

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DSP56600

16-bit Digital Signal Processor
 Family Manual

Motorola, Incorporated
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive West
Austin, TX 78735-8598

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This document (and other documents) can be viewed on the World Wide
Web at http://www.motorola-dsp.com.

This manual is one of a set of three documents. You need the following
manuals to have complete product information: Family Manual, User’s
Manual, and Technical Data.

OnCE™ is a trademark of Motorola, Inc.

HP-UX™ is a trademark of Hewlett-Packard.

IBM™ is a trademark of International Business Machines.

Macintosh™ is a trademark of Apple Computer, Inc.

SBUS™, SUN-4™, and SunOS™ are trademarks of Sun Microsystems, Inc.

Windows™ is a trademark of Microsoft Corporation.

 MOTOROLA INC., 1996

Order this document by DSP56600FM/AD

Motorola reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not authorized for use as components in life support
devices or systems intended for surgical implant into the body or intended to
support or sustain life. Buyer agrees to notify Motorola of any such intended end use
whereupon Motorola shall determine availability and suitability of its product or
products for the use intended. Motorola and are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity /Affirmative
Action Employer.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TABLE OF CONTENTS

SECTION 1 OVERVIEW . 1-1
1.1 OVERVIEW . 1-3
1.2 MANUAL ORGANIZATION . 1-3
1.3 MANUAL CONVENTIONS . 1-5
1.4 DSP FUNCTIONAL ADVANTAGES 1-6

SECTION 2 CENTRAL ARCHITECTURE OVERVIEW. 2-1
2.1 INTRODUCTION . 2-3
2.2 DSP56600 CORE FEATURES . 2-4
2.3 DSP56600 CORE ARCHITECTURE 2-4
2.3.1 Data Arithmetic Logic Unit . 2-6
2.3.1.1 Data ALU Registers . 2-7
2.3.1.2 Multiplier-Accumulator (MAC) . 2-7
2.3.2 Address Generation Unit . 2-7
2.3.3 Program Control Unit . 2-8
2.3.4 Program Patch Logic . 2-9
2.3.5 PLL and Clock Oscillator . 2-9
2.3.6 Expansion Port (Port A) . 2-10
2.3.7 JTAG Test Access Port and On-Chip Emulator (OnCE) . 2-10
2.3.8 On-Chip Memory . 2-10
2.3.9 Peripherals. 2-11

SECTION 3 DATA ARITHMETIC LOGIC UNIT. 3-1
3.1 INTRODUCTION . 3-3
3.2 DATA ALU ARCHITECTURE. 3-3
3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0) 3-5
3.2.2 MAC Unit . 3-5
3.2.3 Data ALU Accumulator Registers

(A2, A1, A0, B2, B1, B0) . 3-6
3.2.4 Accumulator Shifter . 3-7
3.2.5 Bit Field Unit (BFU) . 3-7
3.2.6 Data Shifter/Limiter . 3-7

MOTOROLA DSP56600FM/AD iii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.6.1 Scaling . 3-8
3.2.6.2 Limiting . 3-8
3.3 DATA ALU ARITHMETIC AND ROUNDING. 3-9
3.3.1 Data Representation . 3-9
3.3.2 Rounding Modes. 3-11
3.3.2.1 Convergent Rounding . 3-11
3.3.2.2 Two’s-Complement Rounding 3-12
3.3.3 Arithmetic Saturation Mode. 3-14
3.3.4 Multi-Precision Arithmetic Support 3-15
3.3.5 Block Floating Point FFT Support 3-17
3.4 DATA ALU PROGRAMMING MODEL 3-18
3.4.1 Pipeline Conflicts—Arithmetic Stall 3-18
3.4.2 Pipeline Conflicts—Status Stall. 3-19

SECTION 4 ADDRESS GENERATION UNIT. 4-1
4.1 INTRODUCTION . 4-3
4.2 AGU ARCHITECTURE . 4-3
4.3 PROGRAMMING MODEL. 4-5
4.3.1 Address Register Files . 4-6
4.3.2 Stack Extension Pointer . 4-6
4.3.3 Offset Register Files . 4-6
4.3.4 Modifier Register Files . 4-7
4.4 ADDRESSING MODES . 4-8
4.4.1 Register Direct Modes. 4-9
4.4.1.1 Data or Control Register Direct 4-9
4.4.1.2 Address Register Direct . 4-9
4.4.2 Address Register Indirect Modes 4-10
4.4.2.1 No Update (Rn) . 4-10
4.4.2.2 Post-Increment By 1 (Rn) + . 4-10
4.4.2.3 Post-Decrement By 1 (Rn) – 4-10
4.4.2.4 Post-Increment By Offset Nn (Rn) + Nn 4-10
4.4.2.5 Post-Decrement By Offset Nn (Rn) – Nn 4-10
4.4.2.6 Indexed By Offset Nn (Rn + Nn). 4-10
4.4.2.7 Pre-Decrement By 1 (Rn) . 4-10
4.4.2.8 Short Displacement (Rn + Short Displacement). 4-11
4.4.2.9 Long Displacement (Rn + Long Displacement) 4-11

iv DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.3 PC Relative Modes . 4-11
4.4.3.1 Short Displacement PC Relative. 4-11
4.4.3.2 Long Displacement PC Relative 4-11
4.4.3.3 Address Register PC Relative. 4-11
4.4.4 Special Address Modes . 4-12
4.4.4.1 Immediate Data. 4-12
4.4.4.2 Immediate Short Data . 4-12
4.4.4.3 Absolute Address . 4-12
4.4.4.4 Absolute Short Address . 4-12
4.4.4.5 Short Jump Address . 4-12
4.4.4.6 I/O Short Address . 4-12
4.4.4.7 Implicit Reference . 4-12
4.5 ADDRESS MODIFIER TYPES. 4-13
4.5.1 Linear Modifier (Mn = $FFFF) . 4-14
4.5.2 Reverse-Carry Modifier (Mn = $0000) 4-14
4.5.3 Modulo Modifier (Mn = Modulus – 1) 4-15
4.5.4 Multiple Wrap-Around Modulo Modifier 4-16

SECTION 5 PROGRAM CONTROL UNIT. 5-1
5.1 INTRODUCTION . 5-3
5.2 PCU OVERVIEW . 5-3
5.3 PCU ARCHITECTURE. 5-4
5.3.1 Instruction Pipeline . 5-5
5.3.2 Clock Oscillator . 5-6
5.4 PROGRAMMING MODEL . 5-6
5.4.1 Program Counter (PC). 5-7
5.4.2 Vector Base Address Register (VBA) 5-7
5.4.3 Loop Counter Register (LC). 5-7
5.4.4 Loop Address Register (LA) . 5-7
5.4.5 System Stack (SS). 5-8
5.4.6 Stack Extension Pointer (EP) . 5-9
5.4.7 Stack Size Register (SZ) . 5-9
5.4.8 Stack Counter Register (SC) . 5-9
5.4.9 Stack Pointer Register (SP). 5-10
5.4.9.1 Stack Pointer (Bits 0–3) . 5-10
5.4.9.2 Stack Error Flag/P4 Bit (Bit 4) 5-10

MOTOROLA DSP56600FM/AD v
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.9.3 Underflow Flag / P5 Bit (Bit 5) 5-11
5.4.10 Status Register (SR) . 5-11
5.4.10.1 Carry (C)—Bit 0 . 5-13
5.4.10.2 Overflow (V)—Bit 1. 5-13
5.4.10.3 Zero (Z)—Bit 2 . 5-13
5.4.10.4 Negative (N)—Bit 3 . 5-13
5.4.10.5 Unnormalized (U)—Bit 4 . 5-13
5.4.10.6 Extension (E)—Bit 5 . 5-13
5.4.10.7 Limit (L)—Bit 6 . 5-14
5.4.10.8 Scaling (S)—Bit 7 . 5-14
5.4.10.9 Interrupt Mask (I0–I1)—Bits 8 and 9 5-15
5.4.10.10 Scaling Mode (S0–S1)—Bits 10 and 11. 5-15
5.4.10.11 DO-Forever flag (FV)—Bit 12. 5-15
5.4.10.12 Arithmetic Saturation Mode (SM)—Bit 13 5-16
5.4.10.13 Rounding Mode (RM)—Bit 14 5-16
5.4.10.14 DO-Loop Flag (LF)—Bit 15 . 5-16
5.4.11 Operating Mode Register (OMR) 5-16

SECTION 6 PROGRAM PATCH LOGIC 6-1
6.1 INTRODUCTION . 6-3
6.2 PROGRAM PATCH LOGIC ARCHITECTURE 6-3
6.3 PROGRAMMING MODEL. 6-4
6.4 PPL OPERATION . 6-4

SECTION 7 PROCESSING STATES . 7-1
7.1 INTRODUCTION . 7-3
7.2 NORMAL PROCESSING STATE . 7-3
7.3 EXCEPTION PROCESSING STATE 7-4
7.3.1 Interrupt Sources. 7-5
7.3.1.1 Hardware Interrupt Sources . 7-7
7.3.1.2 Software Interrupt Sources. 7-8
7.3.2 Interrupt Priority Structure . 7-8
7.3.3 Exception Priorities within an IPL 7-10
7.3.4 Instructions Preceding the Interrupt Instruction Fetch. . . 7-11
7.3.5 Interrupt Types . 7-12
7.3.6 Interrupt Arbitration . 7-12

vi DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.7 Interrupt Instruction Fetch . 7-13
7.3.8 Interrupt Instruction Execution . 7-13
7.4 RESET PROCESSING STATE . 7-16
7.5 WAIT PROCESSING STATE. 7-16
7.6 STOP PROCESSING STATE . 7-17

SECTION 8 PLL AND CLOCK GENERATOR 8-1
8.1 INTRODUCTION . 8-3
8.2 PLL PINS . 8-4
8.3 CLOCK INPUT DIVISION . 8-4
8.3.1 Frequency Multiplication . 8-5
8.3.2 Skew Elimination . 8-5
8.3.3 Low Power Divide and Output Stage. 8-5
8.4 PLL ARCHITECTURE . 8-6
8.4.1 Frequency Predivider. 8-6
8.4.2 Phase Detector and Charge Pump Loop Filter 8-7
8.4.3 PLL Control Register 0 (PCTL0) . 8-7
8.4.3.1 Multiplication Factor Bits (MF0–MF11)—Bits 0–11. . . . 8-7
8.4.3.2 Predivider Factor Bits (PD0–PD3)—Bits 12–15 8-8
8.4.4 PLL Control Register 1 (PCTL1) . 8-9
8.4.4.1 Division Factor Bits (DF0–DF2)—Bits 0–2 8-9
8.4.4.2 Crystal Range Bit (XTLR)—Bit 3. 8-10
8.4.4.3 XTAL Disable Bit (XTLD)—Bit 4 8-10
8.4.4.4 Stop Processing State Bit (PSTP)—Bit 5 8-11
8.4.4.5 PLL Enable Bit (PEN)—Bit 6. 8-11
8.4.4.6 Clock Output Disable Bit (COD)—Bit 7 8-12
8.4.4.7 Reserved PCTL1 Bit—Bit 8. 8-12
8.4.4.8 Predivider Factor Bits (PD4–PD6)—Bits 9–11 8-12
8.4.4.9 Reserved PCTL1 bits—Bits 12–15 8-12
8.4.5 Voltage Controlled Oscillator (VCO) 8-12
8.4.5.1 Divide by 2 . 8-12
8.4.5.2 Frequency Divider . 8-13
8.5 CLKGEN BLOCK DIAGRAM . 8-13
8.5.1 Low Power Divider (LPD) . 8-13
8.5.2 Divide by 2 . 8-14
8.5.3 Operating Frequency . 8-14

MOTOROLA DSP56600FM/AD vii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.6 CLOCK SYNCHRONIZATION. 8-14

SECTION 9 EXTERNAL MEMORY INTERFACE (PORT A) . . . 9-1
9.1 INTRODUCTION . 9-3
9.2 EXTERNAL MEMORY INTERFACE OPERATION. 9-3
9.2.1 Static RAM Support. 9-3
9.2.2 Bus Control Register . 9-5
9.2.2.1 Expansion Bus Memory Wait

(BMW0–BMW4)—Bits 0–4. 9-6
9.2.2.2 Reserved Bits—Bits 5–15 . 9-6
9.2.3 Expansion Port Disable. 9-6
9.3 PROGRAM MEMORY DATA TRANSFER 9-7
9.3.1 Bus Switch Program Memory Register (BPMR) 9-7
9.3.2 BPMR Mapping. 9-7
9.3.3 24-Bit Access to BPMR. 9-8
9.3.4 16-Bit Access to BPMR. 9-8
9.3.5 BPMR Usage Typical Examples . 9-8
9.4 PROGRAM ADDRESS TRACING MODE. 9-10

SECTION 10 JTAG PORT AND ONCE MODULE 10-1
10.1 INTRODUCTION . 10-3
10.2 JTAG PORT. 10-3
10.2.1 JTAG Pins. 10-5
10.2.1.1 Test Clock (TCK) . 10-5
10.2.1.2 Test Mode Select (TMS) . 10-5
10.2.1.3 Test Data Input (TDI) . 10-5
10.2.1.4 Test Data Output (TDO) . 10-5
10.2.1.5 Test Reset (TRST) . 10-5
10.2.2 TAP Controller. 10-6
10.2.3 Boundary Scan Register . 10-7
10.2.4 Instruction Register . 10-7
10.2.4.1 EXTEST (B[3:0] = 0000). 10-8
10.2.4.2 SAMPLE/PRELOAD (B[3:0] = 0001) 10-9
10.2.4.3 IDCODE (B[3:0] = 0010). 10-9
10.2.4.4 CLAMP (B[3:0] = 0011) . 10-10
10.2.4.5 HI-Z (B[3:0] = 0100) . 10-10

viii DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.4.6 ENABLE_ONCE(B[3:0] = 0110) 10-11
10.2.4.7 DEBUG_REQUEST(B[3:0] = 0111) 10-11
10.2.4.8 BYPASS (B[3:0] = 1111) . 10-11
10.2.5 DSP56600 Restrictions . 10-12
10.3 ON-CHIP EMULATION (ONCE) . 10-13
10.3.1 OnCE Controller . 10-15
10.3.1.1 OnCE Command Register (OCR) 10-15
10.3.1.1.1 Register Select Bits (RS4–RS0)—Bits 0-4 10-15
10.3.1.1.2 Exit Command Bit (EX)–Bit 5 10-16
10.3.1.1.3 Go Command Bit (GO)—Bit 6 10-16
10.3.1.1.4 Read/Write Command Bit (R/W)—Bit 7 10-16
10.3.1.2 OnCE Decoder (ODEC) . 10-18
10.3.1.3 OnCE Status and Control Register (OSCR) 10-18
10.3.1.3.1 Trace Mode Enable Bit (TME)—Bit 0 10-18
10.3.1.3.2 Interrupt Mode Enable Bit (IME)—Bit 1 10-18
10.3.1.3.3 Software Debug Occurrence Bit (SWO)—Bit 2 . . 10-18
10.3.1.3.4 Memory Breakpoint Occurrence Bit (MBO)—Bit 310-18
10.3.1.3.5 Trace Occurrence Bit (TO)—Bit 4 10-19
10.3.1.3.6 Reserved Bit 5 . 10-19
10.3.1.3.7 Core Status Bits (OS0–OS1)—Bits 6–7 10-19
10.3.1.3.8 Reserved Bits 8–23 . 10-19
10.3.2 OnCE Memory Breakpoint Logic 10-20
10.3.2.1 OnCE Memory Address Latch (OMAL). 10-20
10.3.2.2 OnCE Memory Limit Register 0 (OMLR0). 10-20
10.3.2.3 OnCE Memory Address Comparator 0 (OMAC0) . . . 10-20
10.3.2.4 OnCE Memory Limit Register 1 (OMLR1). 10-20
10.3.2.5 OnCE Memory Address Comparator 1 (OMAC1) . . . 10-21
10.3.2.6 OnCE Breakpoint Control Register (OBCR) 10-21
10.3.2.7 Memory Breakpoint Select Bits

(MBS0–MBS1)—Bits 0–1 . 10-22
10.3.2.8 Breakpoint 0 Read/Write Select Bits

(RW00–RW01)—Bits 2–3 . 10-22
10.3.2.9 Breakpoint 0 Condition Code Select Bits

(CC00–CC01)—Bits 4–5. 10-23
10.3.2.10 Breakpoint1 Read/Write Select Bits

(RW10–RW11)—Bits 6–7 . 10-23

MOTOROLA DSP56600FM/AD ix
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.2.11 Breakpoint1 Condition Code Select Bits
(CC10–CC11)—Bits 8–9 . 10-23

10.3.2.12 Breakpoint 0 and 1 Event Select Bits
(BT1–BT0)—Bits 10–11 . 10-24

10.3.2.13 Reserved Bits 12–15 . 10-24
10.3.3 OnCE Memory Breakpoint Counter (OMBC) 10-24
10.3.4 OnCE Trace Logic. 10-25
10.3.5 Methods of Entering the Debug Mode 10-26
10.3.5.1 External Debug Request During RESET Assertion . 10-26
10.3.5.2 External Debug Request During Normal Activity . . . 10-26
10.3.5.3 Executing the JTAG DEBUG_REQUEST Instruction 10-27
10.3.5.4 External Debug Request During Stop 10-27
10.3.5.5 External Debug Request During Wait 10-27
10.3.5.6 Software Request During Normal Activity 10-27
10.3.5.7 Enabling Trace Mode . 10-27
10.3.5.8 Enabling Memory Breakpoints 10-28
10.3.6 Pipeline Information and GDB Register 10-28
10.3.6.1 OnCE PDB Register (OPDBR). 10-28
10.3.6.2 OnCE PIL Register (OPILR). 10-29
10.3.6.3 OnCE GDB Register (OGDBR) 10-29
10.3.7 Trace Buffer . 10-29
10.3.7.1 OnCE PAB Register for Fetch (OPABFR) 10-29
10.3.7.2 PAB Register for Decode (OPABDR). 10-29
10.3.7.3 PAB Register for Execute (OPABEX) 10-30
10.3.7.4 Trace Buffer . 10-30
10.3.8 OnCE Commands and Serial Protocol 10-31
10.3.9 Target Site Debug System Requirements. 10-32

SECTION 11 OPERATING MODES AND MEMORY SPACES . 11-1
11.1 INTRODUCTION . 11-3
11.2 CHIP OPERATING MODES . 11-3
11.2.1 Expanded Modes (Modes 0 and 8) 11-4
11.2.2 System Configuration Modes 1–15

(Mode 1–7 and 9–15) . 11-4
11.3 DSP56600 CORE MEMORY MAP 11-4
11.3.1 X Data Memory Space . 11-5

x DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.1.1 Internal X I/O Space . 11-5
11.3.1.2 Internal X Memory. 11-6
11.3.2 Y Data Memory Space. 11-7
11.3.2.1 Internal Y I/O Space . 11-7
11.3.2.2 Internal Y Memory. 11-7
11.3.3 Program Memory . 11-7
11.3.3.1 External Program Memory . 11-7
11.3.3.2 Internal Program Memory . 11-7

SECTION 12 DEVELOPMENT TOOLS. 12-1
12.1 INTRODUCTION . 12-3
12.2 SOFTWARE DEVELOPMENT ENVIRONMENT 12-5
12.2.1 Macro Cross Assembler . 12-5
12.2.2 Linker/Librarian . 12-6
12.2.3 Clock-by-Clock Instruction Simulator. 12-7
12.2.4 C Cross Compiler . 12-8
12.3 HARDWARE DEVELOPMENT ENVIRONMENT. 12-8

SECTION 13 ADDITIONAL SUPPORT . 13-1
13.1 OVERVIEW . 13-3
13.2 WORLD WIDE WEB . 13-4
13.3 MOTOROLA DSP HOME PAGE . 13-4
13.4 DOCUMENTATION . 13-5
13.5 APPLICATIONS ASSISTANCE . 13-5
13.5.1 WWW. 13-6
13.5.2 Motorola SPS Design Hotline . 13-6
13.5.3 Motorola DSP Helpline . 13-6
13.5.4 Motorola DSP Newsletter . 13-6
13.5.5 Third-Party Support Information 13-7
13.5.6 University Support . 13-7
13.5.7 Training Courses . 13-8
13.6 SOFTWARE DEVELOPMENT ENVIRONMENT 13-9
13.7 HARDWARE DEVELOPMENT ENVIRONMENT. 13-9
13.8 FREE SOFTWARE . 13-10
13.8.1 Application Development System (ADS) 13-10
13.8.2 Audio Software . 13-11

MOTOROLA DSP56600FM/AD xi
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.3 Benchmark Programs . 13-12
13.8.4 Boot Software . 13-15
13.8.5 Codec Routines. 13-16
13.8.6 Demo Software . 13-16
13.8.7 DTMF Routines. 13-17
13.8.8 Encoders . 13-18
13.8.9 Fast Fourier Transforms . 13-18
13.8.10 Filters . 13-21
13.8.11 Floating Point Routines. 13-23
13.8.12 Functions. 13-24
13.8.13 Matrix Operations . 13-25
13.8.14 Multiplier/Accumulator (MAC) . 13-26
13.8.15 Sorting Routines . 13-26
13.8.16 Speech . 13-27
13.8.17 Standard I/O Equates . 13-27
13.8.18 Tools and Utilities . 13-27
13.8.19 Viterbi . 13-29
13.9 REFERENCE BOOKS AND MANUALS 13-29
13.9.1 General DSP. 13-29
13.9.2 Digital Audio and Filters . 13-30
13.9.3 C Programming Language . 13-31
13.9.4 Controls. 13-32
13.9.5 Graphics . 13-32
13.9.6 Image Processing . 13-33
13.9.7 Motorola DSP Manuals . 13-33
13.9.8 Numerical Methods . 13-34
13.9.9 Pattern Recognition. 13-34
13.9.10 Speech . 13-34
13.9.11 Telecommunications . 13-35

APPENDIX A INSTRUCTION SET DETAILS A-1
A.1 INTRODUCTION . A-3
A.2 INSTRUCTION FORMATS AND SYNTAX A-3
A.2.1 Operand Sizes . A-5
A.2.2 Data Organization in Registers . A-5
A.2.3 Data ALU Registers . A-6

xii DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.2.3.1 AGU Registers .A-7
A.2.3.2 Program Control Registers .A-7
A.2.3.3 Data Organization in Memory .A-8
A.3 INSTRUCTION GROUPS .A-8
A.3.1 Arithmetic Instructions .A-8
A.3.2 Logical Instructions .A-11
A.3.3 Bit Manipulation Instructions .A-13
A.3.4 Loop Instructions .A-13
A.3.5 Move Instructions. .A-14
A.3.6 Program Control Instructions .A-14
A.4 GUIDE TO INSTRUCTION DESCRIPTIONS A-17
A.4.1 Notation .A-17
A.4.2 Condition Code Computation. .A-23
A.4.2.1 Scaling Bit (S) .A-24
A.4.2.2 Limit Bit (L) .A-24
A.4.2.3 Extension Bit (E) .A-24
A.4.2.4 Unnormalized Bit (U). .A-25
A.4.2.5 Negative Bit (N). .A-26
A.4.2.6 Zero Bit (Z) .A-26
A.4.2.7 Overflow Bit (V) .A-26
A.4.2.8 Carry Bit (C) .A-26
A.5 INSTRUCTION DESCRIPTIONS. .A-27
A.6 INSTRUCTION PARTIAL ENCODING A-203
A.6.1 Partial Encodings for Use in Instruction Encoding.A-203
A.6.2 Parallel Instruction Encoding of the Operation Code. . .A-215
A.6.2.1 Multiply Instruction Encoding A-215
A.6.2.2 Non-Multiply Instruction Encoding.A-216

APPENDIX B INSTRUCTION TIMING .B-1
B.1 INTRODUCTION .B-3
B.2 INSTRUCTION TIMING .B-3
B.3 INSTRUCTION SEQUENCE DELAYS B-11
B.3.1 External Bus Wait States .B-11
B.3.2 Instruction Fetch Delays .B-12
B.3.3 Data ALU Interlock. .B-12
B.3.3.1 Arithmetic Stall .B-12

MOTOROLA DSP56600FM/AD xiii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3.3.2 Transfer Stall . B-12
B.3.3.3 Status Stall . B-12
B.3.4 Address Registers Interlocks . B-13
B.3.4.1 Conditional Transfer Interlock B-13
B.3.4.2 Address Generation Interlock. B-13
B.3.5 Stack Extension Delays . B-15
B.3.6 Program Flow-Control Delays . B-17
B.3.6.1 JMP to LA or to LA – 1 . B-17
B.3.6.2 RTI to LA or to LA – 1. B-18
B.3.6.3 Conditional Instructions . B-18
B.3.6.4 Interrupt Abort . B-18
B.3.6.5 Degenerated DO loop . B-18
B.3.6.6 Annulled REP and DO . B-18
B.4 INSTRUCTION SEQUENCE RESTRICTIONS B-18
B.4.1 Restrictions Near the End of DO Loops B-19
B.4.1.1 At LA – 5. B-19
B.4.1.2 At LA – 4. B-19
B.4.1.3 At LA – 3. B-19
B.4.1.4 At LA – 2. B-19
B.4.1.5 At LA – 1. B-20
B.4.1.6 At LA. B-20
B.4.2 General DO Restrictions . B-21
B.4.2.1 ENDDO Restrictions. B-22
B.4.2.2 BRKcc Restrictions. B-22
B.4.2.3 RTI and RTS Restrictions. B-22
B.4.3 SR Manipulation Restrictions . B-23
B.4.4 SP/SC and SSH/SSL Manipulation Restrictions. B-23
B.4.5 Fast Interrupt Routines . B-23
B.4.6 REP Restrictions. B-24
B.4.7 Stack Extension Restrictions. B-24
B.5 PERIPHERAL PIPELINE RESTRICTIONS. B-25
B.5.1 Polling a Peripheral Device for Write B-25
B.5.2 Writing to a Read-Only Register B-26

APPENDIX C BENCHMARK PROGRAMS C-1
C.1 BENCHMARK OVERVIEW . C-3

xiv DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2 SET OF BENCHMARKS .C-4
C.2.1 Real Multiply .C-5
C.2.2 N Real Multiplies .C-5
C.2.3 Real Update. .C-6
C.2.4 N Real Updates .C-7
C.2.5 Real Correlation or Convolution (FIR Filter) C-8
C.2.6 Real * Complex Correlation or Convolution (FIR Filter) . .C-10
C.2.7 Complex Multiply .C-11
C.2.8 N Complex Multiplies .C-12
C.2.9 Complex Update .C-13
C.2.10 N Complex Updates. .C-14
C.2.11 Complex Correlation or Convolution (FIR Filter)C-17
C.2.12 Nth Order Power Series (Real) .C-19
C.2.13 2nd Order Real Biquad IIR FilterC-20
C.2.14 N Cascaded Real Biquad IIR Filter C-21
C.2.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)C-22
C.2.16 True (Exact) LMS Adaptive Filter.C-24
C.2.17 Delayed LMS Adaptive Filter .C-27
C.2.18 FIR Lattice Filter .C-29
C.2.19 All Pole IIR Lattice Filter .C-31
C.2.20 General Lattice Filter .C-33
C.2.21 Normalized Lattice Filter .C-35
C.2.22 [1 × 3][3 × 3] Matrix Multiplication C-37
C.2.23 N Point 3 × 3 2-D FIR Convolution C-38
C.2.24 Viterbi Add-Compare-Select (ACS)C-41
C.2.25 Parsing a Data Stream .C-45
C.2.26 Creating a Data Stream .C-48
C.2.27 Parsing a Hoffman Code Data Stream C-50

MOTOROLA DSP56600FM/AD xv
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

xvi DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LIST OF FIGURES

Figure 1-1 Analog Signal Processing . 1-7

Figure 1-2 Digital Signal Processing. 1-8

Figure 2-1 DSP56603 Block Diagram. 2-6

Figure 3-1 Data ALU Block Diagram. 3-4

Figure 3-2 Bit Weighting and Alignment of Operands. 3-10

Figure 3-3 Integer/Fractional Multiplication. 3-10

Figure 3-4 Convergent Rounding (No Scaling). 3-12

Figure 3-5 Two’s-Complement Rounding (No Scaling) 3-13

Figure 3-6 DMAC Implementation . 3-16

Figure 3-7 Double Precision Multiplication Using DMAC 3-17

Figure 3-8 DSP56600 Core Programming Model . 3-18

Figure 4-1 AGU Block Diagram . 4-4

Figure 4-2 AGU Programming Model . 4-5

Figure 5-1 Program Control Unit Architecture. 5-4

Figure 5-2 Seven-Stage Pipeline . 5-5

Figure 5-3 PCU Programming Model . 5-6

Figure 5-4 Stack Pointer (SP) Register Format . 5-10

Figure 5-5 Status Register (SR) Format . 5-12

Figure 5-6 Operating Mode Register (OMR) Format 5-17

Figure 5-7 Central Processor Programming Model 5-18

MOTOROLA DSP56600FM/AD xvii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-1 Patch Detector Block Diagram . 6-3

Figure 6-2 Program Patch Logic Register File. 6-4

Figure 6-3 Patch Code Implementation. 6-5

Figure 7-1 Interrupt Priority Register C (IPR-C) Format 7-9

Figure 7-2 Interrupt Priority Register P (IPR-P) Format. 7-9

Figure 8-1 PLL and Clock Block Diagram . 8-3

Figure 8-2 PLL Block Diagram. 8-6

Figure 8-3 PLL Control Register 0 (PCTL0) Format 8-7

Figure 8-4 PLL Control Register 1(PCTL1) Format . 8-9

Figure 8-5 CLKGEN Block Diagram . 8-13

Figure 9-1 Static RAM Connection Diagram . 9-4

Figure 9-2 Bus Operation, One Wait State—Static RAM Access 9-5

Figure 9-3 Bus Control Register (BCR) Format. 9-6

Figure 9-4 BMPR Mapping . 9-8

Figure 9-5 Address Tracing Possible Configuration Diagram 9-10

Figure 10-1 JTAG Block Diagram . 10-4

Figure 10-2 TAP Controller State Machine . 10-6

Figure 10-3 JTAG Instruction Register Format . 10-7

Figure 10-4 Identification Register Configuration . 10-9

Figure 10-5 Bypass Register . 10-11

Figure 10-6 OnCE Block Diagram . 10-13

Figure 10-7 OnCE Multiprocessor Configuration. 10-14

xviii DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-8 OnCE Controller . 10-15

Figure 10-9 OnCE Command Register (OCR) Format 10-15

Figure 10-10 OnCE Status and Control Register (OSCR) Format 10-18

Figure 10-11 OnCE Memory Breakpoint Logic 0 . 10-21

Figure 10-12 OnCE Breakpoint Control Register (OBCR) Format 10-22

Figure 10-13 OnCE Trace Logic Block Diagram. 10-25

Figure 10-14 OnCE Pipeline Information and GDB Registers 10-28

Figure 10-15 OnCE Trace Buffer Block Diagram . 10-31

Figure 11-1 DSP Core Memory Map . 11-5

Figure 12-1 Development Flow. 12-4

Figure A-1 General Formats of an Instruction Word A-3

Figure A-2 Operand Sizes. A-5

Figure A-3 Reading and Writing the ALU Extension Registers A-6

Figure A-4 Reading and Writing Control Registers . A-7

Figure A-5 Condition Codes . A-23

Figure B-1 Types of Address Generation Interlock B-14

Figure C-1 True (Exact) LMS Adaptive Filter . C-24

Figure C-2 FIR Lattice Filter . C-29

Figure C-3 All Pole IIR Lattice Filter . C-31

Figure C-4 General Lattice Filter . C-33

Figure C-5 Normalized Lattice Filter . C-35

Figure C-6 FIR Filtering . C-38

MOTOROLA DSP56600FM/AD xix
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure C-7 Viterbi Butterfly .C-41

Figure C-8 ACS Butterfly—First Half .C-42

Figure C-9 ACS Butterfly—Second Half. .C-43

Figure C-10 Parsing Process .C-51

xx DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LIST OF TABLES

Table 1-1 DSP56600 Family Product Literature . 1-3

Table 1-2 High True / Low True Signal Conventions. 1-6

Table 3-1 Actions of the Arithmetic Saturation Mode (SM = 1) 3-14

Table 3-2 Acceptable Signed and Unsigned Two’s-Complement
Multiplication . 3-15

Table 4-1 Addressing Modes Summary . 4-8

Table 4-2 Address Modifier Type Encoding Summary 4-13

Table 5-1 Seven-Stage Pipeline . 5-5

Table 5-2 SP Register Values in the Non-Extended Mode 5-11

Table 5-3 Unnormalized Bit Definition . 5-13

Table 5-4 Extension Bit Definition . 5-14

Table 5-5 Scaling Bits Definition . 5-14

Table 5-6 Interrupt Mask Bits Definition. 5-15

Table 5-7 Scaling Mode Bits Definition . 5-15

Table 7-1 Instruction Pipeline . 7-4

Table 7-2 Interrupt Sources. 7-6

Table 7-3 Status Register Interrupt Mask Bits . 7-9

Table 7-4 Interrupt Priority Level Bits . 7-10

Table 7-5 External Interrupt Trigger Mode Bits . 7-10

Table 7-6 Exception Priorities Within an IPL . 7-11

Table 7-7 Fast Interrupt Pipeline . 7-13

MOTOROLA DSP56600FM/AD xxi
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-8 Long Interrupt Pipeline . 7-14

Table 8-1 Multiplication Factor Bits MF0–MF11. 8-8

Table 8-2 Predivider Factor Bits PD0–PD6 . 8-9

Table 8-3 Division Factor Bits DF0–DF2 . 8-10

Table 8-4 PSTP and PEN Relationship . 8-11

Table 10-1 JTAG Instructions. 10-8

Table 10-2 EX Bit Definition . 10-16

Table 10-3 GO Bit Definition. 10-16

Table 10-4 R/W Bit Definition . 10-16

Table 10-5 OnCE Register Select Encoding . 10-17

Table 10-6 Core Status Bits Description . 10-19

Table 10-7 Memory Breakpoint 0 and 1 Select Table 10-22

Table 10-8 Breakpoint 0 Read/Write Select Table 10-22

Table 10-9 Breakpoint 0 Condition Select Table . 10-23

Table 10-10 Breakpoint 1 Read/Write Select Table 10-23

Table 10-11 Breakpoint 1 Condition Select Table . 10-24

Table 10-12 Breakpoint 0 and 1 Event Select Table 10-24

Table 11-1 DSP Core Operating Modes. 11-3

Table 11-2 DSP Core Reset Vectors . 11-4

Table 11-3 Internal X I/O Memory Map . 11-6

Table 13-1 User Support Available. 13-3

Table 13-2 ADS Software Available on the WWW. 13-10

xxii DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 13-3 Audio Software Available on the WWW 13-11

Table 13-4 Benchmark Programs Available on the WWW 13-12

Table 13-5 Boot Software Available on the WWW 13-15

Table 13-6 Codec Routines Available on the WWW 13-16

Table 13-7 Demo Software Available on the WWW 13-16

Table 13-8 DTMF Routines Available on the WWW 13-17

Table 13-9 Reed-Solomon Encoder Available on the WWW 13-18

Table 13-10 Fast Fourier Transforms Available on the WWW 13-18

Table 13-11 Filters Available on the WWW. 13-21

Table 13-12 Floating Point Routines Available on the WWW 13-23

Table 13-13 Functions Available on the WWW . 13-24

Table 13-14 Matrix Operations Available on the WWW 13-25

Table 13-15 Multiplier/Accumulator Operations Available on the WWW. . . 13-26

Table 13-16 Sorting Routines Available on the WWW 13-26

Table 13-17 Speech Available on the WWW. 13-27

Table 13-18 Standard I/O Equates Available on the WWW 13-27

Table 13-19 Tools and Utilities Available on the WWW 13-28

Table 13-20 Viterbi Routines Available on the WWW 13-29

Table A-1 Parallel Instructions Format. A-4

Table A-2 Non-Parallel Instructions Format . A-5

Table A-3 Arithmetic Instructions . A-9

Table A-4 Logical Instructions . A-11

MOTOROLA DSP56600FM/AD xxiii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table A-5 Bit Manipulation Instructions . A-13

Table A-6 Loop Instructions . A-13

Table A-7 Move Instructions . A-14

Table A-8 Program Control Instructions . A-15

Table A-9 Instruction Description Notation . A-17

Table A-10 Instruction Effect on Condition Code . A-23

Table A-11 S Bit Computation . A-24

Table A-12 Signed Integer Portion Definition . A-25

Table A-13 U Bit Computation . A-25

Table A-14 Move Instructions . A-131

Table A-15 Destination Accumulator Encoding . A-203

Table A-16 Data ALU Operands Encoding #1 . A-203

Table A-17 Data ALU Source Operands Encoding. A-203

Table A-18 Program Control Unit Register Encoding A-204

Table A-19 Data ALU Operands Encoding #2 . A-204

Table A-20 Data ALU Operands Encoding #3 . A-204

Table A-21 Effective Addressing Mode Encoding #1 A-205

Table A-22 Memory/Peripheral Space . A-205

Table A-23 Effective Addressing Mode Encoding #2 A-206

Table A-24 Effective Addressing Mode Encoding # 3. A-206

Table A-25 Effective Addressing Mode Encoding #4 A-206

Table A-26 Triple-Bit Register Encoding. A-207

xxiv DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table A-27 Six-Bit Encoding For all On-Chip Registers. A-207

Table A-28 Long Move Register Encoding . A-207

Table A-29 Data ALU Source Registers Encoding A-208

Table A-30 AGU Address and Offset Registers Encoding. A-208

Table A-31 Data ALU Multiply Operands Encoding #1 A-208

Table A-32 Data ALU Multiply Operands Encoding #2 A-209

Table A-33 Data ALU Multiply Operands Encoding #3 A-209

Table A-34 Data ALU Multiply Sign Encoding . A-209

Table A-35 Data ALU Multiply Operands Encoding #4 A-209

Table A-36 Five-Bit Register Encoding #1 . A-210

Table A-37 Immediate Data ALU Operand Encoding A-210

Table A-38 Write Control Encoding . A-210

Table A-39 ALU Registers Encoding . A-211

Table A-40 X:R Operand Registers Encoding . A-211

Table A-41 R:Y Operand Registers Encoding . A-211

Table A-42 Single Bit Special Register Encoding Tables A-211

Table A-43 X:Y: Move Operands Encoding Tables A-212

Table A-44 Signed/Unsigned Partial Encoding #1. A-212

Table A-45 Signed/Unsigned Partial Encoding #2. A-213

Table A-46 Five-Bit Register Encoding #2. A-213

Table A-47 Condition Codes Computation Equations A-213

Table A-48 Condition Codes Encoding . A-214

MOTOROLA DSP56600FM/AD xxv
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table A-49 Operation Code K0–2 Decode . A-215

Table A-50 Non-Multiply Instruction Encoding . A-216

Table A-51 Special Case #1 . A-216

Table B-1 Instruction Timing, Word Count, and Encoding B-4

Table B-2 Instructions that Access the System Stack B-15

Table B-3 Stack Extension Delays . B-16

Table C-1 List of Benchmark Programs .C-3

Table C-2 Example of Assembly Language SourceC-4

Table C-3 N Real Multiplies Memory Map .C-5

Table C-4 N Real Updates Memory Map .C-7

Table C-5 Real Correlation or Convolution (FIR Filter) Memory Map.C-8

Table C-6 Real Correlation or Convolution (FIR Filter) Memory Map.C-9

Table C-7 Real * Complex Correlation or Convolution (FIR Filter)
Memory Map .C-10

Table C-8 Complex Multiply Memory Map .C-11

Table C-9 N Complex Multiplies Memory Map .C-12

Table C-10 Complex Update Memory Map. .C-13

Table C-11 N Complex Updates Memory Map .C-14

Table C-12 N Complex Updates Memory Map .C-15

Table C-13 Complex Correlation or Convolution (FIR Filter) Memory Map .C-17

Table C-14 Nth Order Power Series (Real) Memory Map C-19

Table C-15 2nd Order Real Biquad IIR Filter Memory MapC-20

xxvi DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table C-16 N Cascaded Real Biquad IIR Filter Memory Map C-21

Table C-17 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)
 Memory Map. C-22

Table C-18 System Equations . C-24

Table C-19 LMS Algorithms . C-24

Table C-20 True (Exact) LMS Adaptive Filter Memory Map C-25

Table C-21 Delayed LMS Adaptive Filter Memory Map. C-27

Table C-22 FIR Lattice Filter Memory Map . C-29

Table C-23 All Pole IIR Lattice Filter Memory Map C-31

Table C-24 General Lattice Filter Memory Map . C-33

Table C-25 Normalized Lattice Filter Memory Map C-35

Table C-26 N Point 3 × 3 2-D FIR Convolution Memory Map C-39

Table C-27 Parsing Data Stream Memory Map . C-45

Table C-28 Creating Data Stream Memory Map . C-48

Table C-29 Parsing Hoffman Code Data Stream Memory Map. C-51

MOTOROLA DSP56600FM/AD xxvii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

xxviii DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LIST OF EXAMPLES

Example 1-1 Sample Code Listing . 1-6

Example 3-1 Pipeline Conflicts—Arithmetic Stall . 3-19

Example 3-2 Pipeline Conflicts—Status Stall . 3-20

Example 9-1 24-Bit Access to BMPR . 9-8

Example 9-2 Bootstrap Through External EPROM . 9-9

Example 9-3 Passing Program Memory Words to the OGDB Register 9-9

Example B-1 Address Generation Interlock. B-13

Example B-2 Detection of Address Generation Interlock. B-14

Example B-3 Providing a Wait for Proper Data Writes. B-26

Example C-1 Real Multiply . C-5

Example C-2 N Real Multiplies . C-5

Example C-3 Real Update. C-6

Example C-4 N Real Updates . C-7

Example C-5 Real Correlation or Convolution (FIR Filter) C-8

Example C-6 Real Correlation or Convolution (FIR Filter) C-9

Example C-7 Real * Complex Correlation or Convolution (FIR Filter). C-10

Example C-8 Complex Multiply . C-11

Example C-9 N Complex Multiplies. C-12

Example C-10 Complex Update . C-13

Example C-11 N Complex Updates . C-15

MOTOROLA DSP56600FM/AD xxix
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-12 N Complex Updates .C-16

Example C-13 Complex Correlation or Convolution (FIR Filter) C-17

Example C-14 Nth Order Power Series (Real) .C-19

Example C-15 2nd Order Real Biquad IIR Filter .C-20

Example C-16 N Cascaded Real Biquad IIR Filter .C-21

Example C-17 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) C-22

Example C-18 True (Exact) LMS Adaptive Filter .C-25

Example C-19 Delayed LMS Adaptive Filter .C-27

Example C-20 FIR Lattice Filter .C-30

Example C-21 All Pole IIR Lattice Filter .C-31

Example C-22 General Lattice Filter .C-34

Example C-23 Normalized Lattice Filter. .C-36

Example C-24 [1 × 3][3 × 3] Matrix Multiplication. .C-37

Example C-25 N Point 3 × 3 2-D FIR Convolution .C-39

Example C-26 Viterbi Add-Compare-Select (ACS) .C-43

Example C-27 Parsing Data Stream .C-46

Example C-28 Creating Data Stream. .C-49

Example C-29 Parsing Hoffman Code Data Stream .C-52

xxx DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1

OVERVIEW

MOTOROLA DSP56600FM/AD 1-1
For More Information On This Product,

 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.1 OVERVIEW . 1-3
1.2 MANUAL ORGANIZATION . 1-3
1.3 MANUAL CONVENTIONS . 1-5
1.4 DSP FUNCTIONAL ADVANTAGES 1-6

1-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Overview

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.1 OVERVIEW

The DSP56600 family of 16-bit high performance Digital Signal Processors (DSPs) is
designed specifically for low-power digital handset cellular applications, and is
capable of performing a wide variety of fixed-point DSP algorithms. The family
architecture features a central processing module that is common to the various
family members. A variety of highly integrated and cost-effective DSP devices can be
built around this core, based upon a library of modules containing memories and
peripherals. Current DSP applications require the very high execution speeds in a
real time, Input/Output (I/O) intensive environment that this DSP can provide.

This DSP56600 Family Manual provides a description of the components that are
common to all the DSP56600 family of DSPs. Table 1-1 lists the documents needed to
design properly with a member of the DSP56600 family.

The central processor and instruction set are described in this manual. It is intended
to be used with a family member’s User’s Manual, such as those listed in Table 1-1.
The User’s Manual presents the specifics of the device, including pin descriptions,
operating modes, memory and peripherals. Packaging and timing information can be
found in the device’s Technical Data sheet. As new chips are added to the DSP56600
family, more documents will be added to this list.

1.2 MANUAL ORGANIZATION

This manual describes the Central Processing Unit (CPU) of the DSP56600 family in
detail. It is intended to be used with the appropriate DSP56600 family member user’s

Table 1-1 DSP56600 Family Product Literature

Document Name Description Order Number

DSP56600 Family Manual Detailed description of the
DSP56600-family architecture, the
core processor, and instruction set

DSP56600FM/AD

DSP56603 User's Manual Detailed description of the DSP56603
memory, peripherals, and interfaces

DSP56603UM/AD

DSP56603 Technical Data Pin and package descriptions,
electrical and timing specifications,
and ordering information for the
DSP56603

DSP56603/D

MOTOROLA DSP56600FM/AD 1-3
For More Information On This Product,

 Go to: www.freescale.com

Overview

Manual Organization

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

manual, which describes the CPU, programming models, and details of the
instruction set. The appropriate DSP56600 family member Technical Data sheet
provides timing, pinout, and packaging descriptions.

This manual is arranged in the following sections:

• Section 1—Overview introduces general DSP theory and discusses the features
and benefits of the Motorola DSP56600 family of high performance, general
purpose processors. A brief description of each section of the manual is also
included.

• Section 2—Central Architecture Overview describes the central architecture of
the DSP56600, which consists of the Data Arithmetic Logic Unit Data (ALU),
Address Generation Unit (AGU), Program Control Unit (PCU), the Phase
Lock Loop (PLL) based clock oscillator, JTAG Test Access Port, and On-Chip
Emulation (OnCE™) circuitry. This section describes each subsystem and the
buses interconnecting the major components in the DSP56600 central
processing module. Detailed descriptions are provided in the subsequent
sections.

• Section 3—Data Arithmetic Logic Unit describes in detail the Data ALU
architecture and its programming model. An introduction to fractional and
integer arithmetic is included, and other topics are discussed, such as
unsigned and multiprecision arithmetic.

• Section 4—Address Generation Unit describes the AGU architecture, its
programming model, addressing modes, and address modifiers.

• Section 5—Program Control Unit describes in detail the PCU architecture, its
programming model, and hardware looping.

• Section 6—Program Patch Logic describes a method of fixing the program
code, which is located in the on-chip ROM, without generating a new mask.

• Section 7—Processing States describes five processing states: Normal,
Exception, Reset, Wait, and Stop.

• Section 8—PLL and Clock Generator describes the PLL and its functions.

• Section 9—External Memory Interface (Port A) describes the external memory
port, its control register, and control signals.

• Section 10—JTAG Port and OnCE Module describes the JTAG Test Access Port,
and the OnCE circuitry and its functions.

• Section 11—Operating Modes and Memory Spaces describes the DSP56600
operating mode pins which determine the reset vector address for start-up

1-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Overview

Manual Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

after reset. The core memory map shows the partitions into program, X data,
and Y data memory space.

• Section 12—Development Tools describes the hardware and software
development tools that are available for the DSP56600 family.

• Section 13—Additional Support lists additional support resources and how to
obtain them.

• Appendix A—Instruction Set Details provides a detailed description of each
DSP56600 family instruction, its use, and its effect on the processor.

• Appendix B—Instruction Timing lists DSP56600 family instruction execution
timings.

• Appendix C—Benchmark Programs lists DSP56600 family benchmark example
programs and results.

In addition, an index, a table of contents, and lists of figures, tables, and examples are
provided.

1.3 MANUAL CONVENTIONS

The following conventions are used in this manual:

• Bits within registers are always listed from Most Significant Bit (MSB) to Least
Significant Bit (LSB).

Note: Other manuals may use the opposite convention, with bits listed from LSB to
MSB.

• Bits within a register are indicated AA[n:0] when more than one bit is
involved in a description. For purposes of description, the bits are presented
as if they are contiguous within a register. However, this is not always the
case. Refer to the programming model diagrams or to the programmer’s
sheets to see the exact location of bits within a register.

• When a bit is described as “set,” its value is 1. When a bit is described as
“cleared,” its value is 0.

• Pins or signals that are asserted low (made active when pulled to ground)
have an overbar over their name; for example, the MCS pin is asserted low.

• Hex values are indicated with a dollar sign ($) preceding the hex value as
follows: $FFFB is the X memory address for the Interrupt Priority Register
(IPR).

MOTOROLA DSP56600FM/AD 1-5
For More Information On This Product,

 Go to: www.freescale.com

Overview

DSP Functional Advantages

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Code examples are displayed in a monospaced font, as shown in Example 1-1.

• Pins or signals listed in code examples that are asserted low have a tilde in
front of their names. In the previous example, line 3 refers to the SS0 pin
(shown as ~SS0).

• The word “assert” means that a high true (active high) signal is pulled high to
VCC or that a low true (active low) signal is pulled low to ground. The word
“deassert” means that a high true signal is pulled low to ground or that a low
true signal is pulled high to VCC. See Table 1-2.

Note: 1. Ground is an acceptable low voltage level. See the appropriate data sheet for the range of
acceptable low voltage levels (typically a TTL logic low).

2. VCC is an acceptable high voltage level. See the appropriate data sheet for the range of
acceptable high voltage levels (typically a TTL logic high).

• The word “reset” is used in three different contexts in this manual. There is a
reset pin that is always written as “RESET”, a reset instruction that is always
written as “RESET”, and the word reset that refers to the reset function and is
written in lower case with a leading capital letter as grammar dictates. The
word “pin” is a generic term for any pin on the chip.

1.4 DSP FUNCTIONAL ADVANTAGES

DSP is the arithmetic processing of real-time signals that are sampled at regular
intervals and digitized. Examples of DSP processing include the following:

• Filtering signals

Example 1-1 Sample Code Listing

BFSET #$0007,X:PCC; Configure: line 1

; MISO0, MOSI0, SCK0 for SPI master line 2

; ~SS0 as PC3 for GPIO line 3

Table 1-2 High True / Low True Signal Conventions

Signal/Symbol Logic State Signal State Voltage

PIN True Asserted Ground1

PIN False Deasserted VCC
2

PIN True Asserted VCC

PIN False Deasserted Ground

1-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Overview

DSP Functional Advantages

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Convolution—mixing two signals

• Correlation—comparing two signals

• Rectifying, amplifying, and/or transforming a signal

All of these functions have traditionally been performed using analog circuits. Only
recently has semiconductor technology provided the processing power necessary to
digitally perform these and other functions using DSPs.

Figure 1-1 shows an example of analog signal processing. The circuit in the
illustration filters a signal from a sensor using an operational amplifier and controls
an actuator with the result. Since the ideal filter is impossible to design, the engineer
must design the filter for acceptable response considering variations in temperature,
component aging, power supply variation, and component accuracy. The resulting
circuit typically has low noise immunity, requires adjustments, and is difficult to
modify.

Figure 1-1 Analog Signal Processing

x(t)
Input
From

Sensor

y t()
x t()

Rf
Ri
------ 1

1 jwRfCf+
-----------------------------–=

y(t)
Output

To
Actuator

t

x(t)

Ri

Rf

Cf

Analog Filter

Frequency Characteristics

Ideal
Filter

f
fcFrequency

G
ai

n

y(t)+
–

Actual
Filter

AA0003

MOTOROLA DSP56600FM/AD 1-7
For More Information On This Product,

 Go to: www.freescale.com

Overview

DSP Functional Advantages

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires
an analog-to-Digital (A/D) converter and Digital-to-Analog (D/A) converter in
addition to the DSP. Even with these additional parts, the component count can be
lower using a DSP due to the high integration available with current components.

Figure 1-2 Digital Signal Processing

FIR Filter

Finite Impulse
Response

A

DSP Operation

Ideal
Filter

f
fc

Frequency

G
ai

n

A/D D/A

x(n) y(n)
y(t)x(t)

Analog
Filter

f
fc

Frequency

G
ai

n

Digital
Filter

f
fc

Frequency

G
ai

n

Low-Pass
Antialiasing

Filter

Digital-to-Analog
Converter

Reconstruction
Low-Pass

A

A

Analog In Analog Out

Sampler And
Analog-to-Digital
Converter signal

AA0004

c k() n k–()×
k 0=

N

∑

1-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Overview

DSP Functional Advantages

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Processing in this circuit begins by band-limiting the input with an anti-alias filter,
which eliminates out-of-band signals that can be aliased back into the pass band
during the sampling process. The signal is then sampled, digitized with an A/D
converter, and sent to the DSP.

The filter that the DSP implements depends entirely upon the software. The DSP can
directly implement any filter that can also be implemented using analog techniques.
Also, adaptive filters can be easily implemented using DSP, whereas these filters are
extremely difficult to implement using analog techniques.

The DSP output is processed by a D/A converter and is low-pass filtered to remove
the effects of digitizing. In summary, the advantages of using DSPs, compared to
analog-only circuits, include the following:

• Fewer components

• Self-test can be built in

• Stable, deterministic performance

• No filter adjustments

• Wide range of applications

• Filters with much closer tolerances

• High noise immunity and power-supply rejection

• Adaptive filters easily implemented

MOTOROLA DSP56600FM/AD 1-9
For More Information On This Product,

 Go to: www.freescale.com

Overview

DSP Functional Advantages

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 2

CENTRAL ARCHITECTURE OVERVIEW

MOTOROLA DSP56600FM/AD 2-1
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.1 INTRODUCTION . 2-3
2.2 DSP56600 CORE FEATURES . 2-4
2.3 DSP56600 CORE ARCHITECTURE. 2-4

2-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.1 INTRODUCTION

This section describes the DSP56600 core, a member of Motorola’s family of
programmable CMOS Digital Signal Processors (DSPs). The design priorities for the
DSP56600 core are:

• Low power dissipation

• Low cost

• High performance

• High integration

The DSP56600 core is based on the DSP56300 core, with the following modifications:

• All internal data and address buses, with the exception of the Program Data
Bus, were reduced to 16 bits.

• All registers were reduced to 16 bits.

• The Direct Memory Access (DMA) module was removed.

• The instruction cache was removed.

An instruction decoding mechanism has been added to allow code developed for the
DSP56300 chips to run on DSP56600 family members, and information on emulating
DSP56600 members on DSP56300 chips is provided as an appendix to this document.

A significant new feature of the DSP56600 core is its instruction pipeline, which
allows the core to execute instructions as rapidly as one instruction per clock cycle.
Many modern DSP applications require extremely low power parts capable of very
high execution speed in a real-time I/O intensive environment. The DSP56600 core,
with its capability of executing one instruction per clock cycle, has the processing
power to meet this demand. Power consumption is significantly reduced as
compared with other chips, while still maintaining the rich instruction set of the
DSP56300.

Lowered power consumption on DSP56600 family members is achieved in both
active and standby modes. Power management units are included in all chip blocks
in order to dynamically reduce each block’s power consumption on a cycle by cycle
basis. Power consumption scales down with clock frequency reduction, use of
on-chip memory, use of on-chip peripherals, and use of Wait and Stop standby
modes. External buses are driven only when required. On-chip memory expansion
does not increase power dissipation significantly, because only memory modules
being accessed consume power.

MOTOROLA DSP56600FM/AD 2-3
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2 DSP56600 CORE FEATURES

The following lists some of the features of the DSP56600 core:

• 60 Million Instructions Per Second (MIPS) with a 60 MHz clock at 2.7 V

• Fully pipelined 16 × 16-bit parallel Multiplier-Accumulator (MAC)

• 40-bit parallel barrel shifter

• Highly parallel instruction set

• Position Independent Code (PIC) support

• Unique DSP addressing modes

• Nested hardware DO loops

• Fast auto-return interrupts

• On-chip 16-stage hardware stack with stack extension

• On-chip support for software patching and enhancements

• On-chip PLL

• On-Chip Emulation (OnCE) module

• Address tracing for debugging

• JTAG port compatible with the IEEE Standard Test Access Port and
Boundary-Scan Architecture (IEEE 1149.1)

Low-power features of the DSP56600 core include the following:

• Very low power CMOS design

• Low power Wait standby mode

• Ultra-low power Stop mode

• Power management units for further power reduction

• Fully static logic, with operation frequency down to DC

2.3 DSP56600 CORE ARCHITECTURE

The DSP56600 core provides the following functional blocks:

• Data Arithmetic Logic Unit (Data ALU)

2-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Address Generation Unit (AGU)

• Program Control Unit (PCU)

• Program Patch Logic

• PLL and Clock Oscillator

• Expansion Port (Port A)

• JTAG Test Access Port and On-Chip Emulation (OnCE) module

• Memory

In addition, each member of the DSP56600 family provides its own set of on-chip
peripherals for enhanced functionality.

To provide data exchange between these blocks, the following buses are
implemented:

• Peripheral I/O Expansion Bus (PIO_EB) to peripherals

• Program Memory Expansion Bus (PM_EB) to Program ROM

• X Memory Expansion Bus (XM_EB) to X Memory

• Y Memory Expansion Bus (YM_EB) to Y Memory

• Global Data Bus (GDB) between Program Control Unit and other core
structures

• Program Data Bus (PDB) for carrying program data throughout the core

• X Memory Data Bus (XDB) for carrying X data throughout the core

• Y Memory Data Bus (YDB) for carrying Y data throughout the core

• Program Address Bus (PAB) for carrying program memory addresses
throughout the core

• X Memory Address Bus (XAB) for carrying X memory addresses throughout
the core

• Y Memory Address Bus (YAB) for carrying Y memory addresses throughout
the core

With the exception of the Program Data Bus (PDB), all internal buses on the
DSP56600 family members are 16-bit buses. The PDB is a 24-bit bus.

The block diagram of one member of the DSP56600 family, the DSP56603, is shown in
Figure 2-1. This diagram illustrates the core blocks of the DSP56600, and shows
representative peripherals for a DSP56600 chip implementation.

MOTOROLA DSP56600FM/AD 2-5
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.3.1 Data Arithmetic Logic Unit

The Data Arithmetic Logic Unit (Data ALU) performs all the arithmetic and logical
operations on data operands in the DSP56600 core. The components of the Data ALU
are as follows:

• Four 16-bit input general purpose registers: X1, X0, Y1, and Y0

• A parallel, fully pipelined Multiplier-Accumulator unit (MAC)

• Six Data ALU registers (A2, A1, A0, B2, B1, and B0) that are concatenated into
two general purpose, 40-bit accumulators, A and B

Figure 2-1 DSP56603 Block Diagram

E
X

T
A

L

Bootstrap
ROM

3072 × 24

Program
RAM

16.5 K × 24

YAB
XAB
PAB

YDB

XDB

PDB

G
D

B

MODC/IRQC
MODD/IRQD

Address

4

Data

Control

616

24

16

Y Memory
RAM

8192 × 16

Memory

Peripheral

Y
M

_E
B

X
M

_E
B

P
M

_E
B

Expansion Area

6

JTAG
5

RESET

MODB/IRQB

P
C

A
P

3

OnCE™

CLKOUT

X Memory
RAM

8192 × 16

DSP56600
16-bit

Core

P
IO

_E
B

Area
Expansion

MODA/IRQA

PINIT/NMI
AA0529

DE

Power
Manage-

ment
Data ALU

16 × 16 + 40 → 40-bit MAC
Two 40-bit Accumulators

40-bit Barrel Shifter

External
Bus

Interface

Program
Interrupt

Controller

Program
Decode

Controller

Program
Address

Generator

Program
 Patch

Detector

Address
Generation

Unit

Internal
Data
Bus

Switch

Clock
Generator

PLL

Triple
Timer or

GPIO
pins

Dedicated
 GPIO

pins

Host
Interface
HI08 or
GPIO
pins

SSI
Interface
or GPIO

pins

2-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• An accumulator shifter that is an asynchronous parallel shifter with a 40-bit
input and a 40-bit output

• A Bit Field Unit (BFU) with a 40-bit barrel shifter

• Two data bus shifter/limiter circuits

2.3.1.1 Data ALU Registers
The Data ALU registers can be read or written over the X Data Bus (XDB) and the
Y Data Bus (YDB) as 16- or 32-bit operands. The source operands for the Data ALU,
which can be 16, 32, or 40 bits, always originate from Data ALU registers. The results
of all Data ALU operations are stored in an accumulator.

All the Data ALU operations are performed in 2 clock cycles in pipeline fashion so
that a new instruction can be initiated in every clock, yielding an effective execution
rate of one instruction per clock cycle. The destination of every arithmetic operation
can be used as a source operand for the immediate following operation without
penalty.

2.3.1.2 Multiplier-Accumulator (MAC)
The Multiplier-Accumulator (MAC) unit comprises the main arithmetic processing
unit of the DSP56600 core and performs all of the calculations on data operands. In
the case of arithmetic instructions, the unit accepts as many as three input operands
and outputs one 40-bit result of the following form, Extension:Most Significant
Product:Least Significant Product (EXT:MSP:LSP).

The multiplier executes 16-bit × 16-bit, parallel, fractional multiplies, between
two’s-complement signed, unsigned, or mixed operands. The 32-bit product is
right-justified and added to the 40-bit contents of either the A or B accumulator. A
40-bit result can be stored as a 16-bit operand. The LSP can either be truncated or
rounded into the MSP. Rounding is performed if specified.

2.3.2 Address Generation Unit

The Address Generation Unit (AGU) performs the effective address calculations
using integer arithmetic necessary to address data operands in memory and contains
the registers used to generate the addresses. It implements four types of arithmetic:
linear, modulo, multiple wrap-around modulo, and reverse-carry. The AGU operates
in parallel with other chip resources to minimize address-generation overhead.

The AGU is divided into two halves, each with its own Address Arithmetic Logic
Unit (Address ALU). Each Address ALU has four sets of register triplets, and each
register triplet is composed of an address register, an offset register, and a modifier

MOTOROLA DSP56600FM/AD 2-7
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

register. The two Address ALUs are identical. Each contains a 16-bit full adder
(called an offset adder).

A second full adder (called a modulo adder) adds the summed result of the first full
adder to a modulo value that is stored in its respective modifier register. A third full
adder (called a reverse-carry adder) is also provided.

The offset adder and the reverse-carry adder are in parallel and share common
inputs. The only difference between them is that they carry propagates in opposite
directions. Test logic determines which of the three summed results of the full adders
is output.

Each Address ALU can update one address register from its respective address
register file during one instruction cycle. The contents of the associated modifier
register specifies the type of arithmetic to be used in the address register update
calculation. The modifier value is decoded in the Address ALU.

2.3.3 Program Control Unit

The Program Control Unit (PCU) performs instruction prefetch, instruction
decoding, hardware DO loop control and exception processing. The PCU
implements a seven-stage pipeline and controls the different processing states of the
DSP56600 core. The PCU consists of three hardware blocks:

• Program Decode Controller (PDC)

• Program Address Generator (PAG)

• Program Interrupt Controller (PIC)

The PDC decodes the 24-bit instruction loaded into the instruction latch and
generates all signals necessary for pipeline control. The PAG contains all the
hardware needed for program address generation, system stack and loop control.
The PIC arbitrates among all interrupt requests (internal interrupt, s as well as the
five external requests IRQA, IRQB, IRQC, IRQD, and NMI), and generates the
appropriate interrupt vector address.

The PCU implements its functions using the following registers:

• PC—Program Counter register

• SR—Status Register

• LA—Loop Address register

2-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• LC—Loop Counter register

• VBA—Vector Base Address register

• SZ—Size register

• SP—Stack Pointer

• OMR—Operating Mode Register

• SC—Stack Counter register

The PCU also includes a hardware System Stack (SS).

2.3.4 Program Patch Logic

The Program Patch Logic (PPL) block provides the DSP56600 core user a way to fix
the program code in the on-chip ROM without generating a new mask.
Implementing the code correction is done by replacing a piece of ROM-based code
with a patch program stored in RAM. The PPL consists of four Patch Address
Registers (PAR1–PAR4) and four patch address comparators. Each PAR points to a
starting location in the ROM code where the program flow is to be changed. The PC
register in the PCU is compared to each PAR. When an address of a fetched
instruction is identical to an address stored in one of the PARs, the Program Data Bus
(PDB) is forced to a corresponding JMP instruction, replacing the instruction that
otherwise would have been fetched from the ROM.

2.3.5 PLL and Clock Oscillator

The DSP56600 core features a Phase Lock Loop (PLL) clock oscillator in its central
processing module. The PLL allows the processor to operate at a high internal clock
frequency using a low frequency clock input, a feature that offers two immediate
benefits:

• A lower frequency clock input reduces the overall electromagnetic
interference generated by a system.

• The ability to oscillate at different frequencies reduces costs by eliminating the
need to add additional oscillators to a system.

The clock generator in the DSP56600 core is composed of two main blocks: the PLL,
which performs clock input division, frequency multiplication, and skew
elimination; and the Clock Generator (CLKGEN), which performs low power
division and clock pulse generation.

MOTOROLA DSP56600FM/AD 2-9
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.3.6 Expansion Port (Port A)

Port A is the memory expansion port is used for both program and data memory. It
provides an easy to use, low part-count connection with fast or slow static memories
and with I/O devices. The Port A data bus is 24 bits wide with a separate 16-bit
address bus capable of a sustained rate of one memory access per two clock cycles.
External memory can be as large as 64 K × 24-bit program memory space, depending
on chip configuration. An internal wait state generator can be programmed to insert
as many as thirty-one wait states if access to slower memory or I/O device is
required.

For power-sensitive applications and applications that do not require external
memory, Port A can be fully disabled.

2.3.7 JTAG Test Access Port and On-Chip Emulator (OnCE)

The DSP56600 core provides a dedicated user-accessible Test Access Port (TAP) that
is fully compatible with the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) . Problems associated with testing high density circuit
boards have led to development of this standard under the sponsorship of the Test
Technology Committee of IEEE and the Joint Test Action Group (JTAG). The
DSP56600 core implementation supports circuit-board test strategies based on this
standard.

The test logic includes a Test Access Port (TAP) consisting of four dedicated signal
pins, a 16-state controller, and three test data registers. A boundary scan register
links all device signal pins into a single shift register. The test logic, implemented
utilizing static logic design, is independent of the device system logic.

The On-Chip Emulation (OnCE) module provides a means of interacting with the
DSP56600 core and its peripherals non-intrusively so that a user can examine
registers, memory, or on-chip peripherals. This facilitates hardware and software
development on the DSP56600 core processor. OnCE module functions are provided
through the JTAG TAP pins.

2.3.8 On-Chip Memory

The memory space of the DSP56600 core is partitioned into program memory space,
X data memory space, and Y data memory space. The data memory space is divided

2-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

into X data memory and to Y data memory in order to work with the two Address
ALUs and to feed two operands simultaneously to the Data ALU. Memory space
typically includes internal RAM and ROM and can be expanded off-chip under
software control.

Both internal and external memory configuration is specific to each member of the
DSP56600 family. For complete details of memory configuration, see the User’s
Manual for the particular DSP56600 family member.

2.3.9 Peripherals

Each member of the DSP56600 family can be configured with its own set of on-chip
peripherals for communicating with external devices or memory, as well as for
providing additional on-chip functionality. For complete details of on-chip
peripherals, see the User’s Manual for the particular DSP56600 family member.

MOTOROLA DSP56600FM/AD 2-11
For More Information On This Product,

 Go to: www.freescale.com

Central Architecture Overview

DSP56600 Core Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 3

DATA ARITHMETIC LOGIC UNIT

MOTOROLA DSP56600FM/AD 3-1
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.1 INTRODUCTION . 3-3
3.2 DATA ALU ARCHITECTURE . 3-3
3.3 DATA ALU ARITHMETIC AND ROUNDING. 3-9
3.4 DATA ALU PROGRAMMING MODEL 3-18

3-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.1 INTRODUCTION

This section describes the architecture and the operation of the Data Arithmetic Logic
Unit (Data ALU), the block where all the arithmetic and logical operations on data
operands are performed. In addition, this section describes the arithmetic and
rounding performed by the Data ALU, as well as its programming model.

3.2 DATA ALU ARCHITECTURE

The Data ALU performs all the arithmetic and logical operations on data operands in
the DSP56600 core.

The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y
Data Bus (YDB) as 16- or 32-bit operands. The source operands for the Data ALU,
which can be 16, 32, or 40 bits, always originate from Data ALU registers. The results
of all Data ALU operations are stored in an accumulator.

All the Data ALU operations are performed in 2 clock cycles in pipeline fashion so
that a new instruction can be initiated in every clock, yielding an effective execution
rate of one instruction per clock cycle. The destination of every arithmetic operation
can be used as a source operand for the immediate following operation without
penalty.

The components of the Data ALU are as follows:

• Four 16-bit input registers

• A parallel, fully pipelined Multiplier-Accumulator unit (MAC)

• Two 32-bit accumulator registers

• Two 8-bit accumulator extension registers

• A Bit Field Unit (BFU) with a 40-bit barrel shifter

• An accumulator shifter

• Two data bus shifter/limiter circuits

Figure 3-1 provides a block diagram of the Data ALU.

MOTOROLA DSP56600FM/AD 3-3
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-1 Data ALU Block Diagram

Bit Field Unit
and Barrel Shifter

Accumulator
Shifter

Immediate Field

40

40

16

16

40

40

40

40

X Data Bus

Y Data Bus

1616

X0
X1

Y0

Y1

16 16

Multiplier

Accumulator
and Rounding Unit

A (40)

B (40)

Shifter/Limiter

Pipeline Register

P Data Bus

MUX

40

40

Forwarding Register

40

AA0545

3-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are four 16-bit, general purpose data registers. They can be treated
as four independent 16-bit registers or as two 32-bit registers called X and Y, formed
by concatenation of X1:X0 and Y1:Y0, respectively. X1 is the most significant word in
X and Y1 is the most significant word in Y. The registers serve as input buffer
registers between the XDB or YDB and the MAC unit or barrel shifter. They are used
as Data ALU source operands, allowing new operands to be loaded for the next
instruction while the register contents are used by the current instruction. The
registers can also be read back out to the appropriate data bus.

3.2.2 MAC Unit

The Multiplier-Accumulator (MAC) unit comprises the main arithmetic processing
unit of the DSP56600 core and performs all of the calculations on data operands. In
the case of arithmetic instructions, the unit accepts as many as three input operands
and outputs one 40-bit result of the following form, Extension:Most Significant
Product:Least Significant Product (EXT:MSP:LSP). The operation of the MAC unit
occurs independently of and in parallel with XDB and YDB activity, and its registers
facilitate buffering for both Data ALU inputs and outputs. Latches are provided on
the MAC unit input to permit writing an input register, which is the source for a Data
ALU operation in the same instruction. The input to the multiplier can only come
from the X or Y registers. The multiplier executes 16-bit × 16-bit, parallel, fractional
multiplies, between two’s-complement signed, unsigned, or mixed operands. The
32-bit product is right-justified and added to the 40-bit contents of either the A or B
accumulator.

The 40-bit sum is stored back in the same accumulator. The MAC operation is fully
pipelined and takes 2 clock cycles to complete. In the first clock cycle, the multiply is
performed and the product is stored in the pipeline register. In the second clock
cycle, the accumulator is added or subtracted. If a multiply without accumulation
(MPY) is specified in the instruction, the MAC clears the accumulator and then adds
the contents to the product. When a 40-bit result is to be stored as a 16-bit operand,
the LSP can either be truncated or rounded into the MSP. Rounding is performed if
specified in the DSP instruction (e.g., using the MACR instruction). The rounding
performed is either convergent rounding (round-to-nearest-even) or
two’s-complement rounding. The type of rounding is specified by the Rounding
Mode bit (RM) in the Status Register (SR). The bit in the accumulator that is rounded
is specified by the Scaling Mode bits (S0 and S1) in the SR.

MOTOROLA DSP56600FM/AD 3-5
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

It is possible to saturate the arithmetic unit’s result going into the accumulator so that
it fits into 32 bits (MSP and LSP). This process is referred to as arithmetic saturation.
It is activated by the Arithmetic Saturation Mode (SM) bit in the SR. The purpose of
this mode is to provide for algorithms that do not recognize or cannot take advantage
of the Extension Accumulator (EXT). For more information, refer to Arithmetic
Saturation Mode on page 3-14.

3.2.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)

The six Data ALU registers (A2, A1, A0, B2, B1, and B0) form two general purpose,
40-bit accumulators, A and B. Each of these accumulators consists of three
concatenated registers,A2:A1:A0 and B2:B1:B0, respectively. The 16-bit MSP is stored
in A1 or B1; the 16-bit LSP is stored in A0 or B0. The 8-bit EXT is stored in A2 or B2.

Reading the A or B accumulators over the XDB and YDB buses is protected against
overflow by substituting a limiting constant for the data that is being transferred. The
content of A or B is not affected if limiting occurs. Only the value transferred over the
XDB or YDB is limited. This process is commonly referred to as transfer saturation
and should not be confused with the Arithmetic Saturation mode.

The overflow protection is performed after the contents of the accumulator have been
shifted according to the scaling mode. Shifting and limiting are performed only when
the entire 40-bit A or B register is specified as the source for a parallel data move over
the XDB or YDB buses. When an individual register within an accumulator (A0, A1,
A2, B0, B1, or B2 register) is specified as the source for a parallel data move, shifting
and limiting are not performed. When the 8-bit wide accumulator extension register
(A2 or B2) is specified as the source for a parallel data move, it is sign-extended to
produce the full 16-bit wide word. The A and B accumulators serve as buffer
registers between the arithmetic unit and the XDB and YDB buses. These registers are
used as both Data ALU source and destination operands.

Automatic sign extension of the 40-bit accumulators is provided when the A or B
accumulator is written with a smaller operand. Sign extension can occur when
writing to the A or B accumulator from the XDB or YDB bus, or with the results of
certain Data ALU operations, such as the transfer conditionally (Tcc) or transfer Data
ALU register (TFR) instructions. If a word operand is to be written to an accumulator
register (A or B), the MSP (A1 or B1) portion of the accumulator is written with the
word operand, the LSP (A0 or B0) portion is zero-filled, and the EXT (A2 or B2)
portion is sign-extended from MSP. Long-word operands are written into MSP:LSP,
the low-order portion of the accumulator register. The EXT portion is sign-extended
from MSP. No sign extension is performed if an individual 16-bit register is written
(A1, A0, B1, or B0). Test logic is included in each accumulator register to support

3-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

operation of the data shifter/limiter circuits. This test logic detect overflows out of
the data shifter so that the limiter can substitute one of several constants to minimize
errors caused by the overflow.

3.2.4 Accumulator Shifter

The accumulator shifter is an asynchronous parallel shifter with a 40-bit input and a
40-bit output that is implemented immediately before the MAC accumulator input.
The source accumulator shifting operations are as follows:

• No Shift (Unmodified)

• 16-bit Right Shift (Arithmetic) for DMAC

• Force to zero

3.2.5 Bit Field Unit (BFU)

The Bit Field Unit (BFU) contains a 40-bit parallel bidirectional shifter with a 40-bit
input and a 40-bit output, mask generation unit, and logic unit. The BFU is used in
the following operations:

• Multibit Left Shift (Arithmetic or Logical) for ASL, LSL

• Multibit Right Shift (Arithmetic or Logical) for ASR, LSR

• 1-bit Rotate (Right or Left) for ROR, ROL

• Bit Field Merge, Insert, and Extract for MERGE, INSERT, EXTRACT, and
EXTRACTU

• Count Leading Bits for CLB

• Fast Normalization for NORMF

• Logical operations for AND, OR, EOR, and NOT

3.2.6 Data Shifter/Limiter

The data shifter/limiter circuits provide special post-processing on data read from
the A and B accumulators out to the XDB or YDB buses. There are two independent

MOTOROLA DSP56600FM/AD 3-7
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

shifter/limiter circuits, one for the XDB bus and one for the YDB bus. Each consists of
a shifter followed by a limiting circuit.

3.2.6.1 Scaling
The data shifters in the shifters/limiters unit can perform the following data shift
operations:

• Scale up—shift data one bit to the left

• Scale down—shift data one bit to the right

• No scaling—pass the data unshifted

Each data shifter has a 16-bit output with overflow indication. These shifters permit
dynamic scaling of fixed-point data without modifying the program code. For
example, this permits block floating-point algorithms such as Fast Fourier
Transforms (FFTs) to be implemented in a regular fashion. The data shifters are
controlled by the Scaling Mode bits (S0 and S1, bits 11 and 10) in the SR.

3.2.6.2 Limiting
In the DSP56600 core, the Data ALU accumulators A and B have eight extension bits.
Limiting occurs when the extension bits are in use and either A or B is the source
being read over XDB or YDB. The limiters in the DSP56600 core place a shifted and
limited value on XDB or YDB without changing the contents of the A or B registers.
Having two limiters allows two-word operands to be limited independently in the
same instruction cycle. The two data limiters can also be combined to form one 32-bit
data limiter for long-word operands.

If the contents of the selected source accumulator can be represented without
overflow in the destination operand size (i.e., the signed integer portion of the
accumulator is not in use), the data limiter is disabled, and the operand is not
modified. If the contents of the selected source accumulator cannot be represented
without overflow in the destination operand size, the data limiter substitutes a
limited data value having maximum magnitude (saturated) and having the same
sign as the source accumulator contents:

• $7FFF for 16-bit positive numbers

• $7FFF FFFF for 32-bit positive numbers

• $8000 for 16-bit negative numbers

• $8000 0000 for 32-bit negative numbers

This process is called transfer saturation. The value in the accumulator register is not
shifted or limited and can be reused within the Data ALU. When limiting does occur,
a flag is set and latched in the SR.

3-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3 DATA ALU ARITHMETIC AND ROUNDING

The following paragraphs describe the Data ALU data representation, rounding
modes, and arithmetic methods.

3.3.1 Data Representation

The DSP56600 core uses a fractional data representation for all Data ALU operations.
Figure 3-2 shows the bit weighting of words, long words, and accumulator operands
for this representation. The decimal points are all aligned and are left-justified.

The most negative number that can be represented is –1.0. The internal
representation is $8000 for words and $80000000 for long words.

The most positive word is $7FFF or 1 – 2–15 and the most positive long word is
$7FFFFFFF or 1 – 2–31. These limitations apply to all data stored in memory and to
data stored in the Data ALU input buffer registers. The extension registers associated
with the accumulators allow word growth so that the most positive number that can
be used is approximately 256 and the most negative number is –256.

To maintain alignment of the binary point, when a word operand is written to
accumulator A or B, the operand is written to the most significant accumulator
register (A1 or B1), and its MSB is automatically sign extended through the
accumulator extension register (A2 or B2). The least significant accumulator register
(A0 or B0) is automatically cleared. When a long-word operand is written to an
accumulator, the least significant word of the operand is written to the least
significant accumulator register (see Figure 3-2).

MOTOROLA DSP56600FM/AD 3-9
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The number representation for integers is between ± 2 (N–1). The fractional
representation is limited to numbers between ± 1. To convert from an integer to a
fractional number, the integer must be multiplied by a scaling factor so the result will
always be between ± 1. The representation of integer and fractional numbers is the
same if the numbers are added or subtracted, but is different when the numbers are
multiplied or divided. An example of two numbers multiplied together is given in
Figure 3-3.

Figure 3-2 Bit Weighting and Alignment of Operands

Figure 3-3 Integer/Fractional Multiplication

2–312–1620–28

2–312–16

–20 2–15

–20

Sign Extension Operand Zero
AA0546

Data ALU

Word Operand

X1, X0
Y1, Y0
A1, A0
B1, B0

Long - Word Operand

X1:X0 = X
Y1:Y0 = Y

A1:A0 = A10
B1:B0 = B10

Accumulator A or B

*

A2, B2 A1, B1 A0, B0

S S

Signed Multiplier

S

2N – 1 Product

Sign Extension

2N Bits

S S

Signed Multiplier

0

2N – 1 Product

Zero Fill

2N Bits

Integer Fractional

Signed Multiplication N × N → 2N − 1 Bits

AA0547

S MSP LSP • S• MSP LSP
3-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The key difference is in the alignment of the 2N – 1 bit product. In fractional
multiplication, the 2N – 1 significant product bits should be left-aligned, and a 0
filled in the LSB to maintain fractional representation. In integer multiplication, the
2N – 1 significant product bits should be right-aligned, and the sign bit duplicated to
maintain integer representation. Since the DSP56600 core incorporates a fractional
array multiplier, it always aligns the 2N – 1 significant product bits to the left.

Note: The DSP56600 core always aligns the 2N – 1 significant product bits to the
left in fractional multiplication.

3.3.2 Rounding Modes

The DSP56600 core’s Data ALU performs rounding of the accumulator register to
single precision if requested in the instruction. The upper portion of the accumulator
is rounded according to the contents of the lower portion of the accumulator. The
boundary between the lower portion and the upper portion is determined by the
Scaling Mode bits (S0 and S1) in the SR. Two types of rounding are implemented:
convergent rounding and two’s-complement rounding. The type of rounding is
selected by the Rounding Mode (RM) bit in the MR portion of the SR.

3.3.2.1 Convergent Rounding
Convergent rounding (also called round-to-nearest even number) is the default
rounding mode. The traditional rounding method rounds up any value greater than
one-half and rounds down any value less than one-half. The question arises as to
which way one-half should be rounded. If it is always rounded one way, the results
are eventually biased in that direction. Convergent rounding solves the problem by
rounding down if the number is even (LSB = 0) and rounding up if the number is odd
(LSB = 1). Figure 3-4 shows the four cases for rounding a number in the A1 (or B1)
register. If scaling is set in the SR , the rounding position is updated to reflect the
alignment of the result when it is put on the data bus. However, the contents of the
register are not scaled.

MOTOROLA DSP56600FM/AD 3-11
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.2.2 Two’s-Complement Rounding
When two’s-complement rounding is selected by setting the Rounding Mode (RM)
bit in the SR, all values greater than or equal to one-half are rounded up and all
values less than one-half are rounded down. Therefore, a small positive bias is
introduced. Figure 3-5 shows the four cases for rounding a number in the A1 (or B1)
register. If scaling is set in the SR, the rounding position is updated to reflect the

Figure 3-4 Convergent Rounding (No Scaling)

Case I: If A0 < $8000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding

Case II: If A0 > $8000 (1/2), then Round Up (Add 1 to A1)

Case III: If A0 = $8000 (1/2), and the LSB of A1 = 0, then Round Down (Add Nothing)

Case IV: If A0 = $8000 (1/2), and the LSB = 1, then Round Up (Add 1 to A1)

*A0 is always clear; performed during RND, MPYR, MACR.

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X X X X
39 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X X X X
39 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding

After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

AA0548

3-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

alignment of the result when it is put on the data bus. However, the contents of the
register are not scaled.

Figure 3-5 Two’s-Complement Rounding (No Scaling)

Case I: If A0 < $8000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding

Case II: If A0 > $8000 (1/2), then Round Up (Add 1 to A1)

Case III: If A0 = $8000 (1/2), and the LSB of A1 = 0, then Round Up (Add 1 to A1)

Case IV: If A0 = $8000 (1/2), and the LSB of A1 = 1, then Round Up (Add 1 to A1)

*A0 is always clear; performed during RND, MPYR, MACR.

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X X X X
39 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X X X X
39 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 0 0 0
39 32 31 16 15 0

A2 A1 A0*

AA0549

MOTOROLA DSP56600FM/AD 3-13
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.3 Arithmetic Saturation Mode

By setting the Arithmetic Saturation Mode (SM) bit in the SR, the arithmetic unit’s
result is limited to 32 bits (MSP and LSP). The highest dynamic range of the machine
is then limited to 32 bits. The purpose of this bit is to provide a saturation mode for
algorithms that do not recognize or cannot take advantage of the extension
accumulator.

The arithmetic saturation logic operates by checking three bits of the 40-bit result
after rounding: two bits of the extension byte (EXT[7] and EXT[0]) and one bit on the
MSP (MSP[15]). The result obtained in the accumulator when the SM bit is set to 1 is
shown in Table 3-1:

The two saturation constants $00 7FFF FFFF and $FF 8000 0000 are not affected by the
scaling mode. In the same way, the rounding of the saturation constant during
execution of the MPYR, MACR, and RND instructions is independent of the scaling
mode: $00 7FFF FFFF is rounded to $00 7FFF 0000 and $FF 8000 0000 to $FF 8000 0000.

When in Arithmetic Saturation mode, the Overflow bit (V bit) in the SR is set if the
Data ALU result is not representable in the 32-bit accumulator; that is, arithmetic
saturation has occurred. This also implies that the Limiting bit (L bit) in the SR is set
when an arithmetic saturation occurs.

Note: The Arithmetic Saturation mode is always disabled during the execution of
the following instructions: TFR, Tcc, DMACsu, DMACuu, MACsu,
MACuu, MPYsu, MPYuu, CMPU, and all BIT FIELD UNIT operations. If

Table 3-1 Actions of the Arithmetic Saturation Mode (SM = 1)

EXT[7] EXT[0] MSP[15] Result in Accumulator

0 0 0 unchanged

0 0 1 $00 7FFF FFFF

0 1 0 $00 7FFF FFFF

0 1 1 $00 7FFF FFFF

1 0 0 $FF 8000 0000

1 0 1 $FF 8000 0000

1 1 0 $FF 8000 0000

1 1 1 unchanged

3-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the result of these instructions should be saturated, a MOVE A,A (or B,B)
instruction must be added following the original instruction (provided no
scaling is set). However, the V bit of the SR is never set by the arithmetic
saturation of the accumulator during the MOVE A,A (or B,B). Only the L
bit is set.

3.3.4 Multi-Precision Arithmetic Support

A set of Data ALU operations is provided in order to facilitate multi-precision
multiplications. When these instructions are used, the multiplier accepts some
combinations of signed two’s-complement format and unsigned format. Table 3-2
shows these instructions.

Figure 3-6 shows how the DMAC instruction is implemented inside the Data ALU.

Table 3-2 Acceptable Signed and Unsigned Two’s-Complement Multiplication

Instruction Description

MPY/MAC su Multiplication and multiply-accumulate with signed times unsigned
operands

MPY/MAC uu Multiplication and multiply-accumulate with unsigned times
unsigned operands

DMACss Multiplication with signed times signed operands and 16-bit
arithmetic right shift of the accumulator before accumulation

DMACsu Multiplication with signed times unsigned operands and 16-bit
arithmetic right shift of the accumulator before accumulation

DMACuu Multiplication with unsigned times unsigned operands and 16-bit
arithmetic right shift of the accumulator before accumulation

MOTOROLA DSP56600FM/AD 3-15
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-7 illustrates the use of these instructions in the case of a double-precision
multiplication. The signed × signed operation is used to multiply or
multiply-accumulate the two upper signed portions of two signed double-precision
numbers. The unsigned × signed operation is used to multiply or
multiply-accumulate the upper signed portion of one double-precision number with
the lower unsigned portion of the other double-precision number. The unsigned ×
unsigned operation is used to multiply or multiply-accumulate the lower, unsigned
portion of one double-precision number with the lower unsigned portion of the other
double-precision number.

Figure 3-6 DMAC Implementation

Multiply

+

Accumulate

Accumulator Shifter

>> 16

AA0550

3-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Arithmetic and Rounding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.5 Block Floating Point FFT Support

The Block Floating Point FFT operation requires the early detection of data growth
between FFT butterfly passes. If data growth is detected, suitable down scaling must
be applied to ensure that no overflow occurs during the next butterfly calculation
pass. The total scaling applied is the block exponent of the FFT output. The Block
Floating Point FFT algorithm is described in the Motorola application note,
Implementation of Fast Fourier Transforms on Motorola’s Digital Signal Processors
(APR4/D).

Data growth detection is implemented as a status bit in the SR. The FFT Scaling Bit S
(Bit 7) of the SR is set upon moving a result from accumulator A or B to the XDB or
YDB bus (during an accumulator to memory or accumulator to register move) and
remains set until explicitly cleared—that is, the S bit is a “sticky” bit.

Figure 3-7 Double Precision Multiplication Using DMAC

32 bits

64 bits

B0B1A0A1A2

X0X1

Y1 Y0

XLXH

YH YL

×

=

S Ext

+

+

+

XL × YL

XH × YL

YH × XL

XH × YH

Signed × Unsigned

Signed × Signed

Unsigned × Unsigned

AA0551

x0,y0,a
a0,b0

x1,y0,a

y1,x0,a
a0,b1

x1,y1,a

mpyuu
move

dmacsu

macsu
move

dmacss

MOTOROLA DSP56600FM/AD 3-17
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4 DATA ALU PROGRAMMING MODEL

The Data ALU features 16-bit input/output data registers that can be concatenated to
accommodate 32-bit data and two 40-bit accumulators, which are segmented into
three 16-bit pieces that can be transferred over the buses. Figure 3-8 illustrates how
the registers in the programming model are grouped.

The Data ALU is fully pipelined and every instruction takes 2 clock cycles to
complete. However, a new instruction can be started on every clock cycle and a new
result is produced on every clock cycle, thus yielding an effective execution rate of
one instruction per clock cycle. There are no pipeline dependencies when using the
result of the Data ALU as source operand for the immediate following Data ALU
instruction. Nevertheless, Data ALU operations can produce pipeline conflicts as
described in the following paragraphs.

3.4.1 Pipeline Conflicts—Arithmetic Stall

Since every Data ALU instruction takes 2 clock cycles to complete, an interlock
condition occurs when trying to read an accumulator (or parts of an accumulator)
while the preceding instruction was a Data ALU instruction that specified that same
accumulator as the destination. This interlock condition, named arithmetic stall, is
detected in hardware and an idle cycle (NOP instruction) is inserted, thereby
guaranteeing correctness. The user can optimize code by inserting a useful

Figure 3-8 DSP56600 Core Programming Model

Data ALU

Data ALU

* A2 A1 A0

Input Registers

Accumulator Registers

*Read as sign extension bits, written as don’t care.

X Y

A B

X1 X0

* B2 B1 B0

Y1 Y0

AA0552

31

15

0

00 15

31

15

0

00 15

39

15

0

00 150715

39

15

0

00 150715

3-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

instruction before the read instruction. Example 3-1 describes the cases in which the
pipelined nature of the Data ALU generates arithmetic stall cases.

3.4.2 Pipeline Conflicts—Status Stall

A second interlock condition, named status stall, occurs when trying to read the SR
while the preceding or the second preceding instruction was a Data ALU instruction
or an accumulator read (which updates the S and L condition codes in the SR). The
hardware inserts two or one idle cycles (NOP instruction) accordingly, thereby
guaranteeing correctness. Note that “read status register” implies a MOVE status
register, Bit Manipulation instructions (for example, the BSET instruction) on an SR
bit, or Program Control instructions (such as the BSCLR instruction) that test for a bit
in the SR. Example 3-2 describes the cases in which the pipelined nature of the Data
ALU generates stall interlock cases.

Example 3-1 Pipeline Conflicts—Arithmetic Stall

;the following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for move:

mac x0,y0,a ;data ALU operation

move a1,x:(r0)+ ;one clock delay is added to

;allow mac to complete

;the following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for bset:

tfr a,b ;data ALU operation

bset #3,b ;one clock delay is added to

;allow tfr to complete

;the following example illustrates a way to find useful usage of

;the pipeline delay clock:

mac x0,y0,a ;data ALU operation

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;read accumulator A without

;any time penalty

MOTOROLA DSP56600FM/AD 3-19
For More Information On This Product,

 Go to: www.freescale.com

Data Arithmetic Logic Unit

Data ALU Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: A special case of interlock occurs when using a 16-bit logic instruction and
writing concurrently to the EXT or the LSP of the same accumulator. The
hardware inserts one idle cycle (NOP instruction), thereby the correctness
is guaranteed. For example:

or x1,a y1,a0

Example 3-2 Pipeline Conflicts—Status Stall

following example illustrates a two-clock pipeline delay when

;trying to read the status register as source for move:
mac x0,y0,a ;data ALU operation

move sr,x:(r0)+ ;TWO clock delay is added to

;allow mac to update SR

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for bit

;manipulation instruction:

move a,x:(r0)+ ;read full accumulator

nop

btst #5,sr ;ONE clock delay is added (and

;not two) due to the previous nop

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for program control

;instruction:

insert x0,y1,a ;data ALU operation

bsclr #5,sr,$f00f ;ONE clock delay is added (and not

;two) since bsclr is a two word

;instruction

3-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 4

ADDRESS GENERATION UNIT

MOTOROLA DSP56600FM/AD 4-1
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.1 INTRODUCTION . 4-3
4.2 AGU ARCHITECTURE . 4-3
4.3 PROGRAMMING MODEL. 4-5
4.4 ADDRESSING MODES. 4-8
4.5 ADDRESS MODIFIER TYPES . 4-13

4-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.1 INTRODUCTION

The Address Generation Unit (AGU) is one of the three execution units on the
DSP56600 core. The AGU performs the effective address calculations using integer
arithmetic necessary to address data operands in memory and contains the registers
used to generate the addresses. It implements four types of arithmetic: linear,
modulo, multiple wrap-around modulo, and reverse-carry. The AGU operates in
parallel with other chip resources to minimize address-generation overhead.

4.2 AGU ARCHITECTURE

The AGU is divided into two halves, each with its own Address Arithmetic Logic
Unit (Address ALU). Each Address ALU has four sets of register triplets, and each
register triplet is composed of an address register, an offset register, and a modifier
register. The two Address ALUs are identical. Each contains a 16-bit full adder
(called offset adder), which can perform the following additions:

• Plus one

• Minus one

• The contents of the respective offset register N

• Minus N to the contents of the selected address register.

A second full adder (called a modulo adder) adds the summed result of the first full
adder to a modulo value, M or minus M, where M is stored in the respective modifier
register. A third full adder (called a reverse-carry adder) can perform the following
additions:

• Plus one

• Minus one

• The offset N (stored in the respective offset register)

• Minus N to the selected address register with the carry propagating in the
reverse direction—that is, from the Most Significant Bit (MSB) to the Least
Significant Bit (LSB)

The offset adder and the reverse-carry adder operate in parallel and share common
inputs. The only difference between them is that the carry propagates in opposite
directions. Test logic determines which of the three summed results of the full adders
is output. Figure 4-1 shows a block diagram of the AGU.

MOTOROLA DSP56600FM/AD 4-3
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

AGU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each Address ALU can update one address register from its respective address
register file during one instruction cycle. The contents of the associated modifier
register specifies the type of arithmetic to be used in the address register update
calculation. The modifier value is decoded in the Address ALU.

The two Address ALUs can generate two 16-bit addresses every instruction cycle —
one for any two of the XAB and YAB, or one PAB address. The AGU can directly
address 65,536 locations on the XAB bus, 65,536 locations on the YAB bus, and 65,536
locations on the PAB bus. The two independent Address ALUs work with the two
data memories to feed two operands to the Data ALU in a single cycle. Each operand
can be addressed by a register triplet.

The registers are the address registers R0–R3 on the Low Address ALU and R4–R7 on
the High Address ALU, the offset registers N0–N3 on the Low Address ALU and
N4–N7 on the High Address ALU, and the modifier registers M0–M3 on the Low
Address ALU and M4–M7 on the High Address ALU. In this section, these registers
are referred to as Rn for any address register, Nn for any offset register, and Mn for
any modifier register. The Rn, Nn, and Mn registers are register triplets—that is, only
registers within a triplet can modify the other registers within that triplet. For
example, only N2 and M2 can be used to update R2. The eight triplets are as follows:

Figure 4-1 AGU Block Diagram

N0

N1

N2

N3 M3

M2

M1

M0

Address
ALU

Address
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

Triple Multiplexer

Low Address ALU High Address ALU

XAB YAB PAB

Program Counter Address

EP

AA0553

Global Data Bus

4-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Low Address ALU register triplets

– R0:N0:M0

– R1:N1:M1

– R2:N2:M2

– R3:N3:M3

• High Address ALU register triplets

– R4:N4:M4

– R5:N5:M5

– R6:N6:M6

– R7:N7:M7

Each register can be read or written by the Global Data Bus (GDB).

The address output multiplexers select the source for the XAB, YAB, and PAB buses.
These multiplexers allow the XAB, YAB, or PAB outputs to originate from the R0–R3
or R4–R7 registers.

4.3 PROGRAMMING MODEL

The programmer’s view of the AGU is eight sets of three registers, as shown in
Figure 4-2. These registers can be used as temporary data registers and indirect
memory pointers. Automatic updating is available when using address register
indirect addressing. The address registers can be programmed for linear addressing,
modulo addressing (regular or multiple wrap-around), and bit-reverse addressing.

Figure 4-2 AGU Programming Model

R7

R6

R5

R4

R3

R2

R1

R0

N7

N6

N5

N4

N3

N2

N1

N0

Offset Registers Modifier Registers

Upper File

Lower File

Address Registers

M7

M6

M5

M4

M3

M2

M1

M0

EP

AA0554

MOTOROLA DSP56600FM/AD 4-5
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3.1 Address Register Files

The eight 16-bit address registers R0–R7 can contain addresses or general purpose
data. The 16-bit address in a selected address register is used in calculating the
effective address of an operand. When supporting parallel X and Y data memory
moves, the address registers must be programmed as two separate files, R0–R3 and
R4–R7. The contents of an address register can point directly to data or can be offset.

In addition, an address register can be pre-updated or post-updated according to the
addressing mode selected. If an address register is updated, a modifier register (Mn)
is always used to specify the type of update arithmetic. Offset registers (Nn) are used
for the update-by-offset addressing modes.

The address register modification is performed by one of the two modulo arithmetic
units. Most addressing modes modify the selected address register in a
read-modify-write fashion. The address register is read, its contents are modified by
the associated modulo arithmetic unit, and the register is written with the
appropriate output of the modulo arithmetic unit. The form of address register
modification performed by the modulo arithmetic unit is controlled by the contents
of the offset and modifier registers discussed in the following paragraphs.

4.3.2 Stack Extension Pointer

The contents of the 16-bit stack Extension Pointer (EP) register are used to point to
the stack extension in data memory whenever the stack extension is enabled and
move operations to or from the on-chip hardware stack are needed. The EP register is
a read/write register and can be referenced implicitly (e.g., by the DO, JSR, or RTI
instructions) or directly (e.g., by the MOVEC instruction). The EP register is not
initialized during hardware reset, and must be set (using a MOVEC instruction) prior
to enabling the stack extension. For more information of the stack extension mode of
operation, see Stack Extension Pointer (EP) on page 5-9.

4.3.3 Offset Register Files

The eight 16-bit offset registers, N0–N7, can contain offset values used to increment
or decrement address registers in address register update calculations. These
registers can also be used for 16-bit general purpose storage. For example, the
contents of an offset register can be used to step through a table at some rate (e.g.,
five locations per step for waveform generation), or the contents can specify the offset

4-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

into a table or the base of the table for indexed addressing. Each address register has
its own offset register associated with it.

4.3.4 Modifier Register Files

The eight 16-bit modifier registers, M0–M7, define the type of address arithmetic
performed for addressing mode calculations. These registers can also be used for
general purpose storage. The Address ALU supports linear, modulo, and
reverse-carry arithmetic types for all address register indirect addressing modes. For
modulo arithmetic, the contents of Mn also specify the modulus. Each address
register has its own modifier register associated with it. Each modifier register is set
to $FFFF on processor reset, which specifies linear arithmetic as the default type for
address register update calculations.

MOTOROLA DSP56600FM/AD 4-7
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4 ADDRESSING MODES

The DSP56600 core provides four different addressing modes: Register Direct,
Address Register Indirect, PC Relative, and Special, as listed in Table 4-1.

Table 4-1 Addressing Modes Summary

Addressing Modes

Uses
Mn

Modi-
 fier

Operand Reference
Assembler

Syntax
S C D A P X Y L X

Y

Register Direct

Data or Control Register No √ √

Address Register Rn No √

Address Modifier Register Mn No √

Address Offset Register Nn No √

Address Register Indirect

No Update No √ √ √ √ √ (Rn)

Post-increment by 1 Yes √ √ √ √ √ (Rn) +

Post-decrement by 1 Yes √ √ √ √ √ (Rn) –

Postincrement by Offset Nn Yes √ √ √ √ √ (Rn) + Nn

Post-decrement by Offset Nn Yes √ √ √ √ (Rn) – Nn

Indexed by Offset Nn Yes √ √ √ √ (Rn + Nn)

Pre-decrement by 1 Yes √ √ √ √ – (Rn)

Short/Long Displacement Yes √ √ √ (Rn + displ)

PC Relative

Short/Long Displacement
PC Relative

No √ (PC + displ)

Address Register No √ (PC + Rn)

4-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.1 Register Direct Modes

The Register Direct addressing modes specify that the operand is in one (or more) of
the ten Data ALU registers, twenty-four address registers, or seven control registers.

4.4.1.1 Data or Control Register Direct
The operand is in one, two, or three Data ALU register(s), as specified in a portion of
the data bus movement field in the instruction. This addressing mode is also used to
specify a control register operand for special instructions. This reference is classified
as a register reference.

4.4.1.2 Address Register Direct
The operand is in one of the twenty-four address registers specified by an effective
address in the instruction. This reference is classified as a register reference.

Special

Short/Long Immediate Data No √

Absolute Address No √ √ √ √

Absolute Short Address No √ √ √

Short Jump Address No √

I/O Short Address No √ √

Implicit No √ √ √

Note: Use this key to the Operand Reference columns:

S = System Stack Reference X = X Memory reference
C = Program Control Unit Register Reference Y = Y Memory Reference
D = Data ALU Register Reference L = L Memory reference
A = Address ALU Memory Reference XY = XY Memory Reference
P = Program Memory Reference

Table 4-1 Addressing Modes Summary (Continued)

Addressing Modes

Uses
Mn

Modi-
 fier

Operand Reference
Assembler

Syntax
S C D A P X Y L X

Y

MOTOROLA DSP56600FM/AD 4-9
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.2 Address Register Indirect Modes

The Address Register Indirect modes specify that the address register is used to point
to a memory location. The term indirect is used because the register contents are not
the operand itself, but rather the operand address. These addressing modes specify
that an operand is in memory and specify the effective address of that operand.

4.4.2.1 No Update (Rn)
The operand address is in the address register. The contents of the address register
are unchanged by executing the instruction.

4.4.2.2 Post-Increment By 1 (Rn) +
The operand address is in the address register. After the operand address is used, it is
incremented by 1 and stored in the same address register. The type of arithmetic
used to calculate is determined by the Mn register. The Nn register is ignored.

4.4.2.3 Post-Decrement By 1 (Rn) –
The operand address is in the address register. After the operand address is used, it is
decremented by 1 and stored in the same address register. The type of arithmetic
used to calculate is determined by the Mn register. The Nn register is ignored.

4.4.2.4 Post-Increment By Offset Nn (Rn) + Nn
The operand address is in the address register. After the operand address is used, it is
incremented by the contents of the Nn register and stored in the same address
register. The type of arithmetic used to calculate is determined by the Mn register.
The contents of the Nn register are unchanged.

4.4.2.5 Post-Decrement By Offset Nn (Rn) – Nn
The operand address is in the address register. After the operand address is used, it is
decremented by the contents of the Nn register and stored in the same address
register. The type of arithmetic used to calculate is determined by the Mn register.
The contents of the Nn register are unchanged.

4.4.2.6 Indexed By Offset Nn (Rn + Nn)
The operand address is the sum of the contents of the address register and the
contents of the address offset register, Nn. The type of arithmetic used to calculate is
determined by the Mn register. The contents of the Rn and Nn registers are
unchanged.

4.4.2.7 Pre-Decrement By 1 (Rn)
The operand address is the contents of the address register decremented by 1. The
contents of Rn are decremented and stored in the same address register. The type of

4-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

arithmetic used to calculate is determined by the Mn register. The Nn register is
ignored.

4.4.2.8 Short Displacement (Rn + Short Displacement)
The operand address is the sum of the contents of the address register Rn and a short
displacement occupying seven bits in the instruction word. The displacement is first
sign-extended to sixteen bits and then added to Rn to obtain the operand address.
The contents of the Rn register are unchanged. The type of arithmetic used to
calculate is determined by the Mn register. The Nn register is ignored. This reference
is classified as a memory reference.

4.4.2.9 Long Displacement (Rn + Long Displacement)
This addressing mode requires one word (label) of instruction extension. The
operand address is the sum of the contents of the address register and the extension
word. The contents of the address register are unchanged. The type of arithmetic
used to increment the address register is determined by the Mn register. The Nn
register is ignored. This reference is classified as a memory reference.

4.4.3 PC Relative Modes

In the PC relative addressing modes, the operand address is obtained by adding a
displacement, represented in two’s complement format, to the value of the Program
Counter (PC). The PC points to the address of the instruction’s opcode word. The Nn
and Mn registers are ignored, and the arithmetic used is always linear.

4.4.3.1 Short Displacement PC Relative
The short displacement occupies nine bits in the instruction operation word. The
displacement is first sign extended to sixteen bits and then added to the PC to obtain
the operand address.

4.4.3.2 Long Displacement PC Relative
This addressing mode requires one word of instruction extension. The operand
address is the sum of the contents of the PC and the extension word.

4.4.3.3 Address Register PC Relative
The operand address is the sum of the contents of the PC and the address register.
The Mn and Nn registers are ignored. The contents of the address register are
unchanged.

MOTOROLA DSP56600FM/AD 4-11
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.4 Special Address Modes

The special address modes do not use an address register in specifying an effective
address. These modes either specify the operand or the operand address in a field of
the instruction, or they implicitly reference an operand.

4.4.4.1 Immediate Data
This addressing mode requires one word of instruction extension. The immediate
data is a word operand in the extension word of the instruction. This reference is
classified as a program reference.

4.4.4.2 Immediate Short Data
The 8-bit or 12-bit operand is part of the instruction operation word. An 8-bit
operand is used for immediate move to register, ANDI, and ORI instructions. It is
zero-extended. A 12-bit operand is used for DO and REP instructions. It is also
zero-extended. This reference is classified as a program reference.

4.4.4.3 Absolute Address
This addressing mode requires one word of instruction extension. The operand
address is in the extension word. This reference is classified as a memory reference
and a program reference.

4.4.4.4 Absolute Short Address
The operand address occupies six bits in the instruction operation word and it is
zero-extended. This reference is classified as a memory reference.

4.4.4.5 Short Jump Address
The operand occupies twelve bits in the instruction operation word. The address is
zero-extended to sixteen bits. This reference is classified as a program reference.

4.4.4.6 I/O Short Address
The operand address occupies six bits in the instruction operation word and it is
one-extended.The I/O short addressing mode is used with the bit manipulation and
move peripheral data instructions.

4.4.4.7 Implicit Reference
Some instructions make implicit reference to the Program Counter (PC), System
Stack (SSH, SSL), Loop Address register (LA), Loop Counter (LC), or Status Register
(SR). These registers are implied by the instruction and their use is defined by the
individual instruction descriptions. See Appendix A, Instruction Set Details, for more
information.

4-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Address Modifier Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 ADDRESS MODIFIER TYPES

The DSP56600 core Address ALU supports linear, reverse-carry, modulo, and
multiple wrap-around modulo arithmetic types for all address register indirect
modes. These arithmetic types easily allow the creation of data structures in memory
for First-In, First-Out (FIFO) queues, delay lines, circular buffers, stacks, and
bit-reversed Fast Fourier Transform (FFT) buffers.

Data is manipulated by updating address registers (pointers) rather than moving
large blocks of data. The contents of the address modifier register define the type of
arithmetic to be performed for addressing mode calculations. For modulo arithmetic,
the address modifier register also specifies the modulus. All address register indirect
modes can be used with any address modifier. Each address register has its own
modifier register associated with it.

The following address modifier types are available:

• Linear addressing

• Reverse-carry addressing

• Modulo addressing

• Multiple wrap-around modulo addressing

Linear addressing is useful for general-purpose addressing. Reverse-carry
addressing is useful for 2k-point FFT addressing. Modulo addressing is useful for
creating circular buffers for FIFO queues, delay lines and sample buffers. Multiple
wrap-around addressing is useful for decimation, interpolation, and waveform
generation since the multiple wrap-around capability can be used for argument
reduction. Table 4-2 lists the address modifier types.

.

Table 4-2 Address Modifier Type Encoding Summary

Modifier Mn Address Calculation Arithmetic

$0000 Reverse-Carry (Bit-Reverse)

$0001 Modulo 2

$0002 Modulo 3

: :

$7FFE Modulo 32767 (215-1)

MOTOROLA DSP56600FM/AD 4-13
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Address Modifier Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.1 Linear Modifier (Mn = $FFFF)

Address modification is performed using normal 16-bit linear (modulo 65,536)
arithmetic. A 16-bit offset, Nn, and ±1 can be used in the address calculations. The
range of values can be considered as signed (Nn from –37,268 to +37,267) or unsigned
(Nn from 0 to +65,536), since there is no arithmetic difference between these two data
representations.

4.5.2 Reverse-Carry Modifier (Mn = $0000)

Reverse carry is selected by setting the modifier register to 0. Address modification is
performed in hardware by propagating the carry in the reverse direction—that is,
from the MSB to the LSB. Reverse carry is equivalent to bit reversing the contents of
Rn (redefining the MSB as the LSB, the next MSB as bit 1, and so on) and the offset
value, Nn, adding normally, and then bit reversing the result. If the +Nn addressing
mode is used with this address modifier and Nn contains a value 2(k–1) (a power of
two), this addressing modifier is equivalent to bit reversing the k LSBs of Rn,
incrementing Rn by 1, and bit reversing the k LSBs of Rn again. This address
modification is useful for addressing the twiddle factors in 2k-point FFT addressing

$7FFF Modulo 32768 (215)

$8001 Multiple Wrap-Around Modulo 2

$8003 Multiple Wrap-Around Modulo 4

$8007 Multiple Wrap-Around Modulo 8

: :

$9FFF Multiple Wrap-Around Modulo 213

$BFFF Multiple Wrap-Around Modulo 214

$FFFF Linear (Modulo 216)

All other combinations are reserved

Table 4-2 Address Modifier Type Encoding Summary (Continued)

Modifier Mn Address Calculation Arithmetic

4-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Address Modifier Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

and to unscramble 2k-point FFT data. The range of values for Nn is 0 to + 32 K (that
is, Nn=215), which allows bit-reverse addressing for FFTs up to 65,536 points.

4.5.3 Modulo Modifier (Mn = Modulus – 1)

Address modification is performed modulo M, where M ranges from 2 to +32,768.
Modulo M arithmetic causes the address register value to remain within an address
range of size M, defined by a lower and upper address boundary.

The value m = M – 1 is stored in the modifier register. The lower boundary (base
address) value must have zeros in the k LSBs, where 2k ≥ M, and therefore must be a
multiple of 2k. The upper boundary is the lower boundary plus the modulo size
minus one (base address + M – 1). Since M ≤ 2k, once M is chosen, a sequential series
of memory blocks, each of length 2k, is created where these circular buffers can be
located. If M < 2k, there is a space between sequential circular buffers of (2k) – M.

The address pointer is not required to start at the lower address boundary or to end
on the upper address boundary; it can initially point anywhere within the defined
modulo address range. Neither the lower nor the upper boundary of the modulo
region is stored; only the size of the modulo region is stored in Mn. The boundaries
are determined by the contents of Rn. Assuming the (Rn) + indirect addressing
mode, if the address register pointer increments past the upper boundary of the
buffer (base address + M – 1), it wraps around through the base address (lower
boundary). Alternatively, assuming the (Rn)– indirect addressing mode, if the
address decrements past the lower boundary (base address), it wraps around
through the base address + M – 1 (upper boundary).

If an offset, Nn, is used in the address calculations, the 16-bit absolute value, |Nn|,
must be less than or equal to M for proper modulo addressing. If Nn > M, the result
is data dependent and unpredictable, except for the special case where Nn = P × 2k, a
multiple of the block size where P is a positive integer. For this special case, when
using the (Rn) + Nn addressing mode, the pointer, Rn, jumps linearly to the same
relative address in a new buffer, which is P blocks forward in memory. Similarly, for
(Rn) – Nn, the pointer jumps P blocks backward in memory.

This technique is useful in sequentially processing multiple tables or N-dimensional
arrays. The range of values for Nn is –32,768 to +32,767. The modulo arithmetic unit
automatically wraps around the address pointer by the required amount. This type
address modification is useful for creating circular buffers for FIFO queues, delay
lines, and sample buffers up to 32,767 words long, as well as for decimation,
interpolation, and waveform generation. The special case of (Rn) ± Nn modulo M
with Nn = P × 2k is useful for performing the same algorithm on multiple blocks of

MOTOROLA DSP56600FM/AD 4-15
For More Information On This Product,

 Go to: www.freescale.com

Address Generation Unit

Address Modifier Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

data in memory, for example, when performing parallel Infinite Impulse Response
(IIR) filtering.

4.5.4 Multiple Wrap-Around Modulo Modifier

The multiple wrap-around addressing mode is selected by setting Bit 15 of the Mn
register to 1, as shown in Table 4-2 on page 4-13. The address modification is
performed modulo M, where M is a power of 2 in the range from 21 to 214. Modulo M
arithmetic causes the address register value to remain within an address range of size
M defined by a lower and upper address boundary. The value M – 1 is stored in the
Mn register’s least significant 15 bits (bits 14–0), while bit 15 is set to 1. The lower
boundary (base address) value must have 0s in the k LSBs, where 2k = M, and
therefore must be a multiple of 2k. The upper boundary is the lower boundary plus
the modulo size minus one (base address + M – 1)

The address pointer is not required to start at the lower address boundary and may
begin anywhere within the defined modulo address range (between the lower and
upper boundaries). If the address register pointer increments past the upper
boundary of the buffer (base address + M – 1), it wraps around to the base address. If
the address decrements past the lower boundary (base address), it wraps around to
the base address + M – 1. If an offset Nn is used in the address calculations, it is not
required to be less than or equal to M for proper modulo addressing since multiple
wrap around is supported for (Rn) + Nn, (Rn) – Nn and (Rn + Nn) address updates.

Multiple wraparound cannot occur with (Rn)+, (Rn)–, and –(Rn) addressing modes.

4-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 5

PROGRAM CONTROL UNIT

MOTOROLA DSP56600FM/AD 5-1
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.1 INTRODUCTION . 5-3
5.2 PCU OVERVIEW. 5-3
5.3 PCU ARCHITECTURE . 5-4
5.4 PROGRAMMING MODEL. 5-6

5-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.1 INTRODUCTION

This section describes the Program Control Unit (PCU) hardware and its
programming model. The instruction pipeline description is also included, since
understanding the pipeline is particularly important in understanding the DSP56600
core. Note that the pipelined operation remains essentially hidden from the user,
thus easing programmability.

5.2 PCU OVERVIEW

The PCU performs instruction prefetch, instruction decoding, hardware DO loop
control and exception processing. Its programmer’s model consists of the following
registers:

• Program Counter (PC) register—16-bit, read/write

• Status Register (SR)—16-bit, read/write

• Loop Address (LA) register—16-bit, read/write

• Loop Counter (LC) register—16-bit, read/write

• Vector Base Address (VBA) register—16-bit, read/write

• Size (SZ) register—16-bit, read/write

• Stack Pointer (SP) register—6-bit, read/write

• Operating Mode Register (OMR)—16-bit, read/write

• Stack Counter (SC) register—5-bit, read/write

The PCU also includes a hardware System Stack (SS). In addition to the standard
program flow-control resources (e.g., interrupts and jumps), the PCU supports
hardware DO looping and REPEAT mechanism.

The SS is a 16-level by 32-bit separate internal memory used to automatically store
the PC and SR registers during subroutine calls and long interrupts. For hardware
loops, the SS stores the LC and LA registers as well as the PC and SR registers. All
other data and control registers can be stored in the SS via software control. Each
location in the SS is addressable as two 16-bit registers, the System Stack High (SSH)
and System Stack Low (SSL) registers, which are pointed to by the four LSBs of the
six-bit Stack Pointer (SP) register.

The PCU implements a seven-stage pipeline and controls the five processing states of
the DSP56600 core: Normal, Exception, Reset, Wait, and Stop.

MOTOROLA DSP56600FM/AD 5-3
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

PCU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3 PCU ARCHITECTURE

The PCU consists of three hardware blocks:

• Program Decode Controller (PDC)

• Program Address Generator (PAG)

• Program Interrupt Controller (PIC)

The PDC decodes the 24-bit instruction loaded into the instruction latch and
generates all signals necessary for pipeline control.

The PAG contains all the hardware needed for program address generation, system
stack and loop control.

The PIC arbitrates among all interrupt requests (internal interrupts, as well as the
five external requests IRQA, IRQB, IRQC, IRQD, and NMI), and generates the
appropriate interrupt vector address.

Figure 5-1 shows a block diagram of the PCU.

Figure 5-1 Program Control Unit Architecture

Program
Interrupt

Controller

Program
Decode

Controller

Program
Address

Generator

GDBPABPDBGDB

Interrupt Request Inputs

RESET

Legend:
GDB—Global Data Bus
PDB—Program Data Bus
PAB—Program Address Bus AA0566

5-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

PCU Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.1 Instruction Pipeline

The PCU implements a seven-stage pipelined architecture in which concurrent stages
of this pipeline occur. These seven stages consist of two prefetch stages, one decode
stage, two address generation stages and two execute stages, as illustrated in
Figure 5-2 and described in Table 5-1. Although composed of many stages, the
pipelined operation remains essentially hidden from the user, thus easing
programmability. This is achieved by means of interlock hardware that is present in
every execution unit of the processor. Because of this feature, programs written for
the DSP56000 family devices will execute correctly on the DSP56600 core without any
need for modification. Modification of the program may reduce the occurrence of
interlocks and improve execution speed.

Table 5-1 Seven-Stage Pipeline

Pipeline Stage Description of Pipeline Stage

PreFetch-I • Address generation for Program Fetch
• Increment PC register

PreFetch-II • Instruction word read from memory

Decode • Instruction Decode

AddressGen-I • Address generation for Data Load/Store operations

AddressGen-II • Address pointer update

Execute-I • Read source operands to Multiplier and Adder
• Read source register for memory store operations
• Multiply
• Write destination register for memory load operations

Execute-II • Read source operands for Adder if written by previous ALU
operation

• Add
• Write Adder results to the Adder destination operand
• Write Multiplier results to the Multiplier destination operands

Figure 5-2 Seven-Stage Pipeline

PreFetch
I

PreFetch
II

Decode Address
Gen I

Address
Gen II

Execute
I

Execute
II

AA0567

MOTOROLA DSP56600FM/AD 5-5
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.2 Clock Oscillator

The DSP56600 core uses a two-phase clock for instruction execution. Therefore, the
clock runs at the same rate as the instruction execution. The clock can be provided by
connecting an external crystal between XTAL and EXTAL, or by an external oscillator
connected to EXTAL. The PLL can be used in order to determine the internal
frequency related to the external. For more information, see Section 8, PLL and
Clock Generator.

5.4 PROGRAMMING MODEL

The PCU features the LA and LC registers dedicated to supporting the hardware DO
loop instruction in addition to the standard program flow-control resources, such as
a PC, SR, and SS. All registers are read/write to facilitate system debugging.
Figure 5-3 shows the PCU programming model with the registers and the SS. The
following paragraphs describe each register.

Figure 5-3 PCU Programming Model

S
P

[3
:0

]

Program Counter (PC)

0

Status Register
(SR)

Loop Address
Register (LA)

Loop Counter (LC)

Stack Pointer (SP)

Read as 0, should be written with 0 for future compatibility.

15
System Stack (SS)

Operating Mode
Register (OMR)

Vector Base
Address (VBA)

Stack Size (SZ)

Stack Counter(SC)

04

AA0568

15 0

15 0

15 0

15 0

31 16 15 0SSH SSL

15 6 5 4 3 0

15 0

8 7

MR CCR

15 0

15 08 7

5-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.1 Program Counter (PC)

The Program Counter (PC) register is a special-purpose 16-bit address register that
contains the address of instruction words in the program memory space. The PC can
point to instructions, data operands, or addresses of operands. References to this
register are always inherent and are implied by most instructions. The PC is stacked
when hardware loops are initialized, when a JSR is performed, or when a long
interrupt occurs.

5.4.2 Vector Base Address Register (VBA)

The Vector Base Address (VBA) register is a 16-bit register. The lower eight bits (bits
7-0) are read-only and are always read as 0. The VBA is used as a base address of the
interrupt vector and interrupt vector plus one. When executing a fast or long
interrupt, the vector address bits 7-0 are driven from the Program Interrupt Control
unit, while bits 15-8 are driven from the VBA. The VBA register is a read/write
register that is referenced implicitly by interrupt processing or directly by the
MOVEC instruction. The VBA is cleared during hardware reset.

5.4.3 Loop Counter Register (LC)

The Loop Counter (LC) register is a special read/write 16-bit counter that specifies
the number of times a hardware program loop is to be repeated, in the range of 0 to
(216 – 1). This register is stacked into the SSL by a DO instruction and unstacked by
end-of-loop processing or by execution of an ENDDO and BRKcc instructions. The
LC is also used in the REP instruction to specify the number of times an instruction is
to be repeated.

5.4.4 Loop Address Register (LA)

The Loop Address (LA) register is a 16-bit register whose contents indicate the
location of the last instruction word in a hardware loop. This register is stacked into
the SSH by a DO instruction and is unstacked by end-of-loop processing or by
execution of an ENDDO and BRKcc instructions. The LA register, a read/write
register, is written by a DO instruction and read by the SS when stacking the register.

MOTOROLA DSP56600FM/AD 5-7
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.5 System Stack (SS)

The System Stack (SS) is a separate 16 × 32-bit internal memory divided into two
banks: System Stack High (SSH) and System Stack Low (SSL), 16 bits wide each. The
SS is used for the following main tasks:

• Storing return address and status for subroutine calls

• Storing LA, LC, PC and SR for the hardware DO loops

• Storing calling routine variables for subroutine calls

When a subroutine is called (e.g., using the JSR instruction), the return address (PC)
is automatically stored in the SSH and the chip status (SR) is automatically stored in
the SSL.

When a return from subroutine is initiated by using the RTS instruction, the contents
of the top location in the SSH are pulled and loaded into the PC and the SR is not
affected. When a return is initiated using the RTI instruction, the contents of the top
locations in the SS are pulled and loaded into the PC and SR (from SSH and SSL
respectively).

The SS is also used to implement no-overhead nested hardware DO loops. When a
hardware do-loop is initiated (e.g., by using the DO instruction), the previous
contents of the Loop Counter (LC) register is automatically stored in the SSL, the
previous contents of the Loop Address (LA) register is automatically stored in the
SSH and the Stack Pointer (SP) is incremented. The address of the loop’s first
instruction (PC) is also stored in the SSH and the chip status register (SR) is stored in
the SSL.

The SS can be extended in the data memory by means of control hardware that
monitors the accesses to the SS. This extension is enabled by Stack Extension Enable
(SEN) bit in the OMR. If this bit is cleared, the extension of the system stack is
disabled and the amount of nesting is determined by the limited level of the
hardware stack (limited to fifteen locations—one location is unusable when the stack
extension is disabled). As many as fifteen long interrupts, seven DO loops, fifteen
JSRs, or combinations of these can be accommodated by the SS when its extension in
data memory is disabled. When the SS limit is exceeded, either in the Extended or in
the Non-extended mode, a Nonmaskable stack error Interrupt (NMI) occurs.

By enabling the stack extension, the limits on the level of nesting of subroutines or
DO loops can be set to any desired value. A stack extension algorithm is applied to all
accesses to the stack.

5-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If an explicit push operation (such as a move to SSH) or an implicit push operation
(such as a JSR) is performed, then the stack is examined by the stack extension control
logic after that push has finished. If the on-chip hardware stack is full, then the least
recently used word is moved into data memory to the location specified by the stack
Extension Pointer (EP).

If an explicit pop operation (such as a move from SSH) or an implicit pop operation
(such as a RTS) is performed, then the stack is examined by the stack extension
control logic after that pop has finished. If the on-chip hardware stack is empty, then
the stack is loaded from the location (in data memory) specified by the stack
Extension Pointer (EP).

5.4.6 Stack Extension Pointer (EP)

The stack Extension Pointer (EP) register is a 16-bit register whose contents point to
the stack extension in data memory whenever the stack extension is enabled and
move operations to or from the on-chip hardware stack are needed. The EP register is
located in the Address Generation Unit (AGU). For more details, see Stack Extension
Pointer on page 4-6

5.4.7 Stack Size Register (SZ)

The Stack Size (SZ) register is a 16-bit register that determines the number of stack
levels that the software requires in the Extended mode. The Extended Stack
Overflow flag is generated upon comparing the value in SP to the value in SZ. The SZ
register is not initialized during hardware reset, and must be set (using a MOVEC
instruction) prior to enabling the stack extension.

5.4.8 Stack Counter Register (SC)

The Stack Counter (SC) register is a 5-bit register that monitors how many entries of
the hardware stack are in use. The SC register is a read/write register and is
referenced implicitly by some instructions (DO, JSR, RTI, etc.) or directly by the
MOVEC instruction. The SC register is cleared during hardware reset.

Note: During normal operation, the SC register should not be written. If a task
switch is needed, writing a value greater than fourteen or smaller than two

MOTOROLA DSP56600FM/AD 5-9
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

will automatically activate the stack extension control hardware. For
proper operation, do not write values greater than sixteen to the SC.

5.4.9 Stack Pointer Register (SP)

The Stack Pointer (SP) register is a 16-bit register that indicates the location of the top
of the SS. The status of the SS is also indicated in the SP register as underflow, empty,
full, and overflow. The SP register is referenced implicitly by some instructions (such
as DO, JSR, RTI) or directly by the MOVEC instruction. The SP register format,
shown in Figure 5-4, is described in the following paragraphs. The SP register is
implemented as a 4-bit counter that addresses (selects) a 16-locations stack. The
possible SP values are shown in Table 5-2.

5.4.9.1 Stack Pointer (Bits 0–3)
The Stack Pointer (P) bits point to the last used location on the SS. Immediately after
hardware reset, these bits are cleared (SP = 0), indicating that the SS is empty.

Data is pushed onto the SS by incrementing the SP, then writing data to the location
pointed to by the SP. An item is pulled off the stack by copying it from the location
pointed to by the SP and then decrementing SP.

5.4.9.2 Stack Error Flag/P4 Bit (Bit 4)
The Stack Error Flag/P4 (SE/P4) bit is a dual function bit. In the Extended mode it
acts as Bit 4 of the Stack Pointer, as part of a 16-bit up/down counter. In the
Non-extended mode, it serves as the Stack Error (SE) flag that indicates that a stack
error has occurred. The transition of the stack error flag from zero to one in the
Non-extended mode causes a priority level-3 stack error exception.

When the non-extended stack is completely full, the SP reads 001111 and any
operation that pushes data onto the stack will cause a stack error exception to occur.
The SP will read 010000 (or 010001 if an implied double push occurs).

Figure 5-4 Stack Pointer (SP) Register Format

P[15:6] UF/P5 SE/P4 P[3:0]

AA0569

15 6 5 4 3 0

Stack Pointer
Stack-Error Flag/P4
UnderFlow Flag/P5
P[15:6]

5-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Any implied pull operation with SP equal to 0 causes a stack error exception, and the
SP reads $003F (or $003E if an implied double pull occurs). During such case, the
Stack Error bit is set as shown inTable 5-2.

The stack error flag is a “sticky bit” that, once set, remains set until cleared by the
user. The overflow/underflow bit remains latched until the first move to SP is
executed.

5.4.9.3 Underflow Flag / P5 Bit (Bit 5)
The Underflow Flag / P5 (UF/P5) bit is a dual function bit. In the Extended mode it
acts as Bit 5 of the Stack Pointer, as part of a 16-bit up/down counter. In the
Non-extended mode, the underflow flag is set when a stack underflow occurs. The
stack underflow flag is a “sticky bit”; that is, once the stack error flag is set, the
underflow flag will not change state until explicitly written by a move instruction.
The combination of “underflow = 1” and “stack error = 0” is an illegal combination
and does not occur unless forced by the user. See Stack Error Flag/P4 Bit (Bit 4) on
page 5-10 for additional information.

5.4.10 Status Register (SR)

The Status Register (SR) is a 16-bit register that consists of an 8-bit Condition Code
Register (CCR) and an 8-bit Mode Register (MR). The SR is stacked when program

Table 5-2 SP Register Values in the Non-Extended Mode

UF SE P3 P2 P1 P0 Description

1 1 1 1 1 0 Stack Underflow condition after double pull

1 1 1 1 1 1 Stack Underflow condition

0 0 0 0 0 0 Stack Empty (RESET); Pull causes underflow

0 0 0 0 0 1 Stack Location 1

. Stack Locations 2–13

0 0 1 1 1 0 Stack Location 14

0 0 1 1 1 1 Stack Location 15; Push causes overflow

0 1 0 0 0 0 Stack Overflow condition

0 1 0 0 0 1 Stack Overflow condition after double push

MOTOROLA DSP56600FM/AD 5-11
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

looping is initialized, when a JSR is performed, or when interrupts occur (except for
no-overhead fast interrupts). The SR format is shown in Figure 5-5.

Each bit in the SR is mask-programmable, and can be programmed to one of the
following configurations:

• Read/write bit with the functionality as described in the following paragraphs

• Read as zero bit

The CCR is a special purpose control register that defines the results of previous
arithmetic computations. The CCR bits are affected by Data Arithmetic Logic Unit
(Data ALU) operations, parallel move operations, and by instructions that directly
reference the CCR (such as the ORI and ANDI instructions) or instructions that
specify the SR as its destination (such as the MOVEC instruction). Parallel move
operations only affect the S and L bits of the CCR. During processor reset all CCR bits
are cleared.

The MR is a special purpose control register defining the current system state of the
processor. The bits in the MR are affected by processor reset, exception processing,
DO, DO FOREVER, ENDDO (end current DO loop), BRKcc, RTI (return from
interrupt), and TRAP instructions, and by instructions that directly reference the MR,
such as the ANDI and ORI instructions, or any instruction that specifies the SR as its
destination, such as the MOVEC instruction. During processor reset the interrupt
mask bits of the MR are set, while all the other bits are cleared.

Figure 5-5 Status Register (SR) Format

SR
Status Register
Reset = $0300

Read/Write

S1 S0 I1 I0 L E U N Z V CLF FV

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

LF—DO-Loop Flag
RM—Rounding Mode
SM—Arithmetic Saturation
FV—Do Forever Flag
S1—Scaling Mode Bit 1
S0—Scaling Mode Bit 0
I1—Interrupt Mask Bit 1
I0—Interrupt Mask Bit 0

MR CCR

RM SM S

S—Scaling Bit
L—Limit
E—Extension
U—Unnormalized
N—Negative
Z—Zero
V—Overflow
C—Carry

AA0747

5-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.10.1 Carry (C)—Bit 0
The Carry (C) bit is set when a carry is generated out of the MSB of the result in an
addition operation. This bit is also set when a borrow is generated in a subtraction
operation. Otherwise, this bit is cleared. The carry or borrow is generated from Bit 39
of the result. The carry bit is also affected by bit manipulation, rotate, and shift
instructions.

5.4.10.2 Overflow (V)—Bit 1
The Overflow (V) bit is set when an arithmetic overflow occurs in the 40-bit result;
otherwise, this bit is cleared. This bit indicates that the result cannot be represented
in the accumulator register because the register has overflowed. In Arithmetic
Saturation mode, an arithmetic overflow occurs if the Data ALU result is not
representable in the accumulator without the extension part, that is, the 32-bit
accumulator.

5.4.10.3 Zero (Z)—Bit 2
The Zero (Z) bit is set when the result equals zero. Otherwise, this bit is cleared.

5.4.10.4 Negative (N)—Bit 3
The Negative (N) bit is set when the MSB of the result is set. Otherwise, this bit is
cleared.

5.4.10.5 Unnormalized (U)—Bit 4
The Unnormalized (U) bit is set when the two MSBs of the Most Significant Portion
(MSP) of the result are identical. Otherwise, this bit is cleared. The MSP portion of the
A or B accumulators is defined by the Scaling mode. The U bit is computed as
described in Table 5-3.

5.4.10.6 Extension (E)—Bit 5
The Extension (E) bit is cleared when the bits of the integer portion of the 40-bit result
are all 1s or all 0s. Otherwise, this bit is set. The integer portion is defined by the
Scaling mode, as described in Table 5-4. If the E bit is cleared, then the low-order
fraction portion contains all the significant bits and the high-order integer portion is

Table 5-3 Unnormalized Bit Definition

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 31xor Bit 30)

0 1 Scale Down U = (Bit 32xor Bit 31)

1 0 Scale Up U = (Bit 30xor Bit 29)

MOTOROLA DSP56600FM/AD 5-13
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

just sign extension. In this case, the accumulator extension register can be ignored. If
the E bit is set, it indicates that the accumulator extension register is in use.

5.4.10.7 Limit (L)—Bit 6
The Limit (L) bit is set when the overflow bit is set or if the data shifter/limiter
circuits perform a limiting operation. In Arithmetic Saturation mode, the limit bit is
also set when an arithmetic saturation occurs in the Data ALU result; otherwise, it is
not affected. The L bit is cleared only by a processor reset or by an instruction that
specifically clears it, which allows the L bit to be used as a latching overflow bit (a
“sticky” bit). The L bit is affected by data movement operations that read the A or B
accumulator registers.

5.4.10.8 Scaling (S)—Bit 7
The Scaling bit (S) is set upon moving a result from accumulator A or B to the XDB or
YDB buses (during an accumulator to memory or accumulator to register move) and
will remain set until explicitly cleared; that is, the S bit is a “sticky” bit. The logical
equations of this bit are dependent on the Scaling mode. The scaling bit is set when
the absolute value in the accumulator before scaling, was greater or equal to 0.25 or
less than 0.75. This bit is cleared during hardware reset. Table 5-5 shows how these
bits are defined.

Table 5-4 Extension Bit Definition

S1 S0 Scaling Mode Integer Portion

0 0 No Scaling Bits 39,38..............32,31

0 1 Scale Down Bits 39,38..............33,32

1 0 Scale Up Bits 39,38..............31,30

Table 5-5 Scaling Bits Definition

S0 S1 Scaling Mode S Equation

0 0 No scaling S = (A30 XOR A29) OR (B30 XOR B29) OR S (previous)

0 1 Scale down S = (A31 XOR A30) OR (B31 XOR B30) OR S (previous)

1 0 Scale up S = (A29 XOR A28) OR (B29 XOR B28) OR S (previous)

1 1 Reserved S = Undefined

5-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.10.9 Interrupt Mask (I0–I1)—Bits 8 and 9
The Interrupt Mask bits, I1 and I0, reflect the current IPL of the processor and
indicate the IPL needed for an interrupt source to interrupt the processor. The
current IPL of the processor can be changed under software control. The interrupt
mask bits are set during hardware reset, but not during software reset. Table 5-6
shows how these bits are defined.

5.4.10.10 Scaling Mode (S0–S1)—Bits 10 and 11
The Scaling Mode bits, S1 and S0, specify the scaling to be performed in the Data
ALU shifter/limiter and the rounding position in the Data ALU MAC unit. The
shifter/limiter scaling mode affects data read from the A or B accumulator registers
out to the XDB and YDB. Different scaling modes can be used with the same program
code to allow dynamic scaling. One application of dynamic scaling is to facilitate
block floating-point arithmetic. The Scaling mode also affects the MAC rounding
position to maintain proper rounding when different portions of the accumulator
registers are read out to the XDB and YDB. The Scaling Mode bits, which are cleared
at the start of a long interrupt service routine, are also cleared during a processor
reset. Table 5-7 shows how these bits are defined.

5.4.10.11 DO-Forever flag (FV)—Bit 12
The DO-Forever flag (FV) bit is set when a DO FOREVER instruction is performed.
The FV flag, like LF flag, is restored from stack when terminating a DO FOREVER

Table 5-6 Interrupt Mask Bits Definition

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

Table 5-7 Scaling Mode Bits Definition

S1 S0 Rounding Bit Scaling Mode

0 0 15 No Scaling

0 1 16 Scale down (1-bit Arithmetic Right Shift)

1 0 14 Scale Up (1-bit Arithmetic Left Shift)

1 1 — Reserved

MOTOROLA DSP56600FM/AD 5-15
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

program loop. Stacking and restoring the FV flag when initiating and exiting a DO
FOREVER program loop, respectively, allow the nesting of program loops. At the
start of a long interrupt service routine, the SR (including the FV bit) is pushed on the
SS and the FV is cleared. When returning from the long interrupt with an RTI
instruction, the SS is pulled and the FV bit is restored. The FV is cleared during a
processor reset.

5.4.10.12 Arithmetic Saturation Mode (SM)—Bit 13
The Arithmetic Saturation Mode (SM) bit, when set, selects automatic saturation on
32 bits for the results going to the accumulator. This saturation is done by a special
circuit inside the MAC unit. The purpose of this bit is to provide an arithmetic
saturation mode for algorithms that do not recognize or cannot take advantage of the
extension accumulator. This bit is cleared during processor reset.

5.4.10.13 Rounding Mode (RM)—Bit 14
The Rounding Mode (RM) bit selects the type of rounding performed by the Data
ALU during arithmetic operations. When the bit is cleared, convergent rounding is
selected. When the bit is set, two’s-complement rounding is selected. At the start of a
long interrupt service routine, the SR (including the RM bit) is pushed on the system
stack and the RM bit is cleared. This bit is cleared during processor reset.

5.4.10.14 DO-Loop Flag (LF)—Bit 15
The DO-Loop Flag (LF) bit, set when a program loop is in progress, enables the
detection of the end of a program loop. The LF bit is restored from stack when
terminating a program loop. Stacking and restoring the LF bit when initiating and
exiting a program loop, respectively, allow the nesting of program loops. At the start
of a long interrupt service routine, the SR (including the LF) is pushed on the system
stack and the LF is cleared. When returning from the long interrupt with an RTI
instruction, the system stack is pulled and the LF bit is restored. This bit is cleared
during a processor reset.

5.4.11 Operating Mode Register (OMR)

The Operating Mode Register (OMR) is a 16-bit register, partitioned into two bytes.
The least significant byte of OMR (bits 7–0) is the Chip Operating Mode byte (COM),
which is used to determine the operating mode of the chip. This byte is only affected
by processor reset and by instructions directly referencing the OMR: ANDI, ORI, or
other instructions that specify OMR as a destination, such as the MOVEC instruction.
During processor reset, the chip operating mode bits (MD, MC, MB, and MA) are
loaded from the external mode select pins MODD, MODC, MODB, and MODA,
respectively.

5-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each bit in the OMR is mask-programmable. They can be programmed to one of the
following configurations:

• Read/write bit with the functionality as described in the following paragraphs

• Read as zero bit

Some of the reserved bits, as described later, are also outputs of the DSP56600 core,
with derivative-dependent functionality. These outputs are also mask-programmed
to one of the following states:

• Connected to the OMR bit, reflecting its state

• Connected to GND (forced to 0)

The most significant byte of OMR (bits 15–8) is the Extended Chip Operating Mode
byte (EOM), which is used to determine the operating mode of the chip. This byte is
only affected by processor reset, by instructions that directly reference the OMR
(such as ANDI and ORI instructions), or by other instructions that specify the OMR
as a destination (such as the MOVEC instruction).

Figure 5-6 shows the format of the OMR. The bits in the OMR follow this format on
all implementations of DSP56600-family chips. However, not all bits may be used on
all DSP56600-family chips. For a list of the bits within the OMR on a specific chip, see
the appropriate User’s Manual, which also provides a detailed description of bit
functionality.

Figure 5-6 Operating Mode Register (OMR) Format

* Indicates reserved bits, written as 0 for future compatibility

OMR
Operating Mode

Register
Reset = $0000

Read/Write

WRP EOV EUN XYS * SD PCD EBD MD MC MB MAATE MS * SEN

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

EOM

ATE—Address Trace Enable
MS—Memory Switch Mode Enable
SEN—Stack Extension Enable
WRP—Extended Stack Wrap Flag
EOV—Extended Stack Overflow Flag
EUN—Extended Stack Underflow Flag
XYS—Stack Extension Space Select

EOM

COM

SD—Stop Delay
PCD—PC Relative Logic Disable
EBD—External Bus Disable
MA—Operating Mode A
MB—Operating Mode B
MC—Operating Mode C
MD—Operating Mode D

COM

AA0748

MOTOROLA DSP56600FM/AD 5-17
For More Information On This Product,

 Go to: www.freescale.com

Program Control Unit

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-7 Central Processor Programming Model

Program Control Unit

S
P

[3
:0

]

Program Counter (PC)

0

Status Register
(SR)

Loop Address
Register (LA)

Loop Counter (LC)

Stack Pointer (SP)

15
System Stack (SS)

Operating Mode
Register (OMR)

Vector Base
Address (VBA)

Stack Size (SZ)

Stack Counter(SC)

04

15 0

15 0

15 0

31 16 15 0SSH SSL

15 6 5 4 3 0

15 0

8 7

MR CCR

15 0

15 08 7
OEM COM

15 08 7

Address Generation Unit

X1 X0 Y1 Y0

Input Registers

Accumulator Registers

B1 B0# B2

A1 A0# A2

Data Arithmetic Logic Unit

AA0570

X31 0 X31 0

15 00 15 15 00 15

A39 0

15 00 158 7 015
A39 0

15 00 158 7 015

R7

R6

R5

R4

R3

R2

R1

R0

N7

N6

N5

N4

N3

N2

N1

N0

Offset Registers Modifier Registers

Upper

Lower File

Pointer Registers

M7

M6

M5

M4

M3

M2

M1

M0

EP

5-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 6

PROGRAM PATCH LOGIC

MOTOROLA DSP56600FM/AD 6-1
For More Information On This Product,

 Go to: www.freescale.com

Program Patch Logic

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.1 INTRODUCTION . 6-3
6.2 PROGRAM PATCH LOGIC ARCHITECTURE 6-3
6.3 PROGRAMMING MODEL. 6-4
6.4 PPL OPERATION . 6-4

6-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Patch Logic

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.1 INTRODUCTION

This section describes the Program Patch Logic (PPL) hardware and its programming
model. The PPL provides the DSP56600 core user a way to fix the program code in
the on-chip ROM without generating a new mask.

6.2 PROGRAM PATCH LOGIC ARCHITECTURE

Implementing the code correction is done by replacing a piece of ROM-based code
with a patch program stored in RAM. The PPL consists of four Patch Address
Registers (PAR1–PAR4) and four patch address comparators. Each PAR points to a
starting location in the ROM code where the program flow is to be changed. The
Program Counter (PC) register in the Program Control Unit (PCU) is compared to
each PAR. When an address of a fetched instruction is identical to an address stored
in one of the PARs, the Program Data Bus (PDB) is forced to the corresponding JMP
instruction. Figure 6-1 shows a block diagram of the patch detector.

Figure 6-1 Patch Detector Block Diagram

GDB

’Patch Detected’
Inject JMP to Pipeline

JMP Target
Generator

Patch
Registers

PAB

Comp

Comp

Comp

Comp
PAR0

PAR1

PAR2

PAR3

Patch #1

Patch #2

Patch #3

Patch #4

AA0571

MOTOROLA DSP56600FM/AD 6-3
For More Information On This Product,

 Go to: www.freescale.com

Program Patch Logic

Programming Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3 PROGRAMMING MODEL

The programming model of the PPL is the four read/write PARs, each of which can
be programmed to hold a program starting location in the on-chip ROM that should
be replaced with a piece of corrective code. Only internal program space addresses
from P:$0000 to P:$0100 are allowed. Figure 6-2 shows this programming model.

The PAR contents are compared with the Program Address Bus (PAB) used to
initiate the program fetch. When the address in the PAB is equal to the contents of
one of the PARs, a PATCH DETECTED signal is generated that injects a JMP
instruction into the pipeline, replacing the instruction that otherwise would have
been fetched from the ROM. The JMP target address is determined according to the
identity of the comparator that generated the PATCH DETECTED signal. The JMP
target can be any one of the first 4096 locations in the program memory space. The
specific target address is mask-programmable. The user should download the correct
piece of code to the target location. Comparison of each PAR to the PAB register is
done only if the PAB register has been written since reset. This avoids false patch
detections.

6.4 PPL OPERATION

For correct PPL operation, use the following procedure:

1. Download the correct code into the internal Program RAM. The start address
of this code should correspond to one of the four pre-defined JMP target
addresses. End each segment of corrected code with a JMP instruction back to
the main program.

2. Initialize the PARs with the starting address of the code that is to be replaced.

Figure 6-2 Program Patch Logic Register File

PAR0

PAR1

PAR2

PAR3

15 0

AA0572

6-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Program Patch Logic

PPL Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. When the PPL detects that the address on the PAB corresponds to the contents
of one of the four PARs, a JMP to the Program RAM is executed.

Figure 6-3 shows the process of switching an instruction located in the ROM by
another instruction that is located in the RAM. The JMP target address shown in the
figure is only an example. The real address is mask-programmable.

Figure 6-3 Patch Code Implementation

17F5
17F6
17F7

Patch Address

Address

PC 17F6

Comparator

JMP 0004

PDB

DEC
JMP

0004
0005
0006

RAM

17F7

EqualNot Equal

‘Patch Detected’

AA0573

MOVE
INC

ROM

MPY

Register

MOTOROLA DSP56600FM/AD 6-5
For More Information On This Product,

 Go to: www.freescale.com

Program Patch Logic

PPL Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 7

PROCESSING STATES

WAITWAIT
NORMALNORMAL

EXCEPTION

RESETRESET

EXCEPTION

DEBUGDEBUG

MOTOROLA DSP56600FM/AD 7-1
For More Information On This Product,

 Go to: www.freescale.com

Processing States

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.1 INTRODUCTION . 7-3
7.2 NORMAL PROCESSING STATE . 7-3
7.3 EXCEPTION PROCESSING STATE 7-4
7.4 RESET PROCESSING STATE . 7-16
7.5 WAIT PROCESSING STATE . 7-16
7.6 STOP PROCESSING STATE . 7-17

7-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.1 INTRODUCTION

This section describes the processing states in the DSP56600 core. The DSP56600 core
is always in one of five processing states:

• Normal

• Exception

• Reset

• Wait

• Stop

These states are described in the following paragraphs.

7.2 NORMAL PROCESSING STATE

The Normal processing state is associated with instruction execution. Instruction
execution in the DSP56600 core is performed using a seven-stage pipeline, allowing
most instructions to execute at a rate of one instruction every clock cycle. However,
certain instructions require additional time to execute. These include:

• Double-word instructions

• Instructions using an addressing mode that requires more than one cycle for
the address calculation

• Instructions causing a change of flow

Instruction pipelining allows overlapping of instruction execution so that a pipeline
stage of a given instruction occurs concurrently with other pipeline stages of other
instructions. Only one word is fetched per cycle, so that in the case of double-word
instructions, the second word of an instruction is fetched before the next instruction
is fetched.

The pipeline consists of seven stages: Fetch 1, Fetch 2, Decode, Address Generation 1,
Address Generation 2, Execute1, and Execute 2. The abbreviations n1 and n2 refer to
the first and second instructions, respectively. The third instruction (n3), which
contains an instruction extension word (n3e), takes 2 clock cycles to execute. The
extension word is either an absolute address or immediate data. Although it takes 7
clock cycles for the pipeline to fill and the first instruction to execute, further
instructions are usually completed on each clock cycle. Table 7-1 describes the
DSP56600 core pipeline.

MOTOROLA DSP56600FM/AD 7-3
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each instruction requires a minimum of 7 clock cycles to be fetched, decoded, and
executed. This means that there is a delay of 7 clock cycles on power-up to fill the
pipeline. A new instruction can begin immediately following the previous
instruction. Two-word instructions require a minimum of 8 clock cycles to execute (7
cycles for the first instruction word to move through the pipeline and execute, and
one more cycle for the second word to execute). For a complete description of the
execution timing of the various instructions, addressing modes, etc., see Appendix B,
Instruction Timing.

7.3 EXCEPTION PROCESSING STATE

The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. There are many sources for
interrupts to the DSP56600 core; some of these sources can generate more than one
interrupt. An interrupt vector scheme with 128 vectors of predefined priorities is
used to provide fast interrupt service. The following list outlines how interrupts are
processed by the DSP56600 core:

Table 7-1 Instruction Pipeline

Operation

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11

PreFetch 1 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9 n10

PreFetch 2 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9

Decode n1 n2 n3 n3e n4 n5 n6 n7 n8

Address Gen 1 n1 n2 n3 n3e n4 n5 n6 n7

Address Gen 2 n1 n2 n3 n3e n4 n5 n6

Execute 1 n1 n2 n3 n3e n4 n5

Execute 2 n1 n2 n3 n3e n4

7-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1. A hardware interrupt is synchronized with the DSP56600 core clock, and the
interrupt pending flag for that particular hardware interrupt is set. An
interrupt source can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select which
interrupt is processed. The arbiter automatically ignores any interrupts with
an Interrupt Priority Level (IPL) lower than the interrupt mask level in the
Status Register (SR) and selects the remaining interrupt with the highest IPL.

3. The interrupt controller then freezes the Program Counter (PC) register and
fetches two instructions at the two interrupt vector addresses associated with
the selected interrupt.

4. The interrupt controller inserts the two instructions into the instruction stream
and releases the PC register, which is used for the next instruction fetch. The
next interrupt arbitration then begins.

If neither of the two instructions is a JSR instruction (e.g., JSCLR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt is
executed if one of the interrupt instructions fetched is a JSR instruction. The PC
register is immediately released, the SR and PC registers are saved in the stack, and
the JSR instruction controls where the next instruction is fetched from.

Note: Any of the Jump To Subroutine instructions can be used as the JSR needed
to make a long interrupt, such as JScc, JSSET, and so forth.

In digital signal processing, one of the main uses of interrupts is to transfer data
between DSP memory or registers and a peripheral device. When such an interrupt
occurs, a limited context switch with minimum overhead is often desirable. This
limited context switch is accomplished by a fast interrupt. The long interrupt is used
when a more complex task must be accomplished to service the interrupt.

7.3.1 Interrupt Sources

Exceptions can originate from any of 128 vector addresses, and from one of two
sources: core and peripherals. Table 7-2 lists the core-originating sources. The
corresponding interrupt starting address for each interrupt source is shown. These
addresses are located in the 256 locations of program memory pointed to by the
Vector Base Address (VBA) register in the Program Control Unit (PCU).

The 128 interrupts are prioritized into four levels. Level 3, the highest priority level,
is not maskable. Levels 0–2 are maskable. The interrupts within each level are
prioritized according to a predefined priority.

MOTOROLA DSP56600FM/AD 7-5
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-2 Interrupt Sources

Interrupt Starting Address IPL Interrupt Source

VBA:$00 — Reserved for Future Interrupt Source

VBA:$02 3 Stack Error

VBA:$04 3 Illegal Instruction

VBA:$06 3 Debug Request Interrupt

VBA:$08 3 Trap

VBA:$0A 3 Non-Maskable Interrupt (NMI)

VBA:$0C 3 Reserved

VBA:$0E 3 Reserved

VBA:$10 0–2 IRQA

VBA:$12 0–2 IRQB

VBA:$14 0–2 IRQC

VBA:$16 0–2 IRQD

VBA:$18 0–2 Reserved

VBA:$1A 0–2 Reserved

VBA:$1C 0–2 Reserved

VBA:$1E 0–2 Reserved

VBA:$20 0–2 Reserved

VBA:$22 0–2 Reserved

VBA:$24 0–2 Peripheral Interrupt Request 1

VBA:$26 0–2 Peripheral Interrupt Request 2

.

.

.

.

.

.

.

.

.

VBA:$FE 0–2 Peripheral Interrupt Request 110

7-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When an interrupt is serviced, the instruction at the interrupt starting address is
fetched first. Because the program flow is directed to a different starting address for
each interrupt, the interrupt structure of the DSP56600 core is said to be vectored. A
vectored interrupt structure has low overhead execution.

Peripheral-originating sources are described in the appropriate User’s Manual, and
are listed in Table 7-2 as Peripheral Interrupt Requests. If it is known that certain
interrupts will not be used, those interrupt vector locations can be used for program
or data storage, but this is not recommended.

7.3.1.1 Hardware Interrupt Sources
There are two types of hardware interrupts to the DSP56600 core: internal and
external. The internal interrupts include these on-chip sources:

• Stack Error

• Illegal Instruction

• Debug Request

• Trap

• Peripheral Interrupt

Each internal interrupt source is serviced if it is not masked. When serviced, the
interrupt request is cleared. Each maskable internal hardware source has
independent enable control.

The external hardware interrupts include NMI, IRQA, IRQB, IRQC, and IRQD. The
NMI interrupt is an edge-triggered non-maskable interrupt that can be used for
software development, watch-dog, power fail detect, and so forth. The IRQA, IRQB,
IRQC, and IRQD interrupts can be programmed to be level-sensitive or
edge-triggered. Since the level-sensitive interrupts are not cleared automatically
when they are serviced, they must be cleared by other means to prevent multiple
interrupts, usually by external hardware that detects the acknowledge of the core to
the interrupt request. The edge-sensitive interrupts are latched as pending on the
high-to-low transition of the interrupt input and are automatically cleared when the
interrupt is serviced. IRQA, IRQB, IRQC, and IRQD can be programmed to one of
three priority levels: 0, 1, or 2, all of which are maskable. Additionally, these
interrupts have independent enable control.

When the IRQA, IRQB, IRQC, and IRQD interrupts are disabled in the Interrupt
Priority Register (IPR), a pending request is ignored, regardless of whether the
interrupt input was defined as level-sensitive or edge-sensitive. Additionally, if the
interrupt is defined as edge-sensitive, its edge-detection latch remains in the Reset
state as long as the interrupt is disabled. If the interrupt is defined as level-sensitive,

MOTOROLA DSP56600FM/AD 7-7
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

its edge-detection latch remains in the Reset state. If the level-sensitive interrupt is
disabled while the interrupt is pending, the pending interrupt is cancelled. However,
if the interrupt has been fetched, it normally cannot be cancelled.

Note: On all external, level-sensitive interrupt sources, the interrupt should be
serviced (i.e., clear the source for the interrupt) either by the instruction at
the vector location (if it is a fast interrupt) or by a long interrupt.

7.3.1.2 Software Interrupt Sources
There are two software interrupt sources, Illegal Instruction Interrupt (III) and TRAP.

 The III is a nonmaskable interrupt (IPL 3) that is serviced immediately following the
execution of the illegal instruction (any undefined operation code) or the attempted
execution of an illegal instruction.

TRAP is a nonmaskable interrupt (IPL 3) that is serviced immediately following the
TRAP or TRAPcc (condition true) instruction execution.

7.3.2 Interrupt Priority Structure

Four levels of interrupt priority are provided. IPLs numbered 0, 1, and 2 are
maskable. Level 0 is the lowest level. Level 3 (highest level) is nonmaskable.

The nonmaskable IPL 3 interrupts are:

• Stack Error

• Illegal Instruction

• Debug

• Request

• TRAP

• NMI pin

• Peripheral NMI

The Interrupt Mask bits (I1, I0) in the SR reflect the current processor priority level
and indicate the IPL needed for an interrupt source to interrupt the processor (see
Table 7-3). Interrupts are inhibited for all priority levels less than the current
processor priority level. However, Level 3 interrupts are not maskable, and therefore
can always interrupt the processor.

7-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There are two Interrupt Priority Registers in the DSP56600 core, IPR-C and IPR-P.
The IPR-C register is dedicated for DSP56600 core interrupt sources. The IPR-P
register is dedicated for the specific chip peripherals interrupt sources. These control
registers are mapped on the internal X I/O memory space at X:$FFFF for IPR-C and
X:$FFFE for IPR-P. Figure 7-1 shows the IPR-C register, and Figure 7-2 shows the
IPR-P register.

Table 7-3 Status Register Interrupt Mask Bits

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

Figure 7-1 Interrupt Priority Register C (IPR-C) Format

Figure 7-2 Interrupt Priority Register P (IPR-P) Format

IPR-C—X:$FFFF
Interrupt Priority
Register—Core

(IPR-C)
Reset = $0000

Read/Write

ID
L2

ID
L1

ID
L0

IC
L2

IC
L1

ICL
L0

IB
L2

IBL
L1

IB
L0

IA
L2

IA
L1

IA
L0

Cor
L1

Cor
L0

Cor
L1

Cor
L0

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

IRQA IPL
and Mode

IRQC IPL
and Mode

IRQB IPL
and Mode

IRQD IPL
and Mode

AA0749

IPR-P—X:$FFFE
Interrupt Priority

Register—Peripheral
 (IPR-P)

Reset = $0000
Read/Write

Per6
L1

Per6
L0

Per5
L1

Per5
L0

Per4
L1

Per4
L0

Per3
L1

Per3
L0

Per2
L1

Per2
L0

Per1
L1

Per1
L0

Per8
L1

Per8
L0

Per7
L1

Per7
L0

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

Peripheral 5
IPL 1 or 0

Peripheral 7
IPL 1 or 0

Peripheral 1
IPL 1 or 0

Peripheral 3
IPL 1 or 0

Peripheral 6
IPL 1 or 0

Peripheral 8
IPL 1 or 0

Peripheral 2
IPL 1 or 0

Peripheral 4
IPL 1 or 0

AA0750

MOTOROLA DSP56600FM/AD 7-9
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The IPL for each interrupting source is software programmable. Each on-chip or
external peripheral device can be programmed to one of the three maskable priority
levels (IPL 0, 1, or 2). IPLs are set by writing to the interrupt priority registers shown.
These two read/write registers specify the IPL for each of the interrupting devices. In
addition, the IPR-C register specifies the trigger mode of each external interrupt
source and is used to enable or disable the individual external interrupts. These
registers are cleared on hardware RESET or by the RESET instruction.

Table 7-4 defines the IPL bits used in both the IPR-C and IPR-P registers. Table 7-5
defines the external interrupt trigger mode bits used for IRQA–IRQD in the IPR-C
register.

In addition to the maskable peripheral interrupts, a peripheral-driven Non-Maskable
Interrupt (NMI) source is available on some members of the DSP56600 family. On
each of the DSP56600 family chips, the peripheral assigned to the bits within the
IPR-P register can vary. Consult the appropriate User’s Manual for more information.

7.3.3 Exception Priorities within an IPL

If more than one exception is pending when an instruction is executed, the interrupt
with the highest priority level is serviced first. When multiple interrupt requests
having the same IPL are pending, a second fixed-priority structure within that IPL

Table 7-4 Interrupt Priority Level Bits

xxL1 xxL0 Enabled IPL

0 0 No —

0 1 Yes 0

1 0 Yes 1

1 1 Yes 2

Table 7-5 External Interrupt Trigger Mode Bits

IxL2 Trigger Mode

0 Level

1 Negative Edge

7-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

determines which interrupt is serviced. The fixed priority of interrupts within an IPL
and the interrupt enable bits for all interrupts are shown in Table 7-6.

7.3.4 Instructions Preceding the Interrupt Instruction Fetch

Every instruction that takes more than one cycle to execute is aborted when it is
fetched in the cycle preceding the fetch of the first interrupt instruction word.
Aborted instructions are refetched again when program control returns from the
interrupt routine. The PC is adjusted appropriately before the end of the decode cycle
of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a
one-word-one-cycle instruction, that instruction will complete normally before the
start of the interrupt routine. During an interrupt instruction fetch, two instruction

Table 7-6 Exception Priorities Within an IPL

Priority Exception

Level 3 (Nonmaskable)

Highest Hardware RESET

Stack Error

Illegal Instruction

Debug Request Interrupt

Trap

Non-Maskable Interrupt (NMI)

Lowest Non-Maskable Peripheral Interrupt

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt)

IRQB (External Interrupt)

IRQC (External Interrupt)

IRQD (External Interrupt)

Lowest Peripheral interrupt sources

MOTOROLA DSP56600FM/AD 7-11
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

words are fetched—the first from the interrupt starting address, and the second from
the interrupt starting address + 1.

7.3.5 Interrupt Types

Two types of interrupt routines may be used: fast and long. The fast routine consists
of the two automatically inserted interrupt instruction words. These words can
contain any unrestricted, single two-word instruction or any two unrestricted
one-word instructions. Fast interrupt routines are never interruptible.

Note: Status is not preserved during a fast interrupt routine; therefore,
instructions that modify status should not be used at the interrupt starting
address and interrupt starting address plus one.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is
formed. The following actions occur during execution of the JSR instruction when it
occurs in the interrupt starting address or in the interrupt starting address + 1:

1. The PC register (containing the return address) and the SR are stacked.

2. The Loop flag is reset.

3. The Scaling mode bits are reset.

4. The IPL is raised to disallow further interrupts of the same or lower levels
(except hardware RESET, Illegal Instruction, stack error and TRAP that can
always interrupt).

The long interrupt routine should be terminated by an RTI. Long interrupt routines
are interruptible by higher priority interrupts.

7.3.6 Interrupt Arbitration

External interrupts are internally synchronized with the processor clock before their
interrupt-pending flags are set. Each external interrupt and internal interrupt has its
own flag. After each instruction is executed, all interrupts are arbitrated—that is, all
hardware interrupts that have been latched into their respective interrupt-pending
flags and all internal interrupts. During arbitration, each interrupt’s IPL is compared
with the interrupt mask in the SR, and the interrupt is either allowed or disallowed.
The remaining interrupts are prioritized according to the priority shown in
Table 7-6, and the highest priority interrupt is chosen. The interrupt vector is then
calculated so that the program interrupt controller can fetch the first interrupt

7-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

instruction. The interrupt-pending flag for the chosen interrupt is not cleared until
the second interrupt vector of the chosen interrupt is being fetched. A new interrupt
from the same source is not accepted for the next interrupt arbitration until that time.

7.3.7 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which
points to the first instruction word of a two-word interrupt routine. This address is
used for the next instruction fetch, instead of the contents of the PC register, and the
interrupt instruction fetch address + 1 is used for the subsequent instruction fetch.
While the interrupt instructions are being fetched, the PC register is inhibited from
being updated. After the two interrupt words have been fetched, the PC register is
used for subsequent instruction fetches.

7.3.8 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the
interrupt service routine cause a change of flow. A JSR within a fast interrupt routine
forms a long interrupt, which is terminated with an RTI instruction to restore the PC
and SR registers from the System Stack (SS) and return to normal program execution.
Reset is a special exception, which normally contains only a JMP instruction at the
exception start address. At the programmer’s option, almost any instruction can be
used in the fast interrupt routine. A fast interrupt routine can contain either two
single-word instructions or one double-word instruction. Table 7-7shows the effect
of a fast interrupt routine on the instruction pipeline. The fast interrupt executes only
two instructions (ii1 and ii2) and then automatically resumes execution of the main
program.

Table 7-7 Fast Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PreFetch 1 n1 n2 ii1 ii2 n3 n4

PreFetch 2 n1 n2 ii1 ii2 n3 n4

Decode n1 n2 ii1 ii2 n3 n4

Address Gen 1 n1 n2 ii1 ii2 n3 n4

MOTOROLA DSP56600FM/AD 7-13
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-8 shows the effect of a long interrupt routine on the instruction pipeline. A
short JSR (ii1) is used to call the long interrupt routine, which includes the sr1, sr2, sr3
and rti instructions. Instructions ii2, n3, sr5 and sr6 are not decoded or executed.

Address Gen 2 n1 n2 ii1 ii2 n3 n4

Execute 1 n1 n2 ii1 ii2 n3 n4

Execute 2 n1 n2 ii1 ii2 n3 n4

n = normal instruction word
ii = interrupt instruction word

Table 7-8 Long Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PreFetch 1 n
1

n
2

ii
1

ii
2

n
3

sr
1

sr
2

sr
3

rti sr
5

sr
6

n
3

n
4

n
5

n
6

n
7

PreFetch 2 n
1

n
2

jsr ii
2

n3 sr
1

sr
2

sr
3

rti sr
5

sr
6

n
3

n
4

n
5

n
6

Decode n
1

n
2

jsr — — sr
1

sr
2

sr
3

rti — — n
3

n
4

n
5

Address
Gen 1

n
1

n
2

jsr — — sr
1

sr
2

sr
3

rti — — n
3

n
4

Address
Gen 2

n
1

n2 jsr — — sr
1

sr
2

sr
3

rti — — n
3

Execute 1 n1 n
2

jsr — — sr
1

sr
2

sr
3

rti — —

Execute 2 n
1

n
2

jsr — — sr
1

sr
2

sr
3

rti —

n = normal instruction word
ii = interrupt instruction word

sr = service routine word

Table 7-7 Fast Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12

7-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Exception Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Execution of a fast interrupt routine always conforms to the following rules:

1. The processor status is not saved.

2. The fast interrupt routine may modify the status of the normal instruction
stream (e.g., use the DO instruction), but such instructions should not be used
in order to assure proper operation.

3. The PC register, which contains the address of the next instruction to be
executed in normal processing, remains unchanged during a fast interrupt
routine.

4. The fast interrupt returns without an RTI.

5. Normal instruction fetching resumes using the PC register following the
completion of the fast interrupt routine.

6. A fast interrupt is not interruptible.

7. A JSR instruction within the fast interrupt routine forms a long interrupt
routine.

Execution of a long interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one
of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR registers are stacked.
The interrupt mask bits of the SR are updated to mask interrupts of the same
or lower priority. The Loop flag and Scaling mode bits are cleared.

3. The interrupt service routine can be interrupted—that is, nested interrupts are
supported.

4. The long interrupt routine, which can be any length, should be terminated by
an RTI, which restores the PC and SR registers from the stack.

Either one of the two instructions of the fast interrupt can be the JSR instruction that
forms the long interrupt.

A REP instruction is treated as a single two-word instruction, regardless of how
many times it repeats the second instruction of the pair. Instruction fetches are
suspended and will be reactivated only after the LC register is decremented to 1.
During the execution of the repeated instruction, no interrupts are serviced. When
the LC register finally decrements to 1, the fetches are reinitiated, and pending
interrupts can be serviced.

MOTOROLA DSP56600FM/AD 7-15
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Reset Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.4 RESET PROCESSING STATE

The reset processing state is entered when the external RESET pin is asserted (a
hardware reset). Upon entering the reset state:

1. Internal peripheral devices are reset.

2. The modifier registers (M0–M7) are set to $FFFF.

3. The IPR-P and IPR-C registers are cleared.

4. The Bus Control Register (BCR) is set to its initial value as described in Bus
Control Register on page 9-5. This initial value causes thirty-one wait states
(the maximum number of wait states available) to be added to every external
memory access.

5. The SP register is cleared.

6. The Scaling mode, Loop flag and Condition Code bits of the SR are cleared,
and the interrupt mask bits of the SR are set.

7. The PLL Control registers are initialized as described in PLL Architecture on
page 8-6.

8. The Vector Base Address (VBA) register is cleared.

The DSP56600 core remains in the reset state until RESET is deasserted. Upon leaving
the reset state, the chip operating mode bits of the OMR are loaded from the external
mode select pins (MODA, MODB, MODC, and MODD), and program execution
begins at the program memory address as described in Chip Operating Modes on
page 11-3.

7.5 WAIT PROCESSING STATE

The Wait processing state is a low power-consumption state entered by execution of
the WAIT instruction. In the Wait state, the internal clock is disabled from all internal
circuitry except the internal peripherals. All internal processing is halted until an
unmasked interrupt occurs, the DSP is reset, or DE is asserted. If exit from Wait state
is caused by asserting DE, the processor enters the Debug mode.

7-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Stop Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.6 STOP PROCESSING STATE

The Stop processing state is the lowest power consumption mode and is entered by
the execution of the STOP instruction. In the Stop mode, the clock oscillator activity
depends on the Stop Processing State bit (PSTP) in PLL Control Register 1 (PCTL1). If
this bit is cleared when the core enters Stop mode, the clock oscillator is turned off. If
the bit is se when the core enters Stop mode, the VCO remains active and the global
clock to the entire chip is gated off.

All activity in the processor is halted until one of the following actions occurs:

1. A low level is applied to the IRQA pin (IRQA asserted).

2. A low level is applied to the RESET pin (RESET asserted).

3. A low level is applied to the DE pin.

Any of these actions gates on the oscillator. After a clock stabilization delay, clocks to
the processor and peripherals are re-enabled.

When the clocks to the processor and peripherals are re-enabled, the processor enters
the reset processing state if the exit from Stop state was caused by assertion of the
RESET pin (a low level on the pin).

If the exit from Stop state was caused by asserting the IRQA pin, then the processor
services the highest priority pending interrupt. If no interrupt is pending (e.g., if the
IRQA pin was deasserted before interrupts were arbitrated) or if no interrupt is
enabled, then the processor resumes execution at the instruction following the STOP
instruction that caused the entry into the Stop state.

If the exit from Stop state was caused by a low level on the DE pin, the processor
enters the Debug mode.

For minimum power consumption during the Stop state at the cost of longer
recovery time, the PSTP bit in the PCTL1 register should be cleared. To enable faster
recovery when exiting the Stop state but at the cost of higher power consumption, the
PSTP bit should be set. The PSTP bit is cleared by hardware reset.

MOTOROLA DSP56600FM/AD 7-17
For More Information On This Product,

 Go to: www.freescale.com

Processing States

Stop Processing State

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 8

PLL AND CLOCK GENERATOR

MOTOROLA DSP56600FM/AD 8-1
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.1 INTRODUCTION . 8-3
8.2 PLL PINS. 8-4
8.3 CLOCK INPUT DIVISION . 8-4
8.4 PLL ARCHITECTURE . 8-6
8.5 CLKGEN BLOCK DIAGRAM. 8-13
8.6 CLOCK SYNCHRONIZATION. 8-14

8-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.1 INTRODUCTION

The DSP56600 core features a Phase Lock Loop (PLL) clock oscillator in its central
processing module. The PLL allows the processor to operate at a high internal clock
frequency using a low frequency clock input, a feature that offers two immediate
benefits:

• Lower frequency clock input reduces the overall electromagnetic interference
generated by a system.

• The ability to oscillate at different frequencies reduces costs by eliminating the
need to add additional oscillators to a system.

The clock generator in the DSP56600 core is composed of two main blocks:

• Phase Lock Loop (PLL) that performs:

– Clock input division

– Frequency multiplication

– Skew elimination

• Clock Generator (CLKGEN) that performs:

– Low power division

– Internal and external clock pulse generation

Figure 8-1 shows a block diagram of the clock generator.

Figure 8-1 PLL and Clock Block Diagram

EXTAL

XTAL

Ext.

Note: The clock source can be either an external source supplied to EXTAL, or a clock
oscillator connected to EXTAL and XTAL.

PLL CLKGEN

PLL

Chip

CLKOUT

Pre-divider

PDF:1 to 128

PLL Loop
Frequency

Multiplication

MF:1 to 4096

Low Power
Divider

Divide
By 2

P
E

N
 =

 1

DF:20 to 27

Clock

Out

Clock

P
E

N
 =

 0

C
O

D

X
T

LD

G
N

D
P

V
C

C
P

+

2-Phase

AA0574

P
C

A
P

V
C

C
P

MOTOROLA DSP56600FM/AD 8-3
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Pins

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2 PLL PINS

The specific PLL pin configuration for each DSP56600 family manual is available in
the respective device’s Technical Data sheet. The following pins are dedicated to the
PLL operation:

• PCAP

• CLKOUT

• PINIT

• PLOCK

The PCAP pin provides a connection for an off-chip capacitor for the PLL filter. One
terminal of the capacitor is connected to PCAP, and the other terminal is connected to
VCCP. The value of this capacitor depends on the Multiplication Factor (MF) of the
PLL.

The CLKOUT output pin provides a 50% duty cycle output clock synchronized to the
internal processor clock when the PLL is enabled and locked. When the PLL is
disabled, the output clock at CLKOUT is derived from, and has half the frequency of,
EXTAL. This pin oscillates in all chip processing states except when the Clock Out
Disable (COD) bit in the PCTL1 register is set, and during the Stop state. When the
chip is in the Wait state, the CLKOUT pin continues to provide a signal.

During the assertion of hardware reset, the value at the PINIT input pin is written
into the PLL Enable (PEN) bit of the PLL Control 1 (PCTL1) register. After hardware
reset is deasserted, the PINIT pin is ignored by the PLL and can have a different
function in the chip.

The PLOCK output originates from the Phase Detector. The chip asserts PLOCK
when the PLL is enabled and locked. When the PLOCK output is deasserted by the
chip, the PLL is enabled but is not locked. PLOCK is also asserted when the PLL is
disabled. PLOCK is a reliable indicator of the PLL lock state only after exiting the
hardware reset state.

8.3 CLOCK INPUT DIVISION

The PLL can divide the input frequency by any integer between 1 and 128. The
combination of input division and output low-power division (see Low Power
Divide and Output Stage on page 8-5) enables the user to generate almost every
frequency value out of the PLL. The division factor can be modified by changing the

8-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

Clock Input Division

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

value of the Predivider Factor bits (PD0–PD6) in the PLL Control registers PCTL0
and PCTL1. The output frequency of the predivider is

8.3.1 Frequency Multiplication

The PLL can multiply the input frequency by any integer between 1 and 4096. The
Multiplication Factor can be modified by changing the value of the Multiplication
Factor (MF) bits in PLL Control register 0 (PCTL0). The output frequency of the PLL
is

8.3.2 Skew Elimination

The PLL is capable of eliminating the skew between the external clock entering the
chip (EXTAL) and the internal clock phases and CLKOUT pin, making it useful for
tighter synchronous timings. Skew elimination is active only when the PLL is
enabled, the Multiplication Factor is less than five, and the Predivider Factor (PDF) is
set to 1. When the PLL is disabled, when the Multiplication Factor is greater than
four, or when the PDF is greater than 1, clock skew may exist.

Skew elimination is assured only if the input frequency (EXTAL) is greater than a
minimum frequency specified in a device’s Technical Data sheet (typically 15 MHz).

8.3.3 Low Power Divide and Output Stage

The Clock Generator has a divider connected to the output of the PLL. The output
frequency of the PLL can be divided by a factor of 2n (where 0 ≤ n ≤ 7). The division
factor can be modified by changing the value of the Division Factor bits DF[2:0] in the
PLL Control register 1 (PCTL1). This divider permits reducing or restoring the chip
operating frequency without losing the PLL lock.

Fext
PDF

Fext MF 2⋅ ⋅
PDF

--

MOTOROLA DSP56600FM/AD 8-5
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The output stage of the Clock Generator generates the clock signals to the core and
the chip peripherals, and drives the CLKOUT pin. The output stage divides the
frequency by 2. The input source to the output stage is selected between:

• EXTAL itself (PEN = 0, PLL disabled), which causes the chip frequency to be

• Low Power Divider output (PEN = 1, PLL enabled), which causes the chip
frequency to be

8.4 PLL ARCHITECTURE

The PLL block diagram is shown in Figure 8-2. The components of the PLL are
described in the following sections.

8.4.1 Frequency Predivider

Clock input frequency division is accomplished by means of a frequency divider of
the input frequency. The programmable Division Factor ranges from 1 to 128.

Figure 8-2 PLL Block Diagram

Fext
2

Fext MF⋅
PDF DF⋅

Phase
Detector

Loop
Filter VCO

Frequency
Divider

1 to 4096

PLL OutEXTAL

MF0–MF11

Predivider

PD0–PD6

1 to 128

Divide
by 2

AA0575

8-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.2 Phase Detector and Charge Pump Loop Filter

The Phase Detector (PD) detects any phase difference between the external clock
(EXTAL) and an internal clock phase from the frequency multiplier. At the point
where there is negligible phase difference and the frequency of the two inputs is
identical, the PLL is in the locked state. The charge pump loop filter receives signals
from the PD, and either increases or decreases the phase based on the PD signals. An
external capacitor is connected to the PCAP pin and determines the PLL operation.
The value of this capacitor depends on the Multiplication Factor (MF) of the PLL. See
Section 2, Specifications in the device’s Technical Data sheet for a formula to use to
determine the proper value for the PLL capacitor. After the PLL locks on to the
proper phase and frequency, it reverts to the Narrow Bandwidth mode, which is
useful for tracking small changes due to frequency drift of the EXTAL clock.

8.4.3 PLL Control Register 0 (PCTL0)

The PLL Control register 0 (PCTL0) is an X I/O-mapped 16-bit read/write register
used to direct the operation of the on-chip PLL. Figure 8-3 shows the programming
model for the PCTL0 register.

8.4.3.1 Multiplication Factor Bits (MF0–MF11)—Bits 0–11
The Multiplication Factor bits MF0–MF11 define the Multiplication Factor (MF) that
is applied to the PLL input frequency. The MF can be any integer from 1 to 4096. The
VCO oscillates at a frequency of

where PDF is the division factor of the Predivider. Table 8-1 shows how to program
the MF0–MF11 bits.

Figure 8-3 PLL Control Register 0 (PCTL0) Format

PCTL0—X:$FFFD
PLL Control

Register 0
Reset = $0000

Read/Write

MF
11

MF
10

MF
9

MF
8

MF
7

MF
6

MF
5

MF
4

MF
3

MF
2

MF
1

MF
0

PD
3

PD
2

PD
1

PD
0

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

* Indicates reserved bits, read as 0 and should be written with 0 for future compatibility

AA0751

Fext MF 2⋅ ⋅
PDF

--

MOTOROLA DSP56600FM/AD 8-7
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MF must be chosen to ensure that the resulting VCO output frequency is in the
range specified in the chip’s Technical Data sheet. Any time a new value is written
into the MF0–MF11 bits, the PLL loses the lock condition. After a time delay, the PLL
relocks. (This time is specified in the Technical Data sheet.) The Multiplication Factor
bits (MF0–MF11) are set to a predetermined value during hardware reset; the value is
implementation-dependent and can be found in the User’s Manual.

The Multiplication Factor Bits (MF0–MF11) in the PLL Control register 0 (PCTL0)
define the MF that is applied to the PLL input frequency. The MF0–MF11 bits are set
to a predetermined value during hardware reset. For example, in the DSP56603 this
value is $000, which corresponds to an MF of 1.

8.4.3.2 Predivider Factor Bits (PD0–PD3)—Bits 12–15
The Predivider Factor bits PD0–PD3 define the least significant part of the Predivider
Factor (PDF) that is applied to the PLL input frequency. The PDF can be any integer
from 1 to 128. Note that the PD4–PD6 bits, which represent the most significant part
of the PDF, are located in the PCTL1 register. The VCO oscillates at a frequency of

The PDF must be chosen to ensure that the resulting VCO output frequency is in the
range specified in the device’s Technical Data sheet. Any time a new value is written
into the PD0–PD6 bits, the PLL loses the lock condition. After a time delay, the PLL
relocks. The Predivider Factor bits (PD0–PD6) are set to a predetermined value
during hardware reset. This value is implementation-dependent and can be found in

Table 8-1 Multiplication Factor Bits MF0–MF11

MF11–MF0 Multiplication Factor MF

$000 1

$001 2

$002 3

•
•
•

•
•
•

$FFE 4095

$FFF 4096

Fext MF 2⋅ ⋅
PDF

--

8-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

each DSP56600 family member User’s Manual. Table 8-2 shows how to program the
PD0–PD6 bits.

8.4.4 PLL Control Register 1 (PCTL1)

The PLL Control register 1 (PCTL1) is an X I/O-mapped 16-bit read/write register
used to direct the operation of the on-chip PLL. The PCTL1 control bits are described
in the following sections.

8.4.4.1 Division Factor Bits (DF0–DF2)—Bits 0–2
The Division Factor (DF2–DF0) bits define the Division Factor (DF) of the low power
divider. These bits specify any power-of-two Division Factor in the range from 20 to
27. Table 8-3 shows the programming of the DF bits. Changing the value of the DF
bits does not cause a loss of lock condition. Whenever possible, changes of the
operating frequency of the chip (e.g., to enter a low power mode) should be made by
changing the value of the DF2–DF0 bits rather than by changing the MF0–MF11 bits.

Table 8-2 Predivider Factor Bits PD0–PD6

PD[6:0] Predivider Factor PDF

$0 1

$1 2

$2 3

•
•
•

•
•
•

$7E 127

$7F 128

Figure 8-4 PLL Control Register 1(PCTL1) Format

PCTL1—X:$FFFD
PLL Control

Register 1
Reset = $0000

Read/Write

PD
6

PD
5

PD
4 *

CODPEN PS
TP

XT
LD

XT
LR

DF
2

DF
1

DF
0* * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

* Indicates reserved bits, read as 0 and should be written with 0 for future compatibility

AA0752

MOTOROLA DSP56600FM/AD 8-9
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For MF ≤ 4, changing DF2–DF0 lengthens the instruction cycle following the PLL
control register update. This is done in order to keep synchronization between
EXTAL and the internal chip clock. For MF > 4, synchronization is not guaranteed
and the instruction cycle is not lengthened. The DF bits are cleared by hardware
reset—setting the DF to divide by 1.

8.4.4.2 Crystal Range Bit (XTLR)—Bit 3
The Crystal Range (XTLR) bit controls the on-chip crystal oscillator
transconductance. If the external crystal frequency is less than 200 kHz (“fork
crystal”), this bit should be set in order to decrease the transconductance of the input
amplifier, otherwise the internal clocks may not be stable. If the external crystal
frequency is greater than 200 kHz, this bit should be cleared in order to have the full
transconductance, otherwise the crystal oscillator may not function at all. Changing
the XTLR bit while the PLL is active causes a loss of PLL lock and a reinitialization of
the lock process. The XTLR bit is set to a predetermined value during hardware reset.
This value is implementation-dependent and may vary between DSP56600 family
members.

8.4.4.3 XTAL Disable Bit (XTLD)—Bit 4
The XTAL Disable (XTLD) bit controls the on-chip crystal oscillator XTAL output.
When XTLD is cleared, the XTAL output pin is active, permitting normal operation
of the crystal oscillator. When XTLD is set, the XTAL output pin is held high,
disabling the on-chip crystal oscillator. If the on-chip crystal oscillator is not used
(EXTAL is driven from an external clock source), it is recommended to set XTLD
(disabling XTAL) to minimize RFI noise and power dissipation. Changing the XLTD

Table 8-3 Division Factor Bits DF0–DF2

DF[2:0] Division Factor DF

000 20

001 21

010 22

011 23

100 24

101 25

110 26

111 27

8-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bit while the MF value is greater than 4 causes a loss of PLL lock condition and
restarts the PLL lock process. The XTLD bit is set to a predetermined value during
hardware reset. This value is implementation-dependent and may vary between
DSP56600 family members.

8.4.4.4 Stop Processing State Bit (PSTP)—Bit 5
The Stop Processing State (PSTP) bit controls the behavior of the PLL and of the
on-chip crystal oscillator during the Stop processing state. When the PSTP bit is set,
the PLL and the on-chip crystal oscillator remain operating while the chip is in the
Stop state. When the PSTP bit is cleared, the PLL and the on-chip crystal oscillator are
disabled when the chip enters the Stop state. For minimum power consumption
during the Stop state at the cost of longer recovery time, the PSTP bit should be
cleared. To enable rapid recovery when exiting the Stop state, at the cost of higher
power consumption, the PSTP bit should be set. The PSTP bit is cleared by hardware
reset.

8.4.4.5 PLL Enable Bit (PEN)—Bit 6
The PLL Enable (PEN) bit enables the PLL operation. When this bit is set, the PLL is
enabled and the internal clocks are derived from the PLL VCO output. When this bit
is cleared, the PLL is disabled and the internal clocks are derived directly from the
clock connected to the EXTAL pin. When the PLL is disabled, the VCO is not
operating. This helps minimize power consumption. The PEN bit can be set or
cleared by software any time during the chip operation. During hardware reset, this
bit receives the value of the PLL’s PINIT pin.

A relationship exists between the PSTP and PEN bits where the PEN bit adjusts
PSTP’s control of the PLL operation. When the PSTP bit is set and the PEN bit is
cleared, the on-chip crystal oscillator remains operating in the Stop state, but the PLL
is disabled (see Table 8-4). This power saving feature enables rapid recovery from
the Stop state when the user operates the chip with an on-chip oscillator and with the
PLL disabled.

Table 8-4 PSTP and PEN Relationship

PSTP PEN
Operation During Stop

Recovery Time
From Stop

Power Consumption
During Stop

PLL Oscillator

0 x Disabled Disabled Long Minimal

1 0 Disabled Enabled Short Lower

1 1 Enabled Enabled Short Higher

MOTOROLA DSP56600FM/AD 8-11
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

PLL Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.4.6 Clock Output Disable Bit (COD)—Bit 7
The Clock Output Disable (COD) bit controls the output buffer of the clock at the
CLKOUT pin. When the COD bit is set, the CLKOUT pin is held high. When the
COD bit is cleared, the CLKOUT pin is active, providing a 50% duty cycle clock
synchronized to the internal core clock. If the CLKOUT pin is not connected to
external circuits, the COD bit should be set, disabling clock output and minimizing
RFI noise and power dissipation. CLKOUT oscillates in all operating states except the
Stop state. The COD bit is cleared by hardware reset, allowing CLKOUT to be
provided.

8.4.4.7 Reserved PCTL1 Bit—Bit 8
This bit is reserved for future expansion. It is read as 0 and should be written with 0
for future compatibility.

8.4.4.8 Predivider Factor Bits (PD4–PD6)—Bits 9–11
The Predivider Factor Bits PD4–PD6 define the most significant part of the
Predivider Factor (PDF) that is applied to the PLL input frequency. The PDF can be
any integer from 1 to 128. Table 8-2 on page 8-9 shows how to program the PD0–PD6
bits. Note that PD0–PD3 are located in the PCTL0 register.

8.4.4.9 Reserved PCTL1 bits—Bits 12–15
These bits are reserved for future expansion. They are read as 0 and should be
written with 0 for future compatibility.

8.4.5 Voltage Controlled Oscillator (VCO)

The Voltage Controlled Oscillator (VCO) is capable of oscillating at frequencies from
the minimum speed specified in a device’s Technical Data sheet up to the maximum
allowed clock input frequency.

Note: When the PLL is enabled, the chip operating frequency is half of the VCO
oscillating frequency.

If the frequency of EXTAL is less than the VCO’s minimum working frequency, the
PINIT pin should be held low during hardware reset. Following reset, the MF value
can be changed in software to the desired value, and the PEN bit set to 1.

8.4.5.1 Divide by 2
The output of the VCO is divided by 2. This results in a constant × 2 multiplication of
the PLL clock output used to generate the special chip clock phases.

8-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

CLKGEN Block Diagram

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.5.2 Frequency Divider
The Frequency Divider, which is connected to the feedback loop of the PLL, is used
to multiply the incoming external clock. In the PLL close-loop, the effect of the
frequency divider is to multiply the PLL input frequency by its Division Factor. The
programmable Division Factor ranges from 1 to 4096, resulting in frequency
multiplication in the same range. This factor is programmable using the MF0–MF11
bits in the PCTL0 register.

8.5 CLKGEN BLOCK DIAGRAM

The Clock Generator block diagram is shown in Figure 8-5. The components of the
Clock Generator are described in the following sections.

8.5.1 Low Power Divider (LPD)

The Low Power Divider (LPD) divides the output frequency of the VCO by any
power of 2 from 20 to 27. Since the LPD is not in the closed loop of the PLL, changes in
the divide factor do not cause a loss of lock condition. This fact is particularly useful
for utilizing the LPD in low power consumption modes when the chip is not
involved in intensive calculations. This can result in significant power saving. When
the chip is required to exit a low power mode, it can immediately do so with no time
needed for clock recovery or PLL lock.

Figure 8-5 CLKGEN Block Diagram

EXTAL

Low-Power
Divider

DF0–DF2

20 to 27

PLL OUT

Divide
by 2

Chip
Clock

CLKOUT

2-Phase

AA0753

MOTOROLA DSP56600FM/AD 8-13
For More Information On This Product,

 Go to: www.freescale.com

PLL and Clock Generator

Clock Synchronization

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.5.2 Divide by 2

The EXTAL clock and the output of the Low-Power Divider are selected according to
the PEN bit in the PCTL1 register. The selected clock frequency is divided by two and
is driven to the internal chip activity and to the CLKOUT pin.

8.5.3 Operating Frequency

The operating frequency of the chip is governed by the frequency control bits in the
PLL control register as follows:

where MF is the Multiplication Factor defined by the MF0–MF11 bits, PDF is the
Predivider Factor defined by the PD0–PD6 bits, and DF is the Division Factor defined
by the DF0–DF2 bits. FCHIP is the chip operating frequency, and FEXT is the external
input frequency to the chip at the EXTAL pin.

8.6 CLOCK SYNCHRONIZATION

When the PLL is enabled (the PEN bit in the PCTL1 register is set), low clock skew
between EXTAL and CLKOUT is guaranteed if MF ≤ 4. CLKOUT and the internal
chip clock are fully synchronized.

FCHIP

FEXT MF×
PDF DF×
--------------------------- Fvco

DF
--------------= =

8-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 9

EXTERNAL MEMORY INTERFACE
(PORT A)

MOTOROLA DSP56600FM/AD 9-1
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.1 INTRODUCTION . 9-3
9.2 EXTERNAL MEMORY INTERFACE OPERATION. 9-3
9.2.2 BUS CONTROL REGISTER . 9-5
9.3 PROGRAM MEMORY DATA TRANSFER 9-7
9.4 PROGRAM ADDRESS TRACING MODE. 9-10

9-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.1 INTRODUCTION

Port A is the external memory expansion port that is used for program memory
expansion either for program code or for data. It provides an easy to use, low
part-count connection with fast or slow static memories and with I/O devices.

The Port A data bus is 24 bits wide with a separate 16-bit address bus capable of a
sustained rate of one memory access per two clock cycles. External memory can be as
large as 64 K × 24-bit program memory space, depending on chip configuration. An
internal wait state generator can be programmed to insert as many as 31 wait states if
access to slower memory or I/O device is required. A complete description of the
signals provided on Port A is found in Section 1, Signal/Connection Descriptions,
of the device’s Technical Data sheet.

9.2 EXTERNAL MEMORY INTERFACE OPERATION

The external bus timing is defined by the operation of the Address Bus, Data Bus,
and Bus Control pins described in the device’s Technical Data sheet. The DSP56600
core external ports are designed to interface with high-speed Static RAMs and
peripheral devices with Static RAM-based timing, as well as slower memory devices.

9.2.1 Static RAM Support

External bus timing is controlled by the Bus Control Register (BCR) that is described
in Bus Control Register on page 9-5. Insertion of wait states is controlled by the BCR
to provide constant bus access timing. The number of wait states for each external
access is determined by the BCR.

The external memory address is defined by the Address Bus. The Memory Chip
Select signal (MCS) is used to generate a chip select signal for the external memory
device. This signal changes the mode of the memory device from low power Standby
mode to its active mode and begins the access. This allows slower memories to be
used since the Chip Select signal is address-based rather than read or write
enable-based. Static RAMs can be easily interfaced to the DSP56600 core bus timing.
Due to the Static RAM requirement to keep the address stable during the entire bus
cycle, at least one wait state must be inserted to the bus operation. Figure 9-2
on page 9-5 shows a possible timing configuration. For detailed timing information,
see the device’s Technical Data sheet.

MOTOROLA DSP56600FM/AD 9-3
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

External Memory Interface Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A Static RAM access is performed in one of the following ways:

Write Access

1. A0–A15 and MCS are asserted in the middle of CLKOUT low phase.

2. WR is asserted with the rising edge of CLKOUT (for a single wait state access).

3. Data is driven in the middle of CLKOUT low phase.

Read Access

1. A0–A15 and MCS are asserted in the middle of CLKOUT low phase.

2. RD is asserted with the rising edge of CLKOUT.

3. Data is sampled in the middle of CLKOUT last high phase of the external
access.

Wait states postpone the disappearance of the external address, thus increasing
memory access time. In any case, Static RAM access requires at least one wait state.

Figure 9-1 shows a typical connection between a DSP56600 family member and an
external SRAM memory.

Figure 9-2 shows a typical timing diagram for bus operation using one wait state. For
detailed specifications, see the device’s Technical Data sheet.

Figure 9-1 Static RAM Connection Diagram

DSP56600
Static
RAM

A

D

A

D

MCS
RD

WR

E

G

W AA0719

9-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

External Memory Interface Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: The assertion of the WR signal depends on the number of wait states
programmed in the BCR. If a single wait state is programmed in the BCR,
the WR signal is asserted with the rising edge of CLKOUT. If the number
of wait states programmed is two or three, WR assertion is delayed by half
cycle of CLKOUT. If the number of wait states programmed is four or
more, WR assertion is delayed by a full cycle of CLKOUT. This feature
enables the connection of slow external devices that require long address
setup time before write assertion in order to prevent false write.

9.2.2 Bus Control Register

The expansion port control consists of the Bus Control Register (BCR), a 16-bit
read/write register used to control the external bus activity and Bus Interface Unit

Figure 9-2 Bus Operation, One Wait State—Static RAM Access

CLKOUT

Address

T0 T1 T0 Tw Tw T1

WS

Data In

RD

Data Out

WR

T1

MCS

(Write)

(Read)

Bus

AA0579Note: For detailed timing specification see the device’s Technical Data sheet.

(Data Sampled at)

(Data Driven at)

MOTOROLA DSP56600FM/AD 9-5
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

External Memory Interface Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

operation. The BCR is shown in Figure 9-3 and described in the following
paragraphs.

9.2.2.1 Expansion Bus Memory Wait (BMW0–BMW4)—Bits 0–4
The Expansion Bus Memory Wait control bits (BMW0–BMW4) define the number of
wait states, from 0 to 31, inserted in each external SRAM access. Since SRAM memory
access requires at least one wait state, the value of these bits should never be
programmed as $0000.

When selecting 4 to 7 wait states, one additional wait state is inserted at the end of the
access. When selecting eight or more wait states, two additional wait states are
inserted at the end of the access. These trailing wait states increase the data hold time
and the memory release time and do not increase the memory access time. The
BMW[4:0] bits are set during hardware reset to provide the maximum of 31 wait
states.

9.2.2.2 Reserved Bits—Bits 5–15
Bits 5 through 15 in the BCR are reserved. These bits should be written as 0 to ensure
future compatibility.

9.2.3 Expansion Port Disable

In many applications that are sensitive to power consumption, there is no use of the
expansion port because all the memory resides inside the chip itself. A special feature
of the expansion port controller enables the user to reduce significantly the power
consumption of the expansion port controller by setting the EBD bit in the Operating
Mode Register (OMR). If this bit is set, the expansion port controller is disabled.
When the EBD bit is set, the user should not attempt to access the external memory.
Otherwise, improper operation will result.

Figure 9-3 Bus Control Register (BCR) Format

BCR—X:$FFFC
Bus Control

Register
Reset = $001F

Read/Write

* * * * * *
BMW

4
BMW

3
BMW

2
BMW

1
BMW

0* * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

* Indicates reserved bits, read as 0 and should be written with 0 for future compatibility

*

9-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

Program Memory Data Transfer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3 PROGRAM MEMORY DATA TRANSFER

The internal and external program memories consist of 24-bit wide words. The access
to a program memory word is required in any instruction fetch and in program
memory move instructions. In the latter case a special 24-bit register, the Bus Switch
Program Memory Register (BPMR), is used to interface between the internal and
external program memory spaces and the rest of the DSP56600 core, which consists
mostly of 16-bit components.

9.3.1 Bus Switch Program Memory Register (BPMR)

The Bus Switch Program Memory Register (BPMR) is a 24-bit X I/O mapped
read/write register. An access to the BPMR can be either a 24-bit access or a 16-bit
access. The BPMR is composed of two parts, the Bus Switch Program Memory
Register Low (BPMRL) and the Bus Switch Program Memory Register High
(BPMRH). Each move from a 16-bit source to a 24-bit destination is extended by the 8
lower bits of the BPMRH. Each move from a 24-bit source to a 16-bit destination
truncates the 24-bit source and moves only its 16 Least Significant Bits (LSBs). Using
the BPMR is the only way to access the 8 Most Significant Bits (MSBs) of any program
memory address, external or internal, which is essential for many applications. For
example, when using a system configuration operating mode, a hardware reset
causes the DSP56600 core to jump to the mask programmed internal program
memory location and execute the code fetched from this location. This code usually
includes a set of program memory move instructions that load the program code to
the required destination and then execute it. The access to the 8 MSBs of each 24-bit
program word is available only by using BPMR.

9.3.2 BPMR Mapping

The BPMR is mapped as a 24-bit register in address BPMRG and as a pair of 16-bit
and 8-bit registers in addresses x:BPMRL and x:BPMRH, respectively. The 8-bit
register BPMRH is part of a 16-bit X I/O mapped register where its 8 MSBs are
reserved. Figure 9-4 shows the BMPR mapping.

MOTOROLA DSP56600FM/AD 9-7
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

Program Memory Data Transfer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.3 24-Bit Access to BPMR

A 24-bit access to BPMR is done by move instruction between BPMR and any
program memory word as follows:

9.3.4 16-Bit Access to BPMR

A 16-bit access to the BPMR is done either to its 16 LSBs, which are mapped to
x:BPMRL, or to its 8 MSBs, which are mapped to x:BPMRH. In both cases it is not
treated as a special access but as a regular 16-bit X I/O access. Reading x:BPMRH will
clear the 16 MSBs of the 24-bit destination or the 8 MSBs of the 16-bit destination,
depending on the destination’s width.

9.3.5 BPMR Usage Typical Examples

A typical usage of the BPMR is for bootstrap through external EPROM or through the
Host Interface (HI08). The following code, when loaded to an external EPROM

Figure 9-4 BMPR Mapping

Example 9-1 24-Bit Access to BMPR

;EXAMPLE: move from P source address to P destination address

BPMRG equ $FFF4

movep p:(r0), x:BPMRG

movep x:BPMRG, p:$5

x:BPMRH x:BPMRL

x:BPMRG

Reserved bits; read as 0, should be written with 0 for future compatibility

023

015015

AA0582

9-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

Program Memory Data Transfer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

hardware reset location can load any required Program RAM segment. Example 9-2
describes the part of it that uses the BPMR.

A common debugging process requires the content of a segment of program memory
code to be delivered to the external command controller. This information should be
passed through the OGDB register. The only way to pass the 8 MSBs of each 24-bit
program word to the OGDB register is by using BPMR. Example 9-3 shows how the
OGDB register is loaded by a 24-bit program memory word.

Example 9-2 Bootstrap Through External EPROM

BPMRG equ $FFF4

BPMRL equ $FFF3

BPMRH equ $FFF2

;===

; This is part of the routine that loads from external EPROM.

; The external EPROM is 8 bit wide.

do #2,_LOOP1 ; Read the 16 LSB part of the instruction.

movem p:(r2)+,a2 ; Get the 8 LSB from ext. P mem.

asr #8,a,a ; Shift 8 bit data into A1.

_

LOOP1 ; Go get another byte.

movep a1,x:BPMRL ; Store the 16 LSB part in BPMRL.

movep p:(r2)+,x:BPMRH ; Get the 8 MSB part and store it in BPMRH.

movep x:BPMRG,p:(r0)+ ; Store 24 Bit result in P mem.

Example 9-3 Passing Program Memory Words to the OGDB Register

BPMRG equ $FFF4

BPMRL equ $FFF3

BPMRH equ $FFF2

OGDB equ $FFFB

;===

movep p:(r2)+,x:BPMRG ; Read the 24 bit data and store in BPMR.

movep x:BPMRL,x0 ; Store the 16 LSB part in x0.

movep x0,x:OGDB ; Pass the 16 LSB part to OGDB.

movep x:BPMRH,y0 ; Store the 8 MSB part in y0.

movep y0,x:OGDB ; Pass the 8 MSB part to OGDB.

MOTOROLA DSP56600FM/AD 9-9
For More Information On This Product,

 Go to: www.freescale.com

External Memory Interface (Port A)

Program Address Tracing Mode

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4 PROGRAM ADDRESS TRACING MODE

The Address Tracing (AT) mode provides a means of software development in
addition to the On-Chip Emulation (OnCE) circuitry. When the AT mode is enabled
by setting the ATE bit in the OMR, the DSP56600 core reflects the addresses of
internal fetches and program space moves (MOVEM) to the Address Bus (A0–A15),
if the Address Bus is not needed by the DSP56600 core for external accesses. When an
AT cycle is performed (an internal access reflected to the Address Bus), RD and WR
strobes and MCS signal are not asserted. This assures that no external device is
erroneously activated. The AT signal is used to indicate a new address on the
Address Bus, either of an AT cycle or of an external access. The user may sample the
Address Bus and the MCS signal with the falling edge of AT and sort between the AT
cycles and the external accesses according to the sampled value of the MCS signal.

Note: The trace capability of the AT mechanism is not identical to the OnCE trace
buffer capability. The AT mechanism provides information on fetches, not
on program flow. In the AT mechanism, fetches for a jump that is not taken
are sampled, although the program flow has not gone that way. The
software that interprets this information must be aware of such aspects.

Figure 9-5 shows a possible configuration. For detailed timing information, see the
device’s Technical Data sheet.

Figure 9-5 Address Tracing Possible Configuration Diagram

CLKOUT

Address

T0 T1 T0 Tw Tw T1T1

Bus

MCS

RD

AT

AT CycleExternal Read Access
AA0583
9-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 10

JTAG PORT AND OnCE MODULE

MOTOROLA DSP56600FM/AD 10-1
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.1 INTRODUCTION . 10-3
10.2 JTAG PORT. 10-3
10.3 ON-CHIP EMULATION (ONCE) . 10-13

10-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.1 INTRODUCTION

The DSP56600 core provides a dedicated user-accessible Test Access Port (TAP) that
is fully compatible with the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1). Problems associated with testing high density circuit
boards have led to development of this standard under the sponsorship of the Test
Technology Committee of IEEE and the Joint Test Action Group (JTAG). The
DSP56600 core implementation supports circuit-board test strategies based on this
standard.

The test logic includes a TAP consisting of four dedicated signal pins, a 16-state
controller, and three test data registers. A Boundary Scan Register (BSR) links all
device signal pins into a single shift register. The test logic, implemented utilizing
static logic design, is independent of the device system logic. The DSP56600 core
implementation provides the following capabilities:

• Perform boundary scan operations to test circuit-board electrical continuity
(EXTEST)

• Bypass the DSP56600 core for a given circuit-board test by effectively reducing
the BSR to a single cell (BYPASS)

• Sample the DSP56600 core-based device system pins during operation and
transparently shift out the result in the BSR; preload values to output pins
prior to invoking the EXTEST instruction (SAMPLE/PRELOAD)

• Disable the output drive to pins during circuit-board testing (HIGHZ)

• Provide a means of accessing the OnCE controller and circuits to control a
target system (ENABLE_ONCE)

• Provide a means of entering the Debug mode of operation
(DEBUG_REQUEST)

• Query identification information (manufacturer, part number and version)
from an DSP56600 core-based device (IDCODE)

• Force test data onto the outputs of an DSP56600 core-based device while
replacing its BSR in the serial data path with a single-bit register (CLAMP)

10.2 JTAG PORT

This section, which includes aspects of the JTAG implementation that are specific to
the DSP56600 core, is intended to be used with the supporting IEEE 1149.1
document. The discussion includes those items required by the standard to be

MOTOROLA DSP56600FM/AD 10-3
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

defined and, in certain cases, provides additional information specific to the
DSP56600 core implementation. For internal details and applications of the standard,
refer to the IEEE 1149.1 document. The block diagram of the DSP56600 core
implementation of JTAG is shown in Figure 10-1.

Figure 10-1 JTAG Block Diagram

Boundary Scan Register

Bypass

M
U

X

4-Bit Instruction Register

TDO

TAP
Ctrl

TDI

TMS

TCK

023 1

OnCE Logic

ID Register

TRST

Decoder

M
U

X

AA0113

10-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The DSP56600 core implementation includes a 4-bit instruction register and three test
registers: a 1-bit bypass register, a 32-bit identification register, and a BSR whose size
is chip-specific. This implementation includes a dedicated TAP and five pins.

10.2.1 JTAG Pins

As described in the IEEE 1149.1 document, the JTAG port requires a minimum of
four pins to support TDI, TDO, TCK, and TMS signals. The DSP56600 family also
provides the optional TRST pin. The pin functions are described in the following
paragraphs.

10.2.1.1 Test Clock (TCK)
The test clock input (TCK) pin is used to synchronize the test logic.

10.2.1.2 Test Mode Select (TMS)
The test mode select input (TMS) pin is used to sequence the test controller’s state
machine. The TMS is sampled on the rising edge of TCK and it has an internal pullup
resistor.

10.2.1.3 Test Data Input (TDI)
Serial test instruction and data are received through the test data input (TDI) pin. TDI
is sampled on the rising edge of TCK and it has an internal pullup resistor.

10.2.1.4 Test Data Output (TDO)
The test data output (TDO) pin is the serial output for test instructions and data. TDO
is tri-stateable and is actively driven in the shift-IR and shift-DR controller states.
TDO changes on the falling edge of TCK.

10.2.1.5 Test Reset (TRST)
The test reset input (TRST) pin is used to asynchronously initialize the test controller.
The TRST pin has an internal pullup resistor.

MOTOROLA DSP56600FM/AD 10-5
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.2 TAP Controller

The TAP controller is responsible for interpreting the sequence of logical values on
the TMS signal. It is a synchronous state machine that controls the operation of the
JTAG logic. The state machine is shown in Figure 10-2. The value shown adjacent to
each arc represents the value of the TMS signal sampled on the rising edge of TCK
signal. For a description of the TAP controller states, please refer to the IEEE 1149.1
document.

Figure 10-2 TAP Controller State Machine

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Test-Logic-Reset

Run-Test/Idle

Update-DR

1

0

0

1

0

1

1

0

1

1

0

0

1 0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

1

0

1

1

0

1

1

0

0

1 0

01

0

1 1

AA0114

10-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.3 Boundary Scan Register

The Boundary Scan Register (BSR) in the DSP56600 core JTAG implementation
contains bits for all device signal and clock pins and associated control signals. All
bidirectional pins have a single register bit in the BSR for pin data, and are controlled
by an associated control bit in the BSR. The boundary scan bit definitions vary
according to specific chip implementation. See the applicable User’s Manual for a
complete description of the BSR contents.

10.2.4 Instruction Register

The DSP56600 core JTAG implementation includes the three mandatory public
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS), and also supports the
optional CLAMP instruction defined by IEEE 1149.1. The HI-Z public instruction
provides the capability for disabling all device output drivers. The ENABLE_ONCE
public instruction enables the JTAG port to communicate with the OnCE circuitry.
The DEBUG_REQUEST public instruction enables the JTAG port to force the
DSP56600 core into the Debug mode of operation. The DSP56600 core includes a 4-bit
instruction register without parity consisting of a shift register with four parallel
outputs. Data is transferred from the shift register to the parallel outputs during the
Update-IR controller state. Figure 10-3 shows the Instruction Register configuration.

The four bits are used to decode the eight unique instructions shown in Table 10-1.
All other encodings are reserved for future enhancements and are decoded as
BYPASS.

Figure 10-3 JTAG Instruction Register Format

JTAG Instruction
Register (IR) B3 B2 B1 B0

AA0746

MOTOROLA DSP56600FM/AD 10-7
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The parallel output of the instruction register is reset to 0010 in the Test-Logic-Reset
controller state, which is equivalent to the IDCODE instruction.

During the Capture-IR controller state, the parallel inputs to the instruction shift
register are loaded with 01 in the Least Significant Bits (LSBs) as required by the
standard. The Two Most Significant Bits (MSBs) are loaded with the values of the
core status bits OS1 and OS0 from the OnCE controller. See Core Status Bits
(OS0–OS1)—Bits 6–7 on page 10-19 for a description of the status bits.

10.2.4.1 EXTEST (B[3:0] = 0000)
The external test (EXTEST) instruction selects the BSR. EXTEST also asserts internal
reset for the DSP56600 core system logic to force a predictable internal state while
performing external boundary scan operations.

By using the TAP, the BSR is capable of the following:

• Scanning user-defined values into the output buffers

Table 10-1 JTAG Instructions

Code
Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD

0 0 1 0 IDCODE

0 0 1 1 CLAMP

0 1 0 0 HI-Z

0 1 0 1 RESERVED

0 1 1 0 ENABLE_ONCE

0 1 1 1 DEBUG_REQUEST

1 0 x x (Reserved)

1 1 0 x (Reserved)

1 1 1 0 (Reserved)

1 1 1 1 BYPASS

10-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Capturing values presented to input pins

• Controlling the direction of bidirectional pins

• Controlling the output drive of tri-stateable output pins

For more details on the function and use of the EXTEST instruction, please refer to
the IEEE 1149.1 document.

10.2.4.2 SAMPLE/PRELOAD (B[3:0] = 0001)
The SAMPLE/PRELOAD instruction provides two separate functions. First, it
provides a means to obtain a snapshot of system data and control signals. The
snapshot occurs on the rising edge of TCK in the Capture-DR controller state. The
data can be observed by shifting it transparently through the BSR.

Note: Since there is no internal synchronization between the JTAG clock (TCK)
and the system clock (CLK), the user must provide some form of external
synchronization to achieve meaningful results.

The second function of the SAMPLE/PRELOAD instruction is to initialize the BSR
output cells prior to selection of EXTEST. This initialization ensures that known data
appears on the outputs when entering the EXTEST instruction.

10.2.4.3 IDCODE (B[3:0] = 0010)
The IDCODE instruction selects the ID register. This instruction is provided as a
public instruction to allow the manufacturer, part number, and version of a
component to be determined through the TAP. Figure 10-4 shows the ID register
configuration.

One application of the ID register is to distinguish the manufacturer(s) of
components on a board when multiple sourcing is used. As more components that
conform to the IEEE 1149.1 standard emerge, it is desirable to allow for a system
diagnostic controller unit to blindly interrogate a board design in order to determine

Figure 10-4 Identification Register Configuration

011112272831

0 0 0 0 0 10 0 0 0 0 0 0 1 1 1 0

Design Core
Number

Chip
Derivative
Number

2122 1617

 0 0 0 0 1 0 0 0 1 1 0

Center
Number

n n n n n

Manufacturer
Identity

Version
Information Customer Part Number 1

AA0718

MOTOROLA DSP56600FM/AD 10-9
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the type of each component in each location. This information is also available for
factory process monitoring and for failure mode analysis of assembled boards.

Motorola’s Manufacturer Identity is 00000001110. The Customer Part Number
consists of two parts: Motorola Design Center Number (bits 27:22) and a sequence
number (bits 21:12). The sequence number is divided into two parts: Core Number
(bits 21:17) and Chip Derivative Number (bits 16:12). Motorola Semiconductor Israel
(MSIL) Design Center Number is 000110 and DSP56600 core number is 00001.

Once the IDCODE instruction is decoded, it selects the ID register , which is a 32-bit
data register. Since the Bypass register loads a logic 0 at the start of a scan cycle,
whereas the ID register loads a logic 1 into its LSB, examination of the first bit of data
shifted out of a component during a test data scan sequence immediate following exit
from Test-Logic-Reset controller state shows whether such a register is included in
the design. When the IDCODE instruction is selected, the operation of the test logic
has no effect on the operation of the on-chip system logic as required by the IEEE
1149.1 standard.

10.2.4.4 CLAMP (B[3:0] = 0011)
The CLAMP instruction is not included in the IEEE 1149.1 standard. It is provided as
a public instruction that selects the 1-bit Bypass register as the serial path between
TDI and TDO, while allowing signals driven from the component pins to be
determined from the BSR. During testing of ICs on PCB, it may be necessary to place
static guarding values on signals that control operation of logic not involved in the
test. The EXTEST instruction could be used for this purpose, but since it selects the
BSR, the required guarding signals would be loaded as part of the complete serial
data stream shifted in, both at the start of the test and each time a new test pattern is
entered. Since the CLAMP instruction allows guarding values to be applied using the
BSR of the appropriate ICs while selecting their Bypass registers, it allows much
faster testing than does the EXTEST instruction. Data in the boundary scan cell
remains unchanged until a new instruction is shifted in or the JTAG state machine is
set to its reset state. The CLAMP instruction also asserts internal reset for the
DSP56600 core system logic to force a predictable internal state while performing
external boundary scan operations.

10.2.4.5 HI-Z (B[3:0] = 0100)
The HI-Z instruction is not included in the IEEE 1149.1 standard. It is provided as a
manufacturer’s optional public instruction to prevent having to backdrive the output
pins during circuit-board testing. When HI-Z is invoked, all output drivers,
including the two-state drivers, are turned off (i.e., high impedance). The instruction
selects the Bypass register. The HI-Z instruction also asserts internal reset for the
DSP56600 core system logic to force a predictable internal state while performing
external boundary scan operations.

10-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.4.6 ENABLE_ONCE(B[3:0] = 0110)
The ENABLE_ONCE instruction is not included in the IEEE 1149.1 standard. It is
provided as a public instruction to allow the user to perform system debug functions.
When the ENABLE_ONCE instruction is decoded, the TDI and TDO pins are
connected directly to the OnCE registers. The particular OnCE register connected
between TDI and TDO at a given time is selected by the OnCE controller depending
on the OnCE instruction being currently executed. All communication with the
OnCE controller is done through the Select-DR-Scan path of the JTAG TAP
Controller.

10.2.4.7 DEBUG_REQUEST(B[3:0] = 0111)
The DEBUG_REQUEST instruction is not included in the IEEE 1149.1 standard. It is
provided as a public instruction to allow the user to generate a debug request signal
to the DSP56600 core. When the DEBUG_REQUEST instruction is decoded the TDI
and TDO pins are connected to the Instruction Registers. Due to the fact that in the
Capture-IR state of the TAP the OnCE status bits are captured in the Instruction shift
register, the external JTAG controller must continue to shift-in the
DEBUG_REQUEST instruction while polling the status bits that are shifted-out until
the Debug mode of operation is entered (acknowledged by the combination 11 on
OS1–OS0). After the acknowledgment of the Debug mode is received, the external
JTAG controller must issue the ENABLE_ONCE instruction to allow the user to
perform system debug functions.

10.2.4.8 BYPASS (B[3:0] = 1111)
The BYPASS instruction selects the single bit Bypass register, as shown in
Figure 10-5. This creates a shift-register path from TDI to the Bypass register, and
finally to TDO, circumventing the BSR. This instruction is used to enhance test
efficiency when a component other than the DSP56600 core-based device becomes
the device under test. When the Bypass register is selected by the current instruction,
the shift-register stage is set to a logic 0 on the rising edge of TCK in the Capture-DR
controller state. Therefore, the first bit shifted out after selecting the Bypass register is
always a logic 0.

Figure 10-5 Bypass Register

1

1
Mux

G1

C
D

To TDO
From TDI

0

Shift DR

CLOCKDR AA0115

MOTOROLA DSP56600FM/AD 10-11
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

JTAG Port

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.5 DSP56600 Restrictions

The control afforded by the output enable signals using the BSR and the EXTEST
instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. The user must avoid situations in which the
DSP56600 core output drivers are enabled into actively driven networks. In addition,
the EXTEST instruction can be performed only after power-up or regular hardware
reset while EXTAL was provided. During the execution of EXTEST, EXTAL can
remain inactive.

Two constraints relate to the JTAG interface. First, the TCK input does not include an
internal pullup resistor and should not be left unconnected. The second constraint is
to ensure that the JTAG test logic is kept transparent to the system logic by forcing
the TAP into the Test-Logic-Reset controller state, using either of two methods.
During power-up, TRST must be externally asserted to force the TAP controller into
this state. After power-up is concluded, TMS must be sampled as a logic 1 for five
consecutive TCK rising edges. If TMS either remains unconnected or is connected to
VCC, then the TAP controller cannot leave the Test-Logic-Reset state, regardless of
the state of TCK.

The DSP56600 core features a low-power Stop mode, which is invoked using the
STOP instruction. The interaction of the JTAG interface with low-power Stop mode is
as follows:

1. The TAP controller must be in the Test-Logic-Reset state to either enter or
remain in the low-power Stop mode. Leaving the TAP controller
Test-Logic-Reset state negates the ability to achieve low-power, but does not
otherwise affect device functionality.

2. The TCK input is not blocked in low-power Stop mode. To consume minimal
power, the TCK input should be externally connected to VCC or GND.

3. The TMS and TDI pins include on-chip pullup resistors. In low-power Stop
mode, these two pins should remain either unconnected or connected to VCC
to achieve minimal power consumption.

Since during Stop mode all DSP56600 core clocks are disabled, the JTAG interface
provides the means of polling the device status (sampled in the Capture-IR state). For
a DSP56600 derivative that does not include the DE pin, the JTAG interface provides
the software means of entering the Debug mode by executing the DEBUG_REQUEST
instruction.

10-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3 ON-CHIP EMULATION (OnCE)

The DSP56600 core On-Chip Emulation (OnCE) module provides a means of
interacting with the DSP56600 core and its peripherals non-intrusively so that a user
can examine registers, memory, or on-chip peripherals, thus facilitating hardware
and software development on the DSP56600 core processor. To achieve this, special
circuits and dedicated pins on the DSP56600 core are defined to avoid sacrificing any
user-accessible on-chip resource. The OnCE module resources can be accessed only
after executing the JTAG instruction ENABLE_ONCE (these resources are accessible
even when the chip is operating in Normal mode). Figure 10-6 shows the block
diagram of the OnCE module.

The OnCE module controller functionality is accessed through the JTAG port. The
JTAG pins TCK, TDI, and TDO are used to shift in and out data and instructions. See
JTAG Pins on page 10-5 for the description of the JTAG pins. To facilitate
emulation-specific functions, one additional pin, called DE, is provided on certain
DSP56600 family members.

The bidirectional open drain Debug Event pin (DE) provides a fast means of entering
the Debug mode of operation from an external command controller (when input), as
well as a fast means of acknowledging the entering of the Debug mode of operation

Figure 10-6 OnCE Block Diagram

Trace
Buffer

Breakpoint
Logic

Pipeline
Information Trace Logic

OnCE
Controller

PAB

YAB

XAB

PDB PIL GDB

TDO

TRST

TDI

TCK

Tags
Buffer

Control Bus

DE

AA0586

MOTOROLA DSP56600FM/AD 10-13
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

to an external command controller (when output). The assertion of this pin by a
command controller causes the DSP56600 core to finish the current instruction being
executed, save the instruction pipeline information, enter the Debug mode, and wait
for commands to be entered from the TDI line. If the DE pin is used to enter the
Debug mode, then it must be deasserted after the OnCE port responds with an
acknowledge and before sending the first OnCE command. The assertion of this pin
by the DSP56600 core indicates that the DSP has entered the Debug mode and is
waiting for commands to be entered from the TDI line. The DE pin also facilitates
multiple processor connections, as shown in Figure 10-7. In this way, the user can
stop all the devices in the system when one of the devices enters the Debug mode.
The user can also stop all the devices synchronously by asserting the DE line.

Figure 10-7 OnCE Multiprocessor Configuration

TDI TDO TDI TDOTDI TDOTDI

TMS

TCK

DE

TDO

TRST AA0703

RESET
(Optional)

10-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1 OnCE Controller

The OnCE Controller contains the following blocks: OnCE Command Register
(OCR), OnCE Decoder, and the OnCE Status and Control Register (OSCR).
Figure 10-8 illustrates a block diagram of the OnCE controller.

10.3.1.1 OnCE Command Register (OCR)
The OnCE Command Register (OCR) is an 8-bit shift register that receives its serial
data from the TDI pin. It holds the 8-bit commands to be used as input for the OnCE
Decoder. The OCR is shown in Figure 10-9.

10.3.1.1.1 Register Select Bits (RS4–RS0)—Bits 0-4
The Register Select bits define which register is source/destination for the read/write
operation. See Table 10-5 for the OnCE register addresses.

Figure 10-8 OnCE Controller

Figure 10-9 OnCE Command Register (OCR) Format

OnCE Command Register
TDI
TCK

Status and Control
Register TDO

Mode Select

OnCE Decoder
ISDEBUG

ISBKPT

ISSWDBG

ISDR
ISTRACE

Register WriteRegister Read

Update

AA0704

OCR
OnCE Command

Register
Reset = $00

Write Only

R/W GO EX RS4 RS3 RS2 RS1 RS0

7 6 5 4 3 2 1 0

AA0106

MOTOROLA DSP56600FM/AD 10-15
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1.1.2 Exit Command Bit (EX)–Bit 5
If the EX bit is set, leave Debug mode and resume normal operation. The EXIT
command is executed only if the GO command is issued, and the operation is write
to OPDBR or read/write to “No Register Selected”. Otherwise, the EX bit is ignored.
Table 10-2 shows the definition of the EX bit.

10.3.1.1.3 Go Command Bit (GO)—Bit 6
If the GO bit is set, execute the instruction that resides in the PIL register. To execute
the instruction, the core leaves the Debug mode. The core returns to the Debug mode
immediately after executing the instruction if the EX bit is cleared. The core goes on
to normal operation if the EX bit is set. The GO command is executed only if the
operation is write to OPDBR or read/write to “No Register Selected”. Otherwise, the
GO bit is ignored. Table 10-3 shows the definition of the GO bit.

10.3.1.1.4 Read/Write Command Bit (R/W)—Bit 7
The R/W bit specifies the direction of data transfer.

Table 10-2 EX Bit Definition

EX Action

0 Remain in Debug mode

1 Leave Debug mode

Table 10-3 GO Bit Definition

GO Action

0 Inactive—no action taken

1 Execute instruction in PIL

Table 10-4 R/W Bit Definition

R/W Action

0 Write the data associated with
the command into the register
specified by RS4–RS0.

1 Read the data contained in the
register specified by RS4–RS0.

10-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 10-5 OnCE Register Select Encoding

RS[4:0] Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 OnCE Memory Breakpoint Counter (OMBC)

00010 OnCE Breakpoint Control Register (OBCR)

00011 (Reserved)

00100 (Reserved)

00101 OnCE Memory Limit Register 0 (OMLR0)

00110 OnCE Memory Limit Register 1 (OMLR1)

00111 (Reserved)

01000 (Reserved)

01001 OnCE GDB Register (OGDBR)

01010 OnCE PDB Register (OPDBR)

01011 OnCE PIL Register (OPILR)

01100 PDB GO-TO Register (for GO TO command)

01101 OnCE Trace Counter (OTC)

01110 (Reserved)

01111 OnCE PAB Register for Fetch (OPABFR)

10000 OnCE PAB Register for Decode (OPABDR)

10001 OnCE PAB Register for Execute (OPABEX)

10010 Trace Buffer and Increment Pointer

10011 (Reserved)

101xx (Reserved)

11xx0 (Reserved)

11x0x (Reserved)

110xx (Reserved)

11111 No Register Selected

MOTOROLA DSP56600FM/AD 10-17
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1.2 OnCE Decoder (ODEC)
The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives
as input the 8-bit command from the OCR, a signal from JTAG Controller (indicating
that 8/24 bits have been received and update of the selected data register must be
performed), and a signal indicating that the core was halted. The ODEC generates all
the strobes required for reading and writing the selected OnCE registers.

10.3.1.3 OnCE Status and Control Register (OSCR)
The OnCE Status and Control Register (OSCR) is a 24-bit register used to enable the
Trace mode of operation and to indicate the cause of entering the Debug mode. The
control bits are read/write while the status bits are read-only. The OSCR bits are
cleared on hardware reset. The OSCR is shown in Figure 10-10.

10.3.1.3.1 Trace Mode Enable Bit (TME)—Bit 0
The Trace Mode Enable (TME) control bit, when set, enables the Trace mode of
operation.

10.3.1.3.2 Interrupt Mode Enable Bit (IME)—Bit 1
The Interrupt Mode Enable (IME) control bit, when set, causes the chip to execute a
vectored interrupt to the address VBA:$06 instead of entering the Debug mode.

10.3.1.3.3 Software Debug Occurrence Bit (SWO)—Bit 2
The Software Debug Occurrence (SWO) bit is a read-only status bit that is set when
the Debug mode of operation is entered because of the execution of the DEBUG or
DEBUGcc instruction with condition true. This bit is cleared when leaving the Debug
mode.

10.3.1.3.4 Memory Breakpoint Occurrence Bit (MBO)—Bit 3
The Memory Breakpoint Occurrence (MBO) bit is a read-only status bit that is set
when the Debug mode of operation is entered because a memory breakpoint has
been encountered. This bit is cleared when leaving the Debug mode.

Figure 10-10 OnCE Status and Control Register (OSCR) Format

OnCE Status and
Control Register

Read/Write

* * * * OS1 OS0 * TO MBO SWO IME TME* * * *

9 8 7 6 5 4 3 2 1 023

* Indicates reserved bits, written as 0 for future compatibility AA0705

10-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1.3.5 Trace Occurrence Bit (TO)—Bit 4
The Trace Occurrence (TO) bit is a read-only status bit that is set when all the
following occur:

• Trace Counter = 0

• Trace mode is enabled

• Debug mode of operation is entered

This bit is cleared when leaving the Debug mode.

10.3.1.3.6 Reserved Bit 5
Bit 5 is reserved for future use. It is read as 0 and should be written with 0 for future
compatibility.

10.3.1.3.7 Core Status Bits (OS0–OS1)—Bits 6–7
The Core Status (OS0,OS1) bits are read-only status bits that provide core status
information. By examining the status bits, the user can determine whether the chip
has entered the Debug mode. Examining SWO, MBO, and TO identifies the cause of
entering the Debug mode. The user can also examine these bits and determine the
cause why the chip has not entered the Debug mode after debug event assertion (DE)
or as a result of the execution of the JTAG Debug Request instruction (core waiting
for the bus, STOP or WAIT instruction, etc.). These bits are also reflected in the JTAG
instruction shift register, which allows the polling of the core status information at
the JTAG level. This is useful when the DSP56600 core executes the STOP instruction
(and therefore there are no clocks) to allow the reading of OSCR. See Table 10-6 for
the definition of the OS0-OS1 bits.

10.3.1.3.8 Reserved Bits 8–23
Bits 8–23 are reserved for future use. They read as 0 and should be written with 0 for
future compatibility.

Table 10-6 Core Status Bits Description

OS1 OS0 DESCRIPTION

0 0 DSP56600 core is executing instructions

0 1 DSP56600 core is in Wait or STOP

1 0 DSP56600 core is waiting for bus

1 1 DSP56600 core is in Debug Mode

MOTOROLA DSP56600FM/AD 10-19
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.2 OnCE Memory Breakpoint Logic

Memory breakpoints can be set on program memory or data memory locations. In
addition, the breakpoint does not have to be in a specific memory address, but within
an approximate address range of where the program may be executing. This
significantly increases the programmer’s ability to monitor what the program is
doing in real-time.

The breakpoint logic, shown in Figure 10-11, contains a latch for the addresses,
registers that store the upper and lower address limit, address comparators, and a
breakpoint counter. Address comparators are useful in determining where a
program may be getting lost or when data is being written where it should not be
written. They are also useful in halting a program at a specific point to
examine/change registers or memory. Using address comparators to set breakpoints
enables the user to set breakpoints in RAM or ROM and while in any operating
mode. Memory accesses are monitored according to the contents of the OBCR as
specified in OnCE Breakpoint Control Register (OBCR) on page 10-21.

10.3.2.1 OnCE Memory Address Latch (OMAL)
The OnCE Memory Address Latch (OMAL) is a 16-bit register that latches the PAB,
XAB or YAB on every instruction cycle according to the MBS1–MBS0 bits in OBCR.

10.3.2.2 OnCE Memory Limit Register 0 (OMLR0)
The OnCE Memory Limit Register 0 (OMLR0) is a 16-bit register that stores the
memory breakpoint limit. OMLR0 can be read or written through the JTAG port.
Before enabling breakpoints, OMLR0 must be loaded by the external command
controller.

10.3.2.3 OnCE Memory Address Comparator 0 (OMAC0)
The OnCE Memory Address Comparator 0 (OMAC0) compares the current memory
address (stored in OMAL0) with the OMLR0 contents.

10.3.2.4 OnCE Memory Limit Register 1 (OMLR1)
The OnCE Memory Limit Register 1 (OMLR1) is a 16-bit register that stores the
memory breakpoint limit. OMLR1 can be read or written through JTAG port. Before
enabling breakpoints, OMLR1 must be loaded by the external command controller.

10-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.2.5 OnCE Memory Address Comparator 1 (OMAC1)
The OnCE Memory Address Comparator 1 (OMAC1) compares the current memory
address (stored in OMAL0) with the OMLR1 contents.

10.3.2.6 OnCE Breakpoint Control Register (OBCR)
The OnCE Breakpoint Control Register (OBCR) is a 16-bit register used to define the
memory breakpoint events. OBCR can be read or written through the JTAG port. All
the bits of the OBCR are cleared on hardware reset. The OBCR is described in
Figure 10-11.

Figure 10-11 OnCE Memory Breakpoint Logic 0

Memory Address Latch

PAB XAB YAB

Memory Bus Select

Memory Limit Register 1

Address Comparator 1

Memory Limit Register 0

Address Comparator 0

TDITDO

TCK

Breakpoint Counter

Memory
Breakpoint
Selection

DEC

Breakpoint

Count=0 ISBKPT

Occurred

N,V

N,V

Breakpoint Control

TDI TDOTCK

AA0591

MOTOROLA DSP56600FM/AD 10-21
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.2.7 Memory Breakpoint Select Bits (MBS0–MBS1)—Bits 0–1
The Memory Breakpoint Select bits (MBS0–MBS1) enable memory breakpoints 0 and
1, allowing them to occur when a memory access is performed on P, X, or Y memory
access is performed. See Table 10-7 for the definition of the MBS0–MBS1 bits.

10.3.2.8 Breakpoint 0 Read/Write Select Bits (RW00–RW01)—Bits 2–3
The Breakpoint 0 Read/Write Select bits (RW00–RW01) define the memory
breakpoints 0 to occur when a memory address accesses is performed for read, write,
or both. See Table 10-8 for the definition of the RW00–RW01 bits.

Figure 10-12 OnCE Breakpoint Control Register (OBCR) Format

Table 10-7 Memory Breakpoint 0 and 1 Select Table

MBS1 MBS0 Description

0 0 Reserved

0 1 Breakpoint on P access

1 0 Breakpoint on X access

1 1 Breakpoint on Y access

Table 10-8 Breakpoint 0 Read/Write Select Table

RW01 RW00 Description

0 0 Breakpoint disabled

0 1 Breakpoint on write access

1 0 Breakpoint on read access

1 1 Breakpoint on read or write access

OnCE Breakpoint
Control Register

Reset = $0010
Read/Write

BT1 BT0 CC CC RW RW CC CC RW RW MB MB* * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

* Indicates reserved bits, written as 0 for future compatibility

1011 11 10 01 00 01 00 S1 S0

AA0707

10-22 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.2.9 Breakpoint 0 Condition Code Select Bits (CC00–CC01)—Bits 4–5
The Breakpoint 0 Condition Code Select bits (CC00–CC01) define the condition of the
comparison between the current Memory Address (OMAL0) and the Memory Limit
Register 0 (OMLR0). See Table 10-9 for the definition of the CC00–CC01 bits.

10.3.2.10 Breakpoint1 Read/Write Select Bits (RW10–RW11)—Bits 6–7
The Breakpoint1 Read/Write Select (RW10–RW11) bits control define memory
breakpoints 1 to occur when a memory address accesses is performed for read, write
or both. See Table 10-10 for the definition of the RW10–RW11 bits.

10.3.2.11 Breakpoint1 Condition Code Select Bits (CC10–CC11)—Bits 8–9
The Breakpoint1 Condition Code Select bits (CC10–CC11) define the condition of the
comparison between the current memory address (OMAL0) and the OnCE Memory
Limit Register 1 (OMLR1). See Table 10-11 for the definition of the CC10–CC11 bits.

Table 10-9 Breakpoint 0 Condition Select Table

CC01 CC00 Description

0 0 Breakpoint on not equal

0 1 Breakpoint on equal

1 0 Breakpoint on less than

1 1 Breakpoint on greater than

Table 10-10 Breakpoint 1 Read/Write Select Table

RW11 RW10 Description

0 0 Breakpoint disabled

0 1 Breakpoint on write access

1 0 Breakpoint on read access

1 1 Breakpoint read or write access

MOTOROLA DSP56600FM/AD 10-23
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 10.3.2.12 Breakpoint 0 and 1 Event Select Bits (BT1–BT0)—Bits 10–11
The Breakpoint 0 and 1 Event Select bits (BT1–BT0) define the sequence between
breakpoint 0 and 1. If the condition defined by BT1–BT0 is met, then the Breakpoint
Counter (OMBC) is decremented. SeeTable 10-12 for the definition of the BT1–BT0
bits.

10.3.2.13 Reserved Bits 12–15
Bits 12–15 are reserved for future use. They read as 0 and should be written with 0 for
future compatibility.

10.3.3 OnCE Memory Breakpoint Counter (OMBC)

The OnCE Memory Breakpoint Counter is a 16-bit counter that is loaded with a value
equal to the number of times minus one that a memory access event should occur
before a memory breakpoint is declared. The memory access event is specified by the
OBCR and by the memory limit registers. On each occurrence of the memory access
event, the breakpoint counter is decremented. When the counter reaches 0 and a new
occurrence takes place, the chip enters the Debug mode. The OMBC can be read or
written through the JTAG port. Every time that the limit register is changed, or a
different breakpoint event is selected in the OBCR, the breakpoint counter must be

Table 10-11 Breakpoint 1 Condition Select Table

CC11 CC10 Description

0 0 Breakpoint on not equal

0 1 Breakpoint on equal

1 0 Breakpoint on less than

1 1 Breakpoint on greater than

Table 10-12 Breakpoint 0 and 1 Event Select Table

BT1 BT0 Description

0 0 Breakpoint 0 and Breakpoint 1

0 1 Breakpoint 0 or Breakpoint 1

1 0 Breakpoint 1 after Breakpoint 0

1 1 Breakpoint 0 after Breakpoint 1

10-24 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

written afterwards. This ensures that the OnCE breakpoint logic is reset and that no
previous events can affect the new breakpoint event selected. The breakpoint counter
is cleared by hardware reset.

10.3.4 OnCE Trace Logic

Using the OnCE Trace Logic, execution of instructions in single or multiple steps is
possible. The OnCE Trace Logic causes the chip to enter the Debug mode of
operation after the execution of one or more instructions and wait for OnCE
commands from the debug serial port. The OnCE Trace Logic block diagram is
shown in Figure 10-13.

The OnCE Trace Counter (OTC) is a 16-bit counter that can be read or written
through the JTAG port. If N instructions are to be executed before entering the Debug
mode, the Trace Counter should be loaded with N – 1. The Trace Counter is cleared
by hardware reset.

The Trace mode has a counter associated with it so that more than one instruction
can be executed before returning back to the Debug mode of operation. The objective
of the counter is to allow the user to take multiple instruction steps real-time before
entering the Debug mode. This feature helps the software developer debug sections
of code that do not have a normal flow or are getting hung up in infinite loops. The
Trace Counter also enables the user to count the number of instructions executed in a
code segment.

Figure 10-13 OnCE Trace Logic Block Diagram

TDI

TDO

TCK

Trace Counter
DEC

End of Instruction

Count = 0

ISTRACE AA0708

MOTOROLA DSP56600FM/AD 10-25
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To enable the Trace mode of operation the counter is loaded with a value, the
program counter is set to the start location of the instruction(s) to be executed
real-time, the TME bit is set in the OSCR and the DSP56600 core exits the Debug
mode by executing the appropriate command issued by the external command
controller.

Upon exiting the Debug mode, the counter is decremented after each execution of an
instruction. Interrupts are serviceable and all instructions executed, including fast
interrupt services and the execution of each repeated instruction, cause the Trace
Counter to be decremented. Upon decrementing to 0, the DSP56600 core re-enters the
Debug mode, the Trace Occurrence bit (TO) in the OSCR is set, the core Status bits
OS[1:0] are set to 11, and the DE pin (if provided) is asserted to indicate that the
DSP56600 core has entered Debug mode and is requesting service.

10.3.5 Methods of Entering the Debug Mode

Entering the Debug mode is acknowledged by the chip by setting the Core Status bits
OS1 and OS0 and asserting the DE line. This informs the external command
controller that the chip has entered the Debug mode and is waiting for
commands.The DSP56600 core can disable the OnCE module if the ROM Security
option is implemented. If the ROM Security is implemented, the OnCE module
remains inactive until a write operation to the OGDBR is executed by the DSP56600
core.

10.3.5.1 External Debug Request During RESET Assertion
Holding the DE line asserted during the assertion of RESET causes the chip to enter
the Debug mode. After receiving the acknowledge, the external command controller
must negate the DE line before sending the first command.

Note: In this case, the chip does not execute any instruction before entering the
Debug mode.

10.3.5.2 External Debug Request During Normal Activity
Holding the DE line asserted during normal chip activity causes the chip to finish the
execution of the current instruction and then enter the Debug mode. After receiving
the acknowledge, the external command controller must negate the DE line before
sending the first command. This process is the same for any newly fetched
instruction, including instructions fetched by the interrupt processing or instructions
that will be aborted by the interrupt processing.

10-26 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: In this case the chip completes the execution of the current instruction and
stops after the newly fetched instruction enters the instruction latch.

10.3.5.3 Executing the JTAG DEBUG_REQUEST Instruction
Executing the JTAG instruction DEBUG_REQUEST asserts an internal debug request
signal. Consequently, the chip finishes the execution of the current instruction and
stops after the newly fetched instruction enters the instruction latch. After entering
the Debug mode, the Core Status bits OS1 and OS0 are set and the DE line is asserted,
thus acknowledging the external command controller that the Debug mode of
operation has been entered.

10.3.5.4 External Debug Request During Stop
Executing the JTAG instruction DEBUG_REQUEST (or asserting DE) while the chip
is in the Stop state (i. e., has executed a STOP instruction) causes the chip to exit the
Stop state and enter the Debug mode. After receiving the acknowledge, the external
command controller must negate DE before sending the first command.

Note: In this case, the chip completes the execution of the STOP instruction and
halts after the next instruction enters the instruction latch.

10.3.5.5 External Debug Request During Wait
Executing the JTAG instruction DEBUG_REQUEST (or asserting DE) while the chip
is in the Wait state (i. e., has executed a WAIT instruction) causes the chip to exit the
Wait state and enter the Debug mode. After receiving the acknowledge, the external
command controller must negate DE before sending the first command.

Note: In this case, the chip completes the execution of the WAIT instruction and
halts after the next instruction enters the instruction latch.

10.3.5.6 Software Request During Normal Activity
Upon executing the DSP56600 core instruction DEBUG (or DEBUGcc when the
specified condition is true), the chip enters the Debug mode after the instruction
following the DEBUG instruction has entered the instruction latch.

10.3.5.7 Enabling Trace Mode
When the Trace mode mechanism is enabled and the Trace Counter is greater than 0,
the Trace Counter is decremented after each instruction execution. Execution of an
instruction when the Trace Counter = 0 causes the chip to enter the Debug mode after
completing the execution of the instruction. Only instructions actually executed
cause the Trace Counter to decrement. An aborted instruction does not decrement
the Trace Counter and does not cause the chip to enter the Debug mode.

MOTOROLA DSP56600FM/AD 10-27
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.5.8 Enabling Memory Breakpoints
When the memory breakpoint mechanism is enabled with a Breakpoint Counter
value of 0, the chip enters the Debug mode after completing the execution of the
instruction that caused the memory breakpoint to occur. In case of breakpoints on
executed Program memory fetches, the breakpoint is acknowledged immediately
after the execution of the fetched instruction. In case of breakpoints on accesses to X,
Y or P memory spaces by MOVE instructions, the breakpoint is acknowledged after
the completion of the instruction following the instruction that accessed the specified
address.

10.3.6 Pipeline Information and GDB Register

To restore the pipeline and to resume normal chip activity upon returning from the
Debug mode, a number of on-chip registers store the chip pipeline status.
Figure 10-14 shows the block diagram of the Pipeline Information Registers with the
exception of the PAB registers, which are shown in Figure 10-15 on page 10-31.

10.3.6.1 OnCE PDB Register (OPDBR)
The OnCE Program Data Bus Register (OPDBR) is a 24-bit latch that stores the value
of the Program Data Bus generated by the last program memory access of the core
before the Debug mode is entered. The OPDBR can be read or written through the
JTAG port. This register is affected by the operations performed during the Debug
mode and must be restored by the external command controller when returning to
Normal mode.

Figure 10-14 OnCE Pipeline Information and GDB Registers

PDB Register (OPDBR)

GDB Register (OGDBR)

TDI

TDO TCK

PIL Register (OPILR)

PIL

PDB

GDB

AA0594

10-28 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.6.2 OnCE PIL Register (OPILR)
The OnCE PIL Register (OPILR) is a 24-bit latch that stores the value of the
Instruction Latch before the Debug mode is entered. OPILR can only be read through
the JTAG port.

Note: Since the Instruction Latch is affected by the operations performed during
the Debug mode, it must be restored by the external command controller
when returning to Normal mode. Since there is no direct write access to the
Instruction Latch, the task of restoring is accomplished by writing to
OPDBR with no-GO and no-EX. In this case the data written on PDB is
transferred into the Instruction Latch.

10.3.6.3 OnCE GDB Register (OGDBR)
The OnCE GDB Register (OGDBR) is a 16-bit latch that can only be read through the
JTAG port. The OGDBR is not actually required from a pipeline status restore point
of view, but is required as a means of passing information between the chip and the
external command controller. The OGDBR is mapped on the X internal I/O space at
address $FFFC. Whenever the external command controller needs the contents of a
register or memory location, it forces the chip to execute an instruction that brings
that information to the OGDBR. Then the contents of the OGDBR are delivered
serially to the external command controller by the command “READ GDB
REGISTER”.

10.3.7 Trace Buffer

To ease debugging activity and keep track of program flow, the DSP56600 core
provides a number of on-chip dedicated resources. There are three read-only PAB
registers that give pipeline information when the Debug mode is entered, and a Trace
Buffer that stores the address of the last instruction that was executed, as well as the
addresses of the last eight change of flow instructions.

10.3.7.1 OnCE PAB Register for Fetch (OPABFR)
The OnCE PAB Register for Fetch Register (OPABFR) is a 16-bit register that stores
the address of the last instruction whose fetch was started before the Debug mode
was entered.The OPABFR can only be read through the JTAG port. This register is
not affected by the operations performed during the Debug mode.

10.3.7.2 PAB Register for Decode (OPABDR)
The PAB Register for Decode Register (OPABDR) is a 16-bit register that stores the
address of the instruction currently on the PDB. This is the instruction whose fetch
was completed before the chip has entered the Debug mode. The OPABDR can only

MOTOROLA DSP56600FM/AD 10-29
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

be read through the JTAG port. This register is not affected by the operations
performed during the Debug mode.

10.3.7.3 PAB Register for Execute (OPABEX)
The PAB Register for Execute (OPABEX) register is a 16-bit register that stores the
address of the instruction currently in the Instruction Latch. This is the instruction
that would have been decoded and executed if the chip would not have entered the
Debug mode. The OPABEX register can only be read through the JTAG port. This
register is not affected by the operations performed during the Debug mode.

10.3.7.4 Trace Buffer
The Trace Buffer stores the addresses of the last eight change of flow instructions that
were executed, as well as the address of the last executed instruction. The Trace
Buffer is implemented as a circular buffer containing eight 17-bit registers and one
4-bit counter. All the registers have the same address, but any read access to the
Trace Buffer address causes the counter to increment, thus pointing to the next Trace
Buffer register. The registers are serially available to the external command controller
through their common Trace Buffer address. Figure 10-15 on page 10-31 shows the
block diagram of the Trace Buffer. The Trace Buffer is not affected by the operations
performed during the Debug mode except for the Trace Buffer pointer increment
when reading the Trace Buffer. When entering the Debug mode, the Trace Buffer
counter is pointing to the Trace Buffer register containing the address of the last
executed instructions. The first Trace Buffer read obtains the oldest address and the
following Trace Buffer reads get the other addresses from the oldest to the newest, in
order of execution.

Notes: 1. To ensure Trace Buffer coherence, a complete set of eight reads of the
Trace Buffer must be performed. This is necessary due to the fact that
each read increments the Trace Buffer pointer, thus pointing to the next
location. After eight reads, the pointer indicates the same location as
before starting the read procedure.

 2. On any change of flow instruction, the Trace Buffer stores both the
address of the change of flow instruction, as well as the address of the
target of the change of flow instruction. In the case of conditional
change of flows, the address of the change of flow instruction is always
stored (regardless of the fact that the change of flow is true or false), but
if the conditional change of flow is false (i.e., not taken) the address of
the target is not stored. In order to facilitate the program trace
reconstruction every Trace Buffer location has an additional “invalid
bit” (the 25th bit). If a conditional change of flow instruction has a
“condition false”, the “invalid bit” is set, thus marking this instruction
as “not taken”. Therefore, it is imperative to read seventeen bits of data

10-30 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

when reading the eight Trace Buffer registers. Since data is read LSB
first, the “invalid bit” is the first bit to be read.

10.3.8 OnCE Commands and Serial Protocol

To permit an efficient means of communication between the external command
controller and the DSP56600 core chip, the following protocol is adopted. Before

Figure 10-15 OnCE Trace Buffer Block Diagram

Fetch Address (OPABFR)

PAB

Decode Address (OPABDR)

Circular
Buffer
Pointer

Trace BUF Shift Register
TDO
TCK

Trace BUF Register 0

Trace BUF Register 1

Trace BUF Register 2

Trace BUF Register 7

Execute Address (OPABEX)

TDI
AA0595

MOTOROLA DSP56600FM/AD 10-31
For More Information On This Product,

 Go to: www.freescale.com

JTAG Port and OnCE Module

On-Chip Emulation (OnCE)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

starting any debugging activity, the external command controller has to wait for an
acknowledge on the DE line indicating that the chip has entered the Debug mode
(optionally the external command controller can poll the OS1 and OS0 bits in the
JTAG instruction shift register). The external command controller communicates
with the chip by sending 8-bit commands that can be accompanied by 24 bits of data.
Both commands and data are sent or received Least Significant Bit first. After sending
a command, the external command controller should wait for the DSP56600 core chip
to acknowledge execution of the command. The external command controller can
send a new command only after the chip has acknowledged execution of the
previous command.

The OnCE commands are classified as follows:

• Read commands (when the chip delivers the required data)

• Write commands (when the chip receives data and writes the data in one of
the OnCE registers)

• Commands that do not have data transfers associated with them

The commands are eight bits long and have the format shown in Figure 10-9
on page 10-15.

10.3.9 Target Site Debug System Requirements

A typical debug environment consists of a target system where the DSP56600
core-based device resides in the user defined hardware. The JTAG port interfaces to
the external command controller through a 14-pin connector that provides
connections for the five JTAG port lines, one OnCE module control line, a ground, a
RESET line, and .a target power input line. The RESET line is optional and is only
used to reset the DSP56600 core-based device and its associated circuitry.

The external command controller acts as the medium between the DSP56600 core
target system and a host computer. The external command controller circuit acts as a
JTAG port driver and host computer command interpreter. The controller issues
commands based on the host computer inputs from a user interface program that
communicates with the user.

10-32 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 11

OPERATING MODES AND MEMORY
SPACES

MOTOROLA DSP56600FM/AD 11-1
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.1 INTRODUCTION . 11-3
11.2 CHIP OPERATING MODES . 11-3
11.3 DSP56600 CORE MEMORY MAP 11-4

11-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.1 INTRODUCTION

This section describes the operating modes and memory spaces in the DSP56600
family.

11.2 CHIP OPERATING MODES

The DSP56600 core mode pins (MODA, MODB, MODC, and MODD) determine the
reset vector address that should point to the start-up procedure when the chip leaves
the Reset state. The MODA, MODB, MODC, and MODD pins are sampled as the
chip leaves the Reset state. The sampled state of these pins is subject to a
mask-programmed look-up table that may be used as a filter to disable the user from
entering some of the operating modes. This filtered state is written to the MD, MC,
MB, and MA bits in the Operating Mode Register (OMR). When the Reset state is
exited, the MODA, MODB, MODC, and MODD pins become general purpose
interrupt pins, IRQA, IRQB, IRQC, and IRQD, respectively. When not in the Reset
state, the OMR mode bits (MA, MB, MC, and MD) can be changed by software.

Table 11-1 lists the mode assignments in the DSP56600 core. The reset vector is
chosen from three mask programmed addresses: RESET1, RESET2, and RESET3.
Each reset vector is mask programmed to one of two different values, according to
Table 11-2. These reset vectors are implementation-specific.

Table 11-1 DSP Core Operating Modes

MOD[D:A] Operating
Mode Description Reset Vector

0000 0 Expanded Mode RESET1

0001–0111 1–7 System Configuration Mode 1–7 RESET3

1000 8 Expanded Mode 8 RESET2

1001–1111 9–15 System Configuration Mode 9–15 RESET3

MOTOROLA DSP56600FM/AD 11-3
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

DSP56600 Core Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 11.2.1 Expanded Modes (Modes 0 and 8)

In the Expanded Modes 0 and 8, a hardware reset causes the DSP56600 core to jump
to the mask-programmed external program memory location RESET1 or RESET2,
respectively, and execute the code fetched from this location. These locations are
implementation-specific. See the appropriate User’s Manual for more information.

11.2.2 System Configuration Modes 1–15 (Mode 1–7 and 9–15)

In the System Configuration Modes 1–7 and 9–15, a hardware reset causes the
DSP56600 core to jump to the mask-programmed internal program memory location
RESET3, and execute the code fetched from this location. These routines are typically
implementation-specific, and can be contained in the bootstrap code.

11.3 DSP56600 CORE MEMORY MAP

The memory space of the DSP56600 core is partitioned into program memory space
(P), X data memory space, and Y data memory space. The data memory space is
divided into X data memory and to Y data memory in order to work with the two
Address Arithmetic Logic Units (Address ALUs) and to feed two operands
simultaneously to the Data ALU. Each memory space may include internal RAM,
internal ROM and can be expanded off-chip under software control. The three
independent memory spaces of the DSP56600 core: X data, Y data, and program, are
shown in Figure 11-1.

Table 11-2 DSP Core Reset Vectors

RESET1
possible values

RESET2
possible values

RESET3
possible values

$C000 $4000 $0800

$8000 $0000 $0400

11-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

DSP56600 Core Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: Individual members of the DSP 56600 family can have different amounts of
X data, Y data, and program memory. Consult the appropriate User’s
Manual for more information.

11.3.1 X Data Memory Space

The X data memory space is divided into two parts:

• Internal X I/O space

• Internal X memory

11.3.1.1 Internal X I/O Space
The on-chip X I/O peripheral registers occupy the top 128 locations of the X data
memory space ($FF80–$FFFF) and can be accessed by the MOVE and MOVEP
instructions, as well as by bit-oriented instructions, such as the BCHG, BCLR, BSET,
BTST, BRCLR, BRSET, BSCLR, BSSET, JCLR, JSET, JSCLR, and JSSET instructions.
Some of the DSP56600 core registers are mapped onto the internal X I/O space as
well, as listed in Table 11-3.

Figure 11-1 DSP Core Memory Map

Program
$FFFF

$0000

Internal
P-Memory

X Data
$FFFF

$0000

Internal X-I/O

Y Data
$FFFF

$0000

Internal Y-I/O $FF80 $FF80

P-Memory

Internal

External

Internal
X-Memory Y-Memory

AA0596

MOTOROLA DSP56600FM/AD 11-5
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

DSP56600 Core Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.1.2 Internal X Memory
The X memory space located at locations $0000–$FF7F is used for internal X RAM or
X ROM modules. The RAM modules are 256 locations each, and the ROM modules
are 2048 locations each.

Table 11-3 Internal X I/O Memory Map

Register Block Address Register Name and Description

IPRC PIC $FFFF Interrupt Priority Register—Core

IPRP $FFFE Interrupt Priority Register Peripheral

PCTL0 PLL $FFFD PLL Control Register 0

PCTL1 $FFFC PLL Control Register 1

OGDB OnCE $FFFB ONCE GDB Register

BCR Port A $FFFA Bus Control Register

IDR $FFF9 ID Register

PAR0 PPL $FFF8 Patch 0 Register

PAR1 $FFF7 Patch 1 Register

PAR2 $FFF6 Patch 2 Register

PAR3 $FFF5 Patch 3 Register

BPMRG BPMR $FFF4 BPMRG (24 bits)

BPMRL $FFF3 BPMRL (16 bits)

BPMRH $FFF2 BPMRH (16 bits)

Reserved On-Chip
X-I/O

mapped
Registers

$FFF1 Reserved for on-chip X I/O mapped register

. . . Reserved for on-chip X I/O mapped register

. . . Reserved for on-chip X I/O mapped register

. . . Reserved for on-chip X I/O mapped register

$FF80 Reserved for on-chip X I/O mapped register

11-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

DSP56600 Core Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.2 Y Data Memory Space

The Y data memory space is divided into two parts:

• Internal Y I/O space

• Internal Y memory

11.3.2.1 Internal Y I/O Space
The on-chip peripheral registers (Y I/O) occupy the top 128 locations of the Y data
memory space ($FF80–$FFFF) and can be accessed by MOVE, MOVEP instructions
and by bit-oriented instructions (BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR,
BSSET, JCLR, JSET, JSCLR and JSSET).

11.3.2.2 Internal Y Memory
The Y memory space located at locations $0000–$FF7F is used for internal Y RAM or
Y ROM modules. The RAM modules are 256 locations each and the ROM modules
are 2048 locations each

11.3.3 Program Memory

The Program memory space is divided into two parts:

• External program memory

• Internal program memory

11.3.3.1 External Program Memory
The program memory space located at locations $0000–$FFFF is used for expanding
to external program memory. The starting address of the external program memory
space is mask programmed and is dependent on the amount of on-chip program
memory in the chip.

11.3.3.2 Internal Program Memory
The program memory space located at locations $0000–$FFFF is used for internal
Program RAM and ROM modules, 256 locations for each RAM module and 2048
locations for each ROM module. The last address of the internal program memory is
mask-programmed. The Program RAM provides a method of changing the program
dynamically, allowing efficient overlaying of DSP software algorithms. The
boundary between the internal and external memories is with a 256-word resolution.

MOTOROLA DSP56600FM/AD 11-7
For More Information On This Product,

 Go to: www.freescale.com

Operating Modes and Memory Spaces

DSP56600 Core Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 12

DEVELOPMENT TOOLS

MOTOROLA DSP56600FM/AD 12-1
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.1 INTRODUCTION . 12-3
12.2 SOFTWARE DEVELOPMENT ENVIRONMENT. 12-5
12.3 HARDWARE DEVELOPMENT ENVIRONMENT 12-8

12-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.1 INTRODUCTION

Motorola offers a full line of software and hardware Digital Signal Processor (DSP)
development tools to speed development and debugging of user applications and
algorithms for the DSP56600 family. The development tools include the following:

• DSP56600 Assembler

• DSP56600 Linker/Librarian

• DSP56600 Simulator

• DSP56600 C Compiler with symbolic debugger

• DSP56600 Application Development System (ADS), including hardware and
interface software

• DSP56600 Graphical User Interface (GUI)

These tools can be ordered to operate on: ISA-BUS IBM PCs™, SBUS™ SUN-4
Workstations™, or Hewlett-Packard (HP) Series 7xx computers. Motorola’s DSP
development tools can be obtained through a local Motorola Semiconductor Sales
Office or authorized distributor.

The DSP56600 Graphical User Interface (GUI) is included with the DSP56600
development tools. The GUI provides a multi-window graphical interface for the
instruction simulator and application development system, giving the user
source-level debug capability in assembly language and C language programs.

The DSP56600 Graphical User Interface provides display windows for the following:

• Hardware development and instruction simulator command and session
windows

• Source files

• Disassembled portions of memory

• Selected set of DSP core registers

• Selected set of on-chip peripheral registers

• Selected portion of memory

• Watch window

• C language call stack

• Breakpoint window

MOTOROLA DSP56600FM/AD 12-3
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All of the commands are accessible through the GUI’s pull-down menus, dialog
boxes, tool bars, windows, and buttons. Using these tools the user selects a desired
operation, such as setting a breakpoint in memory or displaying sections of memory.
The interface then generates the corresponding command for the appropriate
DSP56600 development tool. These commands are passed to the debugger via the
GUI’s command window, and the output and other information is then displayed in
the session window and other appropriate windows. The user may also enter
commands directly into the command window, retaining direct control over the
debugging session, if desired. There is an expression calculator and many other
unique features built into the GUI.

Figure 12-1 shows the placement of the development tools in the flow of
development of a user application.

Figure 12-1 Development Flow

Executable
Object File

Cross Linker/Assembler/
Simulator (CLAS) Software

C Compiler Software
with Assembler/ Linker
Provided with
CLAS & C Compiler

Relocatable
Object Modules

C Language ProgramAssembly Program

C LibraryAssembler

Linker

C Compiler
with Assembler

Graphical User Interface (GUI)

Application
Development Module

Application Development System

Host Computer and
Command Converter

EPROMUser’s Target

JTAG/OnCETM

S-RecordSimulator

AA0051

12-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Software Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.2 SOFTWARE DEVELOPMENT ENVIRONMENT

The software available from Motorola, the DSP56600CLASx software package, is
written in the C language and consists of a relocatable macro cross assembler, linker,
librarian, clock-by-clock multi-DSP-chip instruction simulator, and Graphical User
Interface. These features are marketed as an integrated product. All software
products run on IBM PCs, Hewlett-Packard Series 7xx computers, and SUN−4
Workstations.

The CLAS software package is designed to provide the following benefits for the
programmer:

• Modular programming environment

• Full use of the DSP chip features

• A variety of data storage definitions

• Relocatability of generated code

• Symbolic debugging

• Flexible linkages of object files

A library facility is included for creating archives of the final applications code.

12.2.1 Macro Cross Assembler

The DSP56600 Assembler (ASM56600) is a full-featured macro cross assembler that
translates one or more source files containing DSP instruction mnemonics, operands,
and assembler directives into relocatable object modules that are relocated and
linked by the Motorola DSP Linker in the Relocation mode. In the Absolute mode,
the Assembler generates absolute executable files. The Assembler recognizes the full
instruction set and all addressing modes of the DSP56600 family.

The features of the DSP56600 Assembler include the following:

• Produces relocatable object modules compatible with the DSP Linker program
in the relocation mode.

• Produces absolute executable files compatible with the Simulator program in
the absolute mode.

• Supports full instruction set, memory spaces, and parallel data transfer fields
of the DSP.

MOTOROLA DSP56600FM/AD 12-5
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Software Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Provides modular programming features including local labels, sections, and
external definition/reference directives.

• Provides nested macro libraries.

• Allows complex expression evaluation, including boolean operators.

• Gives built-in functions for data conversion, string comparison, and common
transcendental math operations.

• Allows directives to define circular and bit-reversed buffers.

• Provides extensive error checking and reporting.

The unique architecture and parallel operation of the DSP demands advanced
capabilities and programming aids that this Assembler readily provides. These
include built-in functions for common transcendental math computations, such as
sine, cosine, log, and square root functions; arbitrary expressions and modulo
operations; and directives to define circular and bit-reversed data buffers. Moreover,
the Assembler incorporates extensive error checking and reporting to indicate
programming violations peculiar to the digital signal processing environment or
stemming from the advanced features of the DSP, for instance, errors for improper
nesting of hardware DO loops and improper address boundaries for circular data
buffers and bit-reversed buffers.

The Assembler generates source code listings that include numbered source lines,
optional titles and subtitles, optional instruction cycle counts, symbol table and
cross-reference listings, and memory use reports.

12.2.2 Linker/Librarian

The DSP56600 Linker relocates and links relocatable object modules from the macro
cross assembler to create an absolute executable file that can be loaded directly into
the DSP56600 simulator or converted to Motorola S-record format for Programmable
ROM burning.

The DSP56600 Librarian utility can merge multiple separate relocatable object
modules into a single file, eliminating the need for reassembling known bug-free
routines every time the mainline program is assembled.

12-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Software Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.2.3 Clock-by-Clock Instruction Simulator

The DSP56600 Simulator (SIM56600) is a software tool for developing programs and
algorithms for the DSP. This program exactly emulates all of the functions (except for
the JTAG/OnCE) of the DSP, including the DSP core, all memory and register
updates associated with program code execution, the entire internal and external
memory space of the DSP, all on-chip peripheral operations, and all exception
processing activity. This enables the Simulator program to count clock and
instruction cycles, providing an accurate measurement of code execution time that is
so critical in digital signal processing applications.

The multi-DSP-chip Simulator has the same look, feel, and functions as the interface
software provided with the ADS, making movement between the DSP chip's
simulation and hardware environments easy.

The Simulator program executes DSP object code generated by the Linker or the
Simulator’s internal single-line Assembler. The object code is first loaded into the
simulated DSP memory map. Then, instruction execution can proceed in single-step
mode (stopping after each instruction has been executed) or until a user-defined
breakpoint is encountered. During program debug, the registers or memory locations
may be displayed or changed.

The Simulator package includes linkable object code libraries of simulator functions
that were used to create the Simulator. The libraries allow a customized Simulator to
be built and integrated with unique system simulations. Source code for some of the
functions, such as the terminal I/O functions and external memory accesses, is
provided to allow close simulation of the particular application.

The features of the DSP56600 Simulator include the following:

• Multiple DSP device simulation

• Source-level symbolic debug of assembly and C source programs

• Conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction and cycle timing counters

• Session and/or command logging for later reference

• Input/output ASCII files for device peripherals

• Help file and help line display of simulator commands

• Macro command definition and execution

MOTOROLA DSP56600FM/AD 12-7
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Hardware Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Display enable/disable of registers and memory locations

• Hexadecimal/decimal/binary calculator

12.2.4 C Cross Compiler

The DSP56600 C Cross Compiler software package contains an optimizing C
cross-compiler and symbolic debugger and can be used with Motorola’s instruction
Simulator and Application Development System (ADS), assembler/linker/librarian,
ANSI C libraries, and COFF and Motorola S-Record utilities.

The DSP56600 C Compiler features include the following:

• Supports ISO/ANSI C, Strict ISO/ANSI C, and K&R C (pcc)

• Supports fractional data types in addition to standard C data types

• Supports pragmas for improving the compiler’s processing performance

• Supports intrinsics for modulo buffer support and other useful functions

• Supports assembly code within the C code

• Provides ISO C run-time library

The C Compiler software package is supported on IBM PC and SUN-4 Workstations.
(The C Compiler is not available for Hewlett-Packard computers.)

12.3 HARDWARE DEVELOPMENT ENVIRONMENT

Motorola DSP is continually developing evaluation and design tools to assist
customers in evaluating new DSP products and adapting them to specific design
requirements. The ADS undergoes constant evaluation and development to provide
the highest level of customer support.

The basic level of customer support is the evaluation module. Customer evaluation
kits containing these modules are provided to evaluate specific DSP functionality.
Each kit includes the following:

• An evaluation board

• Related DSP documentation such as data sheets, user’s manuals, and family
manuals

12-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Hardware Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• A user’s manual for the evaluation board

• A CD containing supporting software

• Documentation for recommended Motorola and third party devices that can
interface with the evaluation board

Motorola provides an upgrade path beyond chip evaluation for developing complex
applications that integrate the DSP functionality. This can include the following:

• Interface hardware and software

• A command converter module

• An application development module that works with the evaluation board

For more information on Motorola’s hardware development environment, consult
the Motorola DSP Home Page on the World Wide Web (see Section 13, Additional
Support).

MOTOROLA DSP56600FM/AD 12-9
For More Information On This Product,

 Go to: www.freescale.com

Development Tools

Hardware Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 13

ADDITIONAL SUPPORT

Application Development System
Audio

Benchmark
Boot

Codec Routines
DTMF Routines

Fast Fourier Transforms
Filters

Floating-Point Routines
Functions

Lattice Filters
Matrix Operations

Multiply and Accumulate
Reed-Solomon Encoder

Sorting Routines
Speech

Standard I/O Equates
Tools and UtilitiesWorld Wide Web

Documentation
Applications Assistance
Motorola SPS Design Hotline
Motorola DSP Helpline
Motorola DSP News
Third-Party Support Information
University Support
Training Courses

Software Development Environment
Hardware Development Environment
Free Software
Reference Books and Manuals

Application Development System
Audio

Benchmark
Boot

Codec Routines
DTMF Routines

Fast Fourier Transforms
Filters

Floating-Point Routines
Functions

Lattice Filters
Matrix Operations

Multiply and Accumulate
Reed-Solomon Encoder

Sorting Routines
Speech

Standard I/O Equates
Tools and UtilitiesWorld Wide Web

Documentation
Applications Assistance
Motorola SPS Design Hotline
Motorola DSP Helpline
Motorola DSP News
Third-Party Support Information
University Support
Training Courses

Software Development Environment
Hardware Development Environment
Free Software
Reference Books and Manuals

Motorola
DSP

MOTOROLA DSP56600FM/AD 13-1
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.1 OVERVIEW . 13-3
13.2 WORLD WIDE WEB . 13-4
13.3 MOTOROLA DSP HOME PAGE. 13-4
13.4 DOCUMENTATION. 13-5
13.5 APPLICATIONS ASSISTANCE. 13-5
13.6 SOFTWARE DEVELOPMENT ENVIRONMENT. 13-9
13.7 HARDWARE DEVELOPMENT ENVIRONMENT 13-9
13.8 FREE SOFTWARE . 13-10
13.9 REFERENCE BOOKS AND MANUALS 13-29

13-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.1 OVERVIEW

User support from the conception of a design through completion is available from
Motorola and third-party companies as shown in the following table:

Table 13-1 User Support Available

Motorola Third Party

Function Support Description Support Description

Design • World Wide Web
• Documentation
• Applications Assistance
• Training
• Free Software

• Data Acquisition
Packages

• Filter Design Packages
• Operating System

Software
• Simulator

Prototyping • Software Development
Environment

• Hardware Development
Environment

• In-Circuit Emulators
• Data Acquisition Cards
• DSP Development

System Cards
• Operating System

Software
• Debug Software

Design
Verification

• Software Development
Environment

• Hardware Development
Environment

• Data Acquisition
Packages

• Data Acquisition Cards
• DSP Development

System Cards
• Application-Specific

Development Tools
• Debug Software

MOTOROLA DSP56600FM/AD 13-3
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

World Wide Web

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.2 WORLD WIDE WEB

Motorola and Digital Signal Processors (DSP) Marketing maintain several World
Wide Web (WWW) locations that you can access using third-party web browser
software. The following web pages are good places to start:

• Motorola DSP Home Page:
http://www.mot.com/SPS/DSP/
http://www.motorola-dsp.com

• Motorola SPS Home Page:
http://www.mot.com/SPS/

• Motorola DSP ftp site:
http://www.mot.com/pub/SPS/DSP/LIBRARY/

13.3 MOTOROLA DSP HOME PAGE

The Motorola DSP Web site was created by the DSP Marketing Department’s Web
Development Group to help achieve its mission: to provide DSP information and
services to Motorola customers via the World Wide Web.

Some of the more notable features of the site include:

• What’s New
The What’s New page contains the latest information on Motorola DSP
products and services.

• Technical Documentation
The complete library of Motorola DSP technical documentation is available.

• Product Overview
The Product Overview pages give a brief overview of each of our products.

• Dr. BuB’s Free Software Library
The successor to the Dr. BuB bulletin board, Dr. BuB’s Free Software Library
contains free software for Motorola DSPs.

• DSP Helpline Online
DSP Helpline Online gives you access to the DSP Helpline, our highly trained
technical support staff.

13-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Documentation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.4 DOCUMENTATION

DSP Marketing provides the following types of documentation:

• Product Briefs

• Technical Data

• Family Manuals

• User’s Manuals

• Application Notes

These documents can be accessed in one or more of the following ways:

• Download
(DSP Home Page → Technical Documentation)

• Order by number from Literature Distribution Center (LDC)

– Fill out WWW on-line form
(SPS Home Page → Literature Order)

– Call Literature and Printing Services at (800) 441-2447

• Receive via FAX (Mfax™)

– Fill out WWW on-line form
(SPS Home Page → Mfax)

– Call the Mfax automated service at (602) 244-6591

13.5 APPLICATIONS ASSISTANCE

Applications assistance is available via:

• WWW

• Motorola SPS Design Hotline

• Motorola DSP Helpline

• Motorola DSP Newsletter

• Third-Party Support

• University Support

• Training

MOTOROLA DSP56600FM/AD 13-5
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Applications Assistance

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.5.1 WWW

The World Wide Web is described in World Wide Web on page 13-4.

13.5.2 Motorola SPS Design Hotline

Information and assistance for all Motorola products is available through the
Motorola Customer Support Center at the following number:

13.5.3 Motorola DSP Helpline

Information and assistance for DSP applications is available through one of the
following:

• Local Motorola field office

• Email to the Helpline
dsphelp@dsp.sps.mot.com

Note: To receive the fastest service, contact the field office first. If they are unable
to help you, contact the Helpline.

13.5.4 Motorola DSP Newsletter

The Motorola DSP Newsletter is a quarterly document providing information on
new products, application briefs, questions and answers, DSP product information,
third-party product news, etc. This newsletter is free and is available upon request by
sending a request for “DSPNEWSL/D” by one of the following methods:

• Order by FAX

• Order online
(DSP Home Page → Literature Order Form)

(800) 521-6274

(602) 994-6430

13-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Applications Assistance

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Order from the Literature Distribution Center by phone:

13.5.5 Third-Party Support Information

Information about third-party manufacturers who use and support Motorola DSP
products is available by calling Motorola DSP Marketing at the following number:

Third-party support includes:

• Filter design software

• Logic analyzer support

• Boards for VME, IBM-PC clones, MACII boards

• Development systems

• Data conversion cards

• Operating system software

• Debug software

Information is also available on the WWW (DSP Home Page → Development Tools)
and in the DSP Newsletter.

13.5.6 University Support

The Motorola University Support program helps DSP engineers of tomorrow
experience first-hand the features of Motorola’s DSP products in university DSP
laboratories using Motorola-donated DSP hardware and software.

(800) 441-2447

(512) 891-3098

MOTOROLA DSP56600FM/AD 13-7
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Applications Assistance

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling Motorola DSP Marketing at the
following number.

13.5.7 Training Courses

Training courses conducted by Motorola are offered in your plant or at the Phoenix,
Arizona training facility. Other courses conducted by Motorola’s training consulting
partners are available in other locations.

For more information about training, visit the Motorola WWW Training page (SPS
Home Page → Other Info & Services → Training) or call Motorola training at:

(512) 891-3098

(602) 302-8008

13-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Software Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.6 SOFTWARE DEVELOPMENT ENVIRONMENT

The CLASx Software Development Environment is an integrated product written in
the C language that comprises the following:

• Callable modules

• Linker

• Relocatable macro cross-assembler

• Clock-by-clock instruction simulator

• Librarian

• Graphical user interface

The CLASx Software Development Environment can be used on the following
platforms:

• IBM PCs (386 or higher) running DOS 2.x and 3.x

• Macintosh II running MAC OS 7.0 or later

• SUN-4 running Sun OS 4.1.x or Solaris 2.4

• Hewlett-Packard Series 7xx running HP-UX A.09.05

For more information about the CLASx Software Development Environment, see
Software Development Environment on page 12-5.

13.7 HARDWARE DEVELOPMENT ENVIRONMENT

The Application Development System (ADS) is a four-component system that acts as
a development tool for designing and debugging real-time signal processing
systems. The four components are as follows:

• User interface software

• DSP Host Interface board and cable

• Command converter board and cable

• Application Development Module (ADM) board

For more information about the Hardware Development Environment, see
Hardware Development Environment on page 12-8.

MOTOROLA DSP56600FM/AD 13-9
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8 FREE SOFTWARE

Motorola DSP Marketing provides free software associated with DSP products via
the WWW. A partial list of the programs available is given in the following sections.
New software will be posted on the web page as it is made available.

To download the free software that has been developed for Motorola DSPs, perform
the following steps:

1. Connect to the WWW.

2. Go to the DSP Home Page.

3. Select Technical Documentation.

4. Select Dr. Bub Archives.

5. Select the Macintosh (hqx) or PC (zip) file that you want to download.

13.8.1 Application Development System (ADS)

The programs in the following table are for use with the Application Development
System (ADS).

Table 13-2 ADS Software Available on the WWW

Document ID DSP Description Size
(K)

48compeq.asm 56000ADC16 Low-pass equiripple FIR filter source code 2.8

4compeq.lod 56000ADC16 Low-pass equiripple FIR filter hex file 0.03

48compeq.lst 56000ADC16 Low-pass equiripple FIR filter list file 5.5

aspec2.asm 56000ADC16 Real-time log-log scale spectrum analyzer
program source code

24.5

aspec2.p 56000ADC16 Real-time log-log scale spectrum analyzer
program s-record file

16.5

cosine.asm 56000ADC16 Cosine table source code 21.6

decode32.abl 56000ADS 32k x 24 address decoder for DSP56000 2.2

decode32.jed 56000ADS PAL program load file 1.8

decode8k.abl 56000ADS 8k x 24 address decoder for DSP56000 2.4

decode8k.jed 56000ADS PAL program load file 1.9

13-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.2 Audio Software

The software in the following table is useful when designing audio with the
DSP56000 and DSP56300 families.

Note: See Application Note APR2/D Digital Stereo 10-Band Graphic Equalizer
Using the DSP56001 for more information.

evbman 56000ADC16 Evaluation board information on sample files 7.6

fftssi.lot 56000ADC16 FFT evaluation program file 8.9

intioevb.asm 56000ADC16 General interrupt I/O loop source code 3.7

intioevb.lod 56000ADC16 General interrupt I/O loop hex file 0.3

intioevb.lst 56000ADC16 General interrupt I/O loop assembled file 4.1

loopevb.asm 56000ADC16 General polled loop source code 2.4

loopevb.lod 56000ADC16 General polled loop hex file 0.2

loopevb.lst 56000ADC16 General polled loop assembled file 4.1

sxxevb.asm 56000ADC16 Sine(x)/x correction FIR filter I/O routine
source code

4.5

sxxevb.lod 56000ADC16 Sine(x)/x correction FIR filter I/O routine hex
file

0.7

sine.asm 56000ADC16 Sine table source code 21.6

sxxevb.lst 56000ADC16 Sine(x)/x correction FIR filter I/O routine
assembled file

7.6

window1.asm 56000ADC16 Blackman window coefficients source code 43.3

Table 13-3 Audio Software Available on the WWW

Document ID DSP Description Size (K)

dge.asm 56000 Digital graphic equalizer source code 14.9

dge.lod 56000 Digital graphic equalizer hex file 2.7

dge.p 56000 Digital graphic equalizer s-record file 2.7

rvb1.asm 56000 Easy-to-read reverberation routine source code 17

rvb2.asm 56000 Same as rvb1.asm but optimized 15.4

Table 13-2 ADS Software Available on the WWW (Continued)

Document ID DSP Description Size
(K)

MOTOROLA DSP56600FM/AD 13-11
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.3 Benchmark Programs

The programs in the following table are useful in many applications and are typically
used to benchmark against other DSP chips.

Note: See the DSP56000 Family Manual for more details on benchmarking.

stereo.hlp 56000 stereo.asm help file 0.6

Table 13-4 Benchmark Programs Available on the WWW

Document ID DSP Description Size (K)

1-56.asm 56000
56001

20-tap FIR filter source code 4.2

2-56.asm 56000
56001

64-tap FIR filter source code 4.2

3-56.asm 56000
56001

67-tap FIR filter source code 4.2

4-56.asm 56000
56001

8-pole 4 multiply cascaded canonic IIR filter
source code

3.7

5-56.asm 56000
56001

8-pole 5 multiply cascaded canonic IIR filter
source code

3.9

6-56.asm 56000
56001

8-pole cascaded transposed IIR filter source code 2.8

7-56.asm 56000
56001

Dot product source code 2

a-56.asm 56000
56001

Memory to memory FFT—64 point source code 7.3

b-56.asm 56000
56001

Memory to memory FFT—256 point source code 7.3

b11.asm 96002 Real multiply source code 0.9

b110.asm 96002 N complex updates source code 0.9

b110a.asm 96002 N complex updates source code 2.7

b111.asm 96002 Complex correlation or convolution (FIR filter)
source code

2.7

Table 13-3 Audio Software Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

b112.asm 96002 Nth order power series (real) source code 1.7

b113.asm 96002 2nd order real biquad IIR filter source code 1.4

b114.asm 96002 N cascaded real biquad IIR filters source code 3.9

b115a.asm 96002 Fast fourier transforms source code 3.2

b115b.asm 96002 Faster radix 2 decimation in time FFT source code 8.4

b115c.asm 96002 Radix 4 decimation frequency FFT source code 8.6

b116.asm 96002 LMS adaptive filter source code 5.8

b117.asm 96002 FIR lattice filter source code 3.5

b119.asm 96002 General lattice filter source code 4.3

b12.asm 96002 N real multipliers source code 1.3

b120.asm 96002 Normalized lattice filter source code 4.6

b123.asm 96002 N point 3 x 3 2d FIR convolution source code 7.4

b124.asm 96002 Table lookup w/linear interpolation between
points source code

3.5

b125.asm 96002 Argument reduction source code 3.5

b126.asm 96002 Non-IEEE floating point division source code 2.1

b127.asm 96002 Multibit rotates source code 9.6

b128.asm 96002 Bit field extraction/insertion source code 8.6

b129.asm 96002 Newton-Raphson approximation for 1.0/SQRT (x)
source code

1.7

b13.asm 96002 Real update source code 1

b130.asm 96002 Newton-Raphson approximation for SQRT (x)
source code

1.6

b131.asm 96002 Unsigned integer divide source code 3.3

b132.asm 96002 Signed integer divide source code 3.1

b133a.asm 96002 Graphics accept/reject, floating point version
source code

2.6

b133b.asm 96002 Line accept/reject, floating point version source
code

2.6

b133c.asm 96002 Line accept/reject, fixed point version source code 1.7

b133d.asm 96002 Four point polygon accept/reject source code 3.6

b133e.asm 96002 Four point polygon accept/reject (looped) source
code

1.5

b134.asm 96002 Cascaded five coefficient transpose IIR filter
source code

2.5

Table 13-4 Benchmark Programs Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-13
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

b135.asm 96002 3-dimensional graphics illumination source code 4.2

b136.asm 96002 Pseudorandom number generation source code 1.4

b137.asm 96002 Bezier cubic polynomial evaluation source code 3.5

b138a.asm 96002 Pack 4 bytes into a 32-bit word source code 1.1

b138b.asm 96002 Pack two 16-bit words into a single 32-bit word
source code

0.9

b138c.asm 96002 Unpack a 32-bit word into four extended bytes
source code

1.2

b138d.asm 96002 Unpack a 32-bit word into two 16-bit
sign-extended bytes source code

1

b139.asm 96002 Nth order polynomial evaluation for two points
source code

1.3

b14.asm 96002 N real updates source code 1.4

b140a.asm 96002 Graphics bit block transfer (BITBLT) source code 3.1

b140b.asm 96002 64-bit block transfer source code 3

b141.asm 96002 64 x 64-bit unsigned multiply source code 1.9

b142.asm 96002 Approximation of 1/dl source code 1

b143a.asm 96002 Line drawing source code 5.4

b143b.asm 96002 Integer incremental line drawing algorithm source
code

3.6

b144.asm 96002 Wire frame graphics rendering source code 54.2

b15.asm 96002 FIR filter w/data shift source code 1.5

b16.asm 96002 Real * complex correlation or convolution (FIR
filter) source code

1.5

b17.asm 96002 Complex multiply source code 1.4

b18.asm 96002 N complex multiply source code 1.8

b19.asm 96002 Complex update source code 1.5

c-56.asm 56000
56001

Memory to memory FFT—1024 point source code 10.3

d-56.asm 56000
56001

Port to memory FFT—64 point source code 16.1

d2-56.asm 56000
56001

Port to memory FFT—64 point source code 8

e-56.asm 56000
56001

Port to memory FFT—256 point source code 1.6

Table 13-4 Benchmark Programs Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.4 Boot Software

The files and software listed in the following table are for booting from an EPROM.

e2-56.asm 56000
56001

Port to memory FFT—256 point source code 8

f-56.asm 56000
56001

Port to memory FFT—1024 point source code 16.1

f2-56.asm 56000
56001

Port to memory FFT—1024 point source code 11.2

magsqr.asm 56000
56001

Magnitude squared macro source code 0.5

read-me 56000
56001

Motorola benchmark descriptions text file 7.6

results.100 56000
56001

Data text files 1.8

results.75 56000
56001

Data text files 1.8

sincos.asm 56000
56001

Sine-cosine table generator for FFTs source code 1.2

sincos.hlp 56000
56001

Sine-cosine table generator help file 1.1

singen.asm 56000
56001

Generates “points” samples of a sine wave source
code

0.9

sqrt3.asm 56000
56001

Full precision square root by polynomial
approximation source code

1.4

sqrt3.hlp 56000
56001

Full precision square root help file 1

wbh4m.asm 56000
56001

Blackman-Harris 4 term minimum sidelobe
window source code

0.7

Table 13-5 Boot Software Available on the WWW

Document ID DSP Description Size (K)

boot.art 56000 Article on booting 6.7

boot.asm 56000 Construct a boot module source code 2.3

Table 13-4 Benchmark Programs Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-15
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.5 Codec Routines

The programs in the following table perform code/decode Analog-to-Digital and
Digital-to-Analog conversions.

Note: See the application note APR12/D Twin CODEC Expansion Board for the
DSP56000 Application Development System for more information.

13.8.6 Demo Software

bood.lod 56000 Construct a boot module hex file 1

boot.lst 56000 Construct a boot module list file 4.1

boot.p 56000 Construct a boot module s-record file 1

Table 13-6 Codec Routines Available on the WWW

Document ID DSP Description Size (K)

linlog.asm 56000 Linear PCM to companded codec data conversion 4.8

linlog.hlp 56000 linlog.asm help file 1.7

loglin.asm 56000
56001

Companded codec to linear PCM data conversion 4.6

loglin.hlp 56000
56001

loglin.asm help file 1.5

loglint.asm 56000
56001

loglin.asm test program source code 2.2

loglint.hlp 56000
56001

loglint.asm help file 2

Table 13-7 Demo Software Available on the WWW

Document ID DSP Description Size (K)

julia.asm 96000 Generates the Julia set 2.8

Table 13-5 Boot Software Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.7 DTMF Routines

The programs in the following table are tone generation and detection codes for Dial
Tone Multi-Frequency (DTMF) applications. The Goertzel algorithm is an optimized
DTMF algorithm.

Table 13-8 DTMF Routines Available on the WWW

Document ID DSP Description Size (K)

clear.cmd 56000 Clear command file 0.1

data.lod 56000 Data hex file 0.4

det.asm 56000 Subroutine used in IIR DTMF source code 5.9

dtmf.all 56000 Compilation of all DTMF source code routines 73.5

dtmf.asm 56000 Main routine used in IIR DTMF source code 10.7

dtmf.mem 56000 DTMF routine memory file 0.5

dtmfmstr.asm 56000 Main routine for multi-channel DTMF source code 7.4

dtmfmstr.mem 56000 Multi-channel DTMF routine memory file 0.04

dtmftwo.asm 56000 DTMF receiver and generator main program
source code

10.3

ex56.bat 56000 56000 assembler batch file 0.1

example.lst 56000 Goertzel algorithm list file 11.6

genxd.lod 56000 X load file 0.2

genyd.lod 56000 Y load file 0.2

goertzel.asm 56000 Goertzel routine source code 4.4

goertzel.lnk 56000 Goertzel routine link file 7

goertzel.lst 56000 Goertzel routine list file 11.6

load.cmd 56000 Load command file 0.04

read.me 56000 Instructions text file 0.7

sub.asm 56000 Subroutine linked for use in IIR DTMF source
code

2.5

tstgoert.mem 56000 Goertzel routine memory file 0.4

MOTOROLA DSP56600FM/AD 13-17
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.8 Encoders

13.8.9 Fast Fourier Transforms

The Fast Fourier Transforms (FFTs) in the following table include complex and real
FFTs.

Note: See the application note APR4/D Implementation of Fast Fourier Transforms
on Motorola’s Digital Signal Processors.

Table 13-9 Reed-Solomon Encoder Available on the WWW

Document ID DSP Description Size (K)

bingray.asm 56000 Binary to Gray code conversion macro source code 0.6

bingrayt.asm 56000 bingray.asm test program source code 1

newc.c 56000 Reed-Solomon coder (C source code) 4.1

readme.rs 56000 Instructions for Reed-Solomon coding text file 5.2

rscd.asm 56000 Reed-Solomon coder for DSP56000 simulator
source code

5.8

table1.asm 56000 Reed-Solomon coder include file 8

table2.asm 56000 Reed-Solomon coder include file 4

Table 13-10 Fast Fourier Transforms Available on the WWW

Document ID DSP Description Size (K)

bergorde.asm 96000 Bergland order table generator source code 1.8

bergsinc.asm 96000 Bergland sine/cosine coefficient lookup table
generator source code

0.9

bitrev.asm 56000 Converse bit reverse order to normal order
in-place source code

1.1

bitrevtw.asm 56156 Sort sin and cosine coefficient look-up tables in bit
reverse order for DSP56156 (source code)

1.4

cfft3n.asm 96000 Complex - Radix 2 decimation in-place FFT source
code

3.2

cfft3nn.asm 96000 Complex - Radix 2 decimation in-time FFT source
code

13.2

cfft56.asm 56000 512-point non-in-place FFT source code 21.7

13-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

cfft96.asm 96000 Complex - Radix 2 Cooley-Tukey
decimation-in-time FFT source code

13.2

cfft96t.asm 96000 Complex - Radix 2 Cooley-Tukey
decimation-in-time FFT source code

2.3

dct1.asm 56000 Discrete cosine transform using FFT source code 5.5

dct1.hlp 56000 dct1.asm help file 1

dhit1.asm 56000 Routine to compute Hilbert transform in the
frequency domain source code

1.9

dhit1.hlp 56000 dhit1.asm help file 1

fft2d256.asm 96000 256x256 complex FFT source code

fft.asm 56000 Radix 2 decimation-in-time 512-point FFT source
code

7.4

fftas.asm 56000 Radix 2 in-place decimation-in-time (smallest code
size) with automatic scaling at each pass source
code

3.8

fftbf.asm 56002 Radix 2 in-place decimation-in-time (smallest code
size) with block floating point on the 56002 source
code

4.2

fftr2a.asm 56000 Radix 2, in-place, decimation-in-time FFT
(smallest) source code

3.4

fftr2a.hlp 56000 fftr2a.asm help file 2.7

fftr2aa.asm 56000 Automatic scaling FFT source code 3.2

fftr2at.asm 56000 FFT test program(fftr2a.asm) source code 1

fftr2at.hlp 56000 fftr2at.asm help file 0.6

fftr2at.bak 56000 fftr2at.asm backup file 1

fftr2at.cld 56000 Automatic scaling c program load file 5.7

fftr2at.lst 56000 Automatic scaling list file 51.3

fftr2b.asm 56000 Radix 2, in-place, decimation-in-time FFT (faster)
source code

4.3

fftr2bf.hlp 56000 fftr2bf.asm help file 1.6

fftr2b.hlp 56000 fftr2b.asm help file 3.7

fftr2c.asm 56000 Radix 2, in-place, decimation-in-time FFT (even
faster) source code

6

fftr2c.hlp 56000 fftr2c.asm help file 3.2

fftr2cc.asm 56000 Radix 2, in-place decimation-in-time complex FFT
macro source code

6.5

Table 13-10 Fast Fourier Transforms Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-19
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

fftr2cc.hlp 56000 fftr2cc.asm help file 3.5

fftr2cn.asm 56000 Radix 2, decimation-in-time complex FFT macro
with normally ordered input/output source code

6.6

fftr2cn.hlp 56000 fftr2cn.asm help file 2.5

fftr2cnt.asm 56000 FFT to complex number conversion source code 0.5

fftr2d.asm 56000 Radix 2, in-place, decimation-in-time FFT (using
DSP56001 sine-cosine ROM tables) source code

3.7

fftr2d.hlp 56000 fftr2d.asm help file 3.5

fftr2dt.asm 56000 fftr2d.asm test program source code 1.3

fftr2dt.hlp 56000 fftr2dt.asm help file 0.6

fftr2e.asm 56000 1024 point, non-in-place, FFT (3.39 ms) source code 9

fftr2e.hlp 56000 fftr2e.asm help file 5

fftr2et.asm 56000 fftr2e.asm test program source code 1

fftr2et.hlp 56000 fftr2et.asm help file 0.4

fftr2en.asm 56000 1024 point, not-in-place, complex FFT macro with
normally ordered input/output source code

9.8

fftr2en.hlp 56000 fftr2en.asm help file 4.9

fftr2bf.asm 56000 Radix-2, decimation-in-time FFT with block
floating point source code

13.5

fftr2fn.asm 56000 Port to memory FFT—1024 point source code 10.4

fftr2fnt.asm 56000 Test file source code for fftr2fn.asm 0.8

gen56.asm 56001 Input signal generator for FFT on 56001 source
code

0.9

norm2ber.asm 96000 Convert normal order to Berlang order source
code

0.5

rfft 96002 Bergland order table generator source code 22.1

rfft56t.asm 56000 Non-in-place FFT - 1024 point source code 11.7

rfft96b.asm 96002 Real-valued FFT source code 9.3

rfft96bt.asm 96002 Real input FFT source code 2.9

rfft96t.asm 96002 Test program source code 2.5

sincos.asm 56000 Sine-cosine table generator for FFTs source code 1.2

sincosf.asm 96002 Sine-cosine table generator source code 1.3

sincosr.asm 56000 Sine-cosine table generator for rfft56.asm source
code

1.5

sincos.hlp 56000 sincos.asm help file 0.9

Table 13-10 Fast Fourier Transforms Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.10 Filters

The programs in the following table include various Infinite Impulse Response (IIR),
Finite Impulse Response (FIR), and lattice filter programs.

Note: See application note APR7/D Implementing IIR/FIR Filters with Motorola’s
DSP56000/DSP56001 for more information.

sinewave.asm 56000 Full-cycle sine wave table generator macro source
code

1

sinewave.hlp 56000 sinewave.asm help file 1.4

split56.asm 56000 Amplifies coefficients of FFT by two source code 3.6

split96.asm 96002 Split N/2 complex FFT (hn) for N real FFT (Fn)
source code

2.8

Table 13-11 Filters Available on the WWW

Document ID DSP Description Size (K)

fir.asm 56000 Direct form FIR filter source code 0.5

fir.hlp 56000 fir.asm help file 2.2

firt.asm 56000 fir.asm test program source code 1.2

iir1.asm 56000 Direct form second-order all pole IIR filter source
code

0.7

iir1.hlp 56000 iir1.asm help file 1.8

iir1t.asm 56000 iir1.asm test program source code 1.2

iir2.asm 56000 Direct form second-order all pole IIR filter with
scaling source code

0.8

iir2.hlp 56000 iir2.asm help file 2.3

iir2t.asm 56000 iir2.asm test program source code 1.3

iir3.asm 56000 Direct form arbitrary order all pole IIR filter
source code

0.8

iir3.hlp 56000 iir3.asm help file 2.7

iir3t.asm 56000 iir3.asm test program source code 1.3

iir4.asm 56000 Second-order direct canonic IIR filter (biquad IIR
filter) source code

0.7

Table 13-10 Fast Fourier Transforms Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-21
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

iir4.hlp 56000 iir4.asm help file 2.3

iir4t.asm 56000 iir4.asm test program source code 1.2

iir5.asm 56000 Second-order direct canonic IIR filter with scaling
(biquad IIR filter) source code

0.8

iir5.hlp 56000 iir5.asm help file 2.8

iir5t.asm 56000 iir5.asm test program source code 1.3

iir6.asm 56000 Arbitrary order direct canonic IIR filter source
code

0.9

iir6.hlp 56000 iir6.asm help file 3

iir6t.asm 56000 iir6.asm test program source code 1.4

iir7.asm 56000 Cascaded biquad IIR filters source code 0.9

iir7.hlp 56000 Help for iir7.asm 3.9

iir7t.asm 56000 iir7.asm test program source code 1.4

latfir1.asm 56000 Lattice FIR filter macro source code 1.2

latfir1.hlp 56000 latfir1.asm help file 6.3

latfir1t.asm 56000 latfir1.asm test program source code 1.4

latfir2.asm 56000 Lattice FIR filter macro (modified modulo count)
source code

1.2

latfir2.hlp 56000 latfir2.asm help file 1.3

latfir2t.asm 56000 latfir2.asm test program source code 1.4

latgen.asm 56000 Generalized lattice FIR/IIR filter macro source
code

1.3

latgen.hlp 56000 latgen.asm help file 5.5

latgent.asm 56000 latgen.asm test program source code 1.3

latiir.asm 56000 Lattice IIR filter macro source code 1.3

latiir.hlp 56000 latiir.asm help file 6.4

latiirt.asm 56000 latiir.asm test program source code 1.4

latnrm.asm 56000 Normalized lattice IIR filter macro source code 1.4

latnrm.hlp 56000 latnrm.asm help file 7.5

latnrmt.asm 56000 latnrm.asm test program source code 1.6

lms.hlp 56000 LMS Adaptive filter algorithm help file 5.8

p1 56200 Support software description 6.3

p2 56200 Adaptive filter interrupt driver flowchart 10.9

p3 56200 Adaptive filter interrupt driver program example 25.8

Table 13-11 Filters Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-22 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.11 Floating Point Routines

The programs in the following table are miscellaneous floating-point algorithms for
the DSP56000 and DSP56300 families.

p4 56200 Polled I/O flowchart 10.4

p5 56200 Polled I/O program example 24.8

p6 56200 Dual FIR filter interrupt driver flowchart 9.5

p7 56200 Dual FIR filter interrupt driver program example 28.5

p8 56200 Dual FIR filter polled I/O, flowchart 9.7

p9 56200 Dual FIR filter polled I/O program example 28.5

transiir.asm 56000 Implements the transposed IIR filter source code 2

transiir.hlp 56000 transiir.asm help file 1

Table 13-12 Floating Point Routines Available on the WWW

Document ID DSP Description Size (K)

durbin.asm 56000 Solution for LPC coefficients source code 5.6

durbin.hlp 56000 durbin.asm help file 2.9

float.sha 56000 Floating point routines shell archive 86.5

fpabs.asm 56000 Floating point absolute value source code 2

fpadd.asm 56000 Floating point add source code 3.9

fpcalls.hlp 56000 Subroutine calling conventions help file 11.9

fpceil.asm 56000 Floating point CEIL subroutine source code 1.8

fpcmp.asm 56000 Floating point compare source code 2.6

fpdef.hlp 56000 Storage format and arithmetic representation
definition help file

10.6

fpdiv.asm 56000 Floating point divide source code 3.8

fpfix.asm 56000 Floating to fixed point conversion source code 4

fpfloat.asm 56000 Fixed to floating point conversion source code 2

fpfloor.asm 56000 Floating point FLOOR subroutine source code 2.1

fpfrac.asm 56000 Floating point FRACTION subroutine source code 1.9

fpinit.asm 56000 Library initialization subroutine source code 2.3

Table 13-11 Filters Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-23
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.12 Functions

The programs in the following table are standard mathematical functions.

fplist.asm 56000 Test file that lists all subroutines (source code) 1.6

fpmac.asm 56000 Floating point multiply-accumulate source code 2.7

fpmpy.asm 56000 Floating point multiply source code 2.3

fpneg.asm 56000 Floating point negate source code 2

fprevs.hlp 56000 Latest revisions of floating-point library help file 1.8

fpscale.asm 56000 Floating point scaling source code 2.1

fpsqrt.asm 56000 Floating point square root source code 2.9

fpsub.asm 56000 Floating point subtract source code 3.1

Table 13-13 Functions Available on the WWW

Document ID DSP Description Size (K)

exp2.asm 56000 Exponential base 2 by polynomial approximation
source code

0.9

exp2.asm 56000 Exponential base 2 by polynomial approximation
source code

0.9

exp2.hlp 56000 exp2.asm help file 0.8

exp2t.asm 56000 exp2.asm test program source code 1

log2.asm 56000 Log base 2 by polynomial approximation source
code

1.1

log2.hlp 56000 Help for log2.asm 0.7

log2nrm.asm 56000 Normalizing base 2 logarithm macro source code 2.2

log2nrm.hlp 56000 log2nrm.asm help file 0.7

log2nrmt.asm 56000 log2nrm.asm test program source code 1.1

log2t.asm 56000 log2.asm test program source code 1

rand1.asm 56000 Pseudo random sequence generator source code 2.4

rand1.hlp 56000 rand1.asm help file 0.7

sqrt1.asm 56000 Square root by polynomial approximation, 7-bit
accuracy source code

1

Table 13-12 Floating Point Routines Available on the WWW (Continued)

Document ID DSP Description Size (K)

13-24 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.13 Matrix Operations

The programs in the following table perform matrix operations.

sqrt1.hlp 56000 sqrt1.asm help file 0.8

sqrt1t.asm 56000 sqrt1.asm test program source code 1.1

sqrt2.asm 56000 Square root by polynomial approximation, 10-bit
accuracy source code

0.9

sqrt2.hlp 56000 sqrt2.asm help file 0.8

sqrt2t.asm 56000 sqrt2.asm test program source code 1

sqrt3.asm 56000 Full precision square root macro source code 1.4

sqrt3.hlp 56000 sqrt3.asm help file 0.8

sqrt3t.asm 56000 sqrt3.asm test program source code 1

tli.asm 56000 Linear table lookup/interpolation routine for
function generation source code

3.2

tli.hlp 56000 tli.asm help file 1.5

Table 13-14 Matrix Operations Available on the WWW

Document ID DSP Description Size (K)

8-56.asm 56000
56001

[2x2] [2x2] matrix multiply source code 3.6

9-56.asm 56000
56001

[3x3] [3x3] matrix multiply source code 3.3

b121.asm 96002 [1x3] [[3x3] and [1x4] [4x4] matrix multiply source
code

3.7

b122.asm 96002 [1x3] [[3x3] and [nxn] [nxn] matrix multiply
source code

4.3

matmul1.asm 56000 [1x3][3x3]=[1x3] matrix multiplication source code 1.8

matmul1.hlp 56000 matmul1.asm help file 0.5

matmul2.asm 56000 General matrix multiplication, C=AB source code 2.7

matmul2.hlp 56000 matmul2.asm help file 0.8

matmul3.asm 56000 General matrix multiply-accumulate, C=AB+Q
source code

2.8

matmul3.hlp 56000 matmul3.asm help file 0.9

Table 13-13 Functions Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-25
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.14 Multiplier/Accumulator (MAC)

The programs in the following table perform double-precision
Multiplier/Accumulator operations.

13.8.15 Sorting Routines

Table 13-15 Multiplier/Accumulator Operations Available on the WWW

Document ID DSP Description Size (K)

dmac.asm 56000 Double precision multiplier/accumulator source
code

2.9

sdm.asm 56000 Single x double multiplication using DP mode of
56000 core source code

1.1

sdmac.asm 56002 Single x double MAC using DP mode of 56002
source code

1.3

Table 13-16 Sorting Routines Available on the WWW

Document ID DSP Description Size (K)

sort1.asm 56001 Array sort by straight selection source code 1.3

sort1.hlp 56001 sort1.asm help file 1.9

sort1t.asm 56001 sort1.asm test program source code 0.7

sort2.asm 56001 Array sort by Heapsort method source code 2.2

sort2.hlp 56001 sort2.asm help file 2

sort2t.asm 56001 sort2.asm test program source code 0.7

13-26 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.16 Speech

13.8.17 Standard I/O Equates

The programs in the following table are useful when writing standardized assembly
code.

13.8.18 Tools and Utilities

Note: The program dos4gw.exe solves memory problems when running CLASx
and ADS software.

Table 13-17 Speech Available on the WWW

Document ID DSP Description Size (K)

adpcm.asm 56001 32 kbps CCITT ADPCM speech coder source code 12.1

adpcm.hlp 56001 adpcm.asm help file 14.8

adpcm.uue 56001 Binary to text UNIX-to-UNIX (UU) encode file 0.4

adpcmns.asm 56001 Nonstandard ADPCM source code 54.7

adpcmns.hlp 56001 adpcmns.asm help file 10

durbin1.asm 56001 Durbin Solution for PARCOR (LPC) coefficients
source code

6.4

durbin1.hlp 56001 durbin1.asm help file 3.6

lgsol1.asm 56001 Leroux-Gueguen solution for PARCOR (LPC)
coefficients source code

4.9

lgsol1.hlp 56001 lgsol1.asm help file 4

Table 13-18 Standard I/O Equates Available on the WWW

Document ID DSP Description Size (K)

intequ.asm 56000 Standard interrupt equate file source code 1.1

intequlc.asm 56000 Lower case version of intequ.asm source code 1.1

ioequ.asm 56000 Motorola standard I/O equate file source code 8.8

ioequlc.asm 56000 Lower case version of ioequ.asm source code 8.9

MOTOROLA DSP56600FM/AD 13-27
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Free Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 13-19 Tools and Utilities Available on the WWW

Document ID DSP Description Size (K)

cldlod.hqx 56000 Convert c program load file (.cld) to load file (.lod)
file, Macintosh compressed format. Includes
source, executable, and makefile.

37

cldlod.nxt 56000 Convert c program load file (.cld) to load file (.lod)
file, Next compressed format. Includes source,
executable, and makefile.

41

cldlod.rea 56000 Read me text file. 0.5

cldlod.sn3 56000 Convert c program load file (.cld) to load file (.lod)
file, Sun 3 compressed format. Includes source,
executable, and makefile.

114.7

cldlod.sn4 56000 Convert c program load file (.cld) to load file (.lod)
file, Sun compressed format. Includes source,
executable, and makefile.

131.1

cldlod.zip 56000 Convert c program load file (.cld) to load file (.lod)
file, PC compressed format. Includes source,
executable, and makefile.

25.4

dos4gw.exe 56000 Convert c program load file (.cld) to load file (.lod)
file, Macintosh compressed format.

231.2

dspbug 56000 Ordering information for free debug monitor for
DSP56000/DSP56001

882

parity.asm 56000 Parity calculation of a 24-bit number in
accumulator A source code

1641

master2.asm 96000 Multi-device simulator source code 9.8

parity.hlp 56000 parity.asm help file 936

parityt.asm 56000 parity.asm test program source code 685

parityt.hlp 56000 parityt.asm help file 259

read.me 96000 Multi-device simulation read me text file 0.3

Slave2.asm 96000 Multi-device simulation source code

sloader.asm 56000 Serial loader from the SCI port for the DSP56001
source code

3986

sloader.hlp 56000 sloader.asm help file 2598

sloader.p 56000 Serial loader s-record file for download to EPROM
source code

736

srec.c 56000 Utility to convert DSP56000 OMF format to SREC
(source code)

38975

srec.doc 56000 Manual page for srec.c. 7951

13-28 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.8.19 Viterbi

Viterbi is a Reed-Solomon decoder of Trellis encoding.

Note: See the application note APR6/D Convolutional Encoding and Viterbi
Decoding Using the DSP56001 with a V.32 Modem Trellis Example for
more information.

13.9 REFERENCE BOOKS AND MANUALS

A list of DSP-related books is included here as an aid for the engineer who is new to
the field of DSPs. This is a partial list of DSP references intended to help the new user
find useful information in some of the many areas of DSP applications. Many of the
books could be included in several categories, but are not repeated.

13.9.1 General DSP

Bellanger, Maurice. Digital Processing Of Signals Theory And Practice. New York, NY:
John Wiley and Sons, 1984.

Cadzow, J. A. Foundations Of Digital Signal Processing And Data Analysis. New York,
NY: MacMillan Publishing Company, 1987.

srec.h 56000 srec.c include file 3472

srec.exe 56000 IBM PC srec executable 22065

Table 13-20 Viterbi Routines Available on the WWW

Document ID DSP Description Size (K)

bound.d 56000 Data file 1.3

decode.asm 56000 Viterbi decoder for V.32 source code file 10.7

encode.asm 56000 Convolutional decoder for V.32 source code file 0.9

read.me 56000 Usage instructions text file

Table 13-19 Tools and Utilities Available on the WWW (Continued)

Document ID DSP Description Size (K)

MOTOROLA DSP56600FM/AD 13-29
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Candy, James V. Signal Processing – The Modern Approach. New York, NY:
McGraw-Hill Company, Inc., 1988.

Chen, C.H. Signal Processing Handbook. New York, NY: Marcel Dekker, Inc., 1988.

Crochiere, R. E., and Rabiner, L. R. Multirate Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1983.

DeFatta, David J., Lucas, Joseph G., and Hodgkiss, William S. Digital Signal
Processing: A System Design Approach. New York, NY: John Wiley and Sons,
1988.

Elliott, D. F. Handbook Of Digital Signal Processing. San Diego, CA: Academic Press,
Inc., 1987.

Lim, Jae S., and Oppenheim, Alan V. Advanced Topics In Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1988.

Oppenheim, A. V. Applications Of Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1978.

Oppenheim, A. V., and Schafer, R.W. Discrete-time Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1989.

Oppenheim, Alan V., and Schafer, Ronald W. Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

Proakis, John G., and Manolakis, Dimitris G. Introduction To Digital Signal Processing.
New York, NY: Macmillan Publishing Company, 1988.

Stearns, S., and Davis, R. Signal Processing Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1988.

Rabiner, Lawrence R., Gold, and Bernard. Theory And Application Of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

13.9.2 Digital Audio and Filters

Antoniou, Andreas. Digital Filters: Analysis And Design. New York, NY: McGraw-Hill
Company, Inc., 1979.

13-30 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chamberlin, H. Musical Applications Of Microprocessors (Second Edition). Hasbrouck
Heights, NJ: Hayden Book Co., 1985.

Haykin, Simon. Introduction To Adaptive Filters. New York, NY: MacMillan Publishing
Company, 1984.

Jackson, Leland B. Digital Filters And Signal Processing. Higham, MA: Kluwer
Academic Publishers, 1986.

Jayant, N. S., and Noll, Peter. Digital Coding Of Waveforms. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1984.

Kuc, Roman. Introduction To Digital Signal Processing. New York, NY: McGraw-Hill
Company, Inc., 1988.

Mulgrew, B., and Cowan, C. Adaptive Filter And Equalizers. Higham, MA: Kluwer
Academic Publishers, 1988.

Roberts, Richard A., and Mullis, Clifford T. Digital Signal Processing. New York, NY:
Addison-Wesley Publishing Company, Inc., 1987.

Strawn, John. Digital Audio Signal Processing An Anthology. William Kaufmann, Inc.,
1985.

Watkinson, John. The Art Of Digital Audio. Stoneham. MA: Focal Press, 1988.

Widrow, B., and Stearns, S. D. Adaptive Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1985.

Williams, Charles S. Designing Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1986.

13.9.3 C Programming Language

American National Standards Institute. Programming Language - C. ANSI Document
X3.159-1989. American National Standards Institute, inc., 1990.

Harbison, Samuel P., and Steele, Guy L. C: A Reference Manual. Prentice-Hall
Software Series, 1987.

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language.
Prentice-Hall, Inc., 1978.

MOTOROLA DSP56600FM/AD 13-31
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.9.4 Controls

Astrom, K., and Wittenmark, B. Adaptive Control. New York, NY: Addison-Wesley
Publishing Company, Inc., 1989.

Astrom, K., and Wittenmark, B. Computer Controlled Systems: Theory & Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Goodwin, G., and Sin, K. Adaptive Filtering Prediction & Control. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1984.

Kuo, B. C. Automatic Control Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Kuo, B. C. Digital Control Systems. New York, NY: Holt, Reinholt, and Winston, Inc.,
1980.

Moroney, P. Issues In The Implementation Of Digital Feedback Compensators. Cambridge,
MA: The MIT Press, 1983.

Phillips, C., and Nagle, H. Digital Control System Analysis & Design. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

13.9.5 Graphics

Arnold, D. B., and Bono, P. R. CGM And CGI. New York, NY: Springer-Verlag, 1988.

Artwick, Bruce A. Microcomputer Displays, Graphics, And Animation. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1985.

Bono, P. R., and Herman, I. (Eds.). GKS Theory And Practice. New York, NY:
Springer-Verlag, 1987.

Foley, J. D., and, Van Dam, A. Fundamentals Of Interactive Computer Graphics. Reading
MA: Addison-Wesley Publishing Company Inc., 1984.

Hall, Roy. Illumination And Color In Computer Generated Imagery. New York, NY:
Springer-Verlag.

Hearn, D. and Baker, M. Pauline. Computer Graphics (Second Edition). Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1986.

13-32 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Morteson, Michael E. Geometric Modeling. New York, NY: John Wiley and Sons, Inc.

Newman, William M., and Sproull, Roger F. Principles Of Interactive Computer
Graphics. New York, NY: McGraw-Hill Company, Inc., 1979.

Pixar. The Renderman Interface. San Rafael, CA. 94901.

Reid, Glenn C. (Adobe Systems, Inc.). Postscript Language Program Design. Reading
MA: Addison-Wesley Publishing Company, Inc., 1988.

Rogers, David F. Procedural Elements For Computer Graphics. New York, NY:
McGraw-Hill Company, Inc., 1985.

13.9.6 Image Processing

Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O., Saupe, D., and
Voss, R. F. The Science Of Fractal Images. New York, NY: Springer-Verlag.

Ekstrom, M. P. Digital Image Processing Techniques. New York, NY: Academic Press,
Inc., 1984.

Gonzales, Rafael C., and Wintz, Paul. Digital Image Processing (Second Edition).
Reading, MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K. Digital Image Processing. New York, NY: John Wiley and Sons, 1978.

Rosenfeld, Azriel, and Kak, Avinash C. Digital Picture Processing. New York, NY:
Academic Press, Inc., 1982.

13.9.7 Motorola DSP Manuals

Motorola. DSP56000 Linker/librarian Reference Manual. Motorola, Inc., 1991.

Motorola. DSP56000 Macro Assembler Reference Manual. Motorola, Inc., 1991.

Motorola. DSP56000 Simulator Reference Manual. Motorola, Inc., 1991.

Motorola. DSP56000/DSP56001 User’s Manual. Motorola, Inc.,1990.

MOTOROLA DSP56600FM/AD 13-33
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13.9.8 Numerical Methods

Berliout, P., and Bizard, P. Algorithms (The Construction, Proof, And Analysis Of
Programs). New York, NY: John Wiley and Sons, 1986.

Golub, G. H., and Van Loan, C. F. Matrix Computations. John Hopkins Press, 1983.

Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling, William T.
Numerical Recipes In C - The Art Of Scientific Programming. Cambridge
University Press, 1988.

Schroeder, Manfred R. Number Theory In Science And Communication. New York, NY:
Springer-Verlag, 1986.

13.9.9 Pattern Recognition

Bracewell, R. N. The Fast Fourier Transform And Its Applications. New York, NY:
McGraw-Hill Company, Inc., 1986.

Brigham, E. Oran. The Fast Fourier Transform And Its Applications. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1988.

Duda, R. O., and Hart, P. E. Pattern Classification And Scene Analysis. New York, NY:
John Wiley and Sons, 1973.

Gardner, William A. Statistical Spectral Analysis, A Nonprobabilistic Theory. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1988.

James, Mike. Classification Algorithms. New York, NY: Wiley-Interscience, 1985.
Spectral Analysis:

13.9.10 Speech

Flanagan, J. L. Speech Analysis, Synthesis, And Perception. New York, NY:
Springer-Verlag, 1972.

Honig, Michael L., and Messerschmitt, David G. Adaptive Filters – Structures,
Algorithms, And Applications. Higham, MA: Kluwer Academic Publishers,
1984.

13-34 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Jayant, N. S., and Noll, P. Digital Coding Of Waveforms. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1984.

Markel, J. D. and Gray, A. H., Jr. Linear Prediction Of Speech. New York, NY:
Springer-Verlag, 1976.

O’Shaughnessy, D. Speech Communication – Human And Machine. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R. W. Digital Processing Of Speech Signals.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

13.9.11 Telecommunications

Lee, Edward A., and Messerschmitt, David G. Digital Communication. Higham, MA:
Kluwer Academic Publishers, 1988.

Proakis, John G. Digital Communications. New York, NY: McGraw-Hill Publishing
Co., 1983.

MOTOROLA DSP56600FM/AD 13-35
For More Information On This Product,

 Go to: www.freescale.com

Additional Support

Reference Books and Manuals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

13-36 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

APPENDIX A

INSTRUCTION SET DETAILS

Arithmetic

ABS
ADC
ADD
ASL
ASLL
ASR
ASRR
ASRAC
CLR
CMP
DECW
DIV
IMPY
INCW
MAC
MACR
MPY
MPYR
MPYSU
MACSU
NEG
NORM
RND
SBC
SUB
Tcc
TFR
TST
TSTW

Logical

AND
ANDC
EOR
EORC
LSL
LSLL
LSR
LSRR
LSRAC
NOT
NOTC
OR
ORC
ROL
ROR

Bit-field
Manipulation

BFTSTL
BFTSTH
BFCLR
BFSET
BFCHG
BRCLR
BRSET

Loop
DO
ENDDO
REP

Move
LEA
MOVE
MOVE(C)
MOVE(I)
MOVE(M)
MOVE(P)
MOVE(S)

Program
Control

Bcc
BRA
DEBUG
Jcc
JMP
JSR
 NOP
RTI
RTS
STOP
SWI
WAIT

MOTOROLA DSP56600FM/AD A-1
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.1 INTRODUCTION. A-3
A.2 INSTRUCTION FORMATS AND SYNTAX. A-3
A.3 INSTRUCTION GROUPS. A-8
A.4 GUIDE TO INSTRUCTION DESCRIPTIONS A-17
A.5 INSTRUCTION DESCRIPTIONS A-27

A-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.1 INTRODUCTION

This section introduces the DSP56600 core instruction set and instruction format. The
complete range of instruction capabilities combined with the flexible addressing
modes used in this processor provide a very powerful assembly language for
implementing DSP algorithms. The instruction set has been designed to allow
efficient coding for DSP high-level language compilers, such as the C Compiler.
Execution time is minimized by the hardware looping capabilities, use of an
instruction pipeline, and parallel moves.

A.2 INSTRUCTION FORMATS AND SYNTAX

The DSP56600 core instructions consist of one or two 24-bit words—an operation
word and an optional extension word. This extension word can be either an effective
address extension word or an immediate data extension word. While the extension
word occupies the full 24-bit width of the program memory, only the sixteen Least
Significant Bits (LSBs) are relevant for effective address extension or for immediate
data. Therefore, the extension word is effectively sixteen bits wide. General formats
of the instruction word are shown in Figure A-1. Most instructions specify data
movement on the X Data Bus (XDB), Y Data Bus (YDB), and Data ALU operations in
the same operation word. The DSP56600 core is designed to perform each of these
operations in parallel.

Figure A-1 General Formats of an Instruction Word

Optional Effective Address Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Immediate Data Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Effective Address Extension

23 0

Non-parallel Operation Code

AA0597

MOTOROLA DSP56600FM/AD A-3
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Data Bus Movement field provides the operand reference type, which selects the
type of memory or register reference to be made, the direction of transfer, and the
effective address(es) for data movement on the XDB and/or YDB. This field may
require additional information to fully specify the operand for certain addressing
modes. An extension word following the operation word is used to provide
immediate data, absolute address or address displacement, if required. Examples of
operations that may include the extension word include move operation such as
MOVE X:$100,X0.

The Opcode field of the operation word specifies the Data ALU operation or the
Program Control Unit (PCU) operation to be performed.

The operation codes form a very versatile Microcontroller Unit (MCU) style
instruction set, providing highly parallel operations in most programming situations.

The instruction syntax has two formats—parallel and non-parallel, as shown in
Table A-1 and Table A-2. Parallel instruction is organized into five columns: opcode,
operands, two optional parallel-move fields, and an optional condition field. The
condition field is used to disable the execution of the opcode if the condition is not
true, and cannot be used in conjunction with the parallel move fields.

Assembly-language source codes for some typical one-word instructions are shown
in Table A-1. Because of the multiple bus structure and the parallelism of the
DSP56600 core, as many as three data transfers can be specified in the instruction
word—one on the XDB, one on the YDB, and one within the Data ALU. These
transfers are explicitly specified. A fourth data transfer is implied and occurs in the
PCU (instruction word prefetch, program looping control, etc.). The opcode column
indicates the Data ALU operation to be performed, but may be excluded if only a
MOVE operation is needed. The operands column specifies the operands to be used
by the opcode. The XDB and YDB columns specify optional data transfers over the
XDB and YDB and the associated addressing modes. The address space qualifiers
(X:, Y:, and L:) indicate which address space is being referenced.

Table A-1 Parallel Instructions Format

Opcode Operands XDB YDB Condition

Example 1 MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

Example 2 MOVE X:-(R1),X1

Example 3 MAC X1,Y1,B

Example 4 MPY X0,Y0,A IF eq

A-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Non-parallel instruction is organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown
in Table A-2. Non-parallel instructions include all the program control, looping and
peripherals read/write instructions. They also include some Data ALU instructions
that are impossible to be encoded in the Opcode field of the parallel format.

A.2.1 Operand Sizes

Operand sizes are defined as follows: a byte is eight bits long, a word is sixteen bits
long, a long word is 32 bits long, and an accumulator is 40 bits long, as shown in
Figure A-2. The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation.

A.2.2 Data Organization in Registers

The ten Data ALU registers support 8- or 16-bit data operands. Instructions support
32- or 40-bit data operands by concatenating groups of specific Data ALU registers.
The eight address registers in the Address Generation Unit (AGU) support 16-bit
address or data operands. The eight AGU offset registers support 16-bit offsets or

Table A-2 Non-Parallel Instructions Format

Opcode Operands

Example 1: JEQ (R5)

Example 2: MOVEP #data,X:ipr

Example 3: RTS

Figure A-2 Operand Sizes

7
Byte

Word

Long Word

Accumulator

0

015

031

039

AA0754

MOTOROLA DSP56600FM/AD A-5
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

may support 16-bit addresses or data operands. The eight AGU modifier registers
support 16-bit modifiers or may support 16-bit address or data operands. The
Program Counter (PC) supports 16-bit address operands. The Status Register (SR)
and Operating Mode Register (OMR) support 8- or 16-bit data operands. The Loop
Counter (LC) and Loop Address (LA) registers support 16-bit address operands.

A.2.3 Data ALU Registers

The eight main data registers are sixteen bits wide. Word operands occupy one
register; long-word operands occupy two concatenated registers. The Least
Significant Bit (LSB) is the right-most bit (Bit 0) and the Most Significant Bit (MSB) is
the left-most bit (Bit 15 for word operands and Bit 31 for long-word operands).

The two accumulator extension registers are eight bits wide. When an accumulator
extension register is used as a source operand, it occupies the low-order portion (bits
0–7) of the word; the high-order portion (bits 8–15) is sign-extended (see Figure A-3).
When used as a destination operand, this register receives the low-order portion of
the word, and the high-order portion is not used. Accumulator operands occupy an
entire group of three registers (e.g., A2:A1:A0 or B2:B1:B0). The LSB is the right-most
bit (Bit 0), and the MSB is the left-most bit (Bit 39).

When a 40-bit accumulator (A or B) is specified as a source operand S, the
accumulator value is optionally shifted according to the Scaling Mode bits S0 and S1
in the Mode Register (MR). If the data out of the shifter indicates that the
accumulator extension register is in use and the data is to be moved into a 16-bit
destination, the value stored in the destination is limited to a maximum positive or
negative saturation constant to minimize truncation error. Limiting does not occur if

Figure A-3 Reading and Writing the ALU Extension Registers

Bus

Not used
LSB Of
word

A2/B2

15

Register A2, B2 used
as a destination

Register A2, B2
used as a source

Sign extension
of A2/B2

Contents
Of A2/b2

Not used

78 0

15 78 0

Register A2, B2

Bus

15 78 0

AA0598

A-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

an individual 16-bit accumulator register (A1, A0, B1, or B0) is specified as a source
operand instead of the full 40-bit accumulator (A or B). This limiting feature allows
block floating-point operations to be performed with error detection since the L bit in
the Condition Code Register (CCR) is latched.

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16-bit
source data to be moved into that accumulator is automatically extended to 40 bits by
sign-extending the MSB of the source operand (Bit 15) and appending the source
operand with sixteen 0s in the LSBs. For 16-bit source operands, both the automatic
sign extension and zeroing features can be disabled by specifying the destination
register to be one of the individual 16-bit accumulator registers (A1 or B1).

A.2.3.1 AGU Registers
The sixteen AGU registers, which are each sixteen bits wide, can be accessed as word
operands for address, address offset, address modifier, and data storage. The
notation Rn is used to designate one of the eight address registers, R0–R7. The
notation Nn is used to designate one of the eight address offset registers, N0–N7. The
notation Mn is used to designate one of the eight address modifier registers, M0–M7.

A.2.3.2 Program Control Registers
The Chip Operating Mode (COM) register occupies the lower eight bits and the
Extended Chip Operating Mode (EOM) register occupies the upper eight bits of the
16-bit OMR. The OMR and the Vector Base Address (VBA) register are accessed as
word operands. Not all of their bits are defined. Undefined bits are read as 0 and
should be written with 0 for future compatibility. The 16-bit SR has the user CCR
occupying the low-order eight bits and the system MR occupying the high-order
eight bits. The SR can be accessed as a word operand. The MR and CCR can be
accessed individually as word operands (see Figure A-4).

Figure A-4 Reading and Writing Control Registers

MR, CCR and COM
as a Destination

 as a Source
MR, CCR and COM

Bus

Not Used LSB

15 78 0

15 78 0

Bus
AA0599

MR, CCR and COM

Zero Fill

MOTOROLA DSP56600FM/AD A-7
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Loop Counter (LC), Loop Last Address (LA), System Stack High (SSH), and
System Stack Low (SSL) registers are sixteen bits wide and are accessed as word
operands. The system Stack Pointer (SP) is a 16-bit register that is accessed as a word
operand. The PC, a special 16-bit-wide program counter register, is generally
referenced implicitly as a word operand, but may also be referenced explicitly (by all
PC-relative operation codes) also as a word operand.

A.2.3.3 Data Organization in Memory
The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 32-bit System Stack (SS) can store the concatenated PC and SR
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The
16-bit-wide X and Y memories can store word and byte operands. Byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either
zero extended or sign-extended on the XDB or YDB.

A.3 INSTRUCTION GROUPS

The instruction set is divided into the following groups:

• Arithmetic

• Logical

• Bit Manipulation

• Loop

• Move

• Program Control

Each instruction group is described in the following paragraphs.

A.3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data
ALU. These instructions may affect all of the CCR bits. Arithmetic instructions are
register-based (register direct addressing modes used for operands), so that the Data
ALU operation indicated by the instruction does not use the XDB, the YDB, or the
Global Data Bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and
YDB or over the GDB during a Data ALU operation. This parallel movement allows

A-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

new data to be prefetched for use in subsequent instructions and allows results
calculated in previous instructions to be stored. The move operation that can be
specified in parallel to the instruction marked is one of the parallel instructions listed
in Table A-7 on page A-14. Arithmetic instructions can be executed conditionally,
based on the condition codes generated by the previous instructions. Conditional
arithmetic instructions do not allow parallel data movement over the various data
buses. Table A-3 lists the arithmetic instructions. A “√” sign in a table cell in the
“Parallel Instruction” column indicates that the corresponding instruction is a
parallel instruction, while a blank table cell indicates that the instruction is not a
parallel instruction.

Table A-3 Arithmetic Instructions

Mnemonic Description Parallel
Instruction

ABS Absolute Value √

ADC Add Long with Carry √

ADD Add √

ADD (imm.) Add (immediate operand)

ADDL Shift Left and Add √

ADDR Shift Right and Add √

ASL Arithmetic Shift Left √

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)

ASR Arithmetic Shift Right √

ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand √

CMP Compare √

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude √

MOTOROLA DSP56600FM/AD A-9
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPU Compare Unsigned

DEC Decrement Accumulator

DIV Divide Iteration

DMAC Double Precision Multiply-Accumulate

INC Increment Accumulator

MAC Signed Multiply-Accumulate √

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate (immediate operand)

MACR Signed Multiply-Accumulate and Round √

MACRI Signed Multiply-Accumulate and Round
(immediate operand)

MAX Transfer By Signed Value √

MAXM Transfer By Magnitude √

MPY Signed Multiply √

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply (immediate operand)

MPYR Signed Multiply and Round √

MPYRI Signed Multiply and Round (immediate operand)

NEG Negate Accumulator √

NORMF Fast Accumulator Normalize

RND Round √

SBC Subtract Long with Carry √

SUB Subtract √

Table A-3 Arithmetic Instructions (Continued)

Mnemonic Description Parallel
Instruction

A-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3.2 Logical Instructions

The logical instructions, which execute in one instruction cycle, perform all of the
logical operations within the Data ALU (except ANDI and ORI). They may affect all
of the CCR bits and, like the arithmetic instructions, are register-based. Optional data
transfers may be specified with most logical instructions, allowing parallel data
movement over the XDB and YDB or over the GDB during a Data ALU operation.
This parallel movement allows new data to be prefetched for use in subsequent
instructions and allows results calculated in previous instructions to be stored.The
move operation that can be specified in parallel to the instruction marked is one of
the parallel instructions listed in Table A-7 on page A-14. Table A-4 lists the logical
instructions. A “√” in a table cell in the “Parallel Instruction” column indicates that
the corresponding instruction is a parallel instruction, while a blank table cell
indicates that the instruction is not a parallel instruction.

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract √

SUBR Shift Right and Subtract √

Tcc Transfer Conditionally

TFR Transfer Data ALU Register √

TST Test an Operand √

Table A-4 Logical Instructions

Mnemonic Description Parallel
Instruction

AND Logical AND √

AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

Table A-3 Arithmetic Instructions (Continued)

Mnemonic Description Parallel
Instruction

MOTOROLA DSP56600FM/AD A-11
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Logical Exclusive OR √

EOR (imm.) Logical Exclusive OR (immediate operand)

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field (immediate operand)

LSL Logical Shift Left √

LSL (mb.) Logical Shift Left (multi-bit)

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right √

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement √

OR Logical Inclusive OR √

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate to Control Register

ROL Rotate Left √

ROR Rotate Right √

Table A-4 Logical Instructions (Continued)

Mnemonic Description Parallel
Instruction

A-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location
and then optionally set, clear, or invert the bit. The carry bit of the CCR contains the
result of the bit test. Table A-5 lists the bit manipulation instructions. None of the bit
manipulation instructions is a parallel instruction.

A.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as
straight-line code. Replacing straight-line code with DO loops can significantly
reduce program memory usage. The loop instructions control hardware looping
either by initiating a program loop and establishing looping parameters, or by
restoring the registers by pulling the SS when terminating a loop. Initialization
includes saving registers used by a program loop (LA and LC) on the SS so that
program loops can be nested. The address of the first instruction in a program loop is
also saved to allow no-overhead looping. Table A-6 lists the loop instructions. None
of the loop instructions is a parallel instruction.

Table A-5 Bit Manipulation Instructions

Mnemonic Description Parallel Instruction

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Table A-6 Loop Instructions

Mnemonic Description Parallel
Instruction

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DO FOREVER Start Forever Hardware Loop

ENDDO Abort and Exit from Hardware Loop

MOTOROLA DSP56600FM/AD A-13
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The ENDDO instruction is not used for normal termination of a DO loop; it is only
used to terminate a DO loop before the LC has been decremented to 1.

A.3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the
GDB. Move instructions, most of which allow Data ALU opcode in parallel, do not
affect the CCR, except the limit bit L, if limiting is performed when reading a Data
ALU accumulator register. Table A-7 lists the move instructions. A “√” in a table cell
in the “Parallel Instruction” column indicates that the corresponding instruction is a
parallel instruction, while a blank table cell indicates that the instruction is not a
parallel instruction.

A.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other
instructions affecting the PC and SS. Program control instructions may affect the
CCR bits as specified in the instruction. Optional data transfers over the XDB and
YDB may be specified in some of the program control instructions. Table A-8 lists the
program control instructions. None of the program control instructions is a parallel
instruction.

Table A-7 Move Instructions

Mnemonic Description Parallel Instruction

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register √

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

U MOVE Update Move √

VSL Viterbi Shift Left

A-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table A-8 Program Control Instructions

Mnemonic Description Parallel Instruction

IFcc.U Execute Conditionally and Update CCR

IFcc Execute Conditionally

Bcc Branch Conditionally

BRA Branch Always

BScc Branch to Subroutine Conditionally

BSR Branch to Subroutine Always

DEBUGcc Enter into the Debug Mode Conditionally

DEBUG Enter into the Debug Mode Always

Jcc Jump Conditionally

JMP Jump Always

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally

JSR Jump to Subroutine Always

JSCLR Jump to Subroutine if Bit Clear

JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

TRAPcc Trap Conditionally

MOTOROLA DSP56600FM/AD A-15
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TRAP Trap Always

WAIT Wait for Interrupt (Low-Power Standby)

Table A-8 Program Control Instructions (Continued)

Mnemonic Description Parallel Instruction

A-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4 GUIDE TO INSTRUCTION DESCRIPTIONS

The following information is included in each instruction description:

• Name and Mnemonic: The mnemonic is highlighted in bold type for easy
reference.

• Assembler Syntax and Operation: For each instruction syntax, the
corresponding operation is symbolically described. If several operations are
indicated on a single line in the operation field, those operations do not
necessarily occur in the order shown, but are generally assumed to occur in
parallel. If a parallel data move is allowed, it is indicated in parentheses in
both the assembler syntax and operation fields. If a letter in the mnemonic is
optional, it is shown in parenthesis in the assembler syntax field.

• Description: A complete text description of the instruction is given together
with any special cases and/or condition code anomalies of which the user
should be aware when using that instruction.

• Condition Codes: The Status Register (SR) is depicted with the condition code
bits which can be affected by the instruction. Not all bits in the SR are used.
Those that are reserved are indicated with a gray box covering its area.

• Instruction Format: The instruction fields, the instruction opcode, and the
instruction extension word are specified for each instruction syntax. When the
extension word is optional, it is so indicated. The values that can be assumed
by each of the variables in the various instruction fields are shown under the
instruction field’s heading.

A.4.1 Notation

Each instruction description contains symbols used to abbreviate certain operands
and operations. Table A-9 lists the symbols used and their respective meanings.
Depending on the context, registers refer to either the register itself or the contents of
the register.

Table A-9 Instruction Description Notation

Symbol Meaning

Data ALU Registers Operands

Xn Input Register X1 or X0 (16 bits)

MOTOROLA DSP56600FM/AD A-17
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Yn Input Register Y1 or Y0 (16 bits)

An Accumulator Registers A2, A1, A0 (A2—8 bits, A1 and A0—16 bits)

Bn Accumulator Registers B2, B1, B0 (B2—8 bits, B1 and B0—16 bits)

X Input Register X = X1: X0 (32 bits)

Y Input Register Y = Y1: Y0 (32 bits)

A Accumulator A = A2: A1: A0 (40 bits)

B Accumulator B = B2: B1: B0 (40 bits)

AB Accumulators A and B = A1: B1 (32 bits)

BA Accumulators B and A = B1: A1 (32 bits)

A10 Accumulator A = A1: A0 (32 bits)

B10 Accumulator B = B1:B0 (32 bits)

Program Control Unit Registers Operands

PC Program Counter Register (16 bits)

MR Mode Register (8 bits)

CCR Condition Code Register (8 bits)

SR Status Register = MR:CCR (16 bits)

EOM Extended Chip Operating Mode Register (8 bits)

COM Chip Operating Mode Register (8 bits)

OMR Operating Mode Register = EOM:COM (16 bits)

SZ System Stack Size Register (16 bits)

SC System Stack Counter Register (5 bits)

VBA Vector Base Address (16 bits, eight set to 0)

LA Hardware Loop Address Register (16 bits)

LC Hardware Loop Counter Register (16 bits)

Table A-9 Instruction Description Notation (Continued)

Symbol Meaning

A-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SP System Stack Pointer Register (16 bits)

SSH Upper Portion of the Current Top of the Stack (16 bits)

SSL Lower Portion of the Current Top of the Stack (16 bits)

SS System Stack RAM = SSH: SSL (16 locations by 32 bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute or Long Displacement Address (16 bits)

xxx Short or Short Displacement Jump Address (12 bits)

xxx Short Displacement Jump Address (9 bits)

aaa Short Displacement Address (7 bits, sign-extended)

aa Absolute Short Address (6 bits, zero-extended)

pp High I/O Short Address (6 bits, ones-extended)

qq Low I/O Short Address (6 bits)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

Table A-9 Instruction Description Notation (Continued)

Symbol Meaning

MOTOROLA DSP56600FM/AD A-19
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#n Immediate Short Data (5 bits)

#xx Immediate Short Data (8 bits)

#xxx Immediate Short Data (12 bits)

#xxxx Immediate Data (16 bits)

r Rounding Constant

#bbbb Operand Bit Select (4 bits)

Unary Operands

– Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the SS Operator

READ Read the Top of the SS Operator

PURGE Delete the Top Value on the SS Operator

|| Absolute Value Operator

Binary Operands

+ Addition Operator

– Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

≈ Logical Exclusive OR Operator

fi “Is Transferred To” Operator

: Concatenation Operator

Table A-9 Instruction Description Notation (Continued)

Symbol Meaning

A-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress

RM Rounding Mode

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use

U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized

N Negative Bit Indicating if Bit 39 of the Data ALU Result is Set

Z Zero Bit Indicating if the Data ALU Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in Data ALU

C Carry Bit Indicating if a Carry or Borrow Occurred in Data ALU Result

() Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

Table A-9 Instruction Description Notation (Continued)

Symbol Meaning

MOTOROLA DSP56600FM/AD A-21
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Address ALU Registers Operands

Rn Address Registers R0–R7

Nn Address Offset Registers N0–N7

Mn Address Modifier Registers M0–M7

Table A-9 Instruction Description Notation (Continued)

Symbol Meaning

A-22 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.2 Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR) consists of
eight defined bits, as shown in Figure A-5.

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of
the result of a Data ALU operation. These condition code bits are not “sticky” and are
not affected by Address ALU calculations or by data transfers over the XDB, YDB, or
GDB. The L bit is a “sticky” overflow bit that indicates that an overflow has occurred
in the Data ALU or that data limiting has occurred when moving the contents of the
A and/or B accumulators. The S bit is a “sticky” bit used in block floating point
operations to indicate the need to scale the number in A or B.

The full description of every instruction contains an illustration showing how the
instruction affects the various condition codes. An instruction can affect a condition
code according to three different rules:

The standard definition of the Condition Code bits follows.

Figure A-5 Condition Codes

Table A-10 Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction.

√ This bit is changed by the instruction, according to the standard
definition of the condition code.

* This bit is changed by the instruction, according to a special definition of
the condition code, depicted as part of the instruction full description.

CCR

S — Scaling Bit
L — Limit Bit
E — Extension Bit
U — Unnormalized Bit

N — Negative Bit
Z — Zero Bit
V — Overflow Bit
C — Carry Bit

CS L E U N VZ

07 6 5 4 3 12

AA0755

MOTOROLA DSP56600FM/AD A-23
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.2.1 Scaling Bit (S)
The Scaling bit (S) is computed, according to the logical equations in Table A-11,
when an instruction or a parallel move reads the contents of accumulator A or B to
XDB or YDB. The S bit is a “sticky” bit, cleared only by an instruction that specifically
clears it, or hardware reset.

The S bit is used to detect data growth, which is required in Block Floating Point FFT
operation. The S bit is set if the absolute value in the accumulator, before scaling, was
greater or equal to 0.25 and smaller than 0.75. Typically, the bit is tested after each
pass of a radix 2 decimation-in-time FFT and, if it is set, the appropriate scaling mode
should be activated in the next pass. The Block Floating Point FFT algorithm is
described in the Motorola application note APR4/D, Implementation of Fast Fourier
Transforms on Motorola’s DSP56000/DSP56001 and DSP96002 Digital Signal
Processors.

A.4.2.2 Limit Bit (L)
The Limit bit (L) is set if the Overflow bit (V) is set or if an instruction or a parallel
move causes the data shifter/limiters to perform a limiting operation while reading
the contents of accumulator A or B to the XDB or YDB bus. In Arithmetic Saturation
mode, the limit bit is also set when an arithmetic saturation occurs in the Data ALU
result. Not affected otherwise. The L bit is “sticky” and must be cleared only by an
instruction that specifically clears it, or hardware reset.

A.4.2.3 Extension Bit (E)
The Extension bit (E) is cleared if all the bits of the signed integer portion of the Data
ALU result are the same (i.e., the bit patterns are either 00. . . 00 or 11. . . 11).
Otherwise, this bit is set. The signed integer portion is defined by the scaling mode,
as shown in Table A-12.

Table A-11 S Bit Computation

S0 S1 Scaling Mode S Bit Equation

0 0 No scaling S = (A30 XOR A29) OR (B30 XOR B29) OR S (previous)

0 1 Scale down S = (A31 XOR A30) OR (B31 XOR B30) OR S (previous)

1 0 Scale up S = (A29 XOR A28) OR (B29 XOR B28) OR S (previous)

1 1 Reserved S undefined

A-24 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The signed integer portion of an accumulator is not necessarily the same as the
extension register portion of that accumulator. The signed integer portion of an
accumulator consists of the most significant eight, nine, or ten bits of that
accumulator, depending on the scaling mode being used. The extension register
portion of an accumulator (A2 or B2) is always the eight Most Significant Bits of that
accumulator. The E bit refers to the signed integer portion of an accumulator and not
the extension register portion of that accumulator.

For example, if the current scaling mode is set for no scaling (S1 = S0 = 0), the signed
integer portion of the A or B accumulator consists of bits 31 through 39. If the A
accumulator contained the signed 40-bit value $00:8000:0000 as a result of a Data
ALU operation, the E bit would be set (E = 1) since the nine Most Significant Bits of
that accumulator were not all the same (i.e., neither 00...00 nor 11...11). This means
that data limiting occurs if that 40-bit value is specified as a source operand in a
move-type operation. This limiting operation results in either a positive or negative
16-bit or 32-bit saturation constant being stored in the specified destination. The only
situation in which the signed integer portion of an accumulator and the extension
register portion of an accumulator are the same is in the “Scale Down” scaling mode
(i.e., S1 = 0 and S0 = 1).

A.4.2.4 Unnormalized Bit (U)
The Unnormalized bit (U) is set if the two Most Significant Bits of the Most
Significant Portion (MSP) of the Data ALU result are the same. This bit is cleared
otherwise. The MSP is defined by the scaling mode. The U bit is computed as shown
in Table A-13.

Table A-12 Signed Integer Portion Definition

S1 S0 Scaling Mode Integer Portion

0 0 No Scaling Bits 39,38..............32,31

0 1 Scale Down Bits 39,38..............33,32

1 0 Scale Up Bits 39,38..............31,30

Table A-13 U Bit Computation

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 31 xor Bit 30)

0 1 Scale Down U = (Bit 32 xor Bit 31)

1 0 Scale Up U = (Bit 30 xor Bit 29)

MOTOROLA DSP56600FM/AD A-25
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The result of calculating the U bit in this fashion is that the definition of a positive
normalized number p is 0.5 ≤ p < 1.0 and the definition of negative normalized
number n is –1.0 ≤ n < –0.5.

A.4.2.5 Negative Bit (N)
The Negative bit (N) is set if the MS bit (Bit 39 in arithmetic instructions or Bit 31 in
logical instructions) of the Data ALU result is set. Otherwise, this bit is cleared.

A.4.2.6 Zero Bit (Z)
The Zero bit (Z) is set if the Data ALU result equals 0. Otherwise, this bit is cleared.

A.4.2.7 Overflow Bit (V)
The Overflow bit (V) is set if an arithmetic overflow occurs in the 40-bit Data ALU
result. Otherwise, this bit is cleared. This indicates that the result cannot be
represented in the 40-bit accumulator; thus, the accumulator has overflowed.

In Arithmetic Saturation mode, an arithmetic overflow occurs if the Data ALU result
is not representable in the accumulator without the extension part (i.e., 32-bit
accumulator).

A.4.2.8 Carry Bit (C)
The Carry bit (C) is set if a carry is generated out of the MSB of the Data ALU result of
an addition or if a borrow is generated out of the MSB of the Data ALU result of a
subtraction. Otherwise, this bit is cleared. The carry or borrow is generated out of Bit
39 of the Data ALU result. The C bit is also affected by bit manipulation, rotate, shift,
and compare instructions. The C bit is not affected by the Arithmetic Saturation
mode.

A-26 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.5 INSTRUCTION DESCRIPTIONS

The following section describes each instruction in the DSP56600 core instruction set
in detail. Instructions that allow parallel moves are so noted in both the Operation
and the Assembler Syntax fields. The MOVE instruction is equivalent to a NOP with
parallel moves. Therefore, a detailed description of each parallel move is given with
the MOVE instruction details.

Whenever an instruction uses an accumulator as both a destination operand for Data
ALU operation and as a source for a parallel move operation, the parallel move
operation uses the value in the accumulator prior to execution of any Data ALU
operation.

MOTOROLA DSP56600FM/AD A-27
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABS Absolute Value ABS

Description: Take the absolute value of the destination operand D and store the
result in the destination accumulator.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

| D | → D (parallel move) ABS D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ABS D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-28 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADC Add Long with Carry ADC

Description: Add the source operand S and the Carry bit (C) of the Condition Code
Register to the destination operand D and store the result in the destination
accumulator. Long words (32 bits) can be added to the 40-bit destination
accumulator.

Note: The Carry bit is set correctly for multiple precision arithmetic using
long-word operands if the extension register of the destination
accumulator (A2 or B2) is the sign extension of Bit 31 of the destination
accumulator (A or B).

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S + C + D → D (parallel move) ADC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ADC S,D DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-16 on page A-203)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-29
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADD Add ADD

Description: Add the source operand S to the destination operand D and store the
result in the destination accumulator. The source can be a register (16-bit word,
32-bit long word, or 40-bit accumulator), 6-bit short immediate, or 16-bit long
immediate.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That
is, the six bits are right-aligned and the remaining bits are zeroed to form a 16-bit
source operand.

Note: The Carry bit(C) is set correctly using word or long-word source operands
if the extension register of the destination accumulator (A2 or B2) is the
sign extension of Bit 31 of the destination accumulator (A or B). Thus, the C
bit is always set correctly using accumulator source operands, but can be
set incorrectly if A1, B1, A10, B10 or immediate operand are used as source
operands and A2 and B2 are not replicas of Bit 31.

Condition Codes:

Operation: Assembler Syntax:

S + D → D (parallel move) ADD S,D (parallel move)

#xx + D → D ADD #xx,D

#xxxx + D → D ADD #xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-30 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADD Add ADD

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

ADD S,D DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0

ADD #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-19 on page A-204)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-31
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDL Shift Left and Add Accumulators ADDL

Description: Add the source operand S to two times the destination operand D and
store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a 0 is shifted into the LSB of D prior to
the addition operation. The Carry bit (C) is set correctly if the source operand does
not overflow as a result of the left shift operation. The Overflow bit (V) may be set as
a result of either the shifting or addition operation (or both). This instruction is useful
for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax

S + 2 ∗ D → D (parallel move) ADDL S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

* V Set if overflow has occurred in A or B result or the MSB of the destination operand
is changed as a result of the instruction’s left shift.

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ADDL S,D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} The source accumulator is B if the destination accumulator (selected by the
d bit in the opcode) is A, or A if the destination accumulator is B.

MOTOROLA DSP56600FM/AD A-32
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDR Shift Right and Add Accumulators ADDR

Description: Add the source operand S to one-half the destination operand D and
store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the right while the MS bit of D is held constant prior
to the addition operation. In contrast to the ADDL instruction, the Carry bit (C) is
always set correctly, and the Overflow bit (V) can only be set by the addition
operation and not by an overflow due to the initial shifting operation. This
instruction is useful for efficient divide and decimation-in-time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S + D / 2 → D (parallel move) ADDR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ADDR S,D DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} The source accumulator is B if the destination accumulator (selected by the
d bit in the opcode) is A, or A if the destination accumulator is B.

MOTOROLA DSP56600FM/AD A-33
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AND Logical AND AND

where • denotes the logical AND operator

Description: Logically AND the source operand S with bits 31–16 of the destination
operand D and store the result in bits 31–16 of the destination accumulator. The
source can be a 16-bit register, 6-bit short immediate, or 16-bit long immediate. This
instruction is a 16-bit operation. The remaining bits of the destination operand D are
not affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That
is, the six bits are right aligned and the remaining bits are zeroed to form a 16-bit
source operand.

Condition Codes:

Operation: Assembler Syntax:

S • D[31:16] → D[31:16] (parallel move) AND S,D (parallel move)

#xx • D[31:16] → D[31:16] AND #xx,D

#xxxx • D[31:16] → D[31:16] AND #xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ — — — * * * —

CCR

* N Set if bit 31 of the result is set.
* Z Set if bits 31-16 of the result are 0.
* V Always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-34 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AND Logical AND AND

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

AND S,D DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0

AND #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-17 on page A-203)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-35
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDI AND Immediate with Control Register ANDI

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of
the destination control register D and store the result in the destination control
register. The condition codes are affected only when the Condition Code Register
(CCR) is specified as the destination operand.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:
#xx • D → D AND(I) #xx,D
where • denotes the logical AND operator

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand:
* S Cleared if Bit 7 of the immediate operand is cleared.
* L Cleared if Bit 6 of the immediate operand is cleared.
* E Cleared if Bit 5 of the immediate operand is cleared.
* U Cleared if Bit 4 of the immediate operand is cleared.
* N Cleared if Bit 3 of the immediate operand is cleared.
* Z Cleared if Bit 2 of the immediate operand is cleared.
* V Cleared if Bit 1 of the immediate operand is cleared.
* C Cleared if Bit 0 of the immediate operand is cleared.

For MR and OMR Operands:
The condition codes are not affected using these operands.

23 16 15 8 7 0

AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-18
on page A-204)

{#xx} iiiiiiii Immediate Short Data

A-36 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Accumulator Left ASL

Operation:

Assembler Syntax:

ASL D (parallel move)
ASL D #ii, S2,D
ASL S1,S2,D

Description:

• Single bit shift:

Arithmetically shift the destination accumulator D one bit to the left and store
the result in the destination accumulator. The MSB of D prior to instruction
execution is shifted into the Carry bit (C) and a 0 is shifted into the LSB of the
destination accumulator D.

• Multi-bit shift:

The contents of the source accumulator S2 are shifted left #ii bits. Bits shifted
out of position 39 are lost except for the last bit, which is latched in the C bit.
The vacated positions on the right are zero-filled. The result is placed into
destination accumulator D. The number of bits to shift is determined by the
6-bit immediate field in the instruction, or by the 6-bit unsigned integer
located in the six LSBs of the control register S1. If a zero shift count is
specified, the C bit is cleared. The difference between ASL and LSL is that ASL
operates on the entire 40 bits of the accumulator, and therefore, sets the
Overflow bit (V) if the number overflows.

This is a 40-bit operation.

C

0

39 31 15 032 16

AA0755

MOTOROLA DSP56600FM/AD A-37
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Accumulator Left ASL

Condition Codes:

Example:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

* V Set if Bit 39 is changed any time during the shift operation, cleared otherwise.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and

cleared otherwise.
√ This bit is changed according to the standard definition.

23 8 7 0

ASL D DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0

ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

6
3
1

1

Shift left 7

0

0

C

1 0 1 0 1 0 0 0A

B

1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1

6
3
1

1
0

0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

ASL #7,A, B

AA0756

A-38 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Accumulator Left ASL

Instruction Fields:

In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

{S2} S Source accumulator [A,B] (see Table A-15 on page A-203)

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#ii} iiiiii 6-bit unsigned integer [0–40] denoting the shift amount

MOTOROLA DSP56600FM/AD A-39
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Accumulator Right ASR

Assembler Syntax:

ASR D (parallel move)
ASR D #ii, S2,D
ASR S1,S2,D

Description:

• Single bit shift:

Arithmetically shift the destination operand D one bit to the right and store
the result in the destination accumulator. The LSB of D prior to instruction
execution is shifted into the Carry bit (C), and the MSB of D is held constant.

• Multi-bit shift:
The contents of the source accumulator S2 are shifted right #ii bits. Bits shifted
out of position 0 are lost except for the last bit, which is latched in the C bit.
Copies of the MSB are supplied to the vacated positions on the left. The result
is placed into destination accumulator D. The number of bits to shift is
determined by the 6-bit immediate field in the instruction, or by the 6-bit
unsigned integer located in the six 6 LSBs of the control register S1. If a zero
shift count is specified, the C bit is cleared.

This is a 40-bit operation.

Note: If the number of shifts indicated by the six LSBs of the control register or by
the immediate field exceeds the value of 40, then the result is undefined.

C

Operation:

39 31 15 032 16

AA0757

A-40 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Accumulator Right ASR

Condition Codes:

Example:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

* V This bit is always cleared.
* C This bit is set if the last bit shifted out of the operand is set, cleared for a shift count

of 0, and cleared otherwise.
√ This bit is changed according to the standard definition.

23 8 7 0

ASR D DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0

ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

ASR X0,A,B

x x x x x x x x x x 0 0 0 0 1 1

0

shift = 3

X0

6
3
1

1

Shift right 3

0

1

C

1 0 1 0 1 0 0 0A

B

1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1

6
3
1

1
0

1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0

5
1

AA0758

MOTOROLA DSP56600FM/AD A-41
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Accumulator Right ASR

Instruction Fields:

In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

{S2} S Source accumulator [A,B] (see Table A-15 on page A-203)

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#ii} iiiiii 6-bit unsigned integer [0-40] denoting the shift amount

A-42 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bcc Branch Conditionally Bcc

Description: If the specified condition is true, program execution continues at
location PC + displacement. If the specified condition is false, the PC is incremented
and program execution continues sequentially. The displacement is a
two’s-complement 16-bit integer that represents the relative distance from the
current PC to the destination PC. Short Displacement and Address Register PC
Relative addressing modes can be used. The Short Displacement 9-bit data is
sign-extended to form the PC relative displacement. The conditions that the term
“cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

If cc, then PC + xxx → PC Bcc xxx
else PC + 1 → PC

If cc, then PC + Rn → PC Bcc Rn
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C

{cc} CCCC Condition code (see Table A-48 on page A-214)

{xxx} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [R0–R7]

MOTOROLA DSP56600FM/AD A-43
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCHG Bit Test and Change BCHG

Description: Test the nth bit of the destination operand D, complement it, and store
the result in the destination location. The state of the nth bit is stored in the Carry bit
(C) of the CCR register. The bit to be tested is selected by an immediate bit number
from 0–23. This instruction performs a read-modify-write operation on the
destination location using two destination accesses before releasing the bus. This
instruction provides a test-and-change capability, which is useful for synchronizing
multiple processors using a shared memory. This instruction can use all memory
alterable addressing modes.

Condition Codes:

Operation: Assembler Syntax:

D[n] → C D[n] → D[n] BCHG #n,[XorY]:ea

D[n] fi C D[n] → D[n] BCHG #n,[XorY]:aa

D[n] → C D[n] → D[n] BCHG #n,[XorY]:pp

D[n] → C D[n] → D[n] BCHG #n,[XorY]:qq

D[n] → C D[n] → D[n] BCHG #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

CCR Condition Codes:
For destination operand SR:
* C This bit is complemented if Bit 0 is specified, and not affected otherwise.
* V This bit is complemented if Bit 1 is specified, and not affected otherwise.
* Z This bit is complemented if Bit 2 is specified, and not affected otherwise.
* N This bit is complemented if Bit 3 is specified, and not affected otherwise.
* U This bit is complemented if Bit 4 is specified, and not affected otherwise.
* E This bit is complemented if Bit 5 is specified, and not affected otherwise.
* L This bit is complemented if Bit 6 is specified, and not affected otherwise.
* S This bit is complemented if Bit 7 is specified, and not affected otherwise.

A-44 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCHG Bit Test and Change BCHG

Instruction Formats and Opcodes:

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V This bit is not affected.
* Z This bit is not affected.
* N This bit is not affected.
* U This bit is not affected.
* E This bit is not affected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits:
For destination operand SR:
* I0 This bit is changed if Bit 8 is specified, and not affected otherwise.
* I1 This bit is changed if Bit 9 is specified, and not affected otherwise.
* S0 This bit is changed if Bit 10 is specified, and not affected otherwise.
* S1 This bit is changed if Bit 11 is specified, and not affected otherwise.
* FV This bit is changed if Bit 12 is specified, and not affected otherwise.
* SM This bit is changed if Bit 13 is specified, and not affected otherwise.
* RM This bit is changed if Bit 14 is specified, and not affected otherwise.
* LF This bit is changed if Bit 15 is specified, and not affected otherwise.

For other destination operands: MR status bits are not affected.

23 16 15 8 7 0

BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 0 b b b b

MOTOROLA DSP56600FM/AD A-45
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCHG Bit Test and Change BCHG

Instruction Fields:

23 16 15 8 7 0

BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 0 b b b b

23 16 15 8 7 0

BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 0 b b b b

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

{X /Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{aa} aaaaaa Absolute Address [0-63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table A-27
on page A-207)

A-46 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR Bit Test and Clear BCLR

Description: Test the nth bit of the destination operand D, clear it and store the result
in the destination location. The state of the nth bit is stored in the Carry bit (C) of the
CCR register. The bit to be tested is selected by an immediate bit number from 0–23.
This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a
test-and-clear capability, which is useful for synchronizing multiple processors using
a shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes:

Operation: Assembler Syntax:

D[n] → C 0 → D[n] BCLR #n,[XorY]:ea

D[n] → C 0 → D[n] BCLR #n,[XorY]:aa

D[n] → C 0 → D[n] BCLR #n,[XorY]:pp

D[n] → C 0 → D[n] BCLR #n,[XorY]:qq

D[n] → C 0 → D[n] BCLR #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

CCR Condition Codes:
For destination operand SR:
* C This bit is cleared if Bit 0 is specified, and not affected otherwise.
* V This bit is cleared if Bit 1 is specified, and not affected otherwise.
* Z This bit is cleared if Bit 2 is specified, and not affected otherwise.
* N This bit is cleared if Bit 3 is specified, and not affected otherwise.
* U This bit is cleared if Bit 4 is specified, and not affected otherwise.
* E This bit is cleared if Bit 5 is specified, and not affected otherwise.
* L This bit is cleared if Bit 6 is specified, and not affected otherwise.
* S This bit is cleared if Bit 7 is specified, and not affected otherwise.

MOTOROLA DSP56600FM/AD A-47
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR Bit Test and Clear BCLR

Instruction Formats and Opcodes:

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V This bit is not affected.
* Z This bit is not affected.
* N This bit is not affected.
* U This bit is not affected.
* E This bit is not affected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits:
For destination operand SR:
* I0 This bit is changed if Bit 8 is specified, and not affected otherwise.
* I1 This bit is changed if Bit 9 is specified, and not affected otherwise.
* S0 This bit is changed if Bit 10 is specified, and not affected otherwise.
* S1 This bit is changed if Bit 11 is specified, and not affected otherwise.
* FV This bit is changed if Bit 12 is specified, and not affected otherwise.
* SM This bit is changed if Bit 13 is specified, and not affected otherwise.
* RM This bit is changed if Bit 14 is specified, and not affected otherwise.
* LF This bit is changed if Bit 15 is specified, and not affected otherwise.

23 16 15 8 7 0

BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 0 b b b b
A-48 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR Bit Test and Clear BCLR

Instruction Fields:

{#n} bbbb Bit number [0-15]

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-49
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA

Description: Program execution continues at location PC + displacement. The
displacement is a two’s-complement 16-bit integer that represents the relative
distance from the current PC to the destination PC. Short Displacement and Address
Register PC Relative addressing modes may be used. The Short Displacement 9-bit
data is sign-extended to form the PC relative displacement.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

PC + xxx → Pc BRA xxx

PC + Rn → Pc BRA Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

BRA xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0

BRA Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0

{xxx} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [R0–R7]

A-50 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRKcc Exit Current DO Loop Conditionally BRKcc

Description: Exit conditionally the current hardware DO loop before the current
Loop Counter (LC) equals 1. It also terminates the DO FOREVER loop. If the value of
the current DO LC is needed, it must be read before the execution of the BRKcc
instruction. Initially, the PC is updated from the LA, the Loop Flag (LF) and the
Forever flag (FV) are restored and the remaining portion of the Status Register (SR) is
purged from the system stack. The Loop Address (LA) and the LC registers are then
restored from the system stack.

The conditions that the term “cc” can specify are listed on Table A-48 on page A-214.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

If cc LA + 1→ PC; SSL(LF,FV) → SR; SP – 1 → SP BRKcc
SSH → LA; SSL → LC; SP – 1 → SP

else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

BRKcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C

{cc} CCCC Condition code (see Table A-48 on page A-214)

MOTOROLA DSP56600FM/AD A-51
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BScc Branch to Subroutine Conditionally BScc

Description: If the specified condition is true, the address of the instruction
immediately following the BScc instruction and the SR are pushed onto the stack.
Program execution then continues at location PC + displacement. If the specified
condition is false, the PC is incremented and program execution continues
sequentially. The displacement is a 2’s complement 16-bit integer that represents the
relative distance from the current PC to the destination PC. Short Displacement and
Address Register PC Relative addressing modes may be used. The Short
Displacement 9-bit data is sign extended to form the PC relative displacement.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

If cc, then PC → SSH;SR → SSL;PC + xxx → PC BScc xxx
else PC + 1 → PC

If cc, then PC → SSH;SR → SSL;PC + Rn → PC BScc Rn
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0

BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C

A-52 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BScc Branch to Subroutine Conditionally BScc

Instruction Fields:

{cc} CCCC Condition code (see Table A-48 on page A-214)

{xxx} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [R0–R7]

MOTOROLA DSP56600FM/AD A-53
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET Bit Set and Test BSET

Description: Test the nth bit of the destination operand D, set it, and store the result
in the destination location. The state of the nth bit is stored in the Carry bit (C) of the
CCR register. The bit to be tested is selected by an immediate bit number from 0–23.
This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a
test-and-set capability which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

When this instruction performs a bit manipulation/test on either the A or B 40-bit
accumulator, it optionally shifts the accumulator value according to scaling mode
bits S0 and S1 in the system Status Register (SR). If the data out of the shifter indicates
that the accumulator extension register is in use, the instruction acts on the limited
value (limited on the maximum positive or negative saturation constant). In addition,
the “L” flag in the SR is set accordingly.

Condition Codes:

Operation: Assembler Syntax:

D[n] → C 1→ D[n] BSET #n,[XorY]:ea

D[n] → C 1 → D[n] BSET #n,[XorY]:aa

D[n] → C 1 → D[n] BSET #n,[XorY]:pp

D[n] → C 1 → D[n] BSET #n,[XorY]:qq

D[n] → C 1 → D[n] BSET #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

A-54 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET Bit Set and Test BSET

CCR Condition Codes:
For destination operand SR:
* C This bit is set if Bit 0 is specified, and not affected otherwise.
* V This bit is set if Bit 1 is specified, and not affected otherwise.
* Z This bit is set if Bit 2 is specified, and not affected otherwise.
* N This bit is set if Bit 3 is specified, and not affected otherwise.
* U This bit is set if Bit 4 is specified, and not affected otherwise.
* E This bit is set if Bit 5 is specified, and not affected otherwise.
* L This bit is set if Bit 6 is specified, and not affected otherwise.
* S This bit is set if Bit 7 is specified, and not affected otherwise.

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V This bit is not affected.
* Z This bit is not affected.
* N This bit is not affected.
* U This bit is not affected.
* E This bit is not affected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits:
For destination operand SR:
* I0 This bit is changed if Bit 8 is specified, and not affected otherwise.
* I1 This bit is changed if Bit 9 is specified, and not affected otherwise.
* S0 This bit is changed if Bit 10 is specified, and not affected otherwise.
* S1 This bit is changed if Bit 11 is specified, and not affected otherwise.
* FV This bit is changed if Bit 12 is specified, and not affected otherwise.
* SM This bit is changed if Bit 13 is specified, and not affected otherwise.
* RM This bit is changed if Bit 14 is specified, and not affected otherwise.
* LF This bit is changed if Bit 15 is specified, and not affected otherwise.

For other destination operands: MR status bits are not affected.

MOTOROLA DSP56600FM/AD A-55
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET Bit Set and Test BSET

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 0 b b b b

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table A-27
on page A-207)

A-56 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 BSR Branch to Subroutine BSR

Description: The address of the instruction immediately following the BSR
instruction and the SR are pushed onto the stack. Program execution then continues
at location PC + displacement. The displacement is a two’s-complement 16-bit
integer that represents the relative distance from the current PC to the destination
PC. Short Displacement and Address Register PC Relative addressing modes can be
used. The Short Displacement 9-bit data is sign-extended to form the PC relative
displacement.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

PC → SSH;SR →SSL;PC + xxx → PC BSR xxx

PC → SSH;SR → SSL;PC + Rn → PC BSR Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0

BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0

{xxx} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [R0–R7]

MOTOROLA DSP56600FM/AD A-57
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BTST Bit Test BTST

Description: Test the nth bit of the destination operand D. The state of the nth bit is
stored in the Carry bit (C) of the CCR. The bit to be tested is selected by an immediate
bit number from 0–23. This instruction is useful for performing serial to parallel
conversion when used with the appropriate rotate instructions. This instruction can
use all memory alterable addressing modes.

Condition Codes:

Operation: Assembler Syntax:

D[n] → C BTST #n,[XorY]:ea

D[n] → C BTST #n,[XorY]:aa

D[n] → C BTST #n,[XorY]:pp

D[n] → C BTST #n,[XorY]:qq

D[n] → C BTST #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is set if bit tested is set, and cleared otherwise.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

SP—Stack Pointer:
For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.

A-58 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BTST Bit Test BTST

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 0 b b b b

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-59
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLB Count Leading Bits CLB

Description: Count leading 0s or 1s according to Bit 39 of the source accumulator.
Scan bits 39–0 of the source accumulator starting from Bit 39. The MSP of the
destination accumulator is loaded with nine minus the number of consecutive
leading 1s or 0s found. The result is a signed integer in MSP whose range of possible
values is from +8 to –31. This is a 40-bit operation. The LSP of the destination
accumulator D is filled with 0s. The EXP of the destination accumulator D is
sign-extended.

Notes: 1. If the source accumulator is all 0s, the result is 0.

 2. This instruction can be used in conjunction with NORMF instruction to
specify the shift direction and amount needed for normalization.

Condition Codes:

Operation: Assembler Syntax:

If S[39] = 0 then
9 – (Number of consecutive leading zeros in S[39:0]) → D[31:16]

CLB S,D

else
 9 – (Number of consecutive leading ones in S[39:0]) → D[31:16]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N This bit is set if Bit 31 of the result is set, and cleared otherwise.
* Z This bit is set if bits 31–16 of the result are all 0.
* V This bit is always cleared.
— This bit is unchanged by the instruction.

A-60 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLB Count Leading Bits CLB

Example:

Instruction Formats and Opcode:

Instruction Fields:

23 16 15 8 7 0

CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} S Source accumulator [A,B] (see Table A-15 on page A-203)

CLB B,A

5 Leading ones

Result in A is 9 – 5 = 4

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

6
3
1

1

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0

6
3
1

1

B 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0

0

1 1 1 1 1 0 0 1

AA0759

MOTOROLA DSP56600FM/AD A-61
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLR Clear Accumulator CLR

Description: Clear the destination accumulator. This is a 40-bit clear instruction.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

0 → D (parallel move) CLR D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ * * * * * —

CCR

* E This bit is always cleared.
* U This bit is always set.
* N This bit is always cleared.
* Z This bit is always set.
* V This bit is always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

CLR D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-62 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMP Compare CMP

Description: Subtract the source one operand from the source two accumulator, S2,
and update the CCR. The result of the subtraction operation is not stored.

The source one operand can be a register (16-bit word or 40-bit accumulator), 6-bit
short immediate, or 16-bit long immediate. When using 6-bit immediate data, the
data is interpreted as an unsigned integer. That is, the six bits will be right-aligned
and the remaining bits will be zeroed to form a 16-bit source operand.

Note: This instruction subtracts 40-bit operands. When a word is specified as the
source one operand, it is sign-extended and zero-filled to form a valid
40-bit operand. For the carry to be set correctly as a result of the
subtraction, S2 must be properly sign-extended. S2 can be improperly
sign-extended by writing A1 or B1 explicitly prior to executing the
compare so that A2 or B2, respectively, may not represent the correct sign
extension. This particularly applies to the case where it is extended to
compare 16-bit operands, such as X0 with A1.

Condition Codes:

Operation: Assembler Syntax:

S2 – S1 (parallel move) CMPS1, S2 (parallel move)

S2 – #xx CMP #xx, S2

S2 – #xxxx CMP #xxxx, S2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.

MOTOROLA DSP56600FM/AD A-63
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMP Compare CMP

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

CMP S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0

CMP #xxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

IMMEDIATE DATA EXTENSION

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-29 on page A-208)

{S2} d Source two accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

A-64 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPM Compare Magnitude CMPM

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the CCR. The
result of the subtraction operation is not stored.

Note: This instruction subtracts 40-bit operands. When a word is specified as S1,
it is sign-extended and zero-filled to form a valid 40-bit operand. For the
carry to be set correctly as a result of the subtraction, S2 must be properly
sign-extended. S2 can be improperly sign-extended by writing A1 or B1
explicitly prior to executing the compare so that A2 or B2, respectively,
may not represent the correct sign extension. This particularly applies to
the case where it is extended to compare 16-bit operands, such as X0 with
A1.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

|S2| – |S1| (parallel move) CMPM S1, S2 (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.

23 16 15 8 7 0

CMPM S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-29 on page A-208)

{S2} d Source two accumulator [A,B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-65
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPU Compare Unsigned CMPU

Description: Subtract the source one operand, S1, from the source two accumulator,
S2, and update the CCR. The result of the subtraction operation is not stored.

Note: This instruction subtracts a 16- or 32-bit unsigned operand from a 32-bit
unsigned operand. When a 16-bit word is specified as S1, it is aligned to
the left and zero-filled to form a valid 32-bit operand. If an accumulator is
specified as an operand, the value in the EXP does not affect the operation.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S2 – S1 CMPU S1, S2

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — √ * * √

CCR

* V This bit is always cleared.
* Z This bit is set if bits 31–0 of the result are 0.
— This bit is unchanged by the instruction.
√ This bit is changed according to the standard definition.

23 16 15 8 7 0

CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d

{S1} ggg Source one register [A,B,X0,Y0,X1,Y1] (see Table A-20 on page A-204)

{S2} d Source two accumulator [A,B] (see Table A-15 on page A-203)

A-66 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEBUG Enter Debug Mode DEBUG

Description: Enter the Debug mode and wait for OnCE commands.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields: None

Operation: Assembler Syntax:

Enter the Debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

MOTOROLA DSP56600FM/AD A-67
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEBUGcc DEBUGcc
Enter Debug Mode Conditionally

Description: If the specified condition is true, enter the Debug mode and wait for
OnCE commands. If the specified condition is false, continue with the next
instruction.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

If cc, then enter the Debug mode DEBUGcc

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C

{cc} CCCC Condition code (see Table A-48 on page A-214)

A-68 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEC Decrement by One DEC

Description: Decrement by one the specified operand and store the result in the
destination accumulator. One is subtracted from the LSB of D.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D – 1 → D DEC D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

DEC D 0 1 0 1 d

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-69
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DIV Divide Iteration DIV

Description: Divide the destination operand D by the source operand S and store the
result in the destination accumulator D. The 32-bit dividend must be a positive
fraction that has been sign-extended to 40 bits and is stored in the full 40-bit
destination accumulator D. The 16-bit divisor is a signed fraction and is stored in the
source operand S.

Each DIV iteration calculates one quotient bit using a nonrestoring fractional division
algorithm (see description on the next page). After the execution of the first DIV
instruction, the destination operand holds both the partial remainder and the formed
quotient. The partial remainder occupies the high-order portion of the destination
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (A0 or B0) and is a positive fraction. One bit
of the formed quotient is shifted into the LSB of the destination accumulator at the
start of each DIV iteration. The formed quotient is the true quotient if the true
quotient is positive. If the true quotient is negative, the formed quotient must be
negated. Valid results are obtained only when |D| < |S| and the operands are
interpreted as fractions. This condition ensures that the magnitude of the quotient is
less than 1 (i.e., a fractional quotient) and precludes division by 0.

The DIV instruction calculates one quotient bit based on the divisor and the previous
partial remainder. To produce an N-bit quotient, the DIV instruction is executed N
times, where N is the number of bits of precision desired in the quotient, 1 ≤ N ≤ 16.
Thus, for a full-precision (16-bit) quotient, sixteen DIV iterations are required. In
general, executing the DIV instruction N times produces an N-bit quotient and a
32-bit remainder that has (32 – N) bits of precision and whose N MSBs are 0s. The
partial remainder is not a true remainder and must be corrected due to the
nonrestoring nature of the division algorithm before it can be used. Therefore, once
the divide is complete, it is necessary to reverse the last DIV operation and restore the
remainder to obtain the true remainder.

Operation: Assembler Syntax:

IF D[39]⊕ S[15] = 1 DIV S,D

then 2 ∗ D + C + S → D

else 2 ∗ D + C – S → D

where ⊕ denotes the logical exclusive OR operator.

A-70 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DIV Divide Iteration DIV

The DIV instruction uses a nonrestoring fractional division algorithm that consists of
the following operations (see the previous Operation definition):

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on Bit 39 of the destination operand D and Bit 15 of the
source operand S.

2. Shift the partial remainder and the quotient: The 39-bit destination
accumulator D is shifted one bit to the left. The Carry bit (C) is moved into the
LSB (Bit 0) of the accumulator.

3. Calculate the next quotient bit and the new partial remainder: The 16-bit
source operand S (signed divisor) is either added to or subtracted from the
Most Significant Portion (MSP) of the destination accumulator (A1 or B1), and
the result is stored back into the MSP of that destination accumulator. If the
result of the exclusive OR operation previously described was 1 (i.e., the sign
bits were different), the source operand S is added to the accumulator. If the
result of the exclusive OR operation was 0 (i.e., the sign bits were the same),
the source operand S is subtracted from the accumulator. Because of the
automatic sign extension of the 16-bit signed divisor, the addition or
subtraction operation correctly sets the C bit with the next quotient bit.

For extended precision division (e.g., N-bit quotients where N > 16), the DIV
instruction is no longer applicable, and a user-defined N-bit division routine is
required. For more information on division algorithms, see pages 524–530 of Theory
and Application of Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975),
pages 190–199 of Computer Architecture and Organization by John Hayes
(McGraw-Hill, 1978), pages 213–223 of Computer Arithmetic: Principles, Architecture,
and Design by Kai Hwang (John Wiley and Sons, 1979), or other references as
required.

MOTOROLA DSP56600FM/AD A-71
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DIV Divide Iteration DIV

Condition Codes:.Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

— * — — — — * *

CCR

* L This bit is set if the Overflow bit (V) is set.
* V This bit is set if the MSB of the destination operand is changed as a result of the

instruction’s left shift operation.
* C This bit is set if Bit 39 of the result is cleared.
— This bit is unchanged by the instruction

23 16 15 8 7 0

DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-17 on page A-203)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-72 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DMAC DMAC
Double-Precision Multiply-Accumulate with Right Shift

Description: Multiply the two 16-bit source operands S1 and S2 and add/subtract
the product to/from the specified 40-bit destination accumulator D, which has been
previously shifted sixteen bits to the right. The multiplication can be performed on
signed numbers (ss), unsigned numbers (uu), or mixed (unsigned ∗ signed, (su)). The
“–” sign option is used to negate the specified product prior to accumulation. The
default sign option is “+”. This instruction is optimized for multiprecision
multiplication support.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 unsigned)

DMACsu (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 unsigned, S2 unsigned)

DMACuu (±)S1,S2,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q

MOTOROLA DSP56600FM/AD A-73
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DMAC DMAC
Double-Precision Multiply-Accumulate with Right Shift

Instruction Fields:

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1]
 (see Table A-35 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±±} k Sign [+,–] (see Table A-34 on page A-209)

{ss,su,uu} ss [ss,su,uu] (see Table A-45 on page A-213)

A-74 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO Start Hardware Loop DO

Description: Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is
terminated by the destination operand (previously shown as “expr”). No overhead
other than the execution of this DO instruction is required to set up this loop. DO
loops can be nested and the loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the Loop Address (LA) and
the Loop Counter (LC) registers are pushed onto the system stack. The DO
instruction’s source operand is then loaded into the LC register. The LC register
contains the remaining number of times the DO loop will be executed and can be
accessed from inside the DO loop subject to certain restrictions. If the initial value of
LC is 0, the DO loop is not executed. All address register indirect addressing modes
can be used to generate the effective address of the source operand. If immediate
short data is specified, the twelve LSBs of the LC register are loaded with the 12-bit
immediate value, and the twelve MSBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter
(PC) register and the Status Register (SR) are pushed onto the system stack. The

Operation: Assembler Syntax:

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DO [X or Y]:ea,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:aa → LC DO [X or Y]:aa,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;#xxx → LC DO #xxx,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;S → LC DO S,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

End of Loop:
SSL(LF) → SR;SP – 1 → SP
SSH → LA;SSL → LC;SP – 1 → SP

MOTOROLA DSP56600FM/AD A-75
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO Start Hardware Loop DO

stacking of the LA, LC, PC, and SR registers is the mechanism that permits the
nesting of DO loops. The DO instruction’s destination operand (shown as “expr”) is
then loaded into the LA register. This 16-bit operand is located in the instruction’s
16-bit absolute address extension word, as shown in the opcode section. The value in
the PC register pushed onto the system stack is the address of the first instruction
following the DO instruction (i.e., the first actual instruction in the DO loop). This
value is read (copied but not pulled) from the top of the system stack to return to the
top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set. This results in the PC
being repeatedly compared with LA to determine if the last instruction in the loop
has been fetched. If LA equals PC, the last instruction in the loop has been fetched
and the LC is tested. If the LC is not equal to 1, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. When LC = 1, the
“end-of-loop” processing begins.

When executing a DO loop, the instructions are actually fetched each time through
the loop. Therefore, a DO loop can be interrupted. DO loops can also be nested.
When DO loops are nested, the end-of-loop addresses must also be nested and are
not allowed to be equal. The assembler generates an error message when DO loops
are improperly nested.

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion
(SSL) of the Stack Pointer is written into the SR, the contents of the LA register are
restored from the upper portion (SSH) of (SP – 1), the contents of LC are restored
from the lower portion (SSL) of (SP – 1), and the Stack Pointer is decremented by two.
Instruction fetches continue at the address of the instruction following the last
instruction in the DO loop. Note that LF is the only bit in the SR that is restored after
a hardware DO loop has been exited.

Notes: 1. The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop
expression “expr” and subtracting 1. This is done to accommodate the
case where the last word in the DO loop is a two-word instruction.
Thus, the end-of-loop expression “expr” in the source code must
represent the address of the instruction AFTER the last instruction in
the loop.

 2. The Loop Flag (LF) is cleared by a hardware reset.

A-76 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO Start Hardware Loop DO

Condition Codes:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S This bit is set if the instruction sends A/B accumulator contents to XDB or YDB.
* L This bit is set if data limiting occurred [see Note].
— This bit is unchanged by the instruction.

23 16 15 8 7 0

DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

MOTOROLA DSP56600FM/AD A-77
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO Start Hardware Loop DO

Instruction Fields:

Note: For the DO SP, expr instruction, the actual value that is loaded into the
Loop Counter (LC) is the value of the Stack Pointer (SP) before the
execution of the DO instruction, incremented by 1. Thus, if SP = 3, the
execution of the DO SP,expr instruction loads the LC with the value LC = 4.
For the DO SSL, expr instruction, the LC is loaded with its previous value,
which was saved on the stack by the DO instruction itself.

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{expr} 16-bit Absolute Address in 16-bit extension word

{aa} aaaaaa Absolute Address [0–63]

{#xxx} hhhhiiiiiiii Immediate Short Data [0–4095]

{S} DDDDDD Source register [all on-chip registers, except SSH] (see Table A-27
on page A-207)

A-78 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO FOREVER DO FOREVER
Start Infinite Loop

Description: Begin a hardware DO loop that is to be repeated forever and whose
range of execution is terminated by the destination operand (shown above as
“expr”). No overhead other than the execution of this DO FOREVER instruction is
required to set up this loop. DO FOREVER loops can be nested with other types of
instructions. During the first instruction cycle, the current contents of the Loop
Address (LA) and the Loop Counter (LC) registers are pushed onto the system stack.
The LC register is pushed onto the stack, but is not updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter
(PC) register and the Status Register (SR) are pushed onto the system stack. Stacking
the LA, LC, PC, and SR registers permits nesting DO FOREVER loops. The DO
FOREVER instruction’s destination operand (shown as “expr”) is then loaded into
the LA register. This 16-bit operand is located in the instruction’s 16-bit absolute
address extension word, as shown in the opcode section. The value in the PC register
pushed onto the system stack is the address of the first instruction following the DO
FOREVER instruction (i.e., the first actual instruction in the DO FOREVER loop).
This value is read (copied, but not pulled) from the top of the system stack to return
to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set.
This results in the PC being repeatedly compared with LA to determine if the last
instruction in the loop has been fetched. When LA equals PC, it indicates that the last
instruction in the loop has been fetched and SSH is loaded into the PC to fetch the
first instruction in the loop again. The LC register is then decremented by one
without being tested. This register can be used by the programer to count the number
of loops already executed.

When executing a DO FOREVER loop, the instructions are actually fetched each time
through the loop. Therefore, a DO FOREVER loop can be interrupted. DO FOREVER
loops can also be nested. When DO FOREVER loops are nested, the end of loop
addresses must also be nested and are not allowed to be equal. The assembler
generates an error message when DO FOREVER loops are improperly nested.

Operation: Assembler Syntax:

SP + 1 → SP;LA → SSH;LC → SSL DO FOREVER,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF; 1 →FV

MOTOROLA DSP56600FM/AD A-79
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO FOREVER DO FOREVER
Start Infinite Loop

Notes: 1. The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop
expression “expr” and subtracting one. This is done to accommodate
the case where the last word in the DO loop is a two-word instruction.
Thus, the end-of-loop expression “expr” in the source code must
represent the address of the instruction AFTER the last instruction in
the loop.

 2. The LC register is never tested by the DO FOREVER instruction, and
the only way of terminating the loop process is to use either the
ENDDO or BRKcc instructions. LC is decremented every time PC = LA
so that it can be used by the programmer to keep track of the number of
times the DO FOREVER loop has been executed. If the programer
wants to initialize LC to a particular value before the DO FOREVER,
care should be taken to save it before if the DO loop is nested. If so, LC
should also be restored immediately after exiting the nested DO
FOREVER loop.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

ABSOLUTE ADDRESS EXTENSION WORD

None

A-80 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ENDDO End Current DO Loop ENDDO

Description: Terminate the current hardware DO loop before the current Loop
Counter (LC) equals one. If the value of the current DO LC is needed, it must be read
before the execution of the ENDDO instruction. Initially, the Loop Flag (LF) is
restored from the system stack and the remaining portion of the Status Register (SR)
and the Program Counter (PC) are purged from the system stack. The Loop Address
(LA) and the LC registers are then restored from the system stack.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

SSL(LF) → SR;SP – 1 → SP ENDDO
SSH → LA; SSL → LC;SP – 1 → SP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

None

MOTOROLA DSP56600FM/AD A-81
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Logical Exclusive OR EOR

Description: Logically exclusive OR the source operand S with bits 31–16 of the
destination operand D and store the result in bits 31–16 of the destination
accumulator. The source can be a 16-bit register, 6-bit short immediate or 16-bit long
immediate. This instruction is a 16-bit operation. The remaining bits of the
destination operand D are not affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That
is, the six bits are right-aligned, then the remaining bits are zeroed to form a 16-bit
source operand.

Condition Codes:

Operation: Assembler Syntax:

S ⊕ D[31:16] → D[31:16] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[31:16] → D[31:16] EOR #xx,D

#xxxx ⊕ D[31:16] → D[31:16] EOR #xxxx,D

where ⊕ denotes the logical XOR operator

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-82 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Logical Exclusive OR EOR

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

EOR S,D DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

EOR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0

EOR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

IMMEDIATE DATA EXTENSION

{S} JJ Source register [X0,X1,Y0,Y1] (see Table A-17 on page A-203)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-83
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EXTRACT Extract Bit Field EXTRACT

Description: Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 13–8 in the S1 register or in the immediate control word #CO. The
offset from the Least Significant Bit is specified by bits 5–0 in the S1 register or in the
immediate control word #CO. The extracted field is placed in the destination
accumulator D, aligned to the right. The construction of the control register can be
done by using the MERGE instruction.

This is a 40-bit operation. Bits outside the field are filled with sign extension
according to the Most Significant Bit of the extracted bit field.

Note: If offset + width exceeds the value of 40, the result is undefined.

Condition Codes:

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACT S1,S2,D
Width = S1[13:8]

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

Offset = #CO[5:0]
Width = #CO[13:8]

EXTRACT #CO,S2,D

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V This bit is always cleared.
* C This bit is always cleared.
— This bit is unchanged by the instruction.
√ This bit is changed according to the standard definition.

A-84 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EXTRACT Extract Bit Field EXTRACT

Example:

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

EXTRACT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0

EXTRACT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

{S2} s Source accumulator [A,B] (see Table A-15 on page A-203)

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#CO} Control word extension.

EXTRACT B1,A,A

B1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1

3
1

1
6

Offset =11Width = 5

3
1 0

A1 A0

x x x x x x x x

9
3

5
1

1
1

x x x x x x x x x x x x x x x x 1 0 1 0 1 x x x x x x x x x x x

3
1 0

1 1 1 1 1 1 1 1

9
3

5
1

1
1

1 0 1 0 1

A1 A0
AA0760

MOTOROLA DSP56600FM/AD A-85
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Description: Extract an unsigned bit-field from source accumulator S2. The bit-field
width is specified by bits 13–8 in the S1 register or in the immediate control word
#CO. The offset from the LSB is specified by bits 5–0 in the S1 register or in the
immediate control word #CO. The extracted field is placed in the destination
accumulator D, aligned to the right. The construction of the control register can be
done by using the MERGE instruction.

This is a 40-bit operation. Bits outside the field are filled with 0s.

Note: If offset + width exceeds the value of 40, the result is undefined.

Condition Codes:

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[13:8]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero → D[39:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[13:8]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero fi D[39:width]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V This bit is always cleared.
* C This bit is always cleared.
— This bit is unchanged by the instruction.
√ This bit is changed according to the standard definition.

A-86 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Example:

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

EXTRACTUS1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0

EXTRACTU#CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

{S2} s Source accumulator [A,B] (see Table A-15 on page A-203)

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#CO} Control word extension

EXTRACTU B1,A,A

B1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1

3
1 16

Offset =11Width = 7

3
1 0

A1 A0

x x x x x x x x

9
3

5
1

1
1

x x x x x x x x x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x x

3
1 0

0 0 0 0 0 0 0 0

9
3

5
1

1
1

1 0 1 1 1 0 1 0 1

A1 A0 AA0761

MOTOROLA DSP56600FM/AD A-87
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IFcc Execute Conditionally without CCR Update IFcc

Description: If the specified condition is true, execute and store result of the specified
Data ALU operation. If the specified condition is false, no destination is altered. The
CCR is never updated with the condition codes generated by the Data ALU
operation.

The instructions that can conditionally be executed by using IFcc are the arithmetic
and logical instructions that are considered as parallel instructions. See Table A-3
on page A-9 and Table A-4 on page A-11 for a list of those instructions.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:
If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

IFcc 0 0 1 0 0 0 0 0 0 0 1 0 C C C C INSTRUCTION OPCODE

{cc} CCCC Condition code (see Table A-48 on page A-214)

A-88 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IFcc.U Execute Conditionally with CCR Update IFcc.U

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data
ALU operation. If the specified condition is false, no destination is altered and the
CCR is not affected.

The instructions that can conditionally be executed by using IFcc.U are the arithmetic
and logical instructions that are considered as parallel instructions. See Table A-3
on page A-9 and Table A-4 on page A-11 for a list of those instructions.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:
If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* If the specified condition is true, this bit is changed according to the instruction.
Otherwise, it is not changed.

23 16 15 8 7 0

IFcc.U 0 0 1 0 0 0 0 0 0 0 1 1 C C C C INSTRUCTION OPCODE

{cc} CCCC Condition code (see Table A-48 on page A-214)

MOTOROLA DSP56600FM/AD A-89
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ILLEGAL Illegal Instruction Interrupt ILLEGAL

Description: The ILLEGAL instruction is executed as if it were a NOP instruction.
Normal instruction execution is suspended and illegal instruction exception
processing is initiated. The interrupt vector address is located at address P:$3E. The
Interrupt Priority Level (I1, I0) is set to 3 in the Status Register if a long interrupt
service routine is used. The purpose of the ILLEGAL instruction is to force the DSP
into an illegal instruction exception for test purposes. Exiting an illegal instruction is
a fatal error. A long exception routine should be used to indicate this condition and
cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is
being interrupted, then LC is decremented twice due to the same mechanism that
causes LC to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR,
REP, and other instructions at LA are restricted. Restrictions cannot be imposed on
illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the
interrupt not being initiated until after completion of the REP. After servicing the
interrupt, program control returns to the address of the second word following the
ILLEGAL instruction. Of course, the ILLEGAL interrupt service routine should abort
further processing, and the processor should be reinitialized.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields: None

Operation: Assembler Syntax:
Begin Illegal Instruction exception processing ILLEGAL

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

ILLEGAL 0 1 0 1

A-90 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INC Increment by One INC

Description: Increment by one the specified operand and store the result in the
destination accumulator. One is added from the LSB of D.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D + 1 → D INC D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

INC D 0 1 0 0 d

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-91
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INSERT Insert Bit Field INSERT

Description: Insert a bit-field into the destination accumulator D. The bit-field whose
width is specified by bits 13–8 in S1 register begins at the LSB of the S2 register. This
bit-field is inserted in the destination accumulator D, with an offset according to bits
5–0 in the S1 register. The S1 operand can be an immediate control word #CO. The
width specified by S1 should not exceed a value of 16. The construction of the control
register can be done by using the MERGE instruction.

This is a 40-bit operation. Any bits outside the field remain unchanged.

Note: If offset plus width exceeds the value of 40, the result is undefined.

Condition Codes:

Operation: Assembler Syntax:

Offset = S1[5:0]
Width = S1[13:8]

INSERT S1,S2,D

S2[(width – 1):0] → D[(offset + width – 1):offset]

Offset = #CO[5:0]
Width = #CO[13:8]

INSERT #CO,S2,D

S2[(width-1):0] → D[(offset + width – 1):offset]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V This bit is always cleared.
* C This bit is always cleared.
— This bit is unchanged by the instruction.
√ This bit is changed according to the standard definition.

A-92 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INSERT Insert Bit Field INSERT

Example:

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0

INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

CONTROL WORD EXTENSION

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (see Table A-20 on page A-204)

{#CO} Control word extension

INSERT B1,X0,A

B1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0

0

Offset =10width = 5

x x x x x x x x x x x 1 0 0 1 0

0
1
5

X0

1 0 0 1 0 x x x x x x x x x xx x x x x x x x x x x x x x x x

3
1 0

A

A1 A0

x x x x x x x x x

1
5

AA0762

MOTOROLA DSP56600FM/AD A-93
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Jcc Jump Conditionally Jcc

Description: Jump to the location in program memory given by the instruction’s
effective address if the specified condition is true. If the specified condition is false,
the Program Counter (PC) is incremented and the effective address is ignored.
However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory-alterable addressing
modes can be used for the effective address. A Fast Short Jump addressing mode can
also be used. The 12-bit data is zero-extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

If cc, then 0xxx → PC Jcc xxx
else PC + 1 → PC

If cc, then ea → PC Jcc ea
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-94 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Jcc Jump Conditionally Jcc

Instruction Fields:

{cc} CCCC Condition code (see Table A-48 on page A-214)

{xxx} aaaaaaaaaaaa Short Jump Address

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

MOTOROLA DSP56600FM/AD A-95
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JCLR Jump if Bit Clear JCLR

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 16-bit extension word if the nth bit of the source operand S is clear. The
bit to be tested is selected by an immediate bit number from 0–23. If the specified
memory bit is not clear, the Program Counter (PC) is incremented and the absolute
address in the extension word is ignored. However, the address register specified in
the effective address field is always updated independently of the state of the nth bit.
All address register indirect addressing modes can be used to reference the source
operand S. Absolute Short and I/O Short addressing modes can also be used.

Condition Codes:

Operation: Assembler Syntax:

If S{n} = 0then xxxx → PC JCLR #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 0then xxxx → PC JCLR #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 0then xxxx → PC JCLR #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 0then xxxx → PC JCLR #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 0then xxxx → PC JCLR #n,S,xxxx
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-96 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JCLR Jump if Bit Clear JCLR

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{xxxx} 16-bit absolute Address extension word

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{S} DDDDDD Source register [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-97
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JMP Jump JMP

Description: Jump to the location in program memory given by the instruction’s
effective address. All memory-alterable addressing modes can be used for the
effective address. A Fast Short Jump addressing mode can also be used. The 12-bit
data is zero-extended to form the effective address.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

0xxx → Pc JMP xxx

ea → Pc JMP ea

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a

{xxx} aaaaaaaaaaaa Short Jump Address

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

A-98 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JScc Jump to Subroutine Conditionally JScc

Description: Jump to the subroutine whose location in program memory is given by
the instruction’s effective address if the specified condition is true. If the specified
condition is true, the address of the instruction immediately following the JScc
instruction (PC) and the SR are pushed onto the system stack. Program execution
then continues at the specified effective address in program memory. If the specified
condition is false, the PC is incremented, and any extension word is ignored.
However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory-alterable addressing
modes can be used for the effective address. A fast short jump addressing mode can
also be used. The 12-bit data is zero-extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;0xxx → PC JScc xxx
else PC + 1 → PC

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;ea → PC JScc ea
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56600FM/AD A-99
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JScc Jump to Subroutine Conditionally JScc

Instruction Fields:

{cc} CCCC Condition code (see Table A-48 on page A-214)

{xxx} aaaaaaaaaaaa Short Jump Address

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

A-100 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSCLR Jump to Subroutine if Bit Clear JSCLR

Description: Jump to the subroutine at the 16-bit absolute address in program
memory specified in the instruction’s 16-bit extension word if the nth bit of the source
operand S is clear. The bit to be tested is selected by an immediate bit number from
0–23. If the nth bit of the source operand S is clear, the address of the instruction
immediately following the JSCLR instruction (PC) and the SR are pushed onto the
system stack. Program execution then continues at the specified absolute address in
the instruction’s 16-bit extension word. If the specified memory bit is not clear, the
PC is incremented and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the state
of the nth bit. All address register indirect addressing modes can be used to reference
the source operand S. Absolute short and I/O short addressing modes can also be
used.

Operation: Assembler Syntax:

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx fiPC

JSCLR #n,S,xxxx

else PC + 1 → PC

MOTOROLA DSP56600FM/AD A-101
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSCLR Jump to Subroutine if Bit Clear JSCLR

Condition Codes:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 0 b b b b

ABSOLUTE ADDRESS EXTENSION

A-102 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSCLR Jump to Subroutine if Bit Clear JSCLR

Instruction Fields:

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{xxxx} 16-bit absolute Address extension word

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-27 on page A-207)

MOTOROLA DSP56600FM/AD A-103
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 JSET Jump if Bit Set JSET

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 16-bit extension word if the nth bit of the source operand S is set. The bit
to be tested is selected by an immediate bit number from 0–23. If the specified
memory bit is not set, the Program Counter (PC) is incremented, and the absolute
address in the extension word is ignored. However, the address register specified in
the effective address field is always updated independently of the state of the nth bit.
All address register indirect addressing modes can be used to reference the source
operand S. Absolute short and I/O short addressing modes can also be used.

Condition Codes:

Operation: Assembler Syntax:

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,S,xxxx
else PC + 1 → PC

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-104 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSET Jump if Bit Set JSET

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{xxxx} 16-bit Absolute Address in extension word

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{S} DDDDDD Source register [all on-chip registers] (see Table A-27 on page A-207)

MOTOROLA DSP56600FM/AD A-105
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSR Jump to Subroutine JSR

Description: Jump to the subroutine whose location in program memory is given by
the instruction’s effective address. The address of the instruction immediately
following the JSR instruction (PC) and the system Status Register (SR) is pushed onto
the system stack. Program execution then continues at the specified effective address
in program memory. All memory-alterable addressing modes can be used for the
effective address. A fast short jump addressing mode can also be used. The 12-bit
data is zero-extended to form the effective address.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

Operation: Assembler Syntax:

SP + 1 → SP; PC → SSH; SR → SSL; 0xxx → PC JSR xxx

SP + 1 → SP; PC → SSH; SR → SSL; ea → PC JSR ea

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

{xxx} aaaaaaaaaaaa Short Jump Address

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

A-106 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET Jump to Subroutine if Bit Set JSSET

Description: Jump to the subroutine at the 16-bit absolute address in program
memory specified in the instruction’s 16-bit extension word if the nth bit of the source
operand S is set. The bit to be tested is selected by an immediate bit number from
0–23. If the nth bit of the source operand S is set, the address of the instruction
immediately following the JSSET instruction (PC) and the system Status Register (SR)
are pushed onto the system stack. Program execution then continues at the specified
absolute address in the instruction’s 16-bit extension word. If the specified memory
bit is not set, the Program Counter (PC) is incremented, and the extension word is
ignored. However, the address register specified in the effective address field is
always updated independently of the state of the nth bit. All address register indirect
addressing modes can be used to reference the source operand S. Absolute short and
I/O short addressing modes can also be used.

Operation: Assembler Syntax:

If S{n} = 1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,S,xxxx

else PC + 1 → PC

MOTOROLA DSP56600FM/AD A-107
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET Jump to Subroutine if Bit Set JSSET

Condition Codes:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 0 b b b b

ABSOLUTE ADDRESS EXTENSION

A-108 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET Jump to Subroutine if Bit Set JSSET

Instruction Fields:

{#n} bbbb Bit number [0–15]

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{xxxx} 16-bit PC absolute Address extension word

{aa} aaaaaa Absolute Address [0–63]

{pp} pppppp I/O Short Address [64 addresses: $FFC0–$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80–$FFBF]

{S} DDDDDD Source register [all on-chip registers] (see Table A-27 on page A-207)

MOTOROLA DSP56600FM/AD A-109
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LRA Load PC Relative Address LRA

Description: The PC is added to the specified displacement and the result is stored in
destination D. The displacement is a two’s-complement 16-bit integer that represents
the relative distance from the current PC to the destination PC. Long Displacement
and Address Register PC Relative addressing modes can be used. Note that if D is
SSH, the SP is pre-incremented by one.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields:

Operation: Assembler Syntax:

PC + Rn → D LRA Rn,D

PC + xxxx → D LRA xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0

LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

LONG DISPLACEMENT

{Rn} RRR Address register [R0–R7]

{D} ddddd Destination address register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table A-36
on page A-210)

{xxxx} 16-bit PC Long Displacement

A-110 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL

Operation:

Assembler Syntax:

LSL D (parallel move)
LSL #ii,D
LSL S,D

Description:

• Single-bit shift:

Logically shift Bits 31–16 of the destination operand D one bit to the left and
store the result in the destination accumulator. Prior to instruction execution,
Bit 31 of D is shifted into the carry bit C, and a 0 is shifted into Bit 16 of the
destination accumulator D.

• Multi-bit shift:

The contents of bits 31–16 of the destination accumulator D are shifted left #ii
bits. Bits shifted out of position 31 are lost, except for the last bit that is latched
in the Carry bit. Zeros are supplied to the vacated positions on the right. The
result is placed into bits 31–16 of the destination accumulator D. The number
of bits to shift is determined by the 5-bit immediate field in the instruction, or
by the unsigned integer located in the control register S. If a zero shift count is
specified, the carry bit is cleared.

This is a 16-bit operation. The remaining bits of the destination accumulator are not
affected.

Note: The number of shifts should not exceed the value of sixteen.

AA0763
0

16C 31

MOTOROLA DSP56600FM/AD A-111
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL

Condition Codes:

Example:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
* C This bit is set if the last bit shifted out of the operand is set, cleared for a shift

count of 0, and cleared otherwise.
.

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 8 7 0

LSL D DATA BUS MOVE FIELD 0 0 1 1 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0

LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

 LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1

6
3
1

1

A1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0

6
3
1

1
Shift left 7

0 C AA0764
A-112 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL

Instruction Fields:

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#ii} iiiii 5-bit unsigned integer [0–16] denoting the shift amount

MOTOROLA DSP56600FM/AD A-113
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR

Operation:

Assembler Syntax:

LSR D (parallel move)
LSR #ii,D
LSR S,D

Description:

• Single-bit shift:

Logically shift bits 31–16 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prior to instruction execution,
Bit 16 of D is shifted into the Carry bit (C), and a 0 is shifted into Bit 31 of the
destination accumulator D.

• Multi-bit shift:

The contents of bits 31–16 of the destination accumulator D are shifted right
#ii bits. Bits shifted out of position 16 are lost except for the last bit that is
latched in the C bit. Zeroes are supplied to the vacated positions on the left.
The result is placed into bits 31–16 of the destination accumulator D. The
number of bits to shift is determined by the 5-bit immediate field in the
instruction, or by the unsigned integer located in the control register S. If a
zero shift count is specified, the C bit is cleared.

This is a 16-bit operation. The remaining bits of the destination register are not
affected.

Note: The number of shifts should not exceed the value of sixteen.

AA0765
0

16

C

31

A-114 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR

Condition Codes:

Example:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if Bits 31–16 of the result are 0.
* V This bit is always cleared.
* C This bit is set if the last bit shifted out of the operand is set, cleared for a shift count

of zero, and cleared otherwise.
.

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

LSR X0,B

B1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1

6
3
1

1

B1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1

6
3
1

1

x x x x x x x x x x x 0 0 0 1 1

0
1
5

SH field

X0

1
c

Shift right 3

AA0766

MOTOROLA DSP56600FM/AD A-115
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR

Instruction Formats and Opcodes:

Instruction Fields:

23 8 7 0

LSR D DATA BUS MOVE FIELD 0 0 1 0 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0

LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{#ii} iiiii 5-bit unsigned integer [0–16] denoting the shift amount

A-116 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LUA Load Updated Address LUA

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address
are specified by the effective address (ea). Only the following addressing modes can
be used: Post + N, Post – N, Post + 1, Post – 1.

Note: The source address register specified in the effective address is not
updated. This is the only case where an address register is not updated,
although stated otherwise in the effective address mode bits.

Condition Codes:

Instruction Formats and Opcode:

Note: LEA is a synonym for LUA. The simulator on-line disassembly translates
the opcodes into LUA.

Operation: Assembler Syntax:

ea → D (No update performed) LUA ea,D

Rn + aa → D LUA (Rn + aa),D

ea → D (No update performed) LEA ea,D

Rn + aa → D LEA (Rn + aa),D

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

LUA/L
EA

ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0

LUA/L
EA

(Rn + aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d

MOTOROLA DSP56600FM/AD A-117
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LUA Load Updated Address LUA

Instruction Fields:

Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer
to a destination address register (R0–R7 or N0–N7).

{ea} MMRRR Effective address (see Table A-25 on page A-206)

{D} ddddd Destination address register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table A-36
on page A-210)

{D} dddd Destination address register [R0–R7,N0–N7] (see Table A-30
on page A-208)

{aa} aaaaaaa 7-bit sign extended short displacement address

{Rn} RRR Source address register [R0–R7]

A-118 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC Signed Multiply-Accumulate MAC

Description: Multiply the two signed 16-bit source operands S1 and S2 (or the signed
16-bit source operand S by the positive 16-bit immediate operand 2-n) and
add/subtract the product to/from the specified 40-bit destination accumulator D.
The “–” sign option is used to negate the specified product prior to accumulation.
The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MAC X1, Y0, AMAC X1, Y0, B

MAC X0, Y1, AMAC X0, Y1, B

MAC Y1, X1, AMAC Y1, X1, B

Condition Codes:

Operation: Assembler Syntax:

D ±S1 ∗ S2 → D (parallel move) MAC (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 → D (parallel move) MAC (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) → D (no parallel move) MAC (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

MOTOROLA DSP56600FM/AD A-119
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC Signed Multiply-Accumulate MAC

Instruction Formats and Opcodes 1:

Instruction Fields:

Instruction Formats and Opcode 2:

Instruction Fields:

23 16 15 8 7 0

MAC (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

MAC (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-31 on page A-208)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

23 16 15 8 7 0

MAC (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-32 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{#n} ssss Immediate operand (see Table A-37 on page A-210)

A-120 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACI MACI
 Signed Multiply-Accumulate with Immediate Operand

Description: Multiply the two signed 16-bit source operands #xxxx and S and
add/subtract the product to/from the specified 40-bit destination accumulator D.
The “–” sign option is used to negate the specified product prior to accumulation.
The default sign option is “+”.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields:

Operation: Assembler Syntax:

D ±#xxxx∗ S → D MACI (±)#xxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MACI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-33 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

#xxxx 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-121
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC(su,uu) MAC(su,uu)
Mixed Multiply-Accumulate

Description: Multiply the two 16-bit source operands S1 and S2 and add/subtract
the product to/from the specified 40-bit destination accumulator D. One or two of
the source operands can be unsigned. The “–” sign option is used to negate the
specified product prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D ±S1 ∗ S2 → D (S1 unsigned, S2 unsigned)MACuu (±)S1,S2,D (no parallel move)

D ±S1 ∗ S2 → D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
 (see Table A-35 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{s} [ss,us] (see Table A-45 on page A-213)

A-122 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACR Signed Multiply-Accumulate and Round MACR

Description: Multiply the two signed 16-bit source operands S1 and S2 (or the signed
16-bit source operand S by the positive 16-bit immediate operand 2-n), add/subtract
the product to/from the specified 40-bit destination accumulator D, and then round
the result using either convergent or two’s-complement rounding. The rounded
result is stored in the destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default
sign option is “+”.

The contribution of the LSBs of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LSBs of the
destination accumulator D are loaded with 0s to maintain an unbiased accumulator
value that can be reused by the next instruction. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer
to the RND instruction for more complete information on the rounding process.

Condition Codes:

Operation: Assembler Syntax:

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) + r → D (no parallel move) MACR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

MOTOROLA DSP56600FM/AD A-123
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACR Signed Multiply-Accumulate and Round MACR

Instruction Formats and Opcodes 1:

Instruction Fields:

Instruction Formats and Opcode 2:

Instruction Fields:

23 16 15 8 7 0

MACR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

MACR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-31 on page A-208)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

23 16 15 8 7 0

MACR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 3 s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1] (see Table A-32 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{#n} ssss Immediate operand (see Table A-37 on page A-210)

A-124 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACRI MACRI
Signed MAC and Round with Immediate Operand

Description: Multiply the two signed 16-bit source operands #xxxx and S,
add/subtract the product to/from the specified 40-bit destination accumulator D,
and then round the result using either convergent or two’s-complement rounding.
The rounded result is stored in the destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default
sign option is “+”.

The contribution of the LSBs of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LSBs of the
destination accumulator D are loaded with 0s to maintain an unbiased accumulator
value that can be reused by the next instruction. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer
to the RND instruction for more complete information on the rounding process.

Condition Codes:

Instruction Formats and Opcode:

Operation: Assembler Syntax:

D ±#xxxx ∗ S → D MACRI (±)#xxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MACRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

IMMEDIATE DATA EXTENSION

MOTOROLA DSP56600FM/AD A-125
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACRI MACRI
Signed MAC and Round with Immediate Operand

Instruction Fields:

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-33 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,-] (see Table A-34 on page A-209)

#xxxx 16-bit Immediate Long Data extension word

A-126 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAX Transfer by Signed Value MAX

Description: Subtract the signed value of the source accumulator from the signed
value of the destination accumulator. If the difference is negative or 0, (A ≥ B) then
transfer the source accumulator to destination accumulator. Otherwise, do not
change the destination accumulator.

This is a 40-bit operation.

Note: The Carry bit signifies that a transfer has been performed.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

If B – A ≤ 0 then A → B MAX A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer is performed, and set otherwise.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MAX A, B DATA BUS MOVE FIELD 0 0 0 1 1 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56600FM/AD A-127
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAXM Transfer by Magnitude MAXM

Description: Subtract the absolute value (magnitude) of the source accumulator from
the absolute value of the destination accumulator. If the difference is negative or 0
(|A| ≥ |B|), then transfer the source accumulator to the destination accumulator.
Otherwise, do not change the destination accumulator.

This is a 40-bit operation.

Note: The Carry bit (C) signifies that a transfer has been performed.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

If |B| – |A| ≤ 0 then A → B MAXM A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer was performed, and set otherwise.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MAXM A, B DATA BUS MOVE FIELD 0 0 0 1 0 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-128 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MERGE Merge Two Half Words MERGE

Description: The contents of bits 7–0 of the source register are concatenated to the
contents of bits 23–16 of the destination accumulator. The result is stored in the
destination accumulator. This instruction is a 16-bit operation. The remaining bits of
the destination accumulator D are not affected.

Note: This instruction can be used in conjunction with EXTRACT or INSERT
instructions to concatenate width and offset fields into a control word.

Condition Codes:

Example:

Operation: Assembler Syntax:

{S[7:0],D[23:16]} → D[31:16] MERGE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
— This bit is unchanged by the instruction.

 MERGE X0,B

X0 x x x x x x x x 1 0 1 0 0 0 1 0

0

B1 x x x x x x x x 1 0 0 0 0 0 1 1

6
1

1
3

5
1

1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1

1
3

B1

6
1

AA0767

MOTOROLA DSP56600FM/AD A-129
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MERGE Merge Two Half Words MERGE

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

MERGE S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

A-130 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVE Move Data MOVE

The DSP56600 core provides a set of MOVE instructions. Table A-14 lists these
instructions, which are fully described in the following pages.

Table A-14 Move Instructions

Instruction Description Page

MOVE Move Data A-132

NO Parallel Data Move A-133

I Immediate Short Data Move A-134

R Register to Register Data Move A-136

U Address Register Update A-138

X: X Memory Data Move A-139

X: R X Memory and Register Data Move A-142

Y Y Memory Data Move A-145

R: Y Register and Y Memory Data Move A-148

L: Long Memory Data Move A-151

X: Y X Memory Data Move A-153

MOTOROLA DSP56600FM/AD A-131
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVE Move Data MOVE

Description: Move the contents of the specified data source S to the specified
destination D. This instruction is equivalent to a Data ALU NOP with a parallel data
move.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields: See Parallel Move Descriptions for data bus move field
encoding.

Parallel Move Descriptions: Thirty of the sixty-two instructions allow an optional
parallel data bus movement over the X and/or Y data bus. This allows a Data ALU
operation to be executed in parallel with up to two data bus moves during the
instruction cycle. Ten types of parallel moves are permitted, including
register-to-register moves, register-to-memory moves, and memory-to-register
moves. However, not all addressing modes are allowed for each type of memory
reference. The following section contains detailed descriptions about each type of
parallel move operation.

Operation: Assembler Syntax:

S → D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MOVE S,D DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-132 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 NO Parallel Data Move

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Many instructions in the instruction set allow parallel moves. The
parallel moves have been divided into ten opcode categories. This category is a
parallel move NOP and does not involve data bus move activity.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Format:

(defined by instruction)

Operation: Assembler Syntax:

(.) (.)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

(.) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE

MOTOROLA DSP56600FM/AD A-133
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

I Immediate Short Data Move I

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Move the 8-bit immediate data value (#xx) into the destination operand
D.

If the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit
immediate short operand is interpreted as an unsigned integer and is stored in the
specified destination register. That is, the 8-bit data is stored in the eight LSBs of the
destination operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short
operand is interpreted as a signed fraction and is stored in the specified destination
register. That is, the 8-bit data is stored in the eight MSBs of the destination operand,
and the remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D in the parallel data bus move operation. Thus,
if the opcode-operand portion of the instruction specifies the 40-bit A accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 40-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are not allowed within the same instruction.

Condition Codes:

Operation: Assembler Syntax:

(.), #xx → D (.) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

A-134 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

I Immediate Short Data Move I

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

(.) #xx,D 0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE

{#xx} iiiiiiii 8-bit Immediate Short Data

{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7]
(see Table A-32 on page A-209)

MOTOROLA DSP56600FM/AD A-135
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R Register to Register Data Move R

where (.) refers to any arithmetic or logical instruction that allows parallel
moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D in the parallel data bus move operation. Thus,
if the opcode-operand portion of the instruction specifies the 40-bit A accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 40-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S in the parallel data bus move operation. This allows data to be moved in the
same instruction in which it is being used as a source operand by a Data ALU
operation. That is, duplicate sources are allowed within the same instruction.

Note: The MOVE A,B operation results in a 16-bit positive or negative saturation
constant being stored in the B1 portion of the B accumulator if the signed
integer portion of the A accumulator is in use.

Condition Codes:

Operation: Assembler Syntax:

(.); S → D (.) S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-136 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R Register to Register Data Move R

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

(.) S,D 0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

{S} eeeee Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table A-36 on page A-210)

{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7]
(see Table A-36 on page A-210)

MOTOROLA DSP56600FM/AD A-137
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

U Address Register Update U

Address Register Update (U)

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Update the specified address register according to the specified
effective addressing mode. All update addressing modes can be used.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

(.); ea → Rn (.) ea

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

(.) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

{ea} MMRRR Effective Address (see Table A-25 on page A-206)

A-138 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X: X Memory Data Move X:

where (.) refers to any arithmetic or logical instruction that allows parallel
moves.

Description: Move the specified word operand from/to X memory. All memory
addressing modes, including absolute addressing and 16-bit immediate data, can be
used. Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D in the parallel data bus move operation. Thus,
if the opcode-operand portion of the instruction specifies the 40-bit A accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 40-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S in the parallel data bus move operation. This allows data to be moved in the
same instruction in which it is being used as a source operand by a Data ALU
operation. That is, duplicate sources are allowed within the same instruction.

Operation: Assembler Syntax:

(.); X:ea → D (.) X:ea,D

(.); X:aa → D (.) X:aa,D

(.); S → X:ea (.) S,X:ea

(.); S → X:aa (.) S,X:aa

X:(Rn + xxx) → D MOVE X:(Rn + xxx),D

X:(Rn + xxxx) → D MOVE X:(Rn + xxxx),D

D → X:(Rn + xxx) MOVE D,X:(Rn + xxx)

D → X:(Rn + xxxx) MOVE D,X:(Rn + xxxx)

MOTOROLA DSP56600FM/AD A-139
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X: X Memory Data Move X:

Condition Codes:

Note: The MOVE A,X:ea operation results in a 16-bit positive or negative
saturation constant being stored in the specified 16-bit X memory location
if the signed integer portion of the A accumulator is in use.

Instruction Formats and Opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

(.) X:ea,D 23 16 15 8 7 0

(.) S,X:ea 0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.) #xxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.) X:aa,D 23 16 15 8 7 0

(.) S,X:aa 0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-21 on page A-205)

W Read S / Write D bit (see Table A-38 on page A-210)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7]
 (see Table A-36 on page A-210)

{aa} aaaaaa 6-bit Absolute Short Address

A-140 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X: X Memory Data Move X:

Instruction Formats and Opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE X:(Rn + xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D

MOVE S,X:(Rn + xxxx) Rn RELATIVE DISPLACEMENT

MOVE X:(Rn + xxx),D 23 16 15 8 7 0

MOVE S,X:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D

W Read S / Write D bit (see Table A-38 on page A-210)

{xxx} aaaaaaa 7-bit sign extended Short Displacement Address

{Rn} RRR Address register (R0–R7)

{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]
(see Table A-39 on page A-211)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-141
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X:R X Memory and Register Data Move X:R

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description:

• Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory
addressing modes, including absolute addressing and 16-bit immediate data,
can be used. The register to register move (S2,D2) allows a Data ALU
accumulator to be moved to a Data ALU input register for use as a Data ALU
operand in the following instruction.

• Class II: Move one-word operand from a Data ALU accumulator to X memory
and one-word operand from Data ALU register X0 to a Data ALU
accumulator. One effective address is specified. All memory addressing
modes except long absolute addressing and long immediate data can be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator,
that same accumulator or portion of that accumulator cannot be specified as a
destination D1 in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 40-bit A accumulator as its destination, the
parallel data bus move portion of the instruction cannot specify A0, A1, A2, or A as
its destination D1. Similarly, if the opcode-operand portion of the instruction
specifies the 40-bit B accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify B0, B1, B2, or B as its destination D1. That is,
duplicate destinations are not allowed within the same instruction.

Operation: Assembler Syntax:

Class I
(.); X:ea → D1; S2 → D2 (.) X:ea,D1 S2,D2

(.); S1 → X:ea; S2 → D2 (.) S1,X:ea S2,D2

(.); # → D1; S2 → D2 (.) #xxxxxx,D1 S2,D2

Class II
(.); A → X:ea; X0 → A (.) A,X:ea X0,A

(.); B → X:ea; X0 → B (.) B,X:ea X0,B

A-142 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X:R X Memory and Register Data Move X:R

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S1 and/or S2 in the parallel data bus move operation. This allows data to be
moved in the same instruction in which it is being used as a source operand by a
Data ALU operation. That is, duplicate sources are allowed within the same
instruction—S1 and S2 can specify the same register.

Condition Codes:

Class I Instruction Formats and Opcodes:

Instruction Fields:

Class II Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

(.) X:ea,D1 S2,D2 23 16 15 8 7 0

(.) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R INSTRUCTION OPCODE

(.) #xxxx,D1 S2,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-20 on page A-204)

W Read S1/Write D1 bit (see Table A-38 on page A-210)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (see Table A-40 on page A-211)

{S2} d S2 accumulator [A,B] (see Table A-15 on page A-203)

{D2} F D2 input register [Y0,Y1] (see Table A-40 on page A-211)

23 16 15 8 7 0

(.) A → X:ea X0 → A 0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

(.) B → X:ea X0 → B OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56600FM/AD A-143
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X:R X Memory and Register Data Move X:R

Instruction Fields:

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

d Move opcode (see Table A-42 on page A-211)

A-144 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Y Y Memory Data Move Y

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Move the specified word operand from/to Y memory. All memory
addressing modes, including absolute addressing and 16-bit immediate data, can be
used. Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D in the parallel data bus move operation. Thus,
if the opcode-operand portion of the instruction specifies the 40-bit A accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify
A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 40-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S in the parallel data bus move operation. This allows data to be moved in the
same instruction in which it is being used as a source operand by a Data ALU
operation. That is, duplicate sources are allowed within the same instruction.

Operation: Assembler Syntax:

(.); Y:ea → D (.) Y:ea,D

(.); Y:aa → D (.) Y:aa,D

(.); S → Y:ea (.) S,Y:ea

(.); S → Y:aa (.) S,Y:aa

Y:(Rn + xxx) → D MOVE Y:(Rn + xxx),D

Y:(Rn + xxxx) → D MOVE Y:(Rn + xxxx),D

D → Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)

D → Y:(Rn + xxxx) MOVE D,Y:(Rn + xxxx)

MOTOROLA DSP56600FM/AD A-145
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Y Y Memory Data Move Y

Condition Codes:

Note: The MOVE A,Y:ea operation results in a 16-bit positive or negative
saturation constant being stored in the specified 16-bit Y memory location
if the signed integer portion of the A accumulator is in use.

Instruction Formats and Opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

(.) Y:ea,D 23 16 15 8 7 0

(.) S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.) #xxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.) Y:aa,D 23 16 15 8 7 0

(.) S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-20 on page A-204)

W Read S/Write D bit (see Table A-38 on page A-210)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7]
 (see Table A-36 on page A-210)

{aa} aaaaaa Absolute Short Address

A-146 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Y Y Memory Data Move Y

Instruction Formats and Opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE Y:(Rn + xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D

MOVE D,Y:(Rn + xxxx) Rn RELATIVE DISPLACEMENT

MOVE Y:(Rn + xxx),D 23 16 15 8 7 0

MOVE D,Y:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D

W Read S/Write D bit (see Table A-38 on page A-210)

{xxx} aaaaaaa 7-bit sign extended Short Displacement Address

{Rn} RRR Address register (R0–R7)

{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]
(see Table A-39 on page A-211)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-147
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R:Y Register and Y Memory Data Move R:Y

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description:

• Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All
memory addressing modes, including absolute addressing and 16-bit
immediate data, can be used. The register to register move (S1,D1) allows a
Data ALU accumulator to be moved to a Data ALU input register for use as a
Data ALU operand in the following instruction.

• Class II: Move a one-word operand from a Data ALU accumulator to Y
memory and a one-word operand from Data ALU register Y0 to a Data ALU
accumulator. One effective address is specified. All memory addressing
modes, excluding long absolute addressing and long immediate data, can be
used.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator,
that same accumulator or portion of that accumulator cannot be specified as a
destination D2 in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 40-bit A accumulator as its destination, the
parallel data bus move portion of the instruction cannot specify A0, A1, A2, or A as
its destination D2. Similarly, if the opcode-operand portion of the instruction
specifies the 40-bit B accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify B0, B1, B2, or B as its destination D2. That is,
duplicate destinations are not allowed within the same instruction.

Operation: Assembler Syntax:

Class I
(.); S1 → D1; Y:ea → D2 (.) S1,D1 Y:ea,D2

(.); S1 → D1; S2 → Y:ea (.) S1,D1 S2,Y:ea

(.); S1 → D1; #xxxx → D2 (.) S1,D1 #xxxxxx,D2

Class II
(.); Y0 → A; A → Y:ea (.) Y0,A A,Y:ea

(.); Y0 → B; B → Y:ea (.) Y0,B B,Y:ea

A-148 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R:Y Register and Y Memory Data Move R:Y

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S1 and/or S2 in the parallel data bus move operation. This allows data to be
moved in the same instruction in which it is being used as a source operand by a
Data ALU operation. That is, duplicate sources are allowed within the same
instruction. Note that S1 and S2 can specify the same register.

Condition Codes:

Class I Instruction Formats and Opcodes:

Instruction Fields :

Class II Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

(.) S1,D1 Y:ea,D2 23 16 15 8 7 0

(.) S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

(.) S1,D1 #xxxx,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-20 on page A-204)

W Read S2/Write D2 bit (see Table A-38 on page A-210)

{S1} d S1 accumulator [A,B] (see Table A-15 on page A-203)

{D1} e D1 input register [X0,X1] (see Table A-41 on page A-211)

{S2,D2} ff S2/D2 register [Y0,Y1,A,B] (see Table A-41 on page A-211)

23 16 15 8 7 0

(.) Y0 → A A → Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE

(.) Y0 → B B → Y:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA DSP56600FM/AD A-149
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R:Y Register and Y Memory Data Move R:Y

Instruction Fields:

MMMRRR ea = 6-bit Effective Address (see Table A-24 on page A-206)

d Move opcode (see Table A-42 on page A-211)

A-150 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L: Long Memory Data Move L:

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Move one 32-bit long-word operand from/to X and Y memory. Two
Data ALU registers are concatenated to form the 32-bit long-word operand. This
allows efficient moving of both double-precision (high:low) and complex
(real:imaginary) data from/to one effective address in L (X:Y) memory. The same
effective address is used for both the X and Y memory spaces; thus, only one effective
address is required. Note that the A, B, A10, and B10 operands reference a single
32-bit signed (double-precision) quantity while the X, Y, AB, and BA operands
reference two separate (i.e., real and imaginary) 16-bit signed quantities. All memory
alterable addressing modes can be used. Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D in the parallel data bus move operation. Thus,
if the opcode-operand portion of the instruction specifies the 40-bit A accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify A,
A10, AB, or BA as destination D. Similarly, if the opcode-operand portion of the
instruction specifies the 40-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify B, B10, AB, or BA as its destination D.
That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S in the parallel data bus move operation. This allows data to be moved in the
same instruction in which it is being used as a source operand by a Data ALU
operation. That is, duplicate sources are allowed within the same instruction.

Operation: Assembler Syntax:

(.); X:ea → D1; Y:ea → D2 (.) L:ea,D

(.); X:aa → D1; Y:aa → D2 (.) L:aa,D

(.); S1 → X:ea; S2 → Y:ea (.) S,L:ea

(.); S1 → X:aa; S2 → Y:aa (.) S,L:aa

MOTOROLA DSP56600FM/AD A-151
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L: Long Memory Data Move L:

Note: The operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit long
memory move as previously described. These operands cannot be used in
any other type of instruction or parallel move.

Condition Codes:

Note: The MOVE A,L:ea operation results in a 32-bit positive or negative
saturation constant being stored in the specified 16-bit X and Y memory
locations if the signed integer portion of the A accumulator is in use. The
MOVE AB,L:ea operation results in either one or two 16-bit positive
and/or negative saturation constant(s) being stored in the specified 16-bit
X and/or Y memory location(s) if the signed integer portion of the A
and/or B accumulator(s) is in use.

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

(.) L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

(.) S,L:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.) L:aa,D 23 16 15 8 7 0

(.) S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-23 on page A-206)

W Read S/Write D bit (see Table A-38 on page A-210)

{L} LLL Two Data ALU registers (see Table A-28 on page A-207)

{aa} aaaaaa Absolute Short Address

A-152 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X: Y: XY Memory Data Move X: Y:

where (.) refers to any arithmetic or logical instruction that allows parallel
moves

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are
specified (<eax> and <eay>) where one of the effective addresses uses the lower bank
of address registers (R0–R3) while the other effective address uses the upper bank of
address registers (R4–R7). All parallel addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator
cannot be specified as a destination D1 or D2 in the parallel data bus move operation.
Thus, if the opcode-operand portion of the instruction specifies the 40-bit A
accumulator as its destination, the parallel data bus move portion of the instruction
cannot specify A as its destination D1 or D2. Similarly, if the opcode-operand portion
of the instruction specifies the 40-bit B accumulator as its destination, the parallel
data bus move portion of the instruction cannot specify B as its destination D1 or D2.
That is, duplicate destinations are not allowed within the same instruction. D1 and
D2 cannot specify the same register.

If the instruction specifies an access to an internal X I/O and internal Y I/O modules
(reflected by the address of the X memory and the Y memory), only the access to the
internal X I/O module is executed. The access to the Y I/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or
destination register, that same register or portion of that register can be used as a
source S1 and/or S2 in the parallel data bus move operation. This allows data to be
moved in the same instruction in which it is being used as a source operand by a
Data ALU operation. That is, duplicate sources are allowed within the same
instruction. Note that S1 and S2 can specify the same register.

Operation: Assembler Syntax:

(.); X:<eax> → D1; Y:<eay> → D2 (.) X:<eax>,D1 Y:<eay>,D2

(.); X:<eax> → D1; S2 → Y:<eay> (.) X:<eax>,D1 S2,Y:<eay>

(.); S1 → X:<eax>; Y:<eay> → D2 (.) S1,X:<eax> Y:<eay>,D2

(.); S1 → X:<eax>; S2 → Y:<eay> (.) S1,X:<eax> S2,Y:<eay>

MOTOROLA DSP56600FM/AD A-153
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X: Y: XY Memory Data Move X: Y:

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

(.) X:<eax>,D1 Y:<eay>,D2
(.) X:<eax>,D1 S2,Y:<eay>
(.) S1,X:<eax> Y:<eay>,D223 16 15 8 7 0

(.) S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE

{<eax>} MMRRR 5-bit X Effective Address (R0–R3 or R4–R7)

{<eay>} mmrr 4-bit Y Effective Address (R4–R7 or R0–R3)

{S1,D1} ee S1/D1 register [X0,X1,A,B]

{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff See Table A-43 on page A-212

W X move Operation Control (See Table A-38 on page A-210)

w Y move Operation Control (See Table A-38 on page A-210)

A-154 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEC Move Control Register MOVEC

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination, or move the specified source to the specified destination
control register D1 or D2. The control registers S1 and D1 are a subset of the S2 and
D2 register set and consist of the Address ALU modifier registers and the program
controller registers. These registers can be moved to or from any other register or
memory space. All memory addressing modes, as well as an Immediate Short
Addressing mode, can be used.

If the System Stack register SSH is specified as a source operand, the Stack Pointer
(SP) is post-decremented by 1 after SSH has been read. If SSH is specified as a
destination operand, the SP is preincremented by 1 before SSH is written. This allows
the system stack to be efficiently extended using software stack pointer operations.

Condition Codes:

Operation: Assembler Syntax:

[X or Y]:ea → D1 MOVE(C) [Xor Y]:ea,D1

[X or Y]:aa → D1 MOVE(C) [Xor Y]:aa,D1

S1 → [X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1 → [X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1 → D2 MOVE(C) S1,D2

S2 → D1 MOVE(C) S2,D1

#xxxx → D1 MOVE(C) #xxxx,D1

#xx → D1 MOVE(C) #xx,D1

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

MOTOROLA DSP56600FM/AD A-155
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEC Move Control Register MOVEC

Instruction Formats and Opcodes:

Instruction Fields:

For D1 or D2 = SR operand:
* S This bit is set according to Bit 7 of the source operand.
* L This bit is set according to Bit 6 of the source operand.
* E This bit is set according to Bit 5 of the source operand.
* U This bit is set according to Bit 4 of the source operand.
* N This bit is set according to Bit 3 of the source operand.
* Z This bit is set according to Bit 2 of the source operand.
* V This bit is set according to Bit 1 of the source operand.
* C This bit is set according to Bit 0 of the source operand.
For D1 and D2 ≠ SR operand:
* S This bit is set if data growth has been detected.
* L This bit is set if data limiting has occurred during the move.

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d

MOVE(C) #xxxx,D1 OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0

MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0

MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d

{ea} MMMRRR Effective Address (see Table A-20 on page A-204)

W Read S/Write D bit (see Table A-38 on page A-210)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{S1,D1} ddddd Program Controller register [M0–M7, VBA, SR, OMR, SP,
SSH,SSL,LA,LC] (see Table A-46 on page A-213)

{aa} aaaaaa aa = 6-bit Absolute Short Address

{S2,D2} eeeeee S2/D2 register [all on-chip registers] (see Table A-27 on page A-207)

{#xx} iiiiiiii #xx = 8-bit Immediate Short Data

A-156 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEM Move Program Memory MOVEM

Description: Move the specified operand from/to the specified Program (P) memory
location. This is a powerful move instruction in that the source and destination
registers S and D can be any register. All memory-alterable addressing modes can be
used, as well as the Absolute Short Addressing mode.

If the system stack register SSH is specified as a source operand, the system Stack
Pointer (SP) is post-decremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the SP is pre-incremented by 1
before SSH is written. This allows the system stack to be efficiently extended using
software stack pointer operations.

Condition Codes:

Operation: Assembler Syntax:

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

MOTOROLA DSP56600FM/AD A-157
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEM Move Program Memory MOVEM

Instruction Formats and Opcodes:

Instruction Fields:

For D1 or D2 = SR operand:
* S This bit is set according to Bit 7 of the source operand.
* L This bit is set according to Bit 6 of the source operand.
* E This bit is set according to Bit 5 of the source operand.
* U This bit is set according to Bit 4 of the source operand.
* N This bit is set according to Bit 3 of the source operand.
* Z This bit is set according to Bit 2 of the source operand.
* V This bit is set according to Bit 1 of the source operand.
* C This bit is set according to Bit 0 of the source operand.
For D1 and D2 ≠ SR operand:
* S This bit is set if data growth has been detected.
* L This bit is set if data limiting has occurred during the move.

23 16 15 8 7 0

MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

MOVE(M) P:ea,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(M) S,P:aa 23 16 15 8 7 0

MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d

{ea} MMMRRR Effective Address (see Table A-19 on page A-204)

W Read S/Write D bit (see Table A-38 on page A-210)

{ S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-27
on page A-207)

{aa} aaaaaa Absolute Short Address

A-158 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEP Move Peripheral Data MOVEP

Description: Move the specified operand to or from the specified X or Y I/O
peripheral. The I/O Short Addressing mode is used for the I/O peripheral address.
All memory addressing modes can be used for the X or Y memory effective address;
all memory-alterable addressing modes can be used for the P memory effective
address. All the I/O space ($FF80–$FFFF) can be accessed, except for the P: reference
opcode.

If the System Stack register SSH is specified as a source operand, the system Stack
Pointer (SP) is post-decremented by 1 after SSH has been read. If SSH is specified as a
destination operand, the SP is pre-incremented by 1 before SSH is written. This
allows the system stack to be efficiently extended using software stack pointer
operations.

Operation: Assembler Syntax:

[X or Y]:pp → D MOVEP [X or Y]:pp,D

[X or Y]:qq → D MOVEP [X or Y]:qq,D

[X or Y]:pp → [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq → [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp → P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq → P:ea MOVEP [X or Y]:qq,P:ea

S → [X or Y]:pp MOVEP S,[X or Y]:pp

S → [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea → [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea → [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea → [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea → [X or Y]:qq MOVEP P:ea,[X or Y]:qq

MOTOROLA DSP56600FM/AD A-159
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEP Move Peripheral Data MOVEP

Condition Codes:

Instruction Formats and Opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand:
* S This bit is set according to Bit 7 of the source operand.
* L This bit is set according to Bit 6 of the source operand.
* E This bit is set according to Bit 5 of the source operand.
* U This bit is set according to Bit 4 of the source operand.
* N This bit is set according to Bit 3 of the source operand.
* Z This bit is set according to Bit 2 of the source operand.
* V This bit is set according to Bit 1 of the source operand.
* C This bit is set according to Bit 0 of the source operand.

For D1 and D2 ≠ SR operand:
* S This bit is set if data growth has been detected.
* L This bit is set if data limiting has occurred during the move.

X: or Y: Reference (high I/O address)
23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p

MOVEP [X or Y]:ea,[X or Y]:pp OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q

MOVEP [X or Y]:ea,X:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q

MOVEP [X or Y]:ea,Y:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-160 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEP Move Peripheral Data MOVEP

Instruction Fields:

P: Reference (high I/O address)

MOVEP P:ea,[X or Y]:pp 16 15 8 7 0

MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq 16 15 8 7 0

MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)

MOVEP S,[X or Y]:pp 23 16 15 8 7 0

MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)

MOVEP S,X:qq 23 16 15 8 7 0

MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)

MOVEP S,Y:qq 23 16 15 8 7 0

MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q

{ea} MMMRRR Effective Address (see Table A-21 on page A-205)

{pp} pppppp I/O Short Address [64 addresses: $FFC0-$FFFF]

{qq} qqqqqq I/O Short Address [64 addresses: $FF80-$FFBF]

{X/Y} S Memory space [X,Y] (see Table A-22 on page A-205)

{X/Y} s Peripheral space [X,Y] (see Table A-22 on page A-205)

W Read/write-peripheral (see Table A-38 on page A-210)

{S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-27
on page A-207)

MOTOROLA DSP56600FM/AD A-161
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPY Signed Multiply MPY

Description: Multiply the two signed 16-bit source operands S1 and S2 and store the
resulting product in the specified 40-bit destination accumulator D. Or, multiply the
signed 16-bit source operand S by the positive 16-bit immediate operand 2-n and
store the resulting product in the specified 40-bit destination accumulator D. The “–”
sign option is used to negate the specified product prior to accumulation. The default
sign option is “+”.

Note: When the processor is in the Double Precision Multiply mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MPY Y0,X0,A MPY Y0, X0,B

Condition Codes:

Instruction Formats and Opcodes 1:

Operation: Assembler Syntax:

±S1 ∗ S2 → D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1 ∗ S2 → D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) → D (no parallel move) MPY (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MPY (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

MPY (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-162 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPY Signed Multiply MPY

Instruction Fields:

Instruction Formats and Opcode 2:

Instruction Fields:

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0,
Y1*X1] (see Table A-31 on page A-208)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±+/-} k Sign [+,–] (see Table A-34 on page A-209)

23 16 15 8 7 0

MPY (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 0 0

{S} QQ Source register [Y1,X0,Y0,X1] (see Table A-32 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{#n} sssss Immediate operand (see Table A-37 on page A-210)

MOTOROLA DSP56600FM/AD A-163
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPY(su,uu) Mixed Multiply MPY(su,uu)

Description: Multiply the two 16-bit source operands S1 and S2 and store the
resulting product in the specified 40-bit destination accumulator D. One or two of the
source operands can be unsigned. The “–” sign option is used to negate the specified
product prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1 ∗ S2 → D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

MPY su (±)S1,S2,D 23 16 15 8 7 0

MPY uu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1]
(see Table A-35 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{s} [ss,us] (see Table A-45 on page A-213)

A-164 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYI Signed Multiply with Immediate Operand MPYI

Description: Multiply the immediate 16-bit source operand #xxxx with the 16-bit
register source operand S and store the resulting product in the specified 40-bit
destination accumulator D. The “–” sign option is used to negate the specified
product prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields:

Operation: Assembler Syntax:

±#xxxx∗ S → D MPYI (±)#xxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MPYI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-33 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

#xxxx 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-165
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYR Signed Multiply and Round MPYR

Description: Multiply the two signed 16-bit source operands S1 and S2 (or the signed
16-bit source operand S by the positive 16-bit immediate operand 2-n), round the
result using either convergent or two’s-complement rounding, and store it in the
specified 40-bit destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LSBs of the
destination accumulator D are loaded with 0s to maintain an unbiased accumulator
value that can be reused by the next instruction. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer
to the RND instruction for more complete information on the rounding process.

Condition Codes:

Instruction Formats and Opcodes 1:

Operation: Assembler Syntax:

±S1 ∗ S2 + r → D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1 ∗ S2 + r → D (parallel move) MPYR (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) + r → D (no parallel move) MPYR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MPYR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

A-166 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYR Signed Multiply and Round MPYR

Instruction Fields 1:

Instruction Formats and Opcode 2:

Instruction Fields 2:

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0,
Y1*X1] (see Table A-31 on page A-208)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

23 16 15 8 7 0

MPYR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1

{S} QQ Source register [Y1,X0,Y0,X1] (see Table A-32 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

{#n} sssss Immediate operand (see Table A-37 on page A-210)

MOTOROLA DSP56600FM/AD A-167
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYRI MPYRI
 Signed Multiply and Round with Immediate Operand

Description: Multiply the two signed 16-bit source operands #xxxx and S, round the
result using either convergent or two’s-complement rounding, and store it in the
specified 40-bit destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with 0s to maintain an unbiased accumulator
value that can be reused by the next instruction. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer
to the RND instruction for more complete information on the rounding process.

Condition Codes:

Instruction Formats and Opcode:

Operation: Assembler Syntax:

±#xxxx ∗ S + r → D MPYRI (±)#xxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

MPYRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

IMMEDIATE DATA EXTENSION

A-168 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYRI MPYRI
Signed Multiply and Round with Immediate Operand

Instruction Fields:

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-33 on page A-209)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{±} k Sign [+,–] (see Table A-34 on page A-209)

#xxxx 16-bit Immediate Long Data extension word

MOTOROLA DSP56600FM/AD A-169
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEG Negate Accumulator NEG

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 40-bit, two’s-complement operation.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

0 – D → D (parallel move) NEG D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

NEG D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-170 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP No Operation NOP

Description: Increment the Program Counter (PC). Pending pipeline actions, if any,
are completed. Execution continues with the instruction following the NOP.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields:

None

Operation: Assembler Syntax:

PC+1 → PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

NOP 0

MOTOROLA DSP56600FM/AD A-171
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NORMF Fast Accumulator Normalization NORMF

Description: Arithmetically shift the destination accumulator either left or right as
specified by the source operand. This instruction can be used to normalize the
specified accumulator D, by arithmetically shifting it either left or right so as to bring
the leading 1 or 0 to bit location 30. The number of needed shifts is specified by the
source operand. This number could be calculated by a previous CLB instruction. If
the source operand is negative then the accumulator is left shifted, and if the source
operand is positive then it is right shifted. For normalization, the source accumulator
value should be between +8 to –31.

This is a 40-bit operation.

Condition Codes:

Example:

CLB A,B ;Count leading bits
NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1,N1 ; ;Update N1 with shift amount
MOVE (R1)+N1 ;Increment or decrement exponent

Operation: Assembler Syntax:

If S[15] = 0 then ASR S,D
else ASL -S,D

NORMF S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V This bit is set if Bit 39 is changed any time during the shift operation, and cleared
otherwise.

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

A-172 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NORMF Fast Accumulator Normalization NORMF

Prior to execution, the 40-bit A accumulator contains the value $20:0000:0000. The
CLB instruction updates the B accumulator to the number of needed shifts, seven in
this example. The NORMF instruction performs seven shifts to the right on A
accumulator, and normalization of A is achieved. The exponent register is updated
according to the number of shifts.

Instruction Formats and Opcode

Instruction Fields:

23 16 15 8 7 0

NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-20 on page A-204)

{D} D Destination accumulator [A,B] (see Table A-15 on page A-203)

$20:0000:0000

B: $00:0007:0000

A:

Before execution

$20:0000:0000

After execution

A: $00:4000:0000

A:CLB A,B

NORMF B1,A

MOTOROLA DSP56600FM/AD A-173
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOT Logical Complement NOT

where “—” denotes the logical NOT operator

Description: Take the one’s complement of bits 31–16 of the destination operand D
and store the result back in bits 31–16 of the destination accumulator. This is a 16-bit
operation. The remaining bits of D are not affected.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D[31:16] fi D[31:16] (parallel move) NOT D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

NOT D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-174 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

OR Logical Inclusive OR OR

where ⊕ denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 31–16 of the
destination operand D and store the result in bits 31–16 of the destination
accumulator. The source can be a 16-bit register, 6-bit short immediate, or 16-bit long
immediate. This instruction is a 16-bit operation. The remaining bits of the
destination operand D are not affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That
is, the six bits are right aligned, and the remaining bits are zeroed to form a 16-bit
source operand.

Condition Codes:

Operation: Assembler Syntax:

S ⊕ D[31:16] → D[31:16] (parallel move) OR S,D (parallel move)

#xx ⊕ D[31:16] → D[31:16] OR #xx,D

#xxxx ⊕ D[31:16] → D[31:16] OR #xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

MOTOROLA DSP56600FM/AD A-175
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

OR Logical Inclusive OR OR

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

OR S,D DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0

OR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-17 on page A-203)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

A-176 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORI OR Immediate with Control Register ORI

where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
The condition codes are affected only when the Condition Code Register (CCR) is
specified as the destination operand.

Condition Codes:

Instruction Formats and Opcodes:

Operation: Assembler Syntax:

#xx + D → D OR(I) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand:
* S This bit is set if Bit 7 of the immediate operand is set.
* L This bit is set if Bit 6 of the immediate operand is set.
* E This bit is set if Bit 5 of the immediate operand is set.
* U This bit is set if Bit 4 of the immediate operand is set.
* N This bit is set if Bit 3 of the immediate operand is set.
* Z This bit is set if Bit 2 of the immediate operand is set.
* V This bit is set if Bit 1 of the immediate operand is set.
* C This bit is set if Bit 0 of the immediate operand is set.

For MR and OMR Operands:
The condition codes are not affected using these operands.

23 16 15 8 7 0

OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E

MOTOROLA DSP56600FM/AD A-177
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORI OR Immediate with Control Register ORI

Instruction Fields:

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-18
on page A-204)

{#xx} iiiiiiii Immediate Short Data

A-178 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

REP Repeat Next Instruction REP

Description: Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times
the given instruction is to be repeated is loaded into the 16-bit Loop Counter (LC)
register. The single-word instruction is then executed the specified number of times,
decrementing the LC after each execution until LC = 1. When the REP instruction is
in effect, the repeated instruction is fetched only one time, and it remains in the
instruction register for the duration of the loop count. Thus, the REP instruction is
not interruptible (sequential repeats are also not interruptible). The current LC value
is stored in an internal temporary register. The instruction’s effective address
specifies the address of the value that is to be loaded into the LC. All address register
indirect addressing modes can be used. The Absolute Short Addressing and the
Immediate Short Addressing modes can also be used. Four 0s are inserted to the left
of the 12-bit immediate value to form the 16-bit value that is to be loaded into the LC.

If the System Stack register SSH is specified as a source operand, the system Stack
Pointer (SP) is post-decremented by 1 after SSH has been read.

Operation: Assembler Syntax:

LC → TEMP; [X or y]:ea → LC REP [X or Y]:ea
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; [X or Y]:aa → LC REP [X or Y]:aa
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;#xxx → LC REP #xxx
Repeat next instruction until LC = 1
TEMP → LC

MOTOROLA DSP56600FM/AD A-179
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

REP Repeat Next Instruction REP

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

REP [X or Y]:ea 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP [X or Y]:aa 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP #xxx 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

REP S 0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0

{ea} MMMRRR Effective Address (see Table A-24 on page A-206)

{X/Y} S Memory Space [X,Y] (see Table A-22 on page A-205)

{aa} aaaaaa Absolute Short Address

{#xxx} hhhhiiiiiiii Immediate Short Data

{S} dddddd Source register [all on-chip registers] (see Table A-27 on page A-207)

A-180 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RESET Reset On-Chip Peripheral Devices RESET

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset, which is not equivalent to a hardware RESET since only on-chip
peripherals and the interrupt structure are affected. The processor state is not
affected, and execution continues with the next instruction. All interrupt sources are
disabled except for the stack error, NMI, illegal instruction, Trap, Debug request, and
hardware reset interrupts.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields: None.

Operation: Assembler Syntax:

Reset the interrupt priority register and all
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

MOTOROLA DSP56600FM/AD A-181
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RND Round Accumulator RND

Description: Round the 40-bit value in the specified destination operand D and store
the result in the destination accumulator (A or B). The contribution of the LSBs of the
operand is rounded into the upper portion of the operand by adding a rounding
constant to the LSBs of the operand. The upper portion of the destination
accumulator contains the rounded result. The boundary between the lower portion
and the upper portion is determined by the scaling mode bits S0 and S1 in the Status
Register (SR).

Two types of rounding can be used: convergent rounding (also called round to
nearest (even)) or two’s-complement rounding. The type of rounding is selected by
the Rounding Mode bit (RM) in the MR portion of the SR.

In both these rounding modes a rounding constant is first added to the unrounded
result. The value of the rounding constant added is determined by the scaling mode
bits S0 and S1 in the SR. A 1 is positioned in the rounding constant aligned with the
MSB of the current LS portion, that is, the rounding constant weight is actually equal
to half the weight of the upper portion’s LSB.

The following table shows the rounding position and rounding constant as
determined by the scaling mode bits:

If convergent rounding is used, the result of this addition is tested and if all the bits of
the result to the right of, and including, the rounding position are cleared, then the
bit to the left of the rounding position is cleared in the result. This ensures that the
result is not biased.

Operation: Assembler Syntax:

D + r → D (parallel move) RND D (parallel move)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 39–17 16 15 14 13–0

0 0 No Scaling 15 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 16 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 14 0. . . .0 0 0 1 0. . . .0

A-182 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RND Round Accumulator RND

In both rounding modes, the Least Significant Bits (LSBs) of the result are cleared.
The number of LSBs cleared is determined by the Scaling Mode bits in the Status
Register (SR). All bits to the right of and including the rounding position are cleared
in the result.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

RND D DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-183
For More Information On This Product,

 Go to: www.freescale.com

A-18

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL Rotate Left ROL

Operation:

Assembler Syntax:

ROL D (parallel move)

Description: Rotate bits 31–16 of the destination operand D one bit to the left and
store the result in the destination accumulator.The Carry bit (C) receives the previous
value of Bit 31 of the operand.The previous value of the C bit is shifted into Bit 16 of
the operand.This instruction is a 16-bit operation. The remaining bits of the
destination operand D are not affected.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
* C This bit is set if Bit 31 of the destination operand is set, and cleared otherwise.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ROL D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

AA0768

C

31 16

4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROR Rotate Right ROR

Operation:

Assembler Syntax:

ROR D (parallel move)

Description: Rotate bits 31–16 of the destination operand D one bit to the right and
store the result in the destination accumulator.The Carry bit (C) receives the previous
value of Bit 16 of the operand.The previous value of the C bit is shifted into Bit 31 of
the operand. This instruction is a 16-bit operation. The remaining bits of the
destination operand D are not affected.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N This bit is set if Bit 31 of the result is set.
* Z This bit is set if bits 31–16 of the result are 0.
* V This bit is always cleared.
* C This bit is set if Bit 31 of the destination operand is set, and cleared otherwise.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

ROR D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

AA0769

C

31

(parallel move)

16

MOTOROLA DSP56600FM/AD A-185
For More Information On This Product,

 Go to: www.freescale.com

A-18

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTI Return from Interrupt RTI

Description: Pull the Program Counter (PC) and the Status Register (SR) from the
system stack. The previous PC and SR values are lost.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields: None.

Operation: Assembler Syntax:

SSH → PC; SSL → SR; SP – 1 → SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* S This bit is set according to the value pulled from the stack.
* L This bit is set according to the value pulled from the stack.
* E This bit is set according to the value pulled from the stack.
* U This bit is set according to the value pulled from the stack.
* N This bit is set according to the value pulled from the stack.
* Z This bit is set according to the value pulled from the stack.
* V This bit is set according to the value pulled from the stack.
* C This bit is set according to the value pulled from the stack.

23 16 15 8 7 0

RTI 0 1 0 0

6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTS Return from Subroutine RTS

Description: Pull the Program Counter (PC) from the system stack. The previous PC
value is lost. The Status Register (SR) is not affected.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields: None.

Operation: Assembler Syntax:

SSH → PC; SP – 1 → SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

RTS 0 1 1 0 0

MOTOROLA DSP56600FM/AD A-187
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBC Subtract Long with Carry SBC

Description: Subtract the source operand S and the Carry bit(C) from the destination
operand D and store the result in the destination accumulator. Long words (32-bit
words) are subtracted from the 40-bit destination accumulator.

Note: The C bit is set correctly for multiple-precision arithmetic using long-word
operands if the extension register of the destination accumulator (A2 or B2)
is the sign extension of Bit 31 of the destination accumulator (A or B).

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D – S – C → D (parallel move) SBC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.

23 16 15 8 7 0

SBC S,D DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-16 on page A-203)

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

A-188 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOP Stop Instruction Processing STOP

Description: Enter the Stop processing state. All activity in the processor is
suspended until the RESET or IRQA pin is asserted or the Debug Request JTAG
command is detected. The clock oscillator is gated off internally. The Stop processing
state is a low-power standby state.

During the Stop state, the destination port is in an idle state with the control signals
held inactive, the data pins are high impedance, and the address pins are unchanged
from the previous instruction.

If the exit from the Stop state is caused by a low level on the RESET pin, then the
processor enters the reset processing state.

If the exit from the Stop state was caused by a low level on the IRQA pin, then the
processor will service the highest priority pending interrupt and will not service the
IRQA interrupt unless it is highest priority. If no interrupt is pending, the processor
will resume program execution at the instruction following the STOP instruction that
caused the entry into the Stop state. Program execution (interrupt or normal flow)
will resume after an internal delay counter counts:

• If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles

• If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles

• If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval. If the IRQA pin is
asserted when the STOP instruction is executed, the clock will not be gated off, and
only the internal delay counter will be started.

Operation: Assembler Syntax:

Enter the stop processing state and stop the
clock oscillator

STOP

MOTOROLA DSP56600FM/AD A-189
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOP Stop Instruction Processing STOP

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields:

None

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

A-190 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUB Subtract SUB

Description: Subtract the source operand from the destination operand D and store
the result in the destination operand D. The source can be a register (16-bit word,
32-bit long word, or 40-bit accumulator), 6-bit short immediate, or 16-bit long
immediate.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That
is, the six bits are right-aligned and the remaining bits are zeroed to form a 16-bit
source operand.

Note: The Carry bit (C) is set correctly using word or long-word source operands
if the extension register of the destination accumulator (A2 or B2) is the
sign extension of Bit 31 of the destination accumulator (A or B). The C bit is
always set correctly using accumulator source operands.

Condition Codes:

Operation: Assembler Syntax:

D–S → D (parallel move) SUB S, D (parallel move)

D – #xx → D SUB #xx, D

D – #xxxx → D SUB #xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.

MOTOROLA DSP56600FM/AD A-191
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUB Subtract SUB

Instruction Formats and Opcodes:

Instruction Fields:

23 16 15 8 7 0

SUB S,D DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

SUB #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0

SUB #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-19 on page A-204)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 16-bit Immediate Long Data extension word

A-192 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBL Shift Left and Subtract Accumulators SUBL

Description: Subtract the source operand S from two times the destination operand
D and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a 0 is shifted into the LSB of D prior to
the subtraction operation. The Carry bit (C) is set correctly if the source operand does
not overflow as a result of the left shift operation. The Overflow bit (V) may be set as
a result of either the shifting or subtraction operation (or both). This instruction is
useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

2 ∗ D – S → D (parallel move) SUBL S,D ((parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

* V Set if overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

√ This bit is changed according to the standard definition

23 16 15 8 7 0

SUBL S,D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} The source accumulator is B if the destination accumulator (selected by the d
bit in the opcode) is A, or A if the destination accumulator is B

MOTOROLA DSP56600FM/AD A-193
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBR Shift Right and Subtract Accumulators AAA

Description: Subtract the source operand S from one-half the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the right while the MS bit of D is held constant prior
to the subtraction operation. In contrast to the SUBL instruction, the Carry bit (C) is
always set correctly, and the Overflow bit (V) can only be set by the subtraction
operation, and not by an overflow due to the initial shifting operation. This
instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT
algorithms.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

D / 2 – S → D (parallel move) SUBR S,D parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ This bit is changed according to the standard definition.

23 16 15 8 7 0

SUBR S,D DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-15 on page A-203)

{S} The source accumulator is B if the destination accumulator (selected by the d
bit in the opcode) is A, or A if the destination accumulator is B

A-194 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tcc Transfer Conditionally Tcc

Transfer Conditionally (Tcc)

Description: Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source
register S2 and a second destination register D2 are also specified, transfer data from
address register S2 to address register D2 if the specified condition is true. If the
specified condition is false, a NOP is executed.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

When used after the CMP or CMPM instructions, the Tcc instruction can perform
many useful functions, such as a “maximum value,” “minimum value,” “maximum
absolute value,” or “minimum absolute value” function. The desired value is stored
in the destination accumulator D1. If address register S2 is used as an address pointer
into an array of data, the address of the desired value is stored in the address register
D2. The Tcc instruction may be used after any instruction and allows efficient
searching and sorting algorithms.

The Tcc instruction uses the internal Data ALU paths and internal Address ALU
paths. The Tcc instruction does not affect the condition code bits.

Condition Codes:

Operation: Assembler Syntax:

If cc, then S1 → D1 Tcc S1,D1

If cc, then S1 → D1 and S2 → D2 Tcc S1,D1 S2,D2

If cc, then S2 → D2 Tcc S2,D2

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

MOTOROLA DSP56600FM/AD A-195
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tcc Transfer Conditionally Tcc

Instruction Formats and Opcode:

Instruction Fields:

23 16 15 8 7 0

Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0

Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0

Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T

{cc} CCCC Condition code (see Table A-48 on page A-214)

{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-29 on page A-208)

{D1} d Destination accumulator [A/B] (see Table A-15 on page A-203)

{S2} ttt Source address register [R0–R7]

{D2} TTT Destination Address register [R0–R7]

A-196 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TFR Transfer Data ALU Register TFR

Description: Transfer data from the specified source Data ALU register S to the
specified destination Data ALU accumulator D. TFR uses the internal Data ALU data
paths; thus, data does not pass through the data shifter/limiters. This allows the full
40-bit contents of one of the accumulators to be transferred into the other
accumulator without data shifting and/or limiting. Moreover, since TFR uses the
internal Data ALU data paths, parallel moves are possible.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S → D (parallel move) TFR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

TFR S,D DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-29 on page A-208)

{D} d Destination accumulator [A/B] (see Table A-15 on page A-203)

MOTOROLA DSP56600FM/AD A-197
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TRAP Software Interrupt TRAP

Description: Suspend normal instruction execution and begin TRAP exception
processing. The Interrupt Priority Level (I1,I0) is set to 3 in the Status Register (SR) if
a long interrupt service routine is used.

Condition Codes:

Instruction Formats and opcode:

Operation: Assembler Syntax:

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

TRAP 0 1 1 0

A-198 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TRAPcc Conditional Software Interrupt TRAPcc

Description: If the specified condition is true, normal instruction execution is
suspended and software exception processing is initiated. The Interrupt Priority
Level (I1,I0) is set to 3 in the Status Register (SR) if a long interrupt service routine is
used. If the specified condition is false, instruction execution continues with the next
instruction.

The conditions that the term “cc” can specify are listed on Table A-47 on page A-213.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields:

Operation: Assembler Syntax:

If cc then begin software exception processing TRAPcc

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C

{cc} CCCC Condition code (see Table A-48 on page A-214)

MOTOROLA DSP56600FM/AD A-199
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TST Test Accumulator TST

Description: Compare the specified source accumulator S with 0 and set the
condition codes accordingly. No result is stored although the condition codes are
updated.

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S – 0 (parallel move) TST S (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * —

CCR

* V This bit is always cleared.
√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0

TST S DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} d Source accumulator [A,B] (see Table A-15 on page A-203)

A-200 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VSL Viterbi Shift Left VSL

Viterbi Shift Left

Description: Store the most significant part (16 bits) of the source accumulator at X
memory (at effective address location), while for the least significant part (16 bits) of
the source accumulator shift one bit to the left and insert 0 or 1 at the Least Significant
Bit, according to operand i, and store the result at Y memory at the same address.
This instruction enhances Viterbi algorithm performance (see Viterbi
Add-Compare-Select (ACS) on page C-41).

Condition Codes:

Instruction Formats and Opcodes:

Instruction Fields:

Operation: Assembler Syntax:

S[31:16] → X:ea; {S[14:0],i} → Y:ea VSL S,i,L:ea

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0

VSL S,i,L:ea 0 0 0 0 1 0 1 S 1 1 M M M R R R 1 1 0 i 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} S Source register A,B (see Table A-15 on page A-203)

{i} i Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>

{ea} MMMRRR Effective address (see Table A-21 on page A-205)

MOTOROLA DSP56600FM/AD A-201
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Descriptions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WAIT Wait for interrupt WAIT

Description: Enter the low-power standby Wait processing state. The internal clocks
to the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs. The clock oscillator and the internal
I/O peripheral clocks remain active. If the WAIT instruction is executed when an
interrupt is pending, the interrupt is processed. The effect is the same as if the
processor never entered the Wait state. If the WAIT instruction is executed, the effect
is the same as if the processor never entered the Wait state. When an unmasked
interrupt or external (hardware) processor reset occurs, the processor leaves the Wait
state and begins exception processing of the unmasked interrupt or reset condition.
The processor also exits from the Wait state when the Debug Request (DE) pin is
asserted or when a Debug Request JTAG command is detected.

Condition Codes:

Instruction Formats and Opcode:

Instruction Fields: None.

Operation: Assembler Syntax:

Disable clocks to the processor core and
enter the Wait processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction

23 16 15 8 7 0

WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

A-202 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.6 INSTRUCTION PARTIAL ENCODING

This section gives the encodings for the following:

• Various groupings of registers used in the instruction encodings

• Condition Code combinations

• Addressing

• Addressing modes

The symbols used in decoding the various fields of an instruction are identical to
those used in the Opcode section of the individual instruction descriptions.

A.6.1 Partial Encodings for Use in Instruction Encoding

Table A-15 Destination Accumulator Encoding

D/S d/S/D

A 0

B 1

Table A-16 Data ALU Operands Encoding #1

S J

X 0

Y 1

Table A-17 Data ALU Source Operands Encoding

S J J

X0 0 0

Y0 0 1

X1 1 0

Y1 1 1

MOTOROLA DSP56600FM/AD A-203
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* The source accumulator is B if the destination accumulator (selected by the d bit in
the opcode) is A, or A if the destination accumulator is B.

Table A-18 Program Control Unit Register Encoding

Register E E

MR 0 0

CCR 0 1

COM 1 0

EOM 1 1

Table A-19 Data ALU Operands Encoding #2

S J J J

B/A* 0 0 1

X 0 1 0

Y 0 1 1

X0 1 0 0

Y0 1 0 1

X1 1 1 0

Y1 1 1 1

Table A-20 Data ALU Operands Encoding #3

SSS/sss S,D qqq S,D ggg S,D

000 reserved 000 reserved 000 B/A*

001 reserved 001 reserved 001 reserved

010 A1 010 A0 010 reserved

011 B1 011 B0 011 reserved

100 X0 100 X0 100 X0

A-204 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* The selected accumulator is B if the source two accumulator (selected by the d bit in
the opcode) is A, or A if the source two accumulator is B.

“r r r” refers to an address register R0–R7

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1

Table A-21 Effective Addressing Mode Encoding #1

Effective
Addressing Mode MMMRRR

(Rn)–Nn 0 0 0 r r r

(Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r

Absolute address 1 1 0 0 0 0

Immediate data 1 1 0 1 0 0

Table A-22 Memory/Peripheral Space

Space S

X Memory 0

Y Memory 1

Table A-20 Data ALU Operands Encoding #3 (Continued)

SSS/sss S,D qqq S,D ggg S,D

MOTOROLA DSP56600FM/AD A-205
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

“r r r” refers to an address register R0–R7

“r r r” refers to an address register R0–R7

“r r r” refers to an address register R0–R7

Table A-23 Effective Addressing Mode Encoding #2

Effective Addressing Mode MMMRRR

(Rn)–Nn 0 0 0 r r r

(Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r

Absolute address 1 10 0 0 0

Table A-24 Effective Addressing Mode Encoding # 3

Effective Addressing Mode MMMRRR

(Rn)–Nn 0 0 0 r r r

(Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r

Table A-25 Effective Addressing Mode Encoding #4

Effective Addressing Mode MMRRR

(Rn)–Nn 0 0 r r r

(Rn)+Nn 0 1 r r r

(Rn)– 1 0 r r r

(Rn)+ 1 1 r r r

A-206 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

See Table A-26 on page A-207 for the specific encodings.

Table A-26 Triple-Bit Register Encoding

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 — A0 R0 N0 M0 — VBA SZ

001 — B0 R1 N1 M1 — SC SR

010 — A2 R2 N2 M2 EP — OMR

011 — B2 R3 N3 M3 — — SP

100 X0 A1 R4 N4 M4 — — SSH

101 X1 B1 R5 N5 M5 — — SSL

110 Y0 A R6 N6 M6 — — LA

111 Y1 B R7 N7 M7 — — LC

Table A-27 Six-Bit Encoding For all On-Chip Registers

Destination Register D D D D D D /
d d d d d d

4 registers in Data ALU 0 0 0 1 D D

8 accumulators in Data ALU 0 0 1 D D D

8 address registers in AGU 0 1 0 T T T

8 address offset registers in AGU 0 1 1 N N N

8 address modifier registers in AGU 1 0 0 F F F

1 address register in AGU 1 0 1 E E E

2 program controller register 1 1 0 V V V

8 program controller registers 1 1 1 G G G

Table A-28 Long Move Register Encoding

S S1 S2 S
S/L D D1 D2 D

Sign Ext
D

Zero LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0

B10 B1 B0 no B10 B1 B0 no no 0 0 1

X X1 X0 no X X1 X0 no no 0 1 0

Y Y1 Y0 no Y Y1 Y0 no no 0 1 1

A A1 A0 yes A A1 A0 A2 no 1 0 0

MOTOROLA DSP56600FM/AD A-207
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* The source accumulator is B if the destination accumulator (selected by the d bit in
the opcode) is A, or A if the destination accumulator is B.

Note: Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 * Y1 are
not valid.

B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0

BA B A yes BA B A B2,A2 B0,A0 1 1 1

Table A-29 Data ALU Source Registers Encoding

S J J J

B/A* 000
X0 100
Y0 101
X1 110
Y1 111

Table A-30 AGU Address and Offset Registers Encoding

Destination Address
Register D dddd

R0-R7 onnn

N0-N7 1nnn

Table A-31 Data ALU Multiply Operands Encoding #1

S1 * S2 Q Q Q S1 * S2 Q Q Q

X0,X0 0 0 0 X0,Y1 1 0 0

Y0,Y0 0 0 1 Y0,X0 1 0 1

X1,X0 0 1 0 X1,Y0 1 1 0

Y1,Y0 0 1 1 Y1,X1 1 1 1

Table A-28 Long Move Register Encoding (Continued)

S S1 S2 S
S/L D D1 D2 D

Sign Ext
D

Zero LLL

A-208 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table A-32 Data ALU Multiply Operands Encoding #2

S Q Q

Y1 0 0

X0 0 1

Y0 1 0

X1 1 1

Table A-33 Data ALU Multiply Operands Encoding #3

S qq

X0 0 0

Y0 0 1

X1 1 0

Y1 1 1

Table A-34 Data ALU Multiply Sign Encoding

Sign k

+ 0

– 1

Table A-35 Data ALU Multiply Operands Encoding #4

S1*S2 Q Q Q Q S1*S2 Q Q Q Q

X0,X0 0 0 0 0 X0,Y1 0 1 0 0

Y0,Y0 0 0 0 1 Y0,X0 0 1 0 1

X1,X0 0 0 1 0 X1,Y0 0 1 1 0

Y1,Y0 0 0 1 1 Y1,X1 0 1 1 1

X1,X1 1 0 0 0 Y1,X0 1 1 0 0

Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1

X0,X1 1 0 1 0 Y0,X1 1 1 1 0

Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1

MOTOROLA DSP56600FM/AD A-209
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

“r r r” = Rn number, “n n n” = Nn number

Table A-36 Five-Bit Register Encoding #1

D/S ddddd / eeeee D/S ddddd / eeeee

X0 0 0 1 0 0 B2 0 1 0 1 1

X1 0 0 1 0 1 A1 0 1 1 0 0

Y0 0 0 1 1 0 B1 0 1 1 0 1

Y1 0 0 1 1 1 A 0 1 1 1 0

A0 0 1 0 0 0 B 0 1 1 1 1

B0 0 1 0 0 1 R0-R7 1 0 r r r

A2 0 1 0 1 0 N0-N7 1 1 n n n

Table A-37 Immediate Data ALU Operand Encoding

n ssss constant

1 0 0 0 1 0100000000000000
2 0 0 1 0 0010000000000000
3 0 0 1 1 0001000000000000
4 0 1 0 0 0000100000000000
5 0 1 0 1 0000010000000000
6 0 1 1 0 0000001000000000
7 0 1 1 1 0000000100000000
8 1 0 0 0 0000000010000000
9 1 0 0 1 0000000001000000
10 1 0 1 0 0000000000100000
11 1 0 1 1 0000000000010000
12 1 1 0 0 0000000000001000
13 1 1 0 1 0000000000000100
14 1 1 1 0 0000000000000010
15 1 1 1 1 0000000000000001

Table A-38 Write Control Encoding

Operation W

Read Register or Peripheral 0

Write Register or Peripheral 1

A-210 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

See Table A-26 on page A-207 for the specific encodings.

Table A-39 ALU Registers Encoding

Destination Register D D D D

4 registers in Data ALU 0 1 D D

8 accumulators in Data ALU 1 D D D

Table A-40 X:R Operand Registers Encoding

S1,D1 f f D2 F

X0 0 0 Y0 0

X1 0 1 Y1 1

A 1 0

B 1 1

Table A-41 R:Y Operand Registers Encoding

D1 e S2,D2 f f

X0 0 Y0 0 0

X1 1 Y1 0 1

A 1 0

B 1 1

Table A-42 Single Bit Special Register Encoding Tables

d X:R Class II Opcode R:Y Class II Opcode

0 A → X:<ea> , X0 → A Y0 → A , A → Y:<ea>

1 B → X:<ea> , X0 → B Y0 → B , B → Y:<ea>

MOTOROLA DSP56600FM/AD A-211
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

where the following apply:

“s s s” refers to an address register R0–R7.

“t t” refers to an address register R4–R7 or R0–R3 in the opposite address register
bank from the one used in the X effective address.

Table A-43 X:Y: Move Operands Encoding Tables

X Effective Addressing Mode MMRRR

(Rn)+Nn 0 1 s s s

(Rn)– 1 0 s s s

(Rn)+ 1 1 s s s

(Rn) 0 0 s s s

Y Effective Addressing Mode mmrr

(Rn)+Nn 0 1 t t

(Rn)– 1 0 t t

(Rn)+ 1 1 t t

(Rn) 0 0 t t

S1,D1 e e S2,D2 f f

X0 0 0 Y0 0 0

X1 0 1 Y1 0 1

A 1 0 A 1 0

B 1 1 B 1 1

Table A-44 Signed/Unsigned Partial Encoding #1

ss/su/uu ss

ss 00

su 10

uu 11

(Reserved) 01

A-212 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

where “n n n” = Mn number (M0–M7)

Table A-45 Signed/Unsigned Partial Encoding #2

su/uu s

su 0

uu 1

Table A-46 Five-Bit Register Encoding #2

S1,D1 ddddd

M0-M7 00nnn

EP 01010

VBA 10000

SC 10001

SZ 11000

SR 11001

OMR 11010

SP 11011

SSH 11100

SSL 11101

LA 11110

LC 11111

Table A-47 Condition Codes Computation Equations

“cc” Mnemonic Condition

CC(HS) Carry Clear (higher or same) C = 0

CS(LO) Carry Set (lower) C = 1

EC Extension Clear E = 0

EQ Equal Z = 1

MOTOROLA DSP56600FM/AD A-213
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

where the following apply:

U denotes the logical complement of U.

+ denotes the logical OR operator.

• denotes the logical AND operator.

⊕ denotes the logical Exclusive OR operator.

ES Extension Set E=1

GE Greater than or Equal N ⊕ V=0

GT Greater Than Z+(N ⊕ V)=0

LC Limit Clear L=0

LE Less than or Equal Z+(N ⊕ V)=1

LS Limit Set L=1

LT Less Than N ⊕ V=1

MI Minus N=1

NE Not Equal Z=0

NR Normalized Z+(U•E)=1

PL Plus N=0

NN Not Normalized Z+(U•E)=0

Table A-48 Condition Codes Encoding

Mnemonic C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

Table A-47 Condition Codes Computation Equations (Continued)

“cc” Mnemonic Condition

A-214 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The condition code computation equations are listed in Table A-47 on page A-213.

A.6.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel moves is divided
into the multiply and nonmultiply instruction encodings shown in the following
subsection.

A.6.2.1 Multiply Instruction Encoding
The 8-bit operation code for multiply instructions allowing parallel moves has
different fields than the nonmultiply instruction’s operation code.

The 8-bit operation code = 1QQQ dkkk where

QQQ =selects the inputs to the multiplier (see Table A-31 on page A-208)
kkk = three unencoded bits k2, k1, k0
d = destination accumulator
d = 0 → A
d = 1 → B

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

Table A-49 Operation Code K0–2 Decode

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table A-48 Condition Codes Encoding (Continued)

Mnemonic C C C C Mnemonic C C C C

MOTOROLA DSP56600FM/AD A-215
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

Instruction Partial Encoding

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.6.2.2 Non-Multiply Instruction Encoding
The 8-bit operation code for instructions allowing parallel moves contains two 3-bit
fields defining which instruction the operation code represents and one bit defining
the destination accumulator register.

The 8-bit operation code = 0 J J J D k k k where

J J J = 1/2 instruction number
k k k = 1/2 instruction number
D = 0 → A
D = 1 → B

Note: 1. Special Case #1
2. * = Reserved

Table A-50 Non-Multiply Instruction Encoding

J J J
D = 0
Src

Oper

D = 1
Src

Oper

k k k

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 B A MOVE1 TFR ADDR TST * CMP SUBR CMPM

0 0 1 B A ADD RND ADDL CLR SUB * SUBL NOT

0 1 0 B A — — ASR LSR — — ABS ROR

0 1 1 B A — — ASL LSL — — NEG ROL

0 1 0 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

0 1 1 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —

1 0 0 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 0 1 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 0 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 1 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

Table A-51 Special Case #1

 O P E R C O D E Operation

 0 0 0 0 0 0 0 0 MOVE

 0 0 0 0 1 0 0 0 reserved

A-216 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

APPENDIX B

INSTRUCTION TIMING

MOTOROLA DSP56600FM/AD B-1
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.1 INTRODUCTION . -3
B.2 INSTRUCTION TIMING. -3
B.3 INSTRUCTION SEQUENCE DELAYS -11
B.4 INSTRUCTION SEQUENCE RESTRICTIONS -18
B.5 PERIPHERAL PIPELINE RESTRICTIONS. -25

B-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.1 INTRODUCTION

This appendix describes the various aspects of execution timing analysis for each
instruction mnemonic and for various instruction sequences. The section consists of
the following tables and information:

• Tables showing how to calculate DSP56600 core instruction timing for each
instruction mnemonic (instruction timing)

• Tables showing the number of instruction program words for each instruction
mnemonic (instruction program words)

• Description of various sequences that cause timing delays and stalls in the
execution (instruction sequence delays)

• Description of various instruction sequences that are forbidden and cause
undefined operation (instruction sequence restrictions)

B.2 INSTRUCTION TIMING

The number of oscillator clock cycles per instruction depends on many factors,
including the number of words per instruction, the addressing mode, whether the
instruction fetch pipeline is full, the number of external bus accesses, cache
hit/miss/burst, and the number of wait states inserted in each external access.

Table B-1 lists instruction timing, and is based on the following assumptions:

• All instruction cycles are counted in clock cycles.

• The instruction fetch pipeline is full.

The following terms are used inside the table:

• T—clock cycles for the normal case:

– All instructions fetched from the internal program memory

– No interlocks with previous instructions

– Addressing mode is the Post-Update mode (post-increment,
post-decrement and post offset by N) or the No-Update mode.

• + pru—Pre-update specifies clock cycles added for using the pre-update
addressing modes (pre-decrement and offset by N addressing modes).

MOTOROLA DSP56600FM/AD B-3
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• + lab—Long absolute specifies clock cycles added for using the Long Absolute
Address mode.

• + lim—Long immediate specifies clock cycles added for using the long
immediate data addressing mode.

Note: A dash under one or more of the columns pru, lab, or lim indicates that
this column is not applicable to the corresponding instruction.

Table B-1 Instruction Timing, Word Count, and Encoding

Instruction
Mnemonic Instruction Format T + pru + lab + lim

ADD ADD #iiiiii,D 2 — — —

ADD #iii,D 1 — — —

AND AND #iiiiii,D 2 — — —

AND #iii,D 1 — — —

ANDI ANDI EE 3 — — —

ASL ASL #ii,S,D 1 — — —

ASL sss,S,D 1 — — —

ASR ASR sss,S,D 1 — — —

ASR #ii,S,D 1 — — —

Bcc Bcc (PC + Rn) 4 — — —

Bcc (PC + aa) 4 — — —

BCHG BCHG #bbbb ,S:<aa> 2 — — —

BCHG #bbbb ,S:<ea> 2 1 1 —

BCHG #bbbb ,S:<pp> 2 — — —

BCHG #bbbb ,S:<qq> 2 — — —

BCHG #bbbb ,DDDDDD 2 — — —

BCLR BCLR #bbbb ,S:<pp> 2 — — —

BCLR #bbbb ,S:<ea> 2 1 1 —

BCLR #bbbb ,S:<aa> 2 — — —

B-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR BCLR #bbbb ,S:<qq> 2 — — —

BCLR #bbbb ,DDDDDD 2 — — —

BRA BRA (PC + Rn) 4 — — —

BRA (PC + aa) 4 — — —

BRKcc BRKcc 5 — — —

BScc BScc (PC + Rn) 4 — — —

BScc (PC + aa) 4 — — —

BSET BSET #bbbb ,S:<pp> 2 — — —

BSET #bbbb ,S:<ea> 2 1 1 —

BSET #bbbb ,S:<aa> 2 — — —

BSET #bbbb ,DDDDDD 2 — — —

BSET #bbbb ,S:<qq> 2 — — —

BSR BSR (PC + Rn) 4 — — —

BSR (PC + aa) 4 — — —

BTST BTST #bbbb ,S:<pp> 2 — — —

BTST #bbbb ,S:<ea> 2 1 1 —

BTST #bbbb ,S:<aa> 2 — — —

BTST #bbbb ,DDDDDD 2 — — —

BTST #bbbb ,S:<qq> 2 — — —

CLB CLB S,D 1 — — —

CMP CMP #iiiiii,D 2 — — —

CMP #iii,D 1 — — —

CMPU CMPU ggg,D 1 — — —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

MOTOROLA DSP56600FM/AD B-5
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEBUG/
DEBUGcc

DEBUG 1 — — —

DEBUGcc 5 — — —

DEC DEC 1 — — —

DIV DIV 1 — — —

DMAC DMAC S1,S2,D (ss,su,uu) 1 — — —

DO DO #xxx,aaaa 5 — — —

DO DDDDDD,aaaa 5 — — —

DO S:<ea>,aaaa 5 1 — —

DO S:<aa>,aaaa 5 — — —

DO FOREVER DO FOREVER ,(aaaa) 4 — — —

ENDDO ENDDO 1 — — —

EOR EOR #iiiiii,D 2 — — —

EOR #iii,D 1 — — —

EXTRACT EXTRACT SSS,s,D 1 — — —

EXTRACT #iiii,s,D 2 — — —

EXTRACTU EXTRACTU SSS,s,D 1 — — —

EXTRACTU #iiii,s,D 2 — — —

IFcc IFcc(.U) 1 — — —

ILLEGAL ILLEGAL 5 — — —

INC INC 1 — — —

INSERT INSERT SSS,qqq,D 1 — — —

INSERT #iiii,qqq,D 2 — — —

Jcc Jcc aa 4 — — —

Jcc ea 4 0 0 —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

B-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JCLR JCLR #bbbb ,S:<ea>,aaaa 4 1 — —

JCLR #bbbb ,S:<pp>,aaaa 4 — — —

JCLR #bbbb ,S:<aa>,aaaa 4 — — —

JCLR #bbbb ,DDDDDD,aaaa 4 — — —

JCLR #bbbb ,S:<qq>,aaaa 4 — — —

JMP JMP aa 3 — — —

JMP ea 3 1 1 —

JScc JScc aa 4 — — —

JScc ea 4 0 0 —

JSCLR JSCLR #bbbb ,S:<pp>,aaaa 4 — — —

JSCLR #bbbb ,S:<ea>,aaaa 4 1 — —

JSCLR #bbbb ,S:<aa>,aaaa 4 — — —

JSCLR #bbbb ,DDDDDD,aaaa 4 — — —

JSCLR
(continued)

JSCLR #bbbb ,S:<qq>,aaaa 4 — — —

JSET JSET #bbbb ,S:<pp>,aaaa 4 — — —

JSET #bbbb ,S:<ea>,aaaa 4 1 — —

JSET #bbbb ,S:<aa>,aaaa 4 — — —

JSET #bbbb ,DDDDDD,aaaa 4 — — —

JSET #bbbb ,S:<qq>,aaaa 4 — — —

JSR JSR aa 3 — — —

JSR ea 3 1 1 —

JSSET JSSET #bbbb ,S:<pp>,aaaa 4 — — —

JSSET #bbbb ,S:<ea>,aaaa 4 1 — —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

MOTOROLA DSP56600FM/AD B-7
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET JSSET #bbbb ,S:<aa>,aaaa 4 — — —

JSSET #bbbb ,DDDDDD,aaaa 4 — — —

JSSET #bbbb ,S:<qq>,aaaa 4 — — —

LSL LSL sss,D 1 — — —

LSL #ii,D 1 — — —

LSR LSR #ii,D 1 — — —

LSR sss,D 1 — — —

LRA LRA (PC + Rn) → 0DDDDD 3 — — —

LRA (PC + aaaa) → 0DDDDD 3 — — —

LUA, LEA LUA ea → 0DDDDD 3 — — —

LUA (Rn + aa) → 01DDDD 3 — — —

MACI MACI ± #iiiiii,QQ,D 2 — — —

MAC MAC ± 2**s,QQ,d 1 — — —

MAC S1,S2,D (su,uu) 1 — — —

MACRI MACRI ± #iiiiii,QQ,D 2 — — —

MACR MACR ±2**s,QQ,d 1 — — —

MAX MAX A,B 1 — — —

MAXM MAXM A,B 1 — — —

MERGE MERGE SSS,D 1 — — —

MOVE No parallel data Move (DALU) 1 — — —

MOVE #xx → DDDDD 1 — — —

MOVE ddddd → DDDDD 1 — — —

U move 1 — — —

MOVE S:<ea>,DDDDD 1 1 1 1

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

B-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVE MOVE S:<aa>,DDDDD 1 — — —

MOVE S:<Rn + aa>,DDDD 2 — — —

MOVE S:<Rn + aaaa>,DDDDDD 3 — — —

MOVE d → X Y:<ea>,YY 1 1 1 1

MOVE X:<ea>,XX & d → Y 1 1 1 1

MOVE A → X:<ea> X0 A 1 1 — —

MOVE B → X:<ea> X0 B 1 1 — —

MOVE Y0 → A A Y:<ea> 1 1 — —

MOVE Y0 → B B Y:<ea> 1 1 — —

MOVE L:<ea>,LLL 1 1 1 —

MOVE L:<aa>,LLL 1 — — —

MOVE X:<ea>,XX & Y:<ea>,YY 1 — — —

MOVEC MOVEC #xx → 1DDDDD 1 — — —

MOVEC S:<ea>,1DDDDD 1 1 1 1

MOVEC S:<aa>,1DDDDD 1 — — —

MOVEC DDDDDD,1ddddd 1 — — —

MOVEM MOVEM P:<ea>,DDDDDD 6 1 1 —

MOVEM P:<aa>,DDDDDD 6 — — —

MOVEP MOVEP S:<pp>,s:<ea> 2 1 1 0

MOVEP S:<pp>,P:<ea> 6 1 1 —

MOVEP S:<pp>,DDDDDD 1 — — —

MOVEP X:<qq>,s:<ea> 2 1 1 0

MOVEP Y:<qq>,s:<ea> 2 1 1 0

MOVEP X:<qq>,DDDDDD 1 — — —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

MOTOROLA DSP56600FM/AD B-9
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVEP MOVEP Y:<qq>,DDDDDD 1 — — —

MOVEP S:<qq>,P:<ea> 6 1 1 -

MPY MPY S1,S2,D (su,uu) 1 — — —

MPY ± 2**s,QQ,d 1 — — —

MPYI MPYI ± #iiiiii,QQ,D 2 — — —

MPYR MPYR ± 2**s,QQ,d 1 — — —

MPYRI MPYRI ± #iiiiii,QQ,D 2 — — —

NOP NOP 1 — — —

NORMF NORMF SSS,D 1 — — —

OR OR #iiiiii,D 2 — — —

OR #iii,D 1 — — —

ORI ORI EE 3 — — —

REP REP #xxx 5 — — —

REP DDDDDD 5 — — —

REP S:<ea> 5 1 — —

REP S:<aa> 5 — — —

RESET RESET 7 — — —

RTI/RTS RTI 3 — — —

RTS 3 — — —

STOP STOP 10 — — —

SUB SUB #iiiiii,D 2 — — —

SUB #iii,D 1 — — —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

B-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3 INSTRUCTION SEQUENCE DELAYS

Because of the pipelined nature of the DSP56600 core, certain instruction sequences
can cause a delay in the execution of instructions involved in that sequences. Most of
these sequences are caused by a source-destination conflict or by the need to access
the external bus. These are the six types of sequence delays:

• External bus wait states

• Instruction fetch delays

• Data ALU interlocks

• Address generation interlocks

• Stack extension delays

• Pipeline interlocks

B.3.1 External Bus Wait States

An external bus wait state is caused by an instruction accessing the external bus for
data read or write. In this case, the execution time of the instruction is increased by
the number of clock cycles equal to the number of wait states that is programmed for

Tcc Tcc JJJ → D ttt TTT 1 — — —

Tcc JJJ → D 1 — — —

Tcc ttt → TTT 1 — — —

TRAP/
TRAPcc

TRAP 9 — — —

TRAPcc 9 — — —

VSL VSL S,i,L:ea 1 1 1 —

WAIT WAIT 10 — — —

Table B-1 Instruction Timing, Word Count, and Encoding (Continued)

Instruction
Mnemonic Instruction Format T + pru + lab + lim

MOTOROLA DSP56600FM/AD B-11
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

that external data access. The exact number of wait states depends on the type of
memory accessed, as described in Bus Control Register on page 9-5.

B.3.2 Instruction Fetch Delays

At an external instruction fetch, the effective number of stall states in the pipeline is
the number specified in the Bus Control Register (BCR).

B.3.3 Data ALU Interlock

A Data ALU interlock can be caused by one of the following sequences:

• Arithmetic stall

• Transfer stall

• Status stall

B.3.3.1 Arithmetic Stall
An arithmetic stall interlock is caused by an instruction that uses one of the Data
ALU registers (A0, A1, A2, B0, B1, or B2) or accumulators (A or B) as a source register
for the move portion of that instruction when the preceding instruction was an
arithmetic instruction (an instruction that uses the internal Data ALU data paths) that
used the same accumulator as its destination. The execution of the initiating
instruction is delayed by one clock cycle.

B.3.3.2 Transfer Stall
A transfer stall interlock is caused by an instruction that uses one of the Data ALU
registers (A0, A1, A2, B0, B1, or B2) or accumulators (A or B) as a source register for
the move portion of that instruction when the preceding instruction used the
corresponding accumulator or one of the Data ALU registers that comprise the
accumulator as its destination register in the move portion of that instruction. The
execution of the initiating instruction is delayed by one instruction cycle.

B.3.3.3 Status Stall
A status stall interlock is caused by an instruction that reads the contents of the Status
Register (SR) for either move operation or bit testing when the preceding or the
second preceding instruction was an arithmetic instruction (an instruction that uses
the internal Data ALU data paths). The execution of the initiating instruction is
delayed by 2 instruction cycles for a move operation or 1 instruction cycle for bit
testing.

B-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3.4 Address Registers Interlocks

An address register interlock can be caused by one of the following sequences.

B.3.4.1 Conditional Transfer Interlock
A conditional transfer interlock is caused by a Transfer On-Condition (Tcc)
instruction followed by an instruction that explicitly specifies one of the address
generation registers (R0–R7) as its source operand. The execution of the second
instruction is delayed by one instruction cycle.

B.3.4.2 Address Generation Interlock
An address generation interlock is caused by a move portion of an instruction that
uses one of the AGU registers R0–R7 for address generation or for address
calculation, while one of the three preceding instruction cycles uses one of the
register set (Ri, Ni or Mi) members as a destination register in its move portion.
Consider Example B-1:

In this example, the instruction I6 causes an address generation interlock because it
used R0 as the source for address generation on the X Address Bus while the
preceding instruction, I5, used N0 as its destination.

Three types of address generation interlock exist, as follows:

• Type0

• Type1

• Type2

These types depend on the distance, in term of clock cycles, between the instruction
causing the interlock and the preceding instruction that used the AGU register as a
destination. Figure B-1 describes an example to each of the types:

Example B-1 Address Generation Interlock

I1 MOVE #$addr,R0

I2 NOP

I3 NOP

I4 NOP

I5 MOVE #$offset,N0

I6 MOVE X:(R0)+,Y1

MOTOROLA DSP56600FM/AD B-13
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When a Type0 Address Generation Interlock is detected (during the decoding of I2 in
the example), three NOP clock cycles are automatically inserted before the execution
of the instruction starts. When a Type1 Address Generation Interlock is detected
(during the decoding of I3 in the example), two NOP clock cycles are automatically
inserted before the execution of the instruction starts. When a Type2 Address
Generation Interlock is detected (during the decoding of I4 in the example), one NOP
clock cycle is inserted before the execution of the instruction starts.

Note: Only clock cycles are counted to determine when interlock cycles should
be inserted.

Whenever an instruction using one of the AGU registers as an address generation
enters the decoding stage of the DSP56600 core, the distance from that instruction to
the preceding instruction that used the register as destination is measured in term of
clock cycles to determine the existence and type of address generation interlock.
Once an address generation interlock is detected, the appropriate number of NOP
clock cycles is inserted. The following instructions take these additional cycles into
account for the detection of a possible new address generation interlock.
Example B-2 demonstrates this feature.

Figure B-1 Types of Address Generation Interlock

Example B-2 Detection of Address Generation Interlock

I1 MOVE #$addr,R0

I2 CLR A

I3 MOVE X:(R0)+,Y1

I4 MOVE X:(R0)+,Y0

 Type0 Interlock

 I1 MOVE #$addr,R0

 I2 MOVE X:(R0)+,Y1

 Type1 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 MOVE X:(R0)+,Y1

 Type2 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 INC B

 I4 MOVE X:(R0)+,Y1

Three NOP instructions
are inserted

Two NOP instructions
are inserted

One NOP instruction
is inserted

AA0770

B-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, a Type1 address generation interlock is detected during the
decoding phase of I, 3 and two NOP cycles are inserted before the execution of that
instruction. During the decoding of I4, no address generation interlock is detected, so
no NOP cycles are inserted.

However, if I3 had been an instruction that did not use R0, a Type2 address
generation interlock would have been detected during the decoding phase of I4, and
one NOP cycle would have been inserted before the execution of that instruction.

B.3.5 Stack Extension Delays

Some instructions access the System Stack (SS) as part of their normal activity.
Whenever the SS is either completely full or completely empty, the special stack
extension mechanism is engaged and the access is completed only after an access to
data memory is automatically performed. This delays the decoding and the
execution phases of that instruction. A stack-full or a stack-empty state is defined by
the contents of the Stack Counter (SC) register. When the stack counter equals 14, it
means that the on-chip hardware stack has fourteen words (a stack word is a 48-bit
long word combined from the low and the high portions of the stack) inside. The
stack is declared as stack-full, and any additional push operation activates the stack
extension mechanism. When the stack counter equals 2, it means that the on-chip
hardware stack has only two words inside. The stack is declared as stack-empty, and
any additional pop operations activate the stack extension mechanism.

The instructions/cases listed in Table B-2 cause an access to the system stack and
may engage the stack extension mechanism:

Table B-2 Instructions that Access the System Stack

Instruction Description

SUBcc This denotes all the conditional and unconditional Jump to Subroutine
instructions (e.g., JSR, JSSET, and so forth). These instructions perform a
stack PUSH operation that stores the PC and the SR on top of the stack, for
the use of the ‘Return from Subroutine’ instruction that will terminate the
subroutine execution.

RET This denotes the two Return from Subroutine instructions, RTS and RTI.
These instructions perform a stack POP operations that pulls the PC and
(optionally) the SR out from the top of stack in order to return back to the
calling procedure and to restore the status bits and loop flag state.

MOTOROLA DSP56600FM/AD B-15
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table B-3 shows how many clock cycles are added in the various instructions/cases
described on the previous pages.

:

END-OF-DO This condition is achieved by the internal hardware inside the Program
Control Unit. This hardware detects the case where a fetch from the last
address of a loop is initiated when the Loop Counter equals 1. This
condition defines the end of the loop, thus performing a stack POP
operation. This POP operation restores the loop flag, purges the top of
stack (PC:SR) and pulls LA and LC from the new top of stack.

LOOP This denotes all the hardware-loop initiating instructions (e.g., DO) with
all their options. These instructions perform a stack double-PUSH
operation that first stores the previous values of LA and LC on top of the
stack. Then the DO instruction stores the contents of SR and PC on the new
top of stack. This PC value is used every loop iteration in order to go back
to the top of loop location and start fetch from there. DO performs two
accesses to the stack instead of the normal single access done by most stack
operations.

ENDDO This special instruction forces an end-of-do condition during a hardware
loop. Like END-OF-DO, ENDDO performs two accesses to the stack
instead of the normal single access done by most stack operations.

SSHWR This denotes all the explicit stack PUSH instructions that use SSH as their
destination (e.g., the MOVE R0,SSH instruction).

SSHRD This denotes all the explicit stack POP instructions that use SSH as their
source (e.g., the MOVE SSH,Y1 instruction).

Table B-3 Stack Extension Delays

CASE Stack Full Condition
(+ clock cycles)

Stack Empty Condition
(+ clock cycles)

SUBcc 2 —

RET — 3

END-OF-DO — 5

DO 4 —

Table B-2 Instructions that Access the System Stack (Continued)

Instruction Description

B-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Delays

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3.6 Program Flow-Control Delays

During the execution of flow-control instructions, some boundary cases exist and
introduce interlocks to the program flow. These interlocks lengthen the decoding
phase of the instructions, thus delaying the execution of them. The following
sequences represent unusual operations that probably would never be used. The
detection of these cases and hence the generation of interlocks is done in order to
maintain an object code compatibility between the DSP56600 core and the 56000
family of DSPs.

The following terms are used in this subsection:

• I1—An address of an instruction, where I2, I3, and I4 are used to indicate the
next instructions in the program flow

• MOVE—any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG,
BCLR, and BTST

• LA—the last address of a DO LOOP

• LA – 1—the address of an instruction word located at LA – 1

• CR—Control Register, every one of the registers LA, LC, SR, SP, SSH, SSL, and
OMR

B.3.6.1 JMP to LA or to LA – 1
When I1 is any type of JMP with its target address equal to LA, the decoding phase of
the instruction following the instruction at LA is delayed by 2 clock cycles.

When I1 is any type of JMP with its target address equal to LA – 1, the decoding
phase of the instruction following the instruction at LA is delayed by 1 clock cycle.

ENDDO — 5

SSHWR 2 —

SSHRD — 3

Table B-3 Stack Extension Delays (Continued)

CASE Stack Full Condition
(+ clock cycles)

Stack Empty Condition
(+ clock cycles)

MOTOROLA DSP56600FM/AD B-17
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3.6.2 RTI to LA or to LA – 1
When I1 is an RTI instruction whose return address is LA, the decoding phase of the
instruction following the instruction at LA is delayed by 2 clock cycles.

When I1 is an RTI instruction whose return address is LA – 1, the decoding phase of
the instruction following the instruction at LA is delayed by 1 clock cycle.

B.3.6.3 Conditional Instructions
When I1 is a conditional change of flow instruction (such as Jcc) and the condition is
false, the decoding phase of I2 is delayed by 1 clock cycle.

B.3.6.4 Interrupt Abort
When I1 is an instruction with a decoding phase that is longer than one cycle, it may
be aborted by the Interrupt Control Unit. In this case, a 1 clock cycle “hole” is
inserted into the pipeline, after which the instruction at the interrupt vector is
decoded.

B.3.6.5 Degenerated DO loop
When I1 is a DO loop but the loop contains only one instruction, the decoding phase
of I1 is lengthened by 1 clock cycle.

B.3.6.6 Annulled REP and DO
If the repeat count of a REP instruction is zero, then the decoding phase of the REP
instruction is lengthened by 1 clock cycle. If the repeat count of a DO instruction is
zero, then the decoding phase of the DO instruction is lengthened by 3 clock cycles.

B.4 INSTRUCTION SEQUENCE RESTRICTIONS

Because of the pipelined nature of the DSP56600 core central processor, certain
instruction sequences are forbidden. Use of these sequences causes undefined
operation. Most of these restricted sequences cause contention for an internal
resource, such as the Stack Register. The DSP Assembler flags these as assembly
errors.

The following terms are used in this subsection:

• MOVE—any type of MOVE, MOVEM, MOVEP, MOVEC

• MOVEM—any type of MOVE to/from the Program space

• LA—the last address of a DO LOOP

B-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Two-words <inst>—a double-word instruction in which the second word is
used as an immediate data or absolute address

• Single-word <inst>—an instruction with an addressing mode that does not
need a second word extension

B.4.1 Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed if an instruction sequence similar to one
of the sequences described below is used.

B.4.1.1 At LA – 5
The following instructions should not start at address LA – 5:

• Single-word or Two-words MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

• BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

B.4.1.2 At LA – 4
The following instructions should not start at address LA – 4:

• Single-word or Two-words MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

• BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

B.4.1.3 At LA – 3
The following instructions should not start at address LA – 3:

• BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE from SSH, SSL

• Two-words JMP, Jcc, JSR, JScc

• JSET, JCLR, JSSET, JSCLR

• Two-words MOVEM

B.4.1.4 At LA – 2
The following instructions should not start at address LA – 2:

• DO, DO FOREVER

MOTOROLA DSP56600FM/AD B-19
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• MOVE to/from {LA, LC, SP,SC, SSH, SSL,SZ, VBA, OMR}

• BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc

• MOVEM

• ANDI, ORI on MR

• BRKcc, ENDDO, REP

• STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

B.4.1.5 At LA – 1
The following instructions should not start at address LA – 1:

• DO, DO FOREVER

• MOVE to/from {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc

• MOVEM

• ANDI, ORI on MR

• BRKcc, ENDDO, REP

• STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

B.4.1.6 At LA
The following instructions should not start at address LA:

• Any Two-word instruction

• MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• MOVE from SSH, SSL

• BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

• BTST on SSH

• JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc

• MOVEM

• RESET

• RTI, RTS

B-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• ANDI, ORI on MR

• BRKcc, ENDDO, REP

• STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

B.4.2 General DO Restrictions

The following describes general restrictions on DO instructions:

• A DO loop should be initialized and aborted by using only the following
instructions: DO, ENDDO, and BRKcc.

• The LF and the FV bits in the Status Register (SR) should not be explicitly
changed by using the MOVE, BCHG, BSET, BCLR, ANDI, or ORI instructions.

• Proper DO loop operation is not guaranteed if an instruction sequence similar
to one of the sequences described below is used.

– SSH cannot be used as the source for the Loop-Count for a DO instruction

– The following instructions should not appear within four words before a
DO or DO FOREVER:

• BCHG, BCLR, BSET, MOVE on/to SSH,SSL

• BCHG, BCLR, BSET, MOVE on/to SP, SC

– The following instructions should not appear immediately before a DO or
DO FOREVER:

• MOVE from SSH

• BTST on SSH

• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SP, SC, SSH, SSL}

• JSR, JScc, JSSET, JSCLR to LA whenever LF is set

• BSR, BScc, to LA whenever LF is set

– The following instructions should not appear in a DO or DO FOREVER
loop:

• {JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc} to
LA

MOTOROLA DSP56600FM/AD B-21
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.4.2.1 ENDDO Restrictions
The instructions in the following list should not appear within four words before an
ENDDO instruction:

• BCHG, BCLR, BSET, MOVE on/to SSH,SSL

• BCHG, BCLR, BSET, MOVE on/to SP, SC

The instructions in the following list should not appear immediately before an
ENDDO instruction:

• ANDI, ORI on MR

• MOVE from SSH

• BTST on SSH

• BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

B.4.2.2 BRKcc Restrictions
The instructions in the following list should not appear immediately before a BRKcc
instruction:

• Every arithmetic instruction

• IFcc, Tcc

• BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

B.4.2.3 RTI and RTS Restrictions
The instructions in the following list should not appear within four words before an
RTI or RTS instruction:

• BCHG, BCLR, BSET, MOVE on/to SSH,SSL

• BCHG, BCLR, BSET, MOVE on/to SP, SC

The instructions in the following list should not appear immediately before an RTI
instruction:

• MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

• MOVE, BTST from/on SSH

• ANDI, ORI on {MR, CCR}

• ENDDO

B-22 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The instructions in the following list should not appear immediately before an RTS
instruction:

• MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

• MOVE, BTST from/on SSH

• ENDDO

B.4.3 SR Manipulation Restrictions

Changing values of bits in the Status Register (SR) should not be done by explicitly
using one of the MOVE, BCHG, BSET, BCLR instruction, but only by using the ANDI
or ORI instructions.

B.4.4 SP/SC and SSH/SSL Manipulation Restrictions

The instructions in List A should not be executed within four instructions before
executing any of the instructions in List B.

List A

• MOVE to (SP, SC)

• BCHG, BSET, BCLR on (SP, SC)

List B

• MOVE to/from {SSH,SSL}

• BTST, BCHG, BSET, BCLR on {SSH,SSL}

• JSET, JCLR, JSSET, JSCLR on {SSH,SSL}

B.4.5 Fast Interrupt Routines

The following instructions cannot be used in a fast interrupt routine:

• DO, DO FOREVER, REP

• ENDDO, BRKcc

MOTOROLA DSP56600FM/AD B-23
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Instruction Sequence Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• RTI, RTS

• STOP, WAIT

• TRAP, TRAPcc

• ANDI, ORI on {MR, CCR}

• MOVE from SSH

• BTST on SSH

• MOVE to {LA, LC, SP, SC, SSH, SSL}

• BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL}

B.4.6 REP Restrictions

The REP instruction can repeat any single-word instruction except the REP
instruction itself and any instruction that changes program flow. The following
instructions are not allowed to follow a REP instruction (cannot be repeated):

• REP, DO, DO FOREVER

• ENDDO, BRKcc

• JMP, Jcc, JCLR, JSET

• JSR, JScc, JSCLR, JSSET

• BRA, Bcc

• BSR, BScc

• RTS, RTI

• TRAP, TRAPcc

• WAIT, STOP

B.4.7 Stack Extension Restrictions

The following instructions, related to the operation of the on-chip hardware stack
extension, may not be used whenever the stack extension is enabled:

• MOVE to EP

• BCHG, BSET, BCLR on EP

B-24 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Peripheral Pipeline Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• MOVE to SC with a value greater than 15

The following instructions, related to the operation of the on-chip hardware stack
extension, may not be placed in the stack error vector locations whenever the stack
extension is enabled:

• JSR, JScc, JSCLR, JSSET

• BSR, BScc

B.5 PERIPHERAL PIPELINE RESTRICTIONS

The DSP56600 core is based on a highly optimized pipeline engine. Despite the
relatively deep pipeline (seven stages), the latency effects normally associated with
long pipelines have been kept to a minimum because most of these effects are
transparent to the user. Design techniques, such as forwarding and interlocking,
alleviate the need for the user to have a thorough knowledge of the machine’s
pipeline in order to avoid data dependencies. This knowledge becomes relevant only
when further optimization of the code is pursued. The cases where transparency
does not exist (e.g., the Pointer Restrictions) are detected by the assembler that
generates an appropriate warning message.

There is, however, an aspect of the machine’s pipeline that is exposed to the user and
this is the area of peripheral activity. This section describes the cases in which the
user must take precautions in order to achieve the desired functionality.

B.5.1 Polling a Peripheral Device for Write

When writing data to a peripheral device, there is a two-cycle pipeline delay until
any status bits affected by this operation are updated. For example, the user operates
a peripheral port using the polling technique. The user looks for the Data Empty flag
to be set. After this status bit is set, the user writes new data to the Transmit Data
register. If the user attempts to read the status bit within the next two cycles, due to
the pipeline delays associated with the peripheral operations, the flag is mistakenly
read as set. Therefore, the user assumes that the Transmit Data register is empty and
writes a new data word that in fact overwrites the previously written data. In order
to achieve the correct functionality, the user must wait at least two cycles before
attempting to read the Status Register following a write to the Transmit Data register.

Example B-3 shows the correct sequence for transmit operations.

MOTOROLA DSP56600FM/AD B-25
For More Information On This Product,

 Go to: www.freescale.com

Instruction Timing

Peripheral Pipeline Restrictions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 B.5.2 Writing to a Read-Only Register

Writing to a read-only register is an operation that normally has no effect, but if a
read operation from the same register is attempted within the following two cycles,
the value of the read data is the value of the data that was written, instead of the
unchanged data of the read-only register. In order to ensure that the correct data is
read after the write operation, the user must wait at least two cycles before
performing the read.

Example B-3 Providing a Wait for Proper Data Writes

send

movep x:(r0)+,x:STX ; send new data

nop ; pipeline delay

nop ; pipeline delay

poll

jclr #TDE,x:SCSR,poll ; wait for data empty

jmp send ; go to send data

B-26 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

APPENDIX C

BENCHMARK PROGRAMS

T T T

T T

P1 P3P2 P4

T T T

MOTOROLA DSP56600FM/AD C-1
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.1 BENCHMARK OVERVIEW . C-3
C.2 SET OF BENCHMARKS . C-4

C-2 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Benchmark Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.1 BENCHMARK OVERVIEW

The following benchmarks illustrate the source code syntax and programming
techniques for the DSP56600 core. Table C-1 lists the DSP benchmark programs
provided in this appendix.

Table C-1 List of Benchmark Programs

Benchmark Page Number
of Words

Clock
Cycles

Sample Rate or
Execution Time for

60 MHz Clock Cycle

Real Multiply C-5 3 4 67 ns

Parsing a Hoffman Code Data
Stream

C-50 7 2N + 8 33.3N + 133 ns

Real Update C-6 4 5 83 ns

N Real Updates C-7 9 2N + 8 33.3N + 133.6 ns

Real Correlation or Convolution
(FIR Filter)

C-8 6 N + 14 60/(N + 14) MHz

Real * Complex Correlation or
Convolution (FIR Filter)

C-10 9 2N + 10 30/(N + 5) MHz

Complex Multiply C-11 6 7 117 ns

N Complex Multiplies C-12 9 5N + 9 66.7N + 150.3 ns

Complex Update C-13 7 8 133 ns

N Complex Updates C-14 9 4N + 9 66.7N + 150.3 ns

Complex Correlation or
Convolution (FIR Filter)

C-17 16 4N + 13 30/(2N + 5.5) MHz

Nth Order Power Series (Real) C-19 10 2N + 11 33.3N + 183.7ns

2nd Order Real Biquad IIR Filter C-20 7 9 150.3 ns

N Cascaded Real Biquad IIR Filter C-21 10 5N + 10 12/(N + 2) MHz

N Radix-2 FFT Butterflies (DIT,
In-Place Algorithm)

C-22 12 8N + 9 133.6N + 150.3 ns

True (Exact) LMS Adaptive Filter C-24 15 3N + 16 60/(3N + 17) MHz

MOTOROLA DSP56600FM/AD C-3
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2 SET OF BENCHMARKS

The following benchmarks illustrate the source code syntax and programming
techniques for the DSP56600 core. The assembly language source is organized into
six columns, as shown in Table C-2.

The Label column is used for program entry points and end of loop indication. The
Opcode column indicates the Data ALU, Address ALU, or Program Controller
operation to be performed. The Opcode column must always be included in the
source code. The Operands column specifies the operands to be used by the opcode.
The X Bus Data specifies an optional data transfer over the X Bus and the addressing
mode to be used. The Y Bus Data specifies an optional data transfer over the Y Bus
and the addressing mode to be used. The Comment column is used for
documentation purposes and does not affect the assembled code. The P column
provides the number of Program words used by the operation, and should not be
included in the source code. The T column provides the number of clock cycles used
by the operation, and should not be included in the source code.

Delayed LMS Adaptive Filter C-27 13 3N + 12 60/(3N + 12) MHz

FIR Lattice Filter C-29 10 3N + 10 60/(3N + 10) MHz

All Pole IIR Lattice Filter C-31 12 4N + 8 30/(2N + 4) MHz

General Lattice Filter C-33 14 5N + 19 60/(5N + 19) MHz

Normalized Lattice Filter C-35 15 5N + 19 60/(5N + 19) MHz

[1 ¥ 3][3 ¥ 3] Matrix Multiplication C-37 13 14 233.8 ns

N Point 3 ¥ 3 2-D FIR Convolution C-38 19 11N2 +
8N + 7

60/(11N2 + 8N + 7)
MHz

Table C-2 Example of Assembly Language Source

Label Opcode Operands X Bus Data Y Bus Data Comment P T

FIR MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0 ;Do each tap 1 1

Table C-1 List of Benchmark Programs (Continued)

Benchmark Page Number
of Words

Clock
Cycles

Sample Rate or
Execution Time for

60 MHz Clock Cycle

C-4 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.1 Real Multiply

Equation C-1:

C.2.2 N Real Multiplies

Equation C-2:

Example C-1 Real Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move x:(r0),x0 y:(r4),y0 ; 1 1

mpyr x0,y0,a ; 1 1

move a,x:(r1) ; 1 2 i’lock

Totals 3 4

Table C-3 N Real Multiplies Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

Example C-2 N Real Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

c a b×=

c i() a i() b i()× i 1 2 … N, , ,==

MOTOROLA DSP56600FM/AD C-5
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.3 Real Update

Equation C-3:

do #N-1,end ; 2 5

mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0 ; 1 1

move x:(r0)+,x0 ; 1 1

end ;

move a,x:(r1)+ ; 1 1

Totals 7 2N + 8

Example C-3 Real Update

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move x:(r0),x0 y:(r4),y0 ; 1 1

move x:(r1),a ; 1 1

macr x0,y0,a ; 1 1

move a,x:(r2) ; 1 2 i’lock

Totals 4 5

Example C-2 N Real Multiplies (Continued)

d c a b×+=

C-6 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.4 N Real Updates

Equation C-4:

Table C-4 N Real Updates Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

r5 d(i)

Example C-4 N Real Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR,r5 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a ; 1 1

move x:(r1)+,b ; 1 1

do #N/2,end ; 2 5

macr x0,y0,a x:(r0)+,x1 y:(r4)+,y1 ; 1 1

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a a,y:(r5)+ ; 1 1

move x:(r1)+,b b,y:(r5)+ ; 1 1

end

Totals 9 2N + 8

d i() c i() a i() b i()×+= i 1 2 … N, , ,=

MOTOROLA DSP56600FM/AD C-7
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.5 Real Correlation or Convolution (FIR Filter)

Equation C-5:

Table C-5 Real Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

Example C-5 Real Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4 ;

move #N – 1,m4 ;

move m4,m0 ;

movep y:input,y:(r4) ; 1 2

clr a x:(r0)+,x0 y:(r4)–,y0 ; 1 1

rep #N – 1 ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)–,y0 ; 1 1

macr x0,y0,a (r4)+ ; 1 1

movep a,y:output ; 1 2 i’lock

Totals 6 N + 14

c n() a i() b n i–()×[]
i 0=

N 1–

∑=

C-8 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table C-6 Real Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 a(i)

r1 b(i)

Example C-6 Real Correlation or Convolution (FIR Filter)

Lab
el

Opcod
e Operands X Bus Data Y Bus

Data Comment P T

move #AADDR,r0

move #BADDR,r1 ;

move #N-1,m1 ;

move m1,m0 ;

movep y:input,x:(r1) ; 1 2

clr a x:(r0)+,x1 ; 1 1

do #N-1,end ; 2 5

move x:(r1)-,x0 ; 1 1

mac x0,x1,a x:(r0)+,x1 ; 1 1

end ;

move x:(r1)-,x0 ; 1 1

macr x0,x1,a (r1)+ ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 9 2N + 10

MOTOROLA DSP56600FM/AD C-9
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.6 Real * Complex Correlation or Convolution (FIR Filter)

Equation C-6:

Table C-7 Real * Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 b(i)

r1 cr(n) ci(n)

Example C-7 Real * Complex Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #N-1,m4 ;

move m4,m0 ;

movep y:input,x:(r4) ; 1 2

clr a x:(r0),x0 ; 1 1

clr b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

do #N-1,end ; 2 5

mac x0,x1,a x:(r0),x0 ; 1 1

mac y0,x1,b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

cr n() jci n() ar i() jai i()+() b n i–()×[]
i 0=

N 1–

∑= =

cr n() ar i() b n i–()×
i 0=

N 1–

∑= ci n() ai i() b n i–()×
i 0=

N 1–

∑=

C-10 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.7 Complex Multiply

Equation C-7:

end

macr x0,x1,a ; 1 1

macr y0,x1,b (r4)+ ; 1 1

move a,x:(r1) ; 1 1

move b,y:(r1) ; 1 1

Totals 11 2N + 11

Table C-8 Complex Multiply Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

Example C-8 Complex Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

Example C-7 Real * Complex Correlation or Convolution (FIR Filter) (Continued)

cr jci+ ar jai+() br jbi+()×=

cr ar br ai bi×–×= ci ar bi ai br×+×=

MOTOROLA DSP56600FM/AD C-11
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.8 N Complex Multiplies

Equation C-8:

move x:(r0),x1 y:(r4),y0 ; 1 1

mpy y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b ; 1 1

mpy x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r1) ; 1 1

move a,x:(r1) ; 1 2 i'lock

Totals 6 7

Table C-9 N Complex Multiplies Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r5 cr(i) ci(i)

Example C-9 N Complex Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR-1,r5 ;

Example C-8 Complex Multiply (Continued)

cr i() jci i()+ ar i() jai i()+() br i() jbi i()+()×= i 1 2 … N, , ,=

cr i() ar i() br i() ai i() bi× i()–×=

ci i() ar i() bi i() ai i() br×+× i()=

C-12 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.9 Complex Update

Equation C-9:

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r5),a ; 1 1

do #N,end ; 2 5

mpy y0,x1,b x:(r4)+,x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ ; 1 1

mpy -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

end

move a,x:(r5) ; 1 2 i'lock

Totals 9 4N + 9

Table C-10 Complex Update Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

r2 dr di

Example C-10 Complex Update

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

Example C-9 N Complex Multiplies (Continued)

dr jdi+ cr jci+() ar jai+() br jbi+()×+=

dr cr ar br ai bi×–×+= di ci ar bi ai br×+×+=

MOTOROLA DSP56600FM/AD C-13
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.10 N Complex Updates

Equation C-10:

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move y:(r1),b ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

mac y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b x:(r1),a ; 1 1

mac x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r2) ; 1 1

move a,x:(r2) ; 1 2 i'lock

Totals 7 8

Table C-11 N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ; ai(i)

r4 br(i) ; bi(i)

r1 cr(i) ; ci(i)

r5 dr(i) ; di(i)

Example C-10 Complex Update (Continued)

dr i() jdi i()+ cr i() jci i()+() ar i() jai i()+() br i() jbi i()+()×+=

dr i() cr i() ar i() br i() ai i() bi× i()–×+=

di i() ci i() ar i() bi i() ai i() br× i()+×+=

i 1 2 … N, , ,=

C-14 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-11 N Complex Updates

Lab
el

Opcod
e Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r0)+,x1 y:(r4)+,y0 ; 1 1

move x:(r1)+,b y:(r5),a ; 1 1

do #N,end ;2 5 ; 2 5

mac y0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

macr –x0,y1,b x:(r1)+,a a,y:(r5)+ ; 1 1

mac x0,y0,a x:(r1)+,b b,y:(r5)+ ; 1 2 i'lock

macr x1,y1,a x:(r0)+,x1 y:(r4)+,y0 ; 1 1

end

move a,y:(r5)+ ; 1 2 i'lock

Totals 9 5N + 9

Table C-12 N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

r5 dr(i) di(i)

MOTOROLA DSP56600FM/AD C-15
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-12 N Complex Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r5),a ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

do #N,end ; 2 5

mac y0,x1,b a,x:(r5)+ y:(r0)+,y1 ; 1 1

macr x0,y1,b x:(r1)+,a ; 1 1

mac -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

end

move a,x:(r5) ; 1 1

Totals 11 5N + 9

C-16 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.11 Complex Correlation or Convolution (FIR Filter)

Equation C-11:

Table C-13 Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

Example C-13 Complex Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1

move #N-1,m4

move #m4,m0

movep y:input,x:(r4) 1 2

movep y:input,y:(r4) 1 2

clr a ; 1 1

cr n() jci n()+ ar i() jai i()+() br n i–() jbi n i–()+()×[]
i 0=

N 1–

∑=

cr n() ar i() br n i–() ai i() bi n i–()×–×[]
i 0=

N 1–

∑=

ci n() ar i() bi n i–() ai i() br n i–()×+×[]
i 0=

N 1–

∑=

MOTOROLA DSP56600FM/AD C-17
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

clr b x:(r0),x1 y:(r4),y0 ; 1 1

do #N-1,end ; 2 5

mac y0,x1,b x:(r4)-,x0 y:(r0)+,y1 ; 1 1

mac x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

mac -y0,y1,a x:(r0),x1 y:(r4),y0 ; 1 1

end

mac y0,x1,b x:(r4),x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

macr -y0,y1,a ; 1 1

move b,y:(r1) ; 1 1

move a,x:(r1) ; 1 1

Totals 16 4N + 13

Example C-13 Complex Correlation or Convolution (FIR Filter) (Continued)

C-18 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.12 Nth Order Power Series (Real)

Equation C-12:

Table C-14 Nth Order Power Series (Real) Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b

r1 c

Example C-14 Nth Order Power Series (Real)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4

move #CADDR,r1

move x:(r0)+,a ; 1 1

move y:(r4),x0 1 1

mpyr x0,x0,b x:(r0)+,y0 ; 1 1

move b,y1 ; 1 2 i'lock

do #N-1,end ; 2 5

mac y0,x0,a x:(r0)+,y0 ; 1 1

mpyr x0,y1,b b,x0 ; 1 1

end

macr y0,x0,a ; 1 1

move a,x:(r1) ; 1 2 i'lock

Totals 10 2N + 11

c a i() bi×[]
i 0=

N 1–

∑=

MOTOROLA DSP56600FM/AD C-19
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.13 2nd Order Real Biquad IIR Filter

Equation C-13:

Table C-15 2nd Order Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2), w(n-1)

r4 a2/2, a1/2, b2/2, b1/2

Example C-15 2nd Order Real Biquad IIR Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

ori #$08,mr ;

move #AADDR,r0 ;

move #BADDR,r4 ;

move #1,m0

move #3,m4

movep y:input,a ; 1 1

rnd a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0) y:(r4),y0 ; 1 2 i'lock

macr y0,x1,a ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 7 9

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=

C-20 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.14 N Cascaded Real Biquad IIR Filter

Equation C-14:

Table C-16 N Cascaded Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2)1, w(n-1)1, w(n-2)2, ...

r4 (a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...

Example C-16 N Cascaded Real Biquad IIR Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

ori #$08,mr ;

move #AADDR,r0 ;

move #BADDR,r4 ;

move #(2N-1),m0 ;

move #(4N-1),m4 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

movep y:input,a ; 1 1

do #N,end ; 2 5

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0)+ y:(r4)+,y0 ; 1 2 i’lock

mac y0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

end

rnd a ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 10 5N + 10

w n() 2⁄ x n() 2⁄ a1() 2⁄ w n 1–() a2() 2⁄–× w n 2–()×–=

y n() 2⁄ w n() 2⁄ b1() 2⁄ w n 1–() b2() 2⁄+× w n 2–()×+=

MOTOROLA DSP56600FM/AD C-21
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)

Equation C-15:

Table C-17 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r1 br(i) bi(i)

r6 cr(i) ci(i)

r4 ar’(i) ai’(i)

r5 br’(i) bi’(i)

Example C-17 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r1 ;

move #CADDR,r6 ;

move #ATADDR,r4 ;

move #BTADDR-1,r5 ;

move x:(r1),x1 y:(r6),y0 ; 1 1

move x:(r5),a y:(r0),b 1 1

do #N,end ; 2 5

mac y0,x1,b x:(r6)+n,x0 y:(r1)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ y:(r0),a ; 1 1

subl b,a ; 1 1

move x:(r0),b b,y:(r4) ; 1 1

ar' ar cr br ci bi×–×+= br' ar cr br ci bi×+×– 2 ar a–× r'= =

ai' ai ci br cr bi×+×+= bi' ai ci br cr bi×–×– 2 ai a–× i'= =

C-22 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mac x0,x1,b x:(r0)+,a a,y:(r5) ; 1 1

macr -y0,y1,b x:(r1),x1 y:(r6),y0 ; 1 1

subl b,a b,x:(r4)+ y:(r0),b ; 1 2 i'lock

end

move a,x:(r5)+ ; 1 2 i'lock

Totals 12 8N + 9

Example C-17 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) (Continued)

MOTOROLA DSP56600FM/AD C-23
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.16 True (Exact) LMS Adaptive Filter

Figure C-1 True (Exact) LMS Adaptive Filter

Table C-18 System Equations

True LMS Algorithm Delayed LMS Algorithm

e(n) = d(n) – H(n) × (n) e(n) = d(n) – H(n) × (n)

H(n + 1) = H(n) + uX(n)e(n) H(n + 1) = H(n) + uX(n – 1)e(n – 1)

Table C-19 LMS Algorithms

True LMS Algorithm Delayed LMS Algorithm

Get input sample Get input sample

Save input sample Save input sample

x(n)—Input sample at time n
d(n)—Desired signal at time n
f(n)—FIR filter output at time n
H(n)—Filter coefficient vector at time n. H = {h0,h1,h2,h3}
X(n)—Filter state variable vector at time N, X = {x(n),x(n – 1),x(n – 2),x(n – 3)}
u—Adaptation Gain
NTAPS—Number of coefficient taps in the filter. For this example, NTAPS = 4

x(n) x(n-1) x(n-2) x(n-3)

z-1 z-1 z-1

d(n)

f(n)

e(n)

h(1) h(2)
h(3)h(0)

+

+

AA0816

C-24 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Do FIR Do FIR

Get d(n), find e(n) Update coefficients

Update coefficients Get d(n), find e(n)

Output f(n) Output f(n)

Shift vector X Shift vector X

Table C-20 True (Exact) LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3)

r4, r5 h(0), h(1), h(2), h(3)

Example C-18 True (Exact) LMS Adaptive Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #-2,n0 ;

move n0,n4

move #NTAPS-1,m0 ;

move m0,m4 ;

move m0,m5 ;

move #AADDR+NTAPS-1,r0 ;

move #BADDR,r4 ;

move r4,r5 ;

_getsmp

movep y:input,x0 input sample 1 1

clr a x0,x:(r0)+ y:(r4)+,y0 ; save 1 1

;X(n), get h0

Table C-19 LMS Algorithms (Continued)

True LMS Algorithm Delayed LMS Algorithm

MOTOROLA DSP56600FM/AD C-25
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

rep #NTAPS-1 ; do fir 1 5

; do taps

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

; last tap

macr x0,y0,b ; 1 1

; Get d(n), subtract fir output, multiply by “u”,

; put the result in y1.

; This section is application dependent.

move x:(r0)+,x0 y:(r4)+,a 1 1

movep b,y:output ; output fir if desired 1 1

move y:(r4)+,b 1 1

do #NTAPS/2,cup ; 2 5

macr x0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

macr x0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

tfr y0,a a,y:(r5)+ 1 1

tfr y0,b b,y:(r5)+ 1 1

cup

move x:(r0)+n0,x

0

y:(r4)+n4,y

0

; 1 1

; continue looping (jmp _getsmp)

Total 15 3N + 16

Example C-18 True (Exact) LMS Adaptive Filter (Continued)

C-26 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.17 Delayed LMS Adaptive Filter

• Error signal is in y1

• FIR sum in a = a + h(k)old * x(n – k)

• h(k)new in b = h(k)old + error * x(n – k – 1)

Table C-21 Delayed LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3), x(n – 4)

r5, r4 dummy, h(0), h(1), h(2), h(3)

Example C-19 Delayed LMS Adaptive Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #STATE,r0 ; start of X

move #2,n0 ; used for pointer update

move #NTAPS,m0 ; number of filter taps

move #COEF+1,r4 ; start of H

move m0,m4 ; number of filter taps

move #COEF,r5 ; start of H-1

move m4,m5 ; number of filter taps

movep y:input,a ; get input sample 1 1

move a,x:(r0) ; save input sample 1 1

clr a x:(r0)+,x0 ; x0<-x(n) 1 1

move x:(r0)+,x1 y:(r4)+,y0 1 1

; x1<-x(n-1); y0<-h(0)

do #TAPS/2,lms ; 2 5

;a<-h(0)*x(n) b<-h(0) Y<-dummy

MOTOROLA DSP56600FM/AD C-27
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mac x0,y0,a y0,b b,y:(r5)+ 1 2 i’lock

;b<-H(0)=h(0)+e*x(n-1), x0<-x(n-2), y0<-h(1)

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;a<-a+h(1)*x(n-1); b<-h(1); Y(0)<-H(0)

mac x1,y0,a y0,b b,y:(r5)+ ; 1 2 i’lock

;b<-H(1)=h(1)+e*x(n-2); x1<-x(n-3); y0<-h(2)

macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ; 1 1

lms

movep a,y:output 1 1

move b,y:(r5)+ ; Y<-last coef 1 1

move (r0)-n0 ; update pointer 1 1

Totals 13 3N + 12

Example C-19 Delayed LMS Adaptive Filter (Continued)

C-28 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.18 FIR Lattice Filter

Figure C-2 FIR Lattice Filter

Table C-22 FIR Lattice Filter Memory Map

Pointer X memory Y memory

r0 s1, s2, s3, sx

r4 k1, k2, k3

Input

z-1 z-1 z-1
s2s1 s3 sx

Output

k1

k1

k2

k2

k3

k3

+ + +

+ + +

B (in)

t't

Single Section: t' = s*k + t, t' → t
s' = t*k + s

z-1 z-1 z-1
s2 s

k1

k1

k2

k2

+ + +

+ + +
s1 s'

k

k

AA0817

MOTOROLA DSP56600FM/AD C-29
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-20 FIR Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #S,r0 ; point to s

move #N,m0 ; N = number of k

coefficients

move #K,r4 ; point to k coefficients

move #N-1,m4 ; mod for k's

movep y:datin,b ; get input 1 1

move b,a ; save first state 1 1

move x:(r0),x0 y:(r4)+,y0 ; get s, get k 1 1

do #N,_elat ; 2 5

macr x0,y0,b b,y1 ; s*k+t,copy t

; for mul
1 1

tfr x0,a a,x:(r0)+ ; save s',

; copy next s
1 1

macr y1,y0,a x:(r0),x0 y:(r4)+,y0 ; t*k+s, get s,

; get k
1 1

_elat

move a,x:(r0)+ y:(r4)-,y0 ; adj r4,

; dummy load
1 1

movep b,y:datout ; output sample 1 1

Totals 10 3N + 10

C-30 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.19 All Pole IIR Lattice Filter

Figure C-3 All Pole IIR Lattice Filter

Table C-23 All Pole IIR Lattice Filter Memory Map

Pointer X memory Y memory

r0 k3, k2, k1

r4 s3, s2, s1

Example C-21 All Pole IIR Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #k+N-1,r0 ;point to k

move #N-1,m0 ;number of

k's-1

move #STATE,r4 ;point to filter states

move m0,m4 ;mod for states

move #1,n4 ;

t t'

s'

Single Section: t' = t – k*s
s' = s + k*t'
t'→ t

Input Output

z-1 z-1
s2 s1

– k3
k2

k2

+ + +

+ +
s3

k1

– k1

z-1

s

+

+

k

– k

z-1
AA0818

MOTOROLA DSP56600FM/AD C-31
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

movep y:datin,a y:(r4)+,b ;get input 1 1

move x:(r0)-,x0 y:(r4)+,y0 ;get s, get k 1 1

macr -x0,y0,a x:(r0)-,x0 y:(r4),y0 ;s*k+t 1 1

do #N-1,_endl

at

do sections 2 5

macr -x0,y0,a y:(r4)+,y1 ; 1 1

tfr y1,b a,x1 b,y:(r4) ; 1 2 i'lock

macr x1,x0,b x:(r0)-,x0 y:(r4),y0 1 1

_endlat

movep a,y:datout 1 1

move x:(r0)+,x0 y:(r4)+,r0 ;output sample 1 1

move b,y:(r4)+ ;save s' 1 1

;save last s', update r4

move a,y:(r4) 1 1

Totals 12 4N + 8

Example C-21 All Pole IIR Lattice Filter (Continued)

C-32 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.20 General Lattice Filter

Figure C-4 General Lattice Filter

Table C-24 General Lattice Filter Memory Map

Pointer X memory Y memory

r0 k3, k2, k1, w3, w2, w1, w0

r4 s4, s3, s2, s1

t t'

s'

Input

w0 Output

z-1 z-1

+

+

w2

k1

– k1

z-1

s

+

+

k

– k

z-1

+

+

k2

– k2

+

+

k3

– k3

+
w3

w1

w

Single Section: t' = t – k*s
s' = s + k*t'
t' → t
Output = ∑(w*s')

AA0819

MOTOROLA DSP56600FM/AD C-33
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-22 General Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #K,r0 ;point to coefficients

move #2*N,m0 ;mod 2*(# of k's)+1

move #STATE,r4 ;point to filter states

move #-2,n4

move #N,m4 ;mod on filter states

movep y:datin,a ;get input 1 1

move x:(r0)+,x0 y:(r4)-,y0 1 1

do #N,_endlat 2 5

macr -x0,y0,a ; 1 1

tfr y0,b a,x1 b,y:(r4)+n4 ; 1 2 i'lock

macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ; 1 1

_endlat

move b,y:(r4)+ ;save s' 1 2 i'lock

clr a a,y:(r4)+ ;save last s',

; update r4
1 1

move y:(r4)+,y0 1 1

rep #N ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;s*w+out,

; get s, get w
1 1

macr x0,y0,a ;last mac 1 1

movep a,y:datout ;output sample 1 2 i’lock

Totals 14 5N + 19

C-34 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.21 Normalized Lattice Filter

Figure C-5 Normalized Lattice Filter

Table C-25 Normalized Lattice Filter Memory Map

Pointer X memory Y memory

r0 q2, k2, q1, k1, q0, k0, w3, w2, w1, w0

r4 sx, s2, s1, s0

t t'

Input

Output

w2

+

+

k – k

z-1

+
w3

w1

w

q

u' u
q

Single Section: t' = t*q - k*s
u' = t*k + s*q
t' → t

Output = ∑(w*u')

+

+

k2 – k2

z-1

q2

q2

+

+

k1 – k1

z-1

q1

q1

+

+

k0 – k0

z-1

q0

q0

w0

AA0820

MOTOROLA DSP56600FM/AD C-35
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-23 Normalized Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #COEF,r0 ; point to

; coefficients

move #3*N,m0 ; mod on

; coefficients

move #STATE+1,r4 ; point to

; state variables

move #N,m4 ; mod on filter

; states

movep y:datin,y0 ; get input sample 1 1

move x:(r0)+,x1 ; get q in the

; table
1 1

do #N,_elat 2 5

mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ; q * t,get k,get s 1 1

macr -x0,y1,a b,y:(r4)+ ; q * t - k * s,

; save new s
1 1

mpy x0,y0,b ; k * t 1 1

macr x1,y1,b x:(r0)+,x1 a,y0 ; k * t + q * s

; get next q,set t'
1 1

_elat

move b,y:(r4)+ ; save second

; last state
1 2 i'lock

move a,y:(r4)+ ; save last state 1 1

clr a y:(r4)+,y0 ; clear a, get

; first state
1 1

rep #N 1 5

mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 ; fir taps 1 1

macr x1,y0,a (r4)+ ; round,

; adj pointer
1 1

movep a,y:datout ; output sample 1 2 i'lock

Total 15 5N + 19
C-36 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.22 [1 × 3][3 × 3] Matrix Multiplication

Example C-24 [1 × 3][3 × 3] Matrix Multiplication

Label Opcode Operands X Bus Data Y Bus Data Comment P T

_init

move #MAT_A,r0 ;point to A matrix

move #MAT_B,r4 ;point to B matrix

move #MAT_X,r1 ;output X matrix

move #2,m0 mod 3

move #8,m4 ;mod 9

move m0,m1 ;mod 3

_start

move x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

move a,y:(r1)+ 1 1

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

move b,y:(r1)+ 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a 1 1

move a,y:(r1)+ 1 2 i’lock

_end

Totals 13 14

MOTOROLA DSP56600FM/AD C-37
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.23 N Point 3 × 3 2-D FIR Convolution

The two dimensional FIR uses a [3 × 3] coefficient mask:

 c(1,1) c(1,2) c(1,3)

 c(2,1) c(2,2) c(2,3)

 c(3,1) c(3,2) c(3,3)

stored in Y memory in the order:

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3).

The image is an array of 512 × 512 pixels. To provide boundary conditions for the FIR
filtering, the image is surrounded by a set of 0s such that the image is actually stored
as a 514 × 514 array.

The image (with boundary) is stored in row major storage. The first element of the
array image(,) is image(1,1) followed by image(1,2). The last element of the first row
is image(1,514) followed by the beginning of the next column image(2,1). These are
stored sequentially in the array “im” in X memory:

• Image(1,1) maps to index 0, image(1,514) maps to index 513;

• Image(2,1) maps to index 514 (row major storage).

Figure C-6 FIR Filtering

Image Area
[512x512] 51

4

 Area of zeros

514

AA0821

C-38 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Although many other implementations are possible, this is a realistic type of image
environment where the actual size of the image may not be an exact power of 2.
Other possibilities include storing a 512 × 512 image but computing only a 511 × 511
result, computing a 512 × 512 result without boundary conditions but throwing away
the pixels on the border, etc.

Table C-26 N Point 3 × 3 2-D FIR Convolution Memory Map

Pointer

r0 image(n,m)
image(n,m+1)
image(n,m+2)

r1 image(n+514,m)
image(n+514,m+1)
image(n+514,m+2)

r2 image(n+2*514,m)
image(n+2*514,m+2)
image(n+2*514,m+3)

r4 FIR coefficients

r5 output image

Example C-25 N Point 3 × 3 2-D FIR Convolution

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #MASK,r4 ;point to coefficients

move #8,m4 ;mod 9

move #IMAGE,r0 ;top boundary

move #IMAGE+514,r1 ;left of first pixel

;left of first pixel 2nd row

move #IMAGE+2*514,r2 ;

;adjust. for end of row

move #2,n1 ;

move n1,n2 ;

move #IMAGEOUT,r5 ;output image

MOTOROLA DSP56600FM/AD C-39
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;first element, c(1,1)

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

do #512,row ; 2 5

do #512,col ; 2 5

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1

mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1

mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1

mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1

mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1

mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

; preload, get c(1,1)

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;output image sample

move a,y:(r5)+ ; 1 2 i'lock

col

; adjust pointers for frame boundary, adj r0,r5 w/dummy loads

move x:(r0)+,x0 y:(r5)+,y1 ; 1 1

; adj r1,r5 w/dummy loads

move x:(r1)+n1,x0 y:(r5)+,y1 ; 1 1

; adj r2 (dummy load y1), preload x0 for next pass

move x:(r0)+,x0 ; 1 1

move y:(r2)+n2,y1 1 1

row

Total P = 19
T = 11N2 + 8N + 7

Example C-25 N Point 3 × 3 2-D FIR Convolution (Continued)
C-40 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.24 Viterbi Add-Compare-Select (ACS)

This routine implements Viterbi algorithm kernel. The algorithm is parametric and
fits any valid values of Trellis states number and any branch metrics.

Given Branch Metric value (BrM), ACS should perform:

• Fetch path metric of state(i) – Si.

• Fetch path metric of state(j) – Sj.

• Add BrM to Si.

• Subtract BrM from Sj.

• Compare and select the greater of the two:
Next Sk = Max (Si + BrM, S – BrM).

• Store the result in next-state path-metric memory location.

• Update the state’s Trellis history with the selection bit.

• Perform the similar task for:
Next Sk+1 = Max (Si – BrM, Sj + BrM).

Figure C-7 Viterbi Butterfly

Example of Viterbi Butterfly:

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000

111

000

111

State

Note: Branch metric of XXX = – (Branch metric of bit inverse of XXX)
e.g. Branch metric (001) = – (Branch metric (110)).

16-State R=1/3 Trellis Structure - Butterfly Pairs

i

j

k

k + 1

AA0822

MOTOROLA DSP56600FM/AD C-41
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure C-8 ACS Butterfly—First Half

Path Metric
RAM

MetricA TrellisA

Trellis
RAM

b1: MetricB b0: TrellisB

move l:(r5) + n5,a :

add y1,a l:(r5) – n5,b :
MetricA + y1 TrellisA

sub y1,b :
MetricB– y1 TrellisB

max a,b l:(r5) + n5,a :
b: max(a,b)

 Survivor Metric
a1: MetricA a0: TrellisA

asl b b1,x:(r4)
move b0,y:(r4) + Survivor Metric Trellis << 1 + 0

b0b1

b0b1

b0b1

a0a1

a0a1

r5

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#0,l:(r4) +

Fetch from RAM

Fetch from RAM

Branch Metric

b0b1

a0a1

A

A

B

B A

B

Y1
$0

$f

X-space Y-space

X-space Y-space$10

$1f

B

Survivor Trellis

AA0823

C-42 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure C-9 ACS Butterfly—Second Half

Example C-26 Viterbi Add-Compare-Select (ACS)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; r0 - R/W pointer to branch-metric table.

; r4 - write pointer - path metric Present State tables.

; r5 - read pointer - path metric tables Previous State.

; n5 - bit-count value, used for decode loop.

; y1 - given Brm for ACS loop

; x0 - tmp register

ComputeBrMtrc: ;

; for the general case, assuming that the branch metrics are

; calculated and prepared as table at y:(r0) location

move y:(r0)+,y1 1

; load first branch metric.

move l:(r5)+n5,a 1

; a0 <- trellis, a1 <- PathMetr

; main ACS loop

Survivor Metric Trellis << 1 + 1
b0b1

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#1,l:(r4) +

move #1,a0
addl a,b b1,x:(r4)
move b0,y:(r4) +

X-space Y-space$10

$1f

B

b1: MetricB b0: TrellisB
sub y1,a l:(r5) – n5,b :

MetricA – y1 TrellisA

add y1,b :
MetricB + y1 TrellisB

max a,b :
b: max(a,b)

Survivor Metric

b0b1

b0b1

a0a1

Fetch from RAM

b0b1

A

B

B

B

Survivor Trellis

AA0824

MOTOROLA DSP56600FM/AD C-43
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

do #NoOfAcsButt,NextStage ; 2

add y1,a l:(r5)-n5,b 1

; a=a+y1, b0 <- trellis, b1 <- PthMt

sub y1,b ; b=b-y1 1

max a,b l:(r5)+n5,a 1

; b=max(a,b) | refetch a

vsl b,#0,l:(r4)+ 1

; store survivor path metric & trellis

sub y1,a l:(r5)-n5,b 1

; a=a-y1 | refetch b

add y1,b x:(r5)+,x0 y:(r0)+,y1 1

; b=b+y1 | increment r5 | load next brm.

max a,b l:(r5)+n5,a 1

; b=max(a,b) | fetch next a

vsl b,#1,l:(r4)+ 1

; store survivor path metric & trellis

NextStage:

move #branch_tbl,r0 2

; set r0 to start of br. metric table.

Total 14

Example C-26 Viterbi Add-Compare-Select (ACS) (Continued)

C-44 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.25 Parsing a Data Stream

This routine implements parsing of a data stream for MPEG audio. The data stream,
composed by concatenated words of variable length, is allocated in consecutive
memory words. The word lengths reside in another memory buffer. The routine
extracts words from the data stream according to their length. Two consecutive
words are read from the stream buffer and are concatenated in the accumulator.
Using bit offset and the specified length, a field of variable length can be extracted.
The decision whether to load a new memory word into the accumulator from the
stream is determined when bit offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:

• r0—pointer to the buffer in X memory containing the variable length stream

• r5—pointer to buffer in Y memory where the length of each field is stored

• r4—pointer to a location that stores the “bits offset”, number of bits left to be
consumed, 48 initially

• r3—pointer to a location storing the constant 24

• r1—used as temporary storage (no need to initialize)

• y1—stores the length of the field to be extracted

• x0—stores 24

Table C-27 Parsing Data Stream Memory Map

Pointer X memory Y mem

r0 stream buffer

r5 length buffer

r4 “bits offset”

r3 ‘24‘

MOTOROLA DSP56600FM/AD C-45
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-27 Parsing Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ; this is the initialization code

move #stream_buffer,r0

move #length_buffer,r5

move #bits_offset,r4

move #boundary,r3

move #>48,b

move #>24,x0

move x0,x:(r3) b,y:(r4)

Get_bits

; bring length of next field and ‘24‘

move x:(r3),x0 y:(r5)+,y1 1 1

; bring word for parsing and “bits offset”

move x:(r0)+,a y:(r4),b 1 1

; bring next word for parsing, point back to first word

move x:(r0)-,a0 1 1

;calculate new “bits offset”, r1 points to current word

sub y1,b r0,r1 1 1

; save “bits offset” in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; extract the field according to b, place it in a

extract b1,a,a 1 1

; restore “bits offset”, r0 points to next word

C-46 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

tfr x1,b (r0)+ 1 1

; compare “bits offset” to 24, extracted word to a1

cmp x0,b a0,a 1 1

; if “bits offset” is less or equal 24 another word is

needed

; update “bits offset” and point to next word

add x0,b ifle 1 1

tgt r1,r0 1 1

;save “bits field” in memory

move b1,y:(r4) 1 1

Totals 12 13

Example C-27 Parsing Data Stream (Continued)

MOTOROLA DSP56600FM/AD C-47
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.26 Creating a Data Stream

This routine creates a data stream for MPEG audio. Words of variable length are
concatenated and stored in consecutive memory words. The words for generating
the stream are allocated in a memory buffer, and are aligned to the right. The word
lengths reside in another memory buffer. The word and its length are loaded for
insertion. A word is read from the stream buffer into the accumulator. Using a bit
offset and the specified length, a field of variable length is inserted into the
accumulator. The accumulator is stored back containing the new concatenated field.
The decision whether to read a new word from the stream is determined when bit
offset overflow to the LSP of the accumulator.

The following describes the pointers and registers used by the routine:

• r0—pointer to a buffer in X memory, containing the variable length
codes—the code is right-aligned at each location

• r2—pointer to a buffer in X memory containing the stream generated

• r4—pointer to a buffer in Y memory where the actual length of each field is
stored

• r3—pointer to a location that stores the “bits offset,” the number of bits left to
be consumed, 48 initially

• r5—pointer to a location storing the constant 24

• r1—used as temporary storage (no need to initialize)

• x0—stores the current word to be inserted

• y1—stores the length of the code brought in x0

• y0—stores 24

Table C-28 Creating Data Stream Memory Map

Pointer X memory Y memory

r0 data buffer

r2 stream buffer

r4 length buffer

r3 “bits offset”

r5 24

C-48 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example C-28 Creating Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #data_buffer,r0

move #stream_buffer,r2

move #length_buffer,r4

move #bits_offset,r3

move #boundary,r5

move #>48,b

move #>24,y0

move b,x:(r3) y0,y:(r5)

Put_bits

;bring code and its length

move x:(r0)+,x0 y:(r4)+,y1 1 1

;bring “bits offset” and ‘24‘

move x:(r3),b y:(r5),y0 1 1

; calculate new “bits offset”, bring current word

; from stream buffer

sub y1,b x:(r2),a 1 1

; save “bits offset” in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; insert the field according to b, place it in a

insert b1,x0,a 1 1

; restore “bits offset”, r1 points to current word

tfr x1,b r2,r1 1 1

MOTOROLA DSP56600FM/AD C-49
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C.2.27 Parsing a Hoffman Code Data Stream

This routine implements the parsing of a Hoffman code data stream. The routine
extracts a bit field from the stream. Two consecutive words are brought to the
accumulator from the stream buffer. An address word is extracted using a bit offset
and a field length. The field length is determined by the number of bits needed by the
address of the two Hoffman code lookup tables. A word is loaded from the first
lookup table. If the hit bit in the word is not set, then a field of variable length is
extracted. The length of the extracted field is specified in the length field in the word.
The bit offset is updated according to the length of the extracted word.

If the hit bit in the word is set, a new address word is read from the stream. A word is
brought from the second lookup table. The bit field is extracted according to the same
guidelines.

;compare “bits offset” to 24, send new word to stream buffer

cmp y0,b a1,x:(r2)+ 1 1

; send a0 to next location in stream buffer in case of

; crossing boundary

move a0,x:(r2) 1 2

; if “bits offset” is less or equal 24 then update

; “bits offset” and point to the next word in stream buffer

add y0,b ifle 1 1

tgt r1,r2 1 1

;save “bits offset” in memory

move b1,y:(r4) 1 1

Totals 12 14

Example C-28 Creating Data Stream (Continued)

C-50 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The flow chart in Figure C-10 demonstrates the parsing process:

The following describes the pointers and registers used by the routine:

• r0—pointer to the buffer in X memory containing the stream

• r1—used as temporary storage (no need to initialize)

• r3—pointer to buffer in Y memory where the extracted fields are stored

• r5—pointer to a location that stores the “bits offset”, number of bits left to be
consumed, 48 initially

• r2—pointer to the right table

• r6—pointer to the first lookup table

• r7—pointer to the second lookup table

• r4—pointer to constants

Figure C-10 Parsing Process

Table C-29 Parsing Hoffman Code Data Stream Memory Map

pointer X memory Y memory

r0 stream buffer

r3 extracted data buffer

r5 “bits offset”

Concatenated Two Consecutive Words From Stream Buffer

1st
Lookup
Table

2nd
Lookup
Table

Address Word

Bit Offset

Symbol Field Length FieldHit Bit

Symbol Field Length Field

Extracted
Field

Read Word From 1st Table
If Hit Was Not Set In Previous
Reading

Read Word From 2nd Table
If Hit Was Set In Previous
Reading

AA0825

MOTOROLA DSP56600FM/AD C-51
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

r4 #no.1 address bus length

#no.2 mask word for length field

#no.3 merged width and offset

‘24‘

r6 first lookup table

r7 second lookup table

Example C-29 Parsing Hoffman Code Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #stream_buffer,r0

move #data_buffer,r3

move #bits_offset,r5

move #constants,r4

move #first_table,r2

move #first_table,r6

move #second_table,r7

;move constants to memory

move #>48,b

move b,y:(r5)

move #>3,n4

move #n0_1,y1

move y1,y:(r4)+

move #n0_2,y1

Table C-29 Parsing Hoffman Code Data Stream Memory Map

pointer X memory Y memory

C-52 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

move y1,y:(r4)+

move #n0_3,y1

move y1,y:(r4)+

move #>24,y1

move y1,y:(r4)-n4

Get_bits

;bring word from stream, and “bits-offset”

move x:(r0)+,a y:(r5)+,b 1 1

;bring next word from stream, and address length

move y:(r4)+,y0 1 1

move x:(r0)-,a0 1 1

;calculate new “bits offset”, and save old one in x1

sub y0,b b,x1 1 1

;merge width and offset

merge y0,b 1 1

;extract the field according to b, place it in a

extract b1,a,a 1 1

;move address to n2

move a0,n2 1 1

;bring mask for length field in lookup table words

move y:(r4)+,y1 1 1

;bring the merged offset and length for extactionf

move y:(r4)+,x0 1 1

;r1 points to current address for extracted field

move r3,r1 1 1

Example C-29 Parsing Hoffman Code Data Stream (Continued)

MOTOROLA DSP56600FM/AD C-53
For More Information On This Product,

 Go to: www.freescale.com

Benchmark Programs

Set of Benchmarks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;bring word from lookup table

move x:(r2+n2),a 1 1

;extract the field according to x0, place it in b

extract x0,a,b 1 1

;test if hit bit is set, r2 points s first lookup table

tst a r6,r2 1 1

; if hit bit is set, r2 points second lookup table, a holds

address length

tmi y0,a r7,r2 1 1

;restore “bit offset” , send extracted field to memory

tfr x1,b b0,x:(r3)+ 1 1

; if hit bit is set, restore r3

tmi r1,r3 1 1

;mask length field , save pointer to current stream word

and y1,a r0,r1 1 1

;calculate new “bits offset”, y1 holds ’24’

sub a,b y:(r4)-n4,y1 1 1

;compare “bits offset” to 24, update steam pointer

cmp y1,b (r0)+ 1 1

; if “bits offset” is less or equal 24 another word is needed -

; update “bits offset” and point to next word

add y1,b ifle 1 1

tgt r1,r0 1 1

;save “bits field” in memory

move b1,y:(r5) 1 1

Totals 22 22

Example C-29 Parsing Hoffman Code Data Stream (Continued)

C-54 DSP56600FM/AD MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

INDEX

A

A2, A1, A0, B2, B1, and B0 accumulator registers
in Data ALU 3-6

ABS instruction A-28
accumulator registers

in Data ALU 3-6
accumulator shifter 3-7
ADC instruction A-29
ADD instruction A-31
ADDL instruction A-32
ADDR instruction A-33
Address ALU 2-7
Address Arithmetic Logic Unit (ALU) 2-7, 4-3
address generation interlock B-13
Address Generation Unit (AGU) 2-7, 4-3
address register interlock B-13
address registers 4-6
AGU 2-7
ALU addressing modes

PC Relative mode 4-11
Register Direct mode 4-9
Register Indirect mode 4-10
special mode 4-12

analog signal processing 1-7
analog-to-digital 1-8
AND instruction A-34
ANDI instruction A-36
Arithmetic Saturation Mode 3-14
Arithmetic Saturation Mode bit (SM) 5-16
arithmetic stall

in Data ALU 3-18
arithmetic stall interlock B-12
ASL instruction A-37
ASR A-37, A-40, A-111
ASR instruction A-40
assembler 12-5
automatic sign extension

in Data ALU 3-6

B

Bcc instruction A-43
BCHG instruction A-44
BCLR instruction A-47
BCR register

bits 0–4—Expansion Bus Memory Wait
control bits (BMW0–BMW4) 9-6
MOTOROLA DSP5660
For More Information

 Go to: www.f
reserved bits—bits 5–15 9-6
bit field unit 3-7
Block Floating Point FFT operation 3-17
BMW0–BMW4 bits 9-6
Boundary Scan Register (BSR) 10-3, 10-7
BPMR register 9-7
BRA instruction A-50
Breakpoint 0 and 1 Event bits (BT0–BT1) 10-24
Breakpoint 0 Condition Code Select bits

(CC00–CC01) 10-23
Breakpoint 0 Read/Write Select bits

(RW00–RW01) 10-22
Breakpoint 1 Condition Code Select bits

(CC10–CC11) 10-23
Breakpoint 1 Read/Write Select bits

(RW10–RW11) 10-23
BRKcc instruction A-51
BScc instruction A-52
BSET instruction A-54
BSR instruction A-57
BSR register 10-3, 10-7
BT0–BT1 bits 10-24
BTST instruction A-58
Bus Control Register (BCR)

BCR register 9-5
Bus Switch Program Memory Register

(BPMR) 9-7
BYPASS instruction 10-11

C

C bit 5-13
Carry bit (C) 5-13, A-26
CC00–CC01 bits 10-23
CC10–CC11 bits 10-23
CCR register 5-11

bit 0—Carry bit (C) 5-13
bit 1—Overflow bit (V) 5-13
bit 2—Zero bit (Z) 5-13
bit 3—Negative bit (N) 5-13
bit 4—Unnormalized bit (U) 5-13
bit 5—Extension bit (E) 5-13
bit 6—Limit bit (L) 5-14
bit 7—Scaling bit (S) 5-14

Chip Operating Mode byte (COM) 5-16
CLAMP instruction 10-10
CLB instruction A-60
Clock Generator (CLKGEN) 2-9

0FM/AD Index-1
 On This Product,
reescale.com

D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Clock Output Disable bit (COD) 8-12
CLR instruction A-62
CMP instruction A-63
CMPM instruction A-65
CMPU instruction A-66
COD bit

in PCTL1 register 8-12
compiler 12-8
Condition Code Register (CCR) 5-11

Carry Bit (bit 0) A-26
Carry bit (C) A-26
Extension Bit (bit 5) A-24
Limit Bit (bit 6) A-24
Negative Bit (bit 3) A-26
Overflow Bit (bit 1) A-26
Scaling Bit (bit 7) A-24
Unnormalized Bit (bit 4) A-25
Zero Bit (bit 2) A-26

Condition Codes A-17
conditional transfer interlock B-13
convergent rounding

in Data ALU 3-11
Core Status bits (OS0–OS1) 10-19
Crystal Range bit (XTLR) 8-10

D

Data ALU 2-6, 3-3
accumulator extension registers 3-3
accumulator registers 3-3, 3-6
accumulator shifter 3-3, 3-7
barrel shifter 3-3
bit field unit 3-7
Bit Field Unit (BFU) 3-3
data bus shifter/limiter 3-3
data shifter/limiter 3-7
Input Registers 3-5
input registers 3-3
limiting 3-8
MAC unit 3-5
Multiply-Accumulator unit (MAC) 3-3
scaling 3-8

Data ALU architecture 3-3
Data ALU interlock B-12
Data ALU registers 2-7
data representation

in Data ALU 3-9
data shifter/limiter 3-7
DE pin 10-13
Index-2 DSP5660
For More Infor

 Go to:
Debug Event pin (DE) 10-13
DEBUG instruction A-67
Debug mode

in OnCE module 10-26
DEBUG_REQUEST instruction 10-11

executing in OnCE module 10-27
DEBUGcc instruction A-68
DEC instruction A-69
Design Verification Support 13-3
DF0–DF2 bits

in PCTL1 register 8-9
digital signal processing 1-8
digital-to-analog 1-8
DIV instruction A-70
Division Factor bits (DF0–DF2) 8-9
DMAC instruction A-73
DO FOREVER instruction A-79
DO instruction A-75
DO-Forever bit (FV) 5-15
DO-Loop Flag bit (LF) 5-16
DSP News 13-6
DSP56600 C Cross Compiler 12-8
DSP56600 core architecture 2-4
DSP56600 core features 2-4
DSP56600 Family Assembler 12-5
DSP56600 Family Graphical User Interface

(GUI) 12-3
DSP56600 Family Librarian 12-6
DSP56600 Family Linker 12-6
DSP56600 Family Simulator 12-7

E

E bit 5-13
ENABLE_ONCE instruction 10-11
Encodings A-203

single-bit register A-203
ENDDO instruction A-81
EOR A-110
EOR instruction A-82
EP register 5-9
EX bit 10-16
exception priority

within an IPL 7-10
Exit Command bit (EX) 10-16
Expanded mode 11-4
Expansion Bus Memory Wait control bits

(BMW0–BMW4) 9-6
expansion port

0FM/AD MOTOROLA
mation On This Product,
www.freescale.com

F

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

disabling 9-6
Extended Operating Mode byte (EOM) 5-17
Extension bit (E) 5-13, A-24
Extension Pointer (EP) register 4-6
Extension Pointer register (EP) 5-9
EXTEST instruction 10-8
EXTRACT instruction A-84
EXTRACTU instruction A-86

F

FV bit 5-15

G

GO Command bit (GO) 10-16
graphical user interface 12-3
GUI 12-3

H

Hardware DO Loop A-75
hardware interrupt

external 7-7
internal 7-7

HI-Z instruction 10-10

I

I instruction A-134
I0–I1 bits 5-15
IDCODE instruction 10-9
IFcc instruction A-88
IFcc.U instruction A-89
ILLEGAL instruction A-90
IME bit 10-18
INC instruction A-91
INSERT instruction A-92
instruction

encoding A-203
fetch delays B-12
format A-17
guide A-17
pipeline 5-5

instruction set
ABS A-28
ADC A-29
ADD A-31
ADDL A-32
ADDR A-33
AND A-34
ANDI A-36
MOTOROLA DSP5660
For More Information

 Go to: www.f
ASL A-37
ASR A-40
Bcc A-43
BCHG A-44
BCLR A-47
BRA A-50
BRKcc A-51
BScc A-52
BSET A-54
BSR A-57
BTST A-58
CLB A-60
CLR A-62
CMP A-63
CMPM A-65
CMPU A-66
DEBUG A-67
DEBUGcc A-68
DEC A-69
DIV A-70
DMAC A-73
DO A-75
DO FOREVER A-79
ENDDO A-81
EOR A-82
EXTRACT A-84
EXTRACTU A-86
I A-134
IFcc A-88
IFcc.U A-89
ILLEGAL A-90
INC A-91
INSERT A-92
Jcc A-94
JCLR A-96
JMP A-98
JScc A-99
JSCLR A-101
JSET A-104
JSR A-106
JSSET A-107
L: A-151
LRA A-110
LSL A-111
LSR A-114
LUA A-117
MAC A-119
MAC(su,uu) A-122
MACI A-121
MACR A-123
MACRI A-125

0FM/AD Index-3
 On This Product,
reescale.com

J

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAX A-127
MAXM A-128
MERGE A-129
MOVE A-132
MOVEC A-155
MOVEM A-157
MOVEP A-159
MPY A-162
MPY(su,uu) A-164
MPYI A-165
MPYR A-166
MPYRI A-168
NEG A-170
NOP A-171
NORMF A-172
NOT A-174
OR A-175
ORI A-177
R A-136
R:Y A-148
REP A-179
RESET A-181
RND A-182
ROL A-184
ROR A-185
RTI A-186
RTS A-187
SBC A-188
STOP A-189
SUB A-191
SUBL A-193
SUBR A-194
Tcc A-195
TFR A-197
TRAP A-198
TRAPcc A-199
TST A-200
U A-138
VSL A-201
WAIT A-202
X A-139
X:R A-142
X:Y: A-153
Y A-145

instruction timing B-3
Internal X I/O space 11-5
Internal Y I/O space 11-7
interrupt

arbitration 7-12
Index-4 DSP5660
For More Infor

 Go to:
hardware 7-7
instruction execution 7-13
instruction fetch 7-13
priority structure 7-8
routines

fast 7-12
long 7-12

Interrupt Mask bits (I0–I1) 5-15
Interrupt Mode Enable bit (IME) 10-18
Interrupt Priority Register—Core (IPR-C) 7-9
Interrupt Priority Register—Peripheral

(IPR-P) 7-9
IPR-C register 7-9
IPR-P register 7-9

J

Jcc instruction A-94
JCLR instruction A-96
JMP instruction A-98
Joint Test Action Group (JTAG) 10-3
JScc instruction A-99
JSCLR instruction A-101
JSET instruction A-104
JSR instruction A-106
JSSET instruction A-107
JTAG 10-3
JTAG instructions

BYPASS 10-11
CLAMP 10-10
DEBUG_REQUEST 10-11
ENABLE_ONCE 10-11
EXTEST 10-8
HI-Z 10-10
IDCODE 10-9
SAMPLE/PRELOAD 10-9

L

L bit 5-14
L: instruction A-151
LA register 5-7
LC register 5-7
LF bit 5-16
librarian 12-6
Limit bit (L) 5-14, A-24
limiting

in Data ALU 3-8
linker 12-6
Loop Address register (LA) 5-7

0FM/AD MOTOROLA
mation On This Product,
www.freescale.com

M

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Loop Counter register (LC) 5-7
LRA instruction A-110
LSL instruction A-111
LSR instruction A-114
LUA A-117, A-195
LUA instruction A-117

M

M0–M7 registers 4-7
MAC instruction A-119
MAC unit 3-5
MAC(su,uu) instruction A-122
MACI instruction A-121
MACR instruction A-123
MACRI instruction A-125
MAX instruction A-127
MAXM instruction A-128
MBO bit

in OSCR register 10-18
MBS0–MBS1 bits 10-22
Memory Breakpoint Occurrence bit (MBO) 10-18
Memory Breakpoint Select bits

(MBS0–MBS1) 10-22
memory breakpoints 10-20

enabling 10-28
memory expansion port 2-10, 9-3
MERGE instruction A-129
MF0-MF11 bits

in PCTL0 register 8-7
Mode Register (MR) 5-11
modifier registers 4-7
modulo adder 2-8, 4-3
MOVE instruction A-132
MOVEC instruction A-155
MOVEM instruction A-157
MOVEP instruction A-159
MPY instruction A-162
MPY(su,uu) instruction A-164
MPYI instruction A-165
MPYR instruction A-166
MPYRI instruction A-168
MR register 5-11

bits 8–9—Interrupt Mask bits (I0–I1) 5-15
bits 10–11—Scaling bits (S0–S1) 5-15
bit 12—DO-Forever bit (FV) 5-15
bit 13—Arithmetic Saturation Mode bit

(SM) 5-16
bit 14—Rounding Mode bit (RM) 5-16
bit 15—DO-Loop Flag bit (LF) 5-16

Multiplication Factor bits (MF0-MF11) 8-7
MOTOROLA DSP5660
For More Information

 Go to: www.f
multiply-accumulate unit 3-5
Multiply-Accumulator (MAC) 2-7
multi-precision arithmetic support 3-15

N

N bit 5-13
N0–N7 registers 4-6
NEG instruction A-170
Negative bit (N) 5-13, A-26
NOP instruction A-171
NORMF instruction A-172
NOT instruction A-174

O

OBCR register 10-21
bits 0–1—Memory Breakpoint Select bits

(MBS0–MBS1) 10-22
bits 2–3—Breakpoint 0 Read/Write Select

bits (RW00–RW01) 10-22
bits 4–5—Breakpoint 0 Condition Code

Select bits (CC00–CC01) 10-23
bits 6–7—Breakpoint 1 Read/Write Select

bits (RW10–RW11) 10-23
bits 8–9—Breakpoint 1 Condition Code

Select bits (CC10–CC11) 10-23
bits 10–11—Breakpoint 0 and 1 Event Select

bits (BT0–BT1) 10-24
reserved bits—bits 12–15 10-24

OCR register 10-15
bits 0–4—Register Select bits

(RS0–RS4) 10-15
bit 5—Exit Command bit (EX) 10-16
bit 6—GO Command bit (GO) 10-16
bit 7—Read/Write Command bit

(R/W) 10-16
ODEC 10-18
offset adder 2-8, 4-3
offset registers 4-6
OGDBR register 10-29
OMAC0 comparator 10-20
OMAC1 comparator 10-21
OMAL register 10-20
OMBC counter 10-24
OMLR0 register 10-20
OMLR1 register 10-20
OMR register 5-16, 11-3

Chip Operating Mode byte (COM) 5-16
Extended Operating Mode byte (EOM) 5-17

OnCE Breakpoint Control Register (OBCR) 10-21

0FM/AD Index-5
 On This Product,
reescale.com

P

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

OnCE Command Register (OCR) 10-15
OnCE commands 10-32
OnCE Decoder (ODEC) 10-18
OnCE GDB Register (OGDBR) 10-29
OnCE Memory Address Comparator 0

(OMAC0) 10-20
OnCE Memory Address Comparator 1

(OMAC1) 10-21
OnCE Memory Address Latch register

(OMAL) 10-20
OnCE Memory Breakpoint Counter

(OMBC) 10-24
OnCE Memory Limit Register 0 (OMLR0) 10-20
OnCE Memory Limit Register 1 (OMLR1) 10-20
OnCE PAB Register for Decode Register

(OPABDR) 10-29
OnCE PAB Register for Execute (OPABEX) 10-30
OnCE PAB Register for Fetch Register

(OPABFR) 10-29
OnCE PIL Register (OPILR) 10-29
OnCE Program Data Bus Register

(OPDBR) 10-28
OnCE Status and Control Register (OSCR) 10-18
OnCE Trace Counter (OTC) 10-25
OnCE trace logic 10-25
On-Chip Emulation (OnCE) module 2-10, 10-13
OPABDR register 10-29
OPABEX register 10-30
OPABFR register 10-29
OPDBR register 10-28
Operating Mode Register (OMR) 5-16, 11-3
OPILR register 10-29
OR instruction A-175
OR(I) A-177
ORI instruction A-177
OS0–OS1 bits 10-19
OSCR register 10-18

bit 0—Trace Mode Enable bit (TME) 10-18
bit 1—Interrupt Mode Enable bit (IME) 10-18
bit 2—Software Debug Occurrence bit

(SWO) 10-18
bit 3—Memory Breakpoint Occurrence bit

(MBO) 10-18
bit 4—Trace Occurrence bit (TO) 10-19
bit 5—reserved bit 10-19
bits 6–7—Core Status bits (OS0–OS1) 10-19
reserved bits—bits 8–23 10-19

OTC counter 10-25
Overflow bit (V) 5-13, A-26
Index-6 DSP5660
For More Infor

 Go to:
overflow protection
in Data ALU 3-6

P

P bits 5-10
Parallel Move Descriptions A-132

immediate short data move A-134
long memory data move A-151
X memory and register data move A-142,

A-148
X memory data move A-139, A-145
XY memory data move A-153

Patch Address Registers (PAR1–PAR4) 6-3
PC register 5-7
PC Relative addressing modes 4-11
PCTL0 register

bits 0–11—Multiplication Factor bits
(MF0-MF11) 8-7

bits 12–15—Predivider Factor bits
(PD0–PD3) 8-8

PCTL1 register
bits 0–2—Division Factor bits (DF0–DF2) 8-9
bit 3—Crystal Range bit (XTLR) 8-10
bit 4—XTLD Disable bit (XTLD) 8-10
bit 5—Stop Processing State bit (PSTP) 8-11
bit 6—PLL Enable bit (PEN) 8-11
bit 7—Clock Output Disable bit (COD) 8-12
bits 9–11—Predivider Factor bits

(PD4–PD6) 8-12
reserved bits 8-12
reserved bits—bits 12–15 8-12

PD0–PD3 bits
in PCTL0 register 8-8

PD4–PD6 bits
in PCTL1 register 8-12

PEN bit
in PCTL1 register 8-11

Phase Lock Loop (PLL) 2-9
pipeline conflicts

in Data ALU 3-18
PLL Control Register 0 (PCTL0) 8-7
PLL Control Register 1 (PCTL1) 8-9
PLL Enable bit (PEN) 8-11
Port A 9-3
PPL 6-3
Predivider Factor bits (PD0–PD3) 8-8
Predivider Factor bits (PD4–PD6) 8-12
Program Address Generator (PAG) 2-8, 5-4

0FM/AD MOTOROLA
mation On This Product,
www.freescale.com

R

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Program Control Unit (PCU) 2-8, 5-3
Program Counter register (PC) 5-7, 6-3
Program Decode Controller (PDC) 2-8, 5-4
Program Interrupt Controller (PIC) 2-8, 5-4
program memory

external 11-7
internal 11-7

Program Patch Logic (PPL) 2-9, 6-3
PS register

bits 0–3—Stack Pointer bits (P) 5-10
bit 4—Stack Error Flag/P4 bit (SE/P4) 5-10
bit 5—Underflow Flag/P5 bit (UF/P5) 5-11

PSTP bit
in PCTL1 register 8-11

R

R instruction A-136
R/W bit 10-16
R:Y instruction A-148
R0–R7 registers 4-6
Read/Write Command bit (R/W) 10-16
Register Direct addressing modes 4-9
Register Indirect addressing modes 4-10
Register Select bits (RS0–RS4) 10-15
REP instruction A-179
reserved bits

in OBCR register
bits 12–15 10-24

in OSCR register
bit 5 10-19
bits 8–23 10-19

in PCTL1 register 8-12
bits 12–15 8-12

RESET instruction A-181
reset processing state 7-16
reverse-carry adder 4-3
RM bit 5-16
RND instruction A-182
ROL instruction A-184
ROR instruction A-185
Rounding Mode bit (RM) 5-16
rounding modes

in Data ALU 3-11
RS0–RS4 bits 10-15
RTI instruction A-186
RTS instruction A-187
RW00–RW01 bits 10-22
RW10–RW11 bits 10-23
MOTOROLA DSP5660
For More Information

 Go to: www.f
S

S bit 5-14
S0–S1 bits 5-15
SAMPLE/PRELOAD instruction 10-9
SBC instruction A-188
SC register 5-9
scaling

in Data ALU 3-8
Scaling bit (S) 5-14
Scaling bits (S0–S1) 5-15
SE/P4 bit 5-10
simulator 12-7
SM bit 5-16
Software Debug Occurrence bit (SWO) 10-18
software development environment 12-5
software interrupt

Illegal Instruction Interrupt (III) 7-8
TRAP 7-8

SP register 5-10
special address modes 4-12
SR register 5-11

bit 0—Carry bit (C) 5-13
bit 1—Overflow bit (V) 5-13
bit 2—Zero bit (Z) 5-13
bit 3—Negative bit (N) 5-13
bit 4—Unnormalized bit (U) 5-13
bit 5—Extension bit (E) 5-13
bit 6—Limit bit (L) 5-14
bit 7—Scaling bit (S) 5-14
bits 8–9—Interrupt Mask bits (I0–I1) 5-15
bits 10–11—Scaling bits (S0–S1) 5-15
bit 12—DO-Forever bit (FV) 5-15
bit 13—Arithmetic Saturation Mode bit

(SM) 5-16
bit 14—Rounding Mode bit (RM) 5-16
bit 15—DO-Loop Flag bit (LF) 5-16

Stack Counter register (SC) 5-9
Stack Error Flag/P4 bit (SE/P4) 5-10
stack extension delay B-15
Stack Pointer bits (P) 5-10
Stack Pointer register (SP) 5-10
Stack Size register (SZ) 5-9
Status Register (SR) 5-11
status stall

in Data ALU 3-19
interlock B-12

STOP instruction A-189
Stop processing state 7-17
Stop Processing State bit (PSTP) 8-11
SUB instruction A-191

0FM/AD Index-7
 On This Product,
reescale.com

T

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBL instruction A-193
SUBR instruction A-194
SWO bit 10-18
System Configuration mode 11-4
System Stack (SS) 5-8
SZ register 5-9

T

TAP controller 10-6
Tcc instruction A-195
TCK pin 10-5
TDI pin 10-5
TDO pin 10-5
Test Access Port (TAP) 2-10, 10-3
test clock input pin (TCK) 10-5
test data input pin (TDI) 10-5
test data output pin (TDO) 10-5
test mode select input pin (TMS) 10-5
test reset input pin (TRST) 10-5
TFR instruction A-197
TME bit 10-18
TMS pin 10-5
TO bit 10-19
Trace buffer 10-30
Trace mode 10-25

enabling 10-27
Trace Mode Enable bit (TME) 10-18
Trace Occurrence bit (TO) 10-19
Training 13-8
transfer stall interlock B-12
TRAP instruction A-198
TRAPcc instruction A-199
TRST pin 10-5
TST A-200
TST instruction A-200
two’s-complement rounding 3-12

U

U bit 5-13
U instruction A-138
UF/P5 bit 5-11
Underflow Flag/P5 bit (UF/P5) 5-11
Unnormalized bit (U) 5-13, A-25

V

V bit 5-13, A-26
VBA register 5-7
Index-8 DSP5660
For More Infor

 Go to:
VCO
divide by 2 8-12
frequency divider 8-13

Vector Base Address register (VBA) 5-7, 7-5
Voltage Controlled Oscillator (VCO) 8-12
VSL instruction A-201

W

WAIT instruction A-202
Wait processing state 7-16

X

X I/O space 11-5
X instruction A-139
X:R instruction A-142
X:Y: instruction A-153
X1, X0, Y1, and Y0 data registers

in Data ALU 3-5
XTLD bit

in PCTL1 register 8-10
XTLD Disable bit (XTLD) 8-10
XTLR bit

in PCTL1 register 8-10

Y

Y I/O space 11-7
Y instruction A-145

Z

Z bit 5-13
Zero bit (Z) 5-13, A-26

0FM/AD MOTOROLA
mation On This Product,
www.freescale.com

OVERVIEW

CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

PROGRAM PATCH LOGIC

 PROCESSING STATES

PLL AND CLOCK GENERATOR

EXTERNAL MEMORY INTERFACE (PORT A)

JTAG PORT AND OnCE MODULE

OPERATING MODES AND MEMORY SPACES

DEVELOPMENT TOOLS

ADDITIONAL SUPPORT

INSTRUCTION TIMING

INSTRUCTION SET DETAILS

1

2

3

4

5

6

7

8

10

11

12

13

9

A

B

 BENCHMARK PROGRAMS C

INDEX I

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW

CENTRAL ARCHITECTURE OVERVIEW

DATA ARITHMETIC LOGIC UNIT

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

PROGRAM PATCH LOGIC

PROCESSING STATES

PLL AND CLOCK GENERATOR

EXTERNAL MEMORY INTERFACE (PORT A)

JTAG PORT AND OnCE MODULE

OPERATING MODES AND MEMORY SPACES

DEVELOPMENT TOOLS

ADDITIONAL SUPPORT

INSTRUCTION SET DETAILS

INSTRUCTION TIMING

1

2

3

4

5

6

7

8

10

11

12

13

9

B

A

INDEXI

BENCHMARK PROGRAMSC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

