

ECS-3X8X, 2X6X, 1X5X 32.768 KHz Tuning Fork Crystal

3X8X

32.768

±20

 F_{O}

∆f/fo

ECS tuning fork type crystals are used as a clock source in communication equipment, measuring instruments, microprocessors and other time management applications. Their low power consumption makes these crystals ideal for portable equipment.

PARAMETERS

Frequency Tolerance

Frequency

Request a Sample

2X6X

32.768

±20

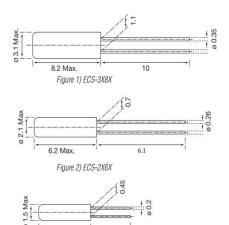
UNITS

KHz

ppm

1X5X

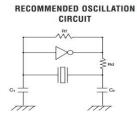
32.768


± 20

ECS-3X8X, 2X6X, 1X5X

- Cost Effective
- Tight Tolerance
- Long Term Stability
- Excellent Resistance and **Environmental Characteristics**
- Pb Free/RoHS Compliant

DIMENSIONS (mm)

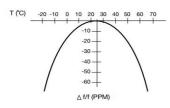


4.3

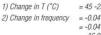
Figure 3) ECS-1X5X

5.1 Max

Load Capacitance	CL	12.5 12.5 8.0		рF	
Drive Level (max)	DL	1	1	1	μW
Resistance At Series Resonance	R_1	35(max)	35(max)	40(max)	KΩ
Q-Factor	Q	90,000(typ.)	90,000(typ.) 70,000(typ.) 80,000(typ.)		
Turnover Temperature	Τ _M	+25 ±5	+25 ±5	+25 ±5	°C
Temperature Coefficient	ß	-0.040ppm/°C ² max.	-0.040ppm/°C ² max.	-0.040ppm/°C ² max.	ΡΡΜ/ΔC°
Shunt Capacitance	Co	1.60 (typ.)	1.35 (typ.)	1.00 (typ.)	рF
Capacitance Ratio		460 (typ.)	450 (typ.)	400 (typ.)	
Operating Temp	Topr	-10 ~ +60			°C
Storage Temperature	Tstg	-40 ~ +85			°C
Shock Resistance		Drop 3 times on hard wooden board from height of 75cm / ±5 ppm max.			PPM
Insulation Resistance	IR	500 MΩ min./DC100V			MΩ
Aging (First Year)	∆f/fo	±3 ppm max. @ +25°C ±3°C			ppm
Motional Capacitance	C1	0.0035(typ.)	0.0030(typ.)	0.0025(typ.)	рF



ELECTRICAL CHARACTERISTICS IC: TC 4069P Rf: 10MΩ Rd: 330KΩ (As required) $C_1 = 22pF, C_2 = 22pF$


V_{DD} = 3.0V

In this circuit, low drive level with a maximum of 1µW is rec-ommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

 $= 45 - 25 = 20^{\circ}C$ $= -0.04 PPM \times (\Delta T)^2$ $= -0.04 PPM \times (20)^2$ = -16.0 PPM

PART NUMBERING GUIDE:

Manuf	nufacturer Frequency		Load Capacitance			Package Type	
ECS	-	.327	-	12.5	-	8X	
ECS	-	.327	-	12.5	-	13X	
ECS	-	.327	-	12.5	-	14X	

* Package type examples (8X = 3x8, 13X = 2x6, 14X = 1x5)

SOLDER PROFILE				
Peak solder Temp +260°C Max 10 sec Max.				
2 Cycles Max.				
MSL 1, Lead Finish Sn/Cu Matte				



Figure 1) Suggested Solder Profile