field is extracted according to the same
guidelines.
The following flow chart demonstrates the parsing process:

Thek following describes the pointers and registers used by the routine:

• r0 - pointer to the buffer in X memory containing the stream.
• r1 - used as temporary storage (no need to initialize).
• r3 - pointer to buffer in Y memory where the extracted fields are stored.
• r5 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r2 - pointer to the right table.
• r6 - pointer to the first lookup table.
• r7 - pointer to the second lookup table.
• r4 - pointer to constants.

Memory map:

pointer X mem Y mem

r0 stream buffer

r3 extracted data buffer

concatenated two consecutive words from stream buffer

1‘st
lookup
table

2‘nd
lookup
table

address
word

bit offset

symbol field length fieldhit bit

symbol field length field

Extracted
field

read word from 1‘st table
if hit was not set in previous
reading

read word from 2’nd table
if hit was set in previous
reading
C - 32 BENCHMARK PROGRAMS MOTOROLA

i

G

r5 "bits offset"

r4 #no.1 address bus length

#no.2 mask word for length field

#no.3 merged width and offset

‘24‘

r6 first lookup table

r7 second lookup table

nit_ ;this is the initialization code
move #stream_buffer,r0
move #data_buffer,r3
move #bits_offset,r5
move #constants,r4
move #first_table,r2
move #first_table,r6
move #second_table,r7

;move constants to memory
move #>48,b
move b,y:(r5)
move #>3,n4
move #n0_1,y1
move y1,y:(r4)+
move #n0_2,y1
move y1,y:(r4)+
move #n0_3,y1
move y1,y:(r4)+
move #>24,y1
move y1,y:(r4)-n4

Prog
wrds

Clock
Cycles

et_bits
;bring word from stream, and "bits-offset"

move x:(r0)+,a y:(r5)+,b 1 1
;bring next word from stream, and address length

move y:(r4)+,y0 1 1

pointer X mem Y mem
MOTOROLA BENCHMARK PROGRAMS C - 33

move x:(r0)-,a0 1 1
;calculate new "bits offset", and save old one in x1

sub y0,b b,x1 1 1
;merge width and offset

merge y0,b 1 1
;extract the field according to b, place it in a

extract b1,a,a 1 1
;move address to n2

move a0,n2 1 1
;bring mask for length field in tookup table words

move y:(r4)+,y1 1 1
;bring the merged offset and length for extactionf

move y:(r4)+,x0 1 1
;r1 points to current address for extracted field

move r3,r1 1 1
;bring word from lookup table

move x:(r2+n2),a 1 1
;extract the field according to x0, place it in b

extract x0,a,b 1 1
;test if hit bit is set, r2 points s first lookup table

tst a r6,r2 1 1
; if hit bit is set, r2 points second lookup table, a holds
address length

tmi y0,a r7,r2 1 1
;restore "bit offset" , send extracted field to memory

tfr x1,b b0,x:(r3)+ 1 1
; if hit bit is set, restore r3

tmi r1,r3 1 1
;mask length field , save pointer to current stream
word

and y1,a r0,r1 1 1
;calculate new "bits offset", y1 holds ’24’

sub a,b y:(r4)-n4,y1 1 1
;compare "bits offset " to 24, update steam pointer

cmp y1,b (r0)+ 1 1
;if "bits offset" is less or equal 24 another word is
needed - update "bits offset " and point to next word

add y1,b ifle 1 1
tgt r1,r0 1 1

;save "bits field" in memory
move b1,y:(r5) 1 1

Totals 22 22
C - 34 BENCHMARK PROGRAMS MOTOROLA

C-3 BENCHMARK OVERVIEW

Benchmark
Program
Length

in Words

Program
Length
in Clock
Cycles

Sample Rate or
Execution Time
for 50MHz Clock

Cycle

Sample Rate or
Execution Time
for 60MHz Clock

Cycle

Real Multiply on page 3 3 4 80 ns 67 ns

N Real Multiplies on page 3 7 2N+8 40N+160ns 33.3N+133 ns

Real Update on page 4 4 5 100 ns 83 ns

N Real Updates on page 4 9 2N+8 40N+160 ns 33.3N+133.6ns

Real Correlation Or Convolution
(FIR Filter) on page 5

6 N+14 50/(N+14) MHz 60/(N+14) MHz

Real * Complex Correlation Or
Convolution (FIR Filter) on page

7

9 2N+10 25/(N+5) MHz 30/(N+5) MHz

Complex Multiply on page 7 6 7 140 ns 117 ns

N Complex Multiplies on page 8 9 5N+9 80N+180 ns 66.7N+150.3ns

Complex Update on page 9 7 8 160 ns 133 ns

N Complex Updates on page 10 9 4N+9 80N+180 ns 66.7N+150.3ns

Complex Correlation Or Convo-
lution (FIR Filter) on page 11

16 4N+13 25/(2N+5.5)
MHz

30/(2N+5.5)
MHz

Nth Order Power Series (Real)
on page 12

10 2N+11 40N+220 ns 33.3N+183.7ns

2nd Order Real Biquad IIR Filter
on page 13

7 9 180 ns 150.3 ns

N Cascaded Real Biquad IIR
Filter on page 14

10 5N+10 10/(N+2) MHz 12/(N+2) MHz

N Radix-2 FFT Butterflies (DIT,
in-place algorithm) on page 15

12 8N+9 160N+180 ns 133.6N+150.3
ns

True (Exact) LMS Adaptive Fil-
ter on page 16

15 3N+16 50/(3N+17)
MHz

60/(3N+17)
MHz

Delayed LMS Adaptive Filter on
page 18

13 3N+12 50/(3N+12)
MHz

60/(3N+12)
MHz
MOTOROLA BENCHMARK PROGRAMS C - 35

FIR Lattice Filter on page 20 10 3N+10 50/(3N+10)
MHz

60/(3N+10)
MHz

All Pole IIR Lattice Filter on
page 21

12 4N+8 25/(2N+4) MHz 30/(2N+4) MHz

General Lattice Filter on page
22

14 5N+19 50/(5N+19)
MHz

60/(5N+19)
MHz

Normalized Lattice Filter on
page 24

15 5N+19 50/(5N+19)
MHz

60/(5N+19)
MHz

[1x3][3x3] Matrix Multiplication
on page 25

13 14 280 ns 233.8 ns

N Point 3x3 2-D FIR Convolu-
tion on page 25

19 11N2+8N+7 50/
(11N2+8N+7)

MHz

60/
(11N2+8N+7)

MHz

Benchmark
Program
Length

in Words

Program
Length
in Clock
Cycles

Sample Rate or
Execution Time
for 50MHz Clock

Cycle

Sample Rate or
Execution Time
for 60MHz Clock

Cycle
C - 36 BENCHMARK PROGRAMS MOTOROLA

NOTICE OF CHANGES FROM THE FIRST PRINTING

Pages C-36 and C-37 have been changed in this printing to reflect
improved clock rate specifications.

Order this document by DSP56300FM/AD

Motorola reserves the right to make changes without further notice to any products herein to im-
prove reliability, function or design. Motorola does not assume any liability arising out of the appli-
cation or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola products are not authorized for use as components
in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola
shall determine availability and suitability of its product or products for the use intended. Motorola
and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-
tunity /Affirmative Action Employer.

OnCE

 is a trade mark of Motorola, Inc.

 Motorola Inc., 1995

How to reach us:
USA / EUROPE:

Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX:

RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609

INTERNET:

http://Design–NET.com

JAPAN:

Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto-Ku, Tokyo 135, Japan.
03-3521–8315

HONG KONG:

Motorola Semiconductors H.K. Ltd.;
8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong.
852–26629298

Appendix C BENCHMARK PROGRAMS

C-1 INTRODUCTION

The following benchmarks illustrate the source code syntax and programming techniques
for the DSP56300 Core. The assembly language source is organized into 6 columns as
shown below.

The Label column is used for program entry points and end of loop indication. The Opcode
column indicates the Data ALU, Address ALU or Program Controller operation to be per-
formed. The Operands column specifies the operands to be used by the opcode. The X
Bus Data specifies an optional data transfer over the X Bus and the addressing mode to
be used. The Y Bus Data specifies an optional data transfer over the Y Bus and the ad-
dressing mode to be used. The Comment column is used for documentation purposes
and does not affect the assembled code. The Opcode column must always be included in
the source code.

C-2 SET OF BENCHMARKS

C-2.1 Real Multiply

C-2.2 N Real Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment

FIR MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0 ;Do each tap

Prog
wrds

Clock
Cycles

move x:(r0),x0 y:(r4),y0 ; 1 1
mpyr x0,y0,a ; 1 1
move a,x:(r1) ; 1 2 i’lock

Totals 3 4

c a b×=

c i() a i() b i()× i 1 2 … N, , ,==
MOTOROLA BENCHMARK PROGRAMS C - 3

Memory map:

C-2.3 Real Update

C-2.4 N Real Updates

pointer X mem Y mem

r0 a(i)

r4 b(i)

r1 c(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
do #N-1,end ; 2 5
mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0 ; 1 1
move x:(r0)+,x0 ; 1 1

end ;
move a,x:(r1)+ ; 1 1

Totals 7 2N+8

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r2
move x:(r0),x0 y:(r4),y0 ; 1 1
move x:(r1),a ; 1 1
macr x0,y0,a ; 1 1
move a,x:(r2) ; 1 2 i’lock

Totals 4 5

d c a b×+=

d i() c i() a i() b i()×+= i 1 2 … N, , ,=
C - 4 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.5 Real Correlation Or Convolution (FIR Filter)

Memory map:

pointer X mem Y mem

r0 a(i)

r4 b(i)

r1 c(i)

r5 d(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r5
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
move x:(r1)+,a ; 1 1
move x:(r1)+,b ; 1 1
do #N/2,end ; 2 5
macr x0,y0,a x:(r0)+,x1 y:(r4)+,y1 ; 1 1
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1
move x:(r1)+,a a,y:(r5)+ ; 1 1
move x:(r1)+,b b,y:(r5)+ ; 1 1

end
Totals 9 2N+8

pointer X mem Y mem

r0 a(i)

r4 b(i)

c n() a i() b n i–()×[]
i 0=

N 1–

∑=
MOTOROLA BENCHMARK PROGRAMS C - 5

Memory map:

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4 ;
move #N-1,m4 ;
move m4,m0 ;
movep y:input,y:(r4) ; 1 2
clr a x:(r0)+,x0 y:(r4)-,y0 ; 1 1
rep #N-1 ; 1 5
mac x0,y0,a x:(r0)+,x0 y:(r4)-,y0 ; 1 1
macr x0,y0,a (r4)+ ; 1 1
movep a,y:output ; 1 2 i’lock

Totals 6 N+14

pointer X mem Y mem

r0 a(i)

r1 b(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r1 ;
move #N-1,m1 ;
move m1,m0 ;
movep y:input,x:(r1) ; 1 2
clr a x:(r0)+,x1 ; 1 1
do #N-1,end ; 2 5
move x:(r1)-,x0 ; 1 1
mac x0,x1,a x:(r0)+,x1 ; 1 1

end ;
move x:(r1)-,x0 ; 1 1
macr x0,x1,a (r1)+ ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 9 2N+10
C - 6 BENCHMARK PROGRAMS MOTOROLA

C-2.6 Real * Complex Correlation Or Convolution (FIR Filter)

Memory map:

C-2.7 Complex Multiply

pointer X mem Y mem

r0 ar(i) ai(i)

r4 b(i)

r1 cr(n) ci(n)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #N-1,m4 ;
move m4,m0 ;
movep y:input,x:(r4) ; 1 2
clr a x:(r0),x0 ; 1 1
clr b x:(r4)-,x1 y:(r0)+,y0 ; 1 1
do #N-1,end ; 2 5
mac x0,x1,a x:(r0),x0 ; 1 1
mac y0,x1,b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

end
macr x0,x1,a ; 1 1
macr y0,x1,b (r4)+ ; 1 1
move a,x:(r1) ; 1 1
move b,y:(r1) ; 1 1

Totals 11 2N+11

cr n() jci n() ar i() jai i()+() b n i–()×[]
i 0=

N 1–

∑= =

cr n() ar i() b n i–()×
i 0=

N 1–

∑= ci n() ai i() b n i–()×
i 0=

N 1–

∑=

cr jci+ ar jai+() br jbi+()×=

cr ar br ai bi×–×= ci ar bi ai br×+×=
MOTOROLA BENCHMARK PROGRAMS C - 7

Memory map:

C-2.8 N Complex Multiplies

Memory map:

pointer X mem Y mem

r0 ar ai

r4 br bi

r1 cr ci

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move x:(r0),x1 y:(r4),y0 ; 1 1
mpy y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1
macr x0,y1,b ; 1 1
mpy x0,x1,a ; 1 1
macr -y0,y1,a b,y:(r1) ; 1 1
move a,x:(r1) ; 1 2 i'lock

Totals 6 7

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r5 cr(i) ci(i)

cr i() jci i()+ ar i() jai i()+() br i() jbi i()+()×= i 1 2 … N, , ,=

cr i() ar i() br i() ai i() bi× i()–×=

ci i() ar i() bi i() ai i() br×+× i()=
C - 8 BENCHMARK PROGRAMS MOTOROLA

C-2.9 Complex Update

Memory map:

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR-1,r5 ;
move x:(r0),x1 y:(r4),y0 ; 1 1
move x:(r5),a ; 1 1
do #N,end ; 2 5
mpy y0,x1,b x:(r4)+,x0 y:(r0)+,y1 ; 1 1
macr x0,y1,b a,x:(r5)+ ; 1 1
mpy -y0,y1,a y:(r4),y0 ; 1 1
macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

end
move a,x:(r5) ; 1 2 i'lock

Totals 9 4N+9

pointer X mem Y mem

r0 ar ai

r4 br bi

r1 cr ci

r2 dr di

Prog
wrds

Clock
Cycles

move #AADDR,r0
move #BADDR,r4
move #CADDR,r1
move #DADDR,r2
move y:(r1),b ; 1 1
move x:(r0),x1 y:(r4),y0 ; 1 1
mac y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1
macr x0,y1,b x:(r1),a ; 1 1
mac x0,x1,a ; 1 1
macr -y0,y1,a b,y:(r2) ; 1 1
move a,x:(r2) ; 1 2 i'lock

Totals 7 8

dr jdi+ cr jci+() ar jai+() br jbi+()×+=

dr cr ar br ai bi×–×+= di ci ar bi ai br×+×+=
MOTOROLA BENCHMARK PROGRAMS C - 9

C-2.10 N Complex Updates

Memory map:

pointer X mem Y mem

r0 ar(i) ; ai(i)

r4 br(i) ; bi(i)

r1 cr(i) ; ci(i)

r5 dr(i) ; di(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #DADDR-1,r5 ;
move x:(r0)+,x1 y:(r4)+,y0 ; 1 1
move x:(r1)+,b y:(r5),a ; 1 1
do #N,end ;25 ; 2 5
mac y0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1
macr -x0,y1,b x:(r1)+,a a,y:(r5)+ ; 1 1
mac x0,y0,a x:(r1)+,b b,y:(r5)+ ; 1 2 i'lock
macr x1,y1,a x:(r0)+,x1 y:(r4)+,y0 ; 1 1

end
move a,y:(r5)+ ; 1 2 i'lock

Totals 9 5N+9

dr i() jdi i()+ cr i() jci i()+() ar i() jai i()+() br i() jbi i()+()×+=

dr i() cr i() ar i() br i() ai i() bi× i()–×+=

di i() ci i() ar i() bi i() ai i() br× i()+×+=

i 1 2 … N, , ,=
C - 10 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.11 Complex Correlation Or Convolution (FIR Filter)

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

r5 dr(i) di(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1 ;
move #DADDR-1,r5 ;
move x:(r5),a ; 1 1
move x:(r0),x1 y:(r4),y0 ; 1 1
move x:(r4)+,x0 y:(r1),b ; 1 1
do #N,end ; 2 5
mac y0,x1,b a,x:(r5)+ y:(r0)+,y1 ; 1 1
macr x0,y1,b x:(r1)+,a ; 1 1
mac -y0,y1,a y:(r4),y0 ; 1 1
macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1
move x:(r4)+,x0 y:(r1),b ; 1 1

end
move a,x:(r5) ; 1 1

Totals 11 5N+9

cr n() jci n()+ ar i() jai i()+() br n i–() jbi n i–()+()×[]
i 0=

N 1–

∑=

cr n() ar i() br n i–() ai i() bi n i–()×–×[]
i 0=

N 1–

∑=

ci n() ar i() bi n i–() ai i() br n i–()×+×[]
i 0=

N 1–

∑=
MOTOROLA BENCHMARK PROGRAMS C - 11

Memory map:

C-2.12 Nth Order Power Series (Real)

pointer X mem Y mem

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4 ;
move #CADDR,r1
move #N-1,m4
move #m4,m0
movep y:input,x:(r4) 1 2
movep y:input,y:(r4) 1 2
clr a ; 1 1
clr b x:(r0),x1 y:(r4),y0 ; 1 1
do #N-1,end ; 2 5
mac y0,x1,b x:(r4)-,x0 y:(r0)+,y1 ; 1 1
mac x0,y1,b ; 1 1
mac x0,x1,a ; 1 1
mac -y0,y1,a x:(r0),x1 y:(r4),y0 ; 1 1

end
mac y0,x1,b x:(r4),x0 y:(r0)+,y1 ; 1 1
macr x0,y1,b ; 1 1
mac x0,x1,a ; 1 1
macr -y0,y1,a ; 1 1
move b,y:(r1) ; 1 1
move a,x:(r1) ; 1 1

Totals 16 4N+13

c a i() bi×[]
i 0=

N 1–

∑=
C - 12 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.13 2nd Order Real Biquad IIR Filter

Memory map:

pointer X mem Y mem

r0 a(i)

r4 b

r1 c

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r4
move #CADDR,r1
move x:(r0)+,a ; 1 1
move y:(r4),x0 1 1
mpyr x0,x0,b x:(r0)+,y0 ; 1 1
move b,y1 ; 1 2 i'lock
do #N-1,end ; 2 5
mac y0,x0,a x:(r0)+,y0 ; 1 1
mpyr x0,y1,b b,x0 ; 1 1

end
macr y0,x0,a ; 1 1
move a,x:(r1) ; 1 2 i'lock

Totals 10 2N+11

pointer X mem Y mem

r0 w(n-2), w(n-1)

r4 a2/2, a1/2, b2/2, b1/2

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=
MOTOROLA BENCHMARK PROGRAMS C - 13

C-2.14 N Cascaded Real Biquad IIR Filter

Prog
wrds

Clock
Cycles

ori #$08,mr ;
move #AADDR,r0 ;
move #BADDR,r4 ;
move #1,m0
move #3,m4
movep y:input,a ; 1 1
rnd a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1
mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1
mac y0,x0,a a,x:(r0) y:(r4),y0 ; 1 2 i'lock
macr y0,x1,a ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 7 9

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=
C - 14 BENCHMARK PROGRAMS MOTOROLA

Memory map:

C-2.15 N Radix-2 FFT Butterflies (DIT, in-place algorithm)

Memory map:

pointer X mem Y mem

r0 w(n-2)1, w(n-1)1, w(n-2)2, ...

r4 (a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...

Prog
wrds

Clock
Cycles

ori #$08,mr ;
move #AADDR,r0 ;
move #BADDR,r4 ;
move #(2N-1),m0 ;
move #(4N-1),m4 ;
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
movep y:input,a ; 1 1
do #N,end ; 2 5
mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1
mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1
mac y0,x0,a a,x:(r0)+ y:(r4)+,y0 ; 1 2 i’lock
mac y0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

end
rnd a ; 1 1
movep a,y:output ; 1 2 i'lock

Totals 10 5N+10

pointer X mem Y mem

r0 ar(i) ai(i)

r1 br(i) bi(i)

r6 cr(i) ci(i)

r4 ar’(i) ai’(i)

r5 br’(i) bi’(i)

ar' ar cr br ci bi×–×+= br' ar cr br ci bi×+×– 2 ar a–× r'= =

ai' ai ci br cr bi×+×+= bi' ai ci br cr bi×–×– 2 ai a–× i'= =
MOTOROLA BENCHMARK PROGRAMS C - 15

C-2.16 True (Exact) LMS Adaptive Filter

Prog
wrds

Clock
Cycles

move #AADDR,r0 ;
move #BADDR,r1 ;
move #CADDR,r6 ;
move #ATADDR,r4 ;
move #BTADDR-1,r5 ;
move x:(r1),x1 y:(r6),y0 ; 1 1
move x:(r5),a y:(r0),b 1 1
do #N,end ; 2 5
mac y0,x1,b x:(r6)+n,x0 y:(r1)+,y1 ; 1 1
macr x0,y1,b a,x:(r5)+ y:(r0),a ; 1 1
subl b,a ; 1 1
move x:(r0),b b,y:(r4) ; 1 1
mac x0,x1,b x:(r0)+,a a,y:(r5) ; 1 1
macr -y0,y1,b x:(r1),x1 y:(r6),y0 ; 1 1
subl b,a b,x:(r4)+ y:(r0),b ; 1 2 i'lock

end
move a,x:(r5)+ ; 1 2 i'lock

Totals 12 8N+9

x(n) x(n-1) x(n-2) x(n-3)
z-1 z-1 z-1

d(n)

f(n)

e(n)

h(1) h(2)
h(3)h(0)
C - 16 BENCHMARK PROGRAMS MOTOROLA

Notation and symbols:

System equations:

LMS Algorithm:

Memory map:

x(n) - Input sample at time n.

d(n) - Desired signal at time n.

f(n) - FIR filter output at time n.

H(n) - Filter coefficient vector at time n. H={h0,h1,h2,h3}

X(n) - Filter state variable vector at time N, X={x(n),x(n-1),x(n-2),x(n-3)}.

u - Adaptation gain.

NTAPS - Number of coefficient taps in the filter. For this example, ntaps=4.

True LMS Algorithm Delayed LMS Algorithm

e(n)=d(n)-H(n)X(n) e(n)=d(n)-H(n)X(n)

H(n+1)=H(n)+uX(n)e(n) H(n+1)=H(n)+uX(n-1)e(n-1)

True LMS Algorithm Delayed LMS Algorithm

Get input sample Get input sample

Save input sample Save input sample

Do FIR Do FIR

Get d(n), find e(n) Update coefficients

Update coefficients Get d(n), find e(n)

Output f(n) Output f(n)

Shift vector X Shift vector X

pointer X mem Y mem

r0 x(n), x(n-1), x(n-2), x(n-3)

r4, r5 h(0), h(1), h(2), h(3)
MOTOROLA BENCHMARK PROGRAMS C - 17

Prog
wrds

Clock
Cycles

move #-2,n0 ;
move n0,n4
move #NTAPS-1,m0 ;
move m0,m4 ;
move m0,m5 ;
move #AADDR+NTAPS-1,r0 ;
move #BADDR,r4 ;
move r4,r5 ;

_getsmp
movep y:input,x0 ;get input sample 1 1
clr a x0,x:(r0)+ y:(r4)+,y0 ;save 1 1

;X(n), get h0
rep #NTAPS-1 ;do fir 1 5

;do taps
mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;last tap
macr x0,y0,b ; 1 1

;Get d(n), subtract fir output, multiply by "u",
;put the result in y1.
;This section is application dependent.

move x:(r0)+,x0 y:(r4)+,a 1 1
movep b,y:output ;output fir if desired 1 1
move y:(r4)+,b 1 1
do #NTAPS/2,cup ; 2 5
macr x0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1
macr x0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1
tfr y0,a a,y:(r5)+ 1 1
tfr y0,b b,y:(r5)+ 1 1

cup
move x:(r0)+n0,x0 y:(r4)+n4,y0 ; 1 1

;continue looping (jmp _getsmp)
Total 15 3N+16
C - 18 BENCHMARK PROGRAMS MOTOROLA

C-2.17 Delayed LMS Adaptive Filter
• error signal is in y1

• FIR sum in a = a + h(k)old*x(n-k)

• h(k)new in b = h(k)old + error*x(n-k-1)

Memory map:

pointer X mem Y mem

r0 x(n), x(n-1), x(n-2), x(n-3), x(n-4)

r5, r4 dummy, h(0), h(1), h(2), h(3)

Prog
wrds

Clock
Cycles

move #STATE,r0 ;start of X
move #2,n0 ;used for pointer update
move #NTAPS,m0 ;number of filter taps
move #COEF+1,r4 ;start of H
move m0,m4 ;number of filter taps
move #COEF,r5 ;start of H-1
move m4,m5 ;number of filter taps
movep y:input,a ;get input sample 1 1
move a,x:(r0) ;save input sample 1 1
clr a x:(r0)+,x0 ;x0<-x(n) 1 1
move x:(r0)+,x1 y:(r4)+,y0 1 1

;x1<-x(n-1); y0<-h(0)
do #TAPS/2,lms ; 2 5
;a<-h(0)*x(n) b<-h(0) Y<-dummy
mac x0,y0,a y0,b b,y:(r5)+ 1 2 i’lock
;b<-H(0)=h(0)+e*x(n-1), x0<-x(n-2), y0<-h(1)
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1
;a<-a+h(1)*x(n-1); b<-h(1); Y(0)<-H(0)
mac x1,y0,a y0,b b,y:(r5)+ ; 1 2 i’lock
;b<-H(1)=h(1)+e*x(n-2); x1<-x(n-3); y0<-h(2)
macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ; 1 1

lms
movep a,y:output 1 1
move b,y:(r5)+ ;Y<-last coef 1 1
move (r0)-n0 ;update pointer 1 1

Totals 13 3N+12
MOTOROLA BENCHMARK PROGRAMS C - 19

C-2.18 FIR Lattice Filter

Memory map:

pointer X mem Y mem
r0 s1, s2, s3, sx
r4 k1, k2, k3

Prog
wrds

Clock
cycles

move #S,r0 ;point to s
move #N,m0 ;N=number of k coefficients
move #K,r4 ;point to k coefficients
move #N-1,m4 ;mod for k's
movep y:datin,b ;get input 1 1
move b,a ;save first state 1 1
move x:(r0),x0 y:(r4)+,y0 ;get s, get k 1 1
do #N,_elat ; 2 5
macr x0,y0,b b,y1 ;s*k+t,copy t for mul 1 1
tfr x0,a a,x:(r0)+ ;save s', copy next s 1 1
macr y1,y0,a x:(r0),x0 y:(r4)+,y0 ;t*k+s, get s, get k 1 1

_elat
move a,x:(r0)+ y:(r4)-,y0 ;adj r4,dummy load 1 1
movep b,y:datout ;output sample 1 1

Totals 10 3N+10

input

z-1 z-1 z-1

s2s1 s3 sx

output

k1

k1

k2

k2

k3

k3

B (in)

z-1 z-1 z-1

s2s1 s s'

t'

k1 k2

k2k1

t

Single Section: t' = s*k + t, t' --> t
 s' = t*k + s

k

k

C - 20 BENCHMARK PROGRAMS MOTOROLA

C-2.19 All Pole IIR Lattice Filter

Memory map:

pointer X mem Y mem

r0 k3, k2, k1

r4 s3, s2, s1

Z-1 Z-1 Z-1

output

s1s2s3

input

-k3

k2

-k2 -k1

k1

Z-1

s

t t'

s'

Single section:

t' = t - k*s
s' = s + k*t'
t' --> t

k

-k
MOTOROLA BENCHMARK PROGRAMS C - 21

_en

;sa
C-2.20 General Lattice Filter

Prog
wrds

Clock
Cycles

move #k+N-1,r0 ;point to k
move #N-1,m0 ;number of k's-1
move #STATE,r4 ;point to filter states
move m0,m4 ;mod for states
move #1,n4 ;
movep y:datin,a y:(r4)+,b ;get input 1 1
move x:(r0)-,x0 y:(r4)+,y0 ;get s, get k 1 1
macr -x0,y0,a x:(r0)-,x0 y:(r4),y0 ;s*k+t 1 1
do #N-1,_endlat ;do sections 2 5
macr -x0,y0,a y:(r4)+,y1 ; 1 1
tfr y1,b a,x1 b,y:(r4) ; 1 2 i'lock
macr x1,x0,b x:(r0)-,x0 y:(r4),y0 1 1

dlat
movep a,y:datout 1 1
move x:(r0)+,x0 y:(r4)+,r0 ;output sample 1 1
move b,y:(r4)+ ;save s' 1 1

ve last s', update r4
move a,y:(r4) 1 1

Totals 12 4N+8

output

input

z-1 z-1 z-1
-k3

k3

w3

w2
w1

k2

-k2

w0

k1

-k1
C - 22 BENCHMARK PROGRAMS MOTOROLA

_

Memory map:

pointer X mem Y mem

r0 k3, k2, k1, w3, w2, w1, w0

r4 s4, s3, s2, s1

Prog
wrds

Clock
Cycles

move #K,r0 ;point to coefficients
move #2*N,m0 ;mod 2*(# of k's)+1
move #STATE,r4 ;point to filter states
move #-2,n4
move #N,m4 ;mod on filter states
movep y:datin,a ;get input 1 1
move x:(r0)+,x0 y:(r4)-,y0 1 1
do #N,_endlat 2 5
macr -x0,y0,a ; 1 1
tfr y0,b a,x1 b,y:(r4)+n4 ; 1 2 i'lock
macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ; 1 1

endlat
move b,y:(r4)+ ;save s' 1 2 i'lock
clr a a,y:(r4)+ ;save last s', update r4 1 1
move y:(r4)+,y0 1 1
rep #N ; 1 5
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;s*w+out, get s, get w 1 1
macr x0,y0,a ;last mac 1 1
movep a,y:datout ;output sample 1 2 i’lock

Totals 14 5N+19

t

z-1

t'

s

s'

w

Single section:

t' = t - k*s
s' = s + k*t'
t' --> t
output = ∑(w*s')

k

-k
MOTOROLA BENCHMARK PROGRAMS C - 23

C-2.21 Normalized Lattice Filter

Memory map:

pointer X mem Y mem

r0 q2, k2, q1, k1, q0, k0, w3, w2, w1, w0

r4 sx, s2, s1, s0

z-1

t
q

 k -k

q
u'

t'

u

w

Single Section:

t' = t*q - k*s
u' = t*k + s*q
t' --> t

output = ∑(w*u')

z-1z-1z-1

output

input
q2

k2 -k2

q2

k1 -k1

q1

q1

w3

w2 w1

w0

k0

q0

q0

-k0
C - 24 BENCHMARK PROGRAMS MOTOROLA

_e

_

_

C-2.22 [1x3][3x3] Matrix Multiplication

Prog
wrds

Clock
Cycles

move #COEF,r0 ;point to coefficients
move #3*N,m0 ;mod on coefficients
move #STATE+1,r4 ;point to state variables
move #N,m4 ;mod on filter states
movep y:datin,y0 ;get input sample 1 1
move x:(r0)+,x1 ;get q in the table 1 1
do #N,_elat 2 5
mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ;q*t,get k,get s 1 1
macr -x0,y1,a b,y:(r4)+ ;q*t-k*s,save new s 1 1
mpy x0,y0,b ;k*t 1 1
macr x1,y1,b x:(r0)+,x1 a,y0 ;k*t+q*s,get next q,set t' 1 1

lat
move b,y:(r4)+ ;save second last

state
1 2 i'lock

move a,y:(r4)+ ;save last state 1 1
clr a y:(r4)+,y0 ;clear a, get first state 1 1
rep #N 1 5
mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 ;fir taps 1 1
macr x1,y0,a (r4)+ ; round, adj pointer 1 1
movep a,y:datout ;output sample 1 2 i'lock

Total 15 5N+19

Prog
wrds

Clock
Cycles

init
move #MAT_A,r0 ;point to A matrix
move #MAT_B,r4 ;point to B matrix
move #MAT_X,r1 ;output X matrix
move #2,m0 ;mod 3
move #8,m4 ;mod 9
move m0,m1 ;mod 3

start
move x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
move a,y:(r1)+ 1 1
MOTOROLA BENCHMARK PROGRAMS C - 25

_

C-2.23 N Point 3x3 2-D FIR Convolution

The two dimensional FIR uses a [3x3] coefficient mask:

 c(1,1) c(1,2) c(1,3)

 c(2,1) c(2,2) c(2,3)

 c(3,1) c(3,2) c(3,3)

stored in Y memory in the order:

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3).

The image is an array of 512x512 pixels. To provide boundary conditions for the FIR fil-
tering, the image is surrounded by a set of zeros such that the image is actually stored as
a 514x514 array. i.e.

The image (with boundary) is stored in row major storage. The first element of the array
image(,) is image(1,1) followed by image(1,2). The last element of the first row is im-
age(1,514) followed by the beginning of the next column image(2,1). These are stored
sequentially in the array "im" in X memory:

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
move b,y:(r1)+ 1 1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1
macr x0,y0,a 1 1
move a,y:(r1)+ 1 2 i’lock

end
Totals 13 14

Image Area
[512x512]

514

51
4

- Area of zeros
C - 26 BENCHMARK PROGRAMS MOTOROLA

;lef

;ad

;firs
Image(1,1) maps to index 0, image(1,514) maps to index 513;

Image(2,1) maps to index 514 (row major storage).

Although many other implementations are possible, this is a realistic type of image envi-
ronment where the actual size of the image may not be an exact power of 2. Other pos-
sibilities include storing a 512x512 image but computing only a 511x511 result, computing
a 512x512 result without boundary conditions but throwing away the pixels on the border,
etc.

Memory map:

r0 --> image(n,m)
image(n,m+1)
image(n,m+2)

r1 --> image(n+514,m)
image(n+514,m+1)
image(n+514,m+2)

r2 --> image(n+2*514,m)
image(n+2*514,m+2)
image(n+2*514,m+3)

r4 --> FIR coefficients

r5 --> output image

Prog
wrds

Clock
Cycles

move #MASK,r4 ;point to coeffi-
cients

move #8,m4 ;mod 9
move #IMAGE,r0 ;top boundary
move #IMAGE+514,r1 ;left of first pixel

t of first pixel 2nd row
move #IMAGE+2*514,r2 ;

just. for end of row
move #2,n1 ;
move n1,n2 ;
move #IMAGEOUT,r5 ;output image

t element, c(1,1)
move x:(r0)+,x0 y:(r4)+,y0 ; 1 1
do #512,row ; 2 5
do #512,col ; 2 5
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1
MOTOROLA BENCHMARK PROGRAMS C - 27

;pre

;ou

col
; ad
;ad

;ad

;ad

row
C-2.24 Parsing data stream

This routine implements parsing of data stream for MPEG audio.
The data stream, composed by concatenated words of variable length, is allocated in con-
secutive memory words. The words lengths reside in another memory buffer.
The routine extracts words from data stream according to their length.
Two consecutive words are read from the stream buffer and are concatenated in the ac-
cumulator. Using bit offset and the specified length, a field of variable length can be ex-
tracted. The decision whether to load a new memory word into the accumulator from the
stream is determined when bit offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:
• r0 - pointer to the buffer in X memory containing the variable length

stream.
• r5 - pointer to buffer in Y memory where the length of each field is stored.
• r4 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r3 - pointer to a location storing the constant 24.
• r1 - used as temporary storage (no need to initialize).

mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1
mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1
mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1
mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1
mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1
mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1
mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

load, get c(1,1)
macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

tput image sample
move a,y:(r5)+ ; 1 2 i'lock

just pointers for frame boundary
j r0,r5 w/dummy loads

move x:(r0)+,x0 y:(r5)+,y1 ; 1 1
j r1,r5 w/dummy loads

move x:(r1)+n1,x
0

y:(r5)+,y1 ; 1 1

j r2 (dummy load y1), preload x0 for next pass
move x:(r0)+,x0 ; 1 1
move y:(r2)+n2,y1 ; 1 1

Total 19
(prog. words)

11N2+8N+7
(clock cycles)
C - 28 BENCHMARK PROGRAMS MOTOROLA

i

G

• y1 - stores the length of the field to be extracted.
• x0 - stores 24.

Memory map:

pointer X mem Y mem

r0 stream buffer

r5 length buffer

r4 "bits offset"

r3 ‘24‘

nit_ ;this is the initialization code
move #stream_buffer,r0
move #length_buffer,r5
move #bits_offset,r4
move #boundary,r3
move #>48,b
move #>24,x0
move x0,x:(r3) b,y:(r4)

Prog
wrds

Clock
Cycles

et_bits
;bring length of next field and ‘24‘

move x:(r3),x0 y:(r5)+,y1 1 1
;bring word for parsing and "bits offset"

move x:(r0)+,a y:(r4),b 1 1
;bring next word for parsing, point back to first word

move x:(r0)-,a0 1 1
;calculate new "bits offset", r1 points to current word

sub y1,b r0,r1 1 1
;save "bits offset" in x1

move b,x1 1 2
;merge width and offset

merge y1,b 1 1
;extract the field according to b, place it in a

extract b1,a,a 1 1
;restore "bits offset", r0 points to next word

tfr x1,b (r0)+ 1 1
;compare "bits offset" to 24, extracted word to a1
MOTOROLA BENCHMARK PROGRAMS C - 29

C-2.25 Creating data stream

This routine implements creation of data stream for MPEG audio.
Words of variable length are concatenated and stored in consecutive memory words.
The words for generating the stream are allocated in a memory buffer, and are aligned to
the right. The words lengths reside in another memory buffer.
The word and its length are loaded for insertion. A word is read from the stream buffer into
the accumulator. Using a bit offset and the specified length, a field of variable length is
inserted into the accumulator. The accumulator is stored back containing the new concat-
enated field. The decision whether to read a new word from the stream is determined
when bit offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:

• r0 - pointer to a buffer in X memory, containing the variable length codes.
The code is right aligned at each location.

• r2 - pointer to a buffer in X memory containing the stream generated.
• r4 - pointer to a buffer in Y memory where the actual length of each field is

stored.
• r3 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r5 - pointer to a location storing the constant 24.
• r1 - used as temporary storage (no need to initialize).
• x0 - stores the current word to be inserted
• y1 - stores the length of the code brought in x0.
• y0 - stores 24.

cmp x0,b a0,a 1 1
;if "bits offset" is less or equal 24 another word is
needed - update "bits offset" and point to next word

add x0,b ifle 1 1
tgt r1,r0 1 1

;save "bits field" in memory
move b1,y:(r4) 1 1

Totals 12 13
C - 30 BENCHMARK PROGRAMS MOTOROLA

i

P

Memory map:

pointer X mem Y mem

r0 data buffer

r2 stream buffer

r4 length buffer

r3 "bits offset"

r5 24

nit_ ;this is the initialization code
move #data_buffer,r0
move #stream_buffer,r2
move #length_buffer,r4
move #bits_offset,r3
move #boundary,r5
move #>48,b
move #>24,y0
move b,x:(r3) y0,y:(r5)

Prog
wrds

Clock
Cycles

ut_bits
;bring code and its length

move x:(r0)+,x0 y:(r4)+,y1 1 1
;bring "bits offset" and ‘24‘

move x:(r3),b y:(r5),y0 1 1
;calculate new "bits offset", bring current word from
stream buffer

sub y1,b x:(r2),a 1 1
;save "bits offset" in x1

move b,x1 1 2
;merge width and offset

merge y1,b 1 1
;insert the field according to b, place it in a

insert b1,x0,a 1 1
;restore "bits offset", r1 points to current word

tfr x1,b r2,r1 1 1
;compare "bits offset " to 24, send new word to
stream buffer
MOTOROLA BENCHMARK PROGRAMS C - 31

C-2.26 Parsing Hoffman code data stream

This routine implements the parsing of Hoffman code data stream.
The routine extracts a bit field from the stream. Two consecutive words are brought to the
accumulator from the stream buffer. An address word is extracted using a bit offset and a
field length. The field length is determined by the number of bits needed by the address
of the two Hoffman code lookup tables. A word is loaded from the first lookup table. If the
hit bit in the word is not set then a field of variable length is extracted. The length of the
extracted field is specified in the length field in the word. The bit offset is updated
according to the length of the extracted word.
If the hit bit in the word is set then a new address word is read from the stream. A word is
brought from the second lookup table. The bit field is extracted according to the same
guidelines.
The following flow chart demonstrates the parsing process:

Thek following describes the pointers and registers used by the routine:

• r0 - pointer to the buffer in X memory containing the stream.
• r1 - used as temporary storage (no need to initialize).

cmp y0,b a1,x:(r2)+ 1 1
;send a0 to next location in stream buffer in case of
crossing boundary

move a0,x:(r2) 1 2
;if "bits offset" is less or equal 24 then update "bits
offset " and point to the next word in stream buffer

add y0,b ifle 1 1
tgt r1,r2 1 1

;save "bits offset" in memory
move b1,y:(r4) 1 1

Totals 12 14

concatenated two consecutive words from stream buffer

1‘st
lookup
table

2‘nd
lookup
table

address
word

bit offset

symbol field length fieldhit bit

symbol field length field

Extracted
field

read word from 1‘st table
if hit was not set in previous
reading

read word from 2’nd table
if hit was set in previous
reading
C - 32 BENCHMARK PROGRAMS MOTOROLA

i

• r3 - pointer to buffer in Y memory where the extracted fields are stored.
• r5 - pointer to a location that stores the "bits offset", number of bits left to

be consumed. 48 initially.
• r2 - pointer to the right table.
• r6 - pointer to the first lookup table.
• r7 - pointer to the second lookup table.
• r4 - pointer to constants.

Memory map:

pointer X mem Y mem

r0 stream buffer

r3 extracted data buffer

r5 "bits offset"

r4 #no.1 address bus length

#no.2 mask word for length field

#no.3 merged width and offset

‘24‘

r6 first lookup table

r7 second lookup table

nit_ ;this is the initialization code
move #stream_buffer,r0
move #data_buffer,r3
move #bits_offset,r5
move #constants,r4
move #first_table,r2
move #first_table,r6
move #second_table,r7

;move constants to memory
move #>48,b
move b,y:(r5)
move #>3,n4
move #n0_1,y1
move y1,y:(r4)+
move #n0_2,y1
move y1,y:(r4)+
move #n0_3,y1
MOTOROLA BENCHMARK PROGRAMS C - 33

G

move y1,y:(r4)+
move #>24,y1
move y1,y:(r4)-n4

Prog
wrds

Clock
Cycles

et_bits
;bring word from stream, and "bits-offset"

move x:(r0)+,a y:(r5)+,b 1 1
;bring next word from stream, and address length

move y:(r4)+,y0 1 1
move x:(r0)-,a0 1 1

;calculate new "bits offset", and save old one in x1
sub y0,b b,x1 1 1

;merge width and offset
merge y0,b 1 1

;extract the field according to b, place it in a
extract b1,a,a 1 1

;move address to n2
move a0,n2 1 1

;bring mask for length field in tookup table words
move y:(r4)+,y1 1 1

;bring the merged offset and length for extactionf
move y:(r4)+,x0 1 1

;r1 points to current address for extracted field
move r3,r1 1 1

;bring word from lookup table
move x:(r2+n2),a 1 1

;extract the field according to x0, place it in b
extract x0,a,b 1 1

;test if hit bit is set, r2 points s first lookup table
tst a r6,r2 1 1

; if hit bit is set, r2 points second lookup table, a holds
address length

tmi y0,a r7,r2 1 1
;restore "bit offset" , send extracted field to memory

tfr x1,b b0,x:(r3)+ 1 1
; if hit bit is set, restore r3

tmi r1,r3 1 1
;mask length field , save pointer to current stream
word

and y1,a r0,r1 1 1
C - 34 BENCHMARK PROGRAMS MOTOROLA

;calculate new "bits offset", y1 holds ’24’
sub a,b y:(r4)-n4,y1 1 1

;compare "bits offset " to 24, update steam pointer
cmp y1,b (r0)+ 1 1

;if "bits offset" is less or equal 24 another word is
needed - update "bits offset " and point to next word

add y1,b ifle 1 1
tgt r1,r0 1 1

;save "bits field" in memory
move b1,y:(r5) 1 1

Totals 22 22
MOTOROLA BENCHMARK PROGRAMS C - 35

C-3 BENCHMARK OVERVIEW

Benchmark
Program
Length

in Words

Program
Length
in Clock
Cycles

Sample Rate or
Execution Time
for 66MHz Clock

Cycle

Sample Rate or
Execution Time
for 80MHz Clock

Cycle

Real Multiply on page 3 3 4 61 ns 50 ns

N Real Multiplies on page 3 7 2N+8 30N+122 ns 25N+100 ns

Real Update on page 4 4 5 76 ns 62.5 ns

N Real Updates on page 4 9 2N+8 30N+122 ns 25N+100 ns

Real Correlation Or Convolution
(FIR Filter) on page 5

6 N+14 66/(N+14) MHz 80/(N+14) MHz

Real * Complex Correlation Or
Convolution (FIR Filter) on page

7

9 2N+10 33/(N+5) MHz 40/(N+5) MHz

Complex Multiply on page 7 6 7 106 ns 87.5 ns

N Complex Multiplies on page 8 9 5N+9 76N+137 ns 62.5N+113 ns

Complex Update on page 9 7 8 122 ns 100 ns

N Complex Updates on page 10 9 4N+9 61N+137 ns 50N+113 ns

Complex Correlation Or Convo-
lution (FIR Filter) on page 11

16 4N+13 66/(4N+13)
MHz

80/(4N+13)
MHz

Nth Order Power Series (Real)
on page 12

10 2N+11 30N+167 ns 25N+137ns

2nd Order Real Biquad IIR Filter
on page 13

7 9 137 ns 113 ns

N Cascaded Real Biquad IIR
Filter on page 14

10 5N+10 66/(5N+10)
MHz

16/(N+2) MHz

N Radix-2 FFT Butterflies (DIT,
in-place algorithm) on page 15

12 8N+9 122N+137 ns 100N+113 ns
C - 36 BENCHMARK PROGRAMS MOTOROLA

True (Exact) LMS Adaptive Fil-
ter on page 16

15 3N+16 66/(3N+16)
MHz

80/(3N+16)
MHz

Delayed LMS Adaptive Filter on
page 19

13 3N+12 66/(3N+12)
MHz

80/(3N+12)
MHz

FIR Lattice Filter on page 20 10 3N+10 66/(3N+10)
MHz

80/(3N+10)
MHz

All Pole IIR Lattice Filter on
page 21

12 4N+8 33/(2N+4) MHz 20/(N+2) MHz

General Lattice Filter on page
22

14 5N+19 66/(5N+19)
MHz

80/(5N+19)
MHz

Normalized Lattice Filter on
page 24

15 5N+19 66/(5N+19)
MHz

80/(5N+19)
MHz

[1x3][3x3] Matrix Multiplication
on page 25

13 14 213 ns 175 ns

N Point 3x3 2-D FIR Convolu-
tion on page 26

19 11N2+8N+
7

66/
(11N2+8N+7)

MHz

80/
(11N2+8N+7)

MHz

Benchmark
Program
Length

in Words

Program
Length
in Clock
Cycles

Sample Rate or
Execution Time
for 66MHz Clock

Cycle

Sample Rate or
Execution Time
for 80MHz Clock

Cycle
MOTOROLA BENCHMARK PROGRAMS C - 37

C - 38 BENCHMARK PROGRAMS MOTOROLA

