



#### **Product Features**

- DC 6 GHz
- +18 dBm P1dB at 1 GHz
- +34 dBm OIP3 at 1 GHz
- 20.5 dB Gain at 1 GHz
- 3.4 dB Noise Figure
- Available in Lead-free / SOT-89 Package Style
- Internally matched to  $50 \ \Omega$

# **Applications**

- Mobile Infrastructure
- CATV / FTTX
- W-LAN / ISM

Parameter

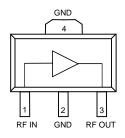
- RFID
- WiMAX / WiBro

# Specifications<sup>(1)</sup>

**Operational Bandwidth** 

#### **Product Description**

The ECG055B is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the ECG055B typically provides 20.5 dB of gain, +34 dBm Output IP3, and +18 dBm P1dB.


The ECG055B consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in low-cost, surface-mountable plastic lead-free/RoHS-compliant SOT-89 packages. A SOT-86 version is also available as the ECG055C. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG055B will work for other various applications within the DC to 6 GHz frequency range such as CATV and mobile wireless.

Max

6000

### **Functional Diagram**



| Function    | Pin No. |
|-------------|---------|
| Input       | 1       |
| Output/Bias | 3       |
| Ground      | 2, 4    |

# Typical Performance<sup>(1)</sup>

| Parameter    | Units | Typical |             |       |       |  |  |  |
|--------------|-------|---------|-------------|-------|-------|--|--|--|
| Frequency    | MHz   | 500     | 900         | 1900  | 2140  |  |  |  |
| S21          | dB    | 20.6    | 20.5        | 20.1  | 20.1  |  |  |  |
| S11          | dB    | -31     | -26.3 -19.7 |       | -18.5 |  |  |  |
| S22          | dB    | -23     | -19.1       | -12.9 | -12.2 |  |  |  |
| Output P1dB  | dBm   | +18     | +18.1       | +18.2 | +17.8 |  |  |  |
| Output IP3   | dBm   | +34     | +34         | +32   | +30.5 |  |  |  |
| Noise Figure | dB    | 3.6     | 3.4         | 3.4   | 3.4   |  |  |  |

| operational Bana la       | 101110 | 20   |      | 0000 |
|---------------------------|--------|------|------|------|
| Test Frequency            | MHz    |      |      |      |
| Gain                      | dB     |      |      |      |
| Output P1dB               | dBm    |      | +18  |      |
| Output IP3 <sup>(2)</sup> | dBm    |      | +34  |      |
| Test Frequency            | MHz    |      | 2000 |      |
| Gain                      | dB     | 19.3 | 20.1 | 21   |
| Input Return Loss         | dB     |      | 20   |      |
| Output Return Loss        | dB     |      | 12.5 |      |
| Output P1dB               | dBm    |      | +18  |      |
| Output IP3 <sup>(2)</sup> | dBm    | +30  | +32  |      |
| Noise Figure              | dB     |      | 3.4  | 4    |
| Device Voltage            | V      | 4.2  | 4.8  | 5.3  |
| Device Current            | mA     |      | 65   |      |
|                           |        |      |      |      |

Units

MHz

DC

Test conditions unless otherwise noted: 25 °C, Supply Voltage = +6 V, Rbias = 18 Ω, 50 Ω System.
3OIP measured with two tones at an output power of +4 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

## Absolute Maximum Rating

| Parameter                   | Rating         |
|-----------------------------|----------------|
| Storage Temperature         | -65 to +150 °C |
| RF Input Power (continuous) | +12 dBm        |
| Device Current              | 150 mA         |
| Junction Temperature        | +160 °C        |
| Thermal Resistance, Rth     | 128 °C/W       |

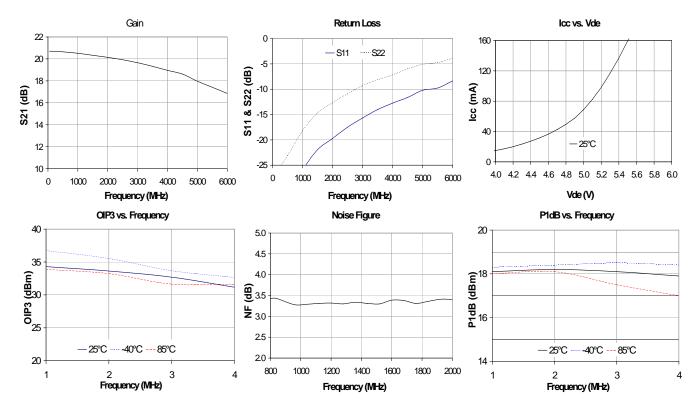
#### **Ordering Information**

| Part No.    | Description                                                       |
|-------------|-------------------------------------------------------------------|
| ECG055B-G   | InGaP HBT Gain Block<br>(lead-free/RoHS-compliant SOT-89 package) |
| ECG055B-PCB | 700 –2400 MHz Fully Assembled Eval. Board                         |

Operation of this device above any of these parameters may cause permanent damage

 $\begin{array}{l} \mbox{Standard T/R size} = 1000 \mbox{ pieces on a 7" reel.} \\ \mbox{Specifications and information are subject to change without notice} \end{array}$ 

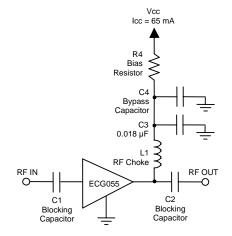


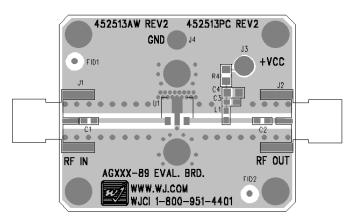



# Typical Device RF Performance Supply Bias = +6 V, $R_{bias}$ = 18 $\Omega$ , $I_{cc}$ = 65 mA

| Frequency    | MHz | 100   | 500   | 900   | 1900  | 2140  | 2400  | 3500  | 5800 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|------|
| S21          | dB  | 20.7  | 20.6  | 20.5  | 20.1  | 20.1  | 19.9  | 19.3  | 17.2 |
| S11          | dB  | -36   | -31   | -26.3 | -19.7 | -18.5 | -17.5 | -14   | -8.9 |
| S22          | dB  | -27   | -23   | -19.1 | -12.9 | -12.2 | -11   | -8.1  | -4.1 |
| Output P1dB  | dBm | +18.2 | +18   | +18.1 | +18.2 | +17.8 | +17.8 | +17.2 |      |
| Output IP3   | dBm | +33   | +33.5 | +34.5 | +33.5 | +32.9 | +32   |       |      |
| Noise Figure | dB  | 3.4   | 3.6   | 3.4   | 3.4   | 3.4   | 3.8   |       |      |

1. Test conditions: T = 25 °C, Supply Voltage = +6 V, Device Voltage = 4.8 V, Rbias = 18 Ω, Icc = 65 mA typical, 50 Ω System.


1. To the control of the second seco








#### **Recommended Application Circuit**





Recommended Component Values

| Reference  | Frequency (MHz) |         |        |       |       |       |       |  |  |  |  |
|------------|-----------------|---------|--------|-------|-------|-------|-------|--|--|--|--|
| Designator | 50              | 500     | 900    | 1900  | 2200  | 2500  | 3500  |  |  |  |  |
| L1         | 820 nH          | 220 nH  | 68 nH  | 27 nH | 22 nH | 18 nH | 15 nH |  |  |  |  |
| C1, C2, C4 | .018 µF         | 1000 pF | 100 pF | 68 pF | 68 pF | 56 pF | 39 pF |  |  |  |  |

The proper values for the components are dependent upon the intended frequency of operation.
The following values are contained on the evaluation board to achieve optimal broadband performance:

| Ref. Desig. | Value / Type              | Size |
|-------------|---------------------------|------|
| L1          | 39 nH wirewound inductor  | 0603 |
| C1, C2      | 56 pF chip capacitor      | 0603 |
| C3          | 0.018 µF chip capacitor   | 0603 |
| C4          | Do Not Place              |      |
| R4          | $18 \Omega 1\%$ tolerance | 0805 |

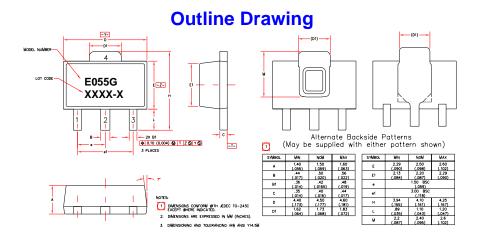
#### Recommended Bias Resistor Values

|   | Supply<br>Voltage | R1 value  | Size |
|---|-------------------|-----------|------|
| ĺ | 6 V               | 18.5 ohms | 0805 |
|   | 7 V               | 33.8 ohms | 1210 |
|   | 8 V               | 49 ohms   | 1210 |
|   | 9 V               | 65 ohms   | 2010 |
|   | 10 V              | 80 ohms   | 2010 |
|   | 12 V              | 111 ohms  | 2512 |

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

#### **Typical Device S-Parameters**

| S-Parameters ( $V_{\text{device}} = +4.8 \text{ V}$ , $I_{\text{CC}} = 65 \text{ mA}$ , $T = 25^{\circ}$ C, calibrated to device leads) |          |           |          |           |          |           |          |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|--|
| Freq (MHz)                                                                                                                              | S11 (dB) | S11 (ang) | S21 (dB) | S21 (ang) | S12 (dB) | S12 (ang) | S22 (dB) | S22 (ang) |  |
| 50                                                                                                                                      | -35.44   | -155.39   | 20.70    | 178.22    | -22.72   | 0.33      | -27.17   | -13.13    |  |
| 500                                                                                                                                     | -31.06   | -130.40   | 20.64    | 160.99    | -22.79   | -4.72     | -23.11   | -72.28    |  |
| 1000                                                                                                                                    | -25.99   | -134.19   | 20.51    | 142.21    | -22.57   | -10.86    | -18.21   | -103.46   |  |
| 1500                                                                                                                                    | -21.96   | -143.12   | 20.33    | 123.40    | -22.41   | -17.52    | -14.71   | -126.14   |  |
| 2000                                                                                                                                    | -19.74   | -147.93   | 20.14    | 104.91    | -22.25   | -24.67    | -12.69   | -147.96   |  |
| 2500                                                                                                                                    | -17.50   | -165.99   | 19.92    | 86.66     | -21.53   | -31.23    | -10.92   | -167.56   |  |
| 3000                                                                                                                                    | -15.68   | 177.82    | 19.65    | 68.34     | -21.19   | -38.23    | -9.29    | 174.99    |  |
| 3500                                                                                                                                    | -14.02   | 162.84    | 19.32    | 49.37     | -20.96   | -46.84    | -8.13    | 153.30    |  |
| 4000                                                                                                                                    | -12.75   | 145.85    | 18.96    | 30.89     | -20.43   | -55.87    | -7.17    | 137.75    |  |
| 4500                                                                                                                                    | -11.62   | 126.85    | 18.62    | 11.81     | -20.02   | -64.61    | -5.98    | 117.77    |  |
| 5000                                                                                                                                    | -10.22   | 104.39    | 17.97    | -7.65     | -19.54   | -74.66    | -5.08    | 96.84     |  |
| 5500                                                                                                                                    | -9.77    | 89.88     | 17.42    | -25.15    | -19.65   | -86.77    | -4.74    | 83.19     |  |
| 6000                                                                                                                                    | -8.35    | 70.44     | 16.85    | -45.49    | -19.44   | -101.04   | -3.88    | 62.30     |  |

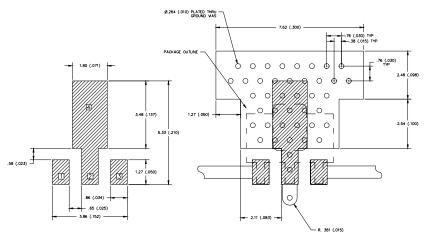

Device S-parameters are available for download off of the website at: http://www.wj.com





#### **ECG055B-G Mechanical Information**

This package is lead-free/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.




### **Product Marking**

The component will be marked with an "E055G" designator with an alphanumeric lot code on the top surface of the package. The obsolete tin-lead package is marked with an "E055" designator followed by an alphanumeric lot code; it may also have been marked with an "H" designator followed by a 3-digit numeric lot code.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

#### Land Pattern



### **MSL / ESD Rating**



Caution! ESD sensitive device.

ESD Rating:Class 1AValue:Passes between 250 and 500VTest:Human Body Model (HBM)Standard:JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

# **Mounting Config. Notes**

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.