

# 24V 150mA Ultralow Quiescent Current

## LDO

### General Description

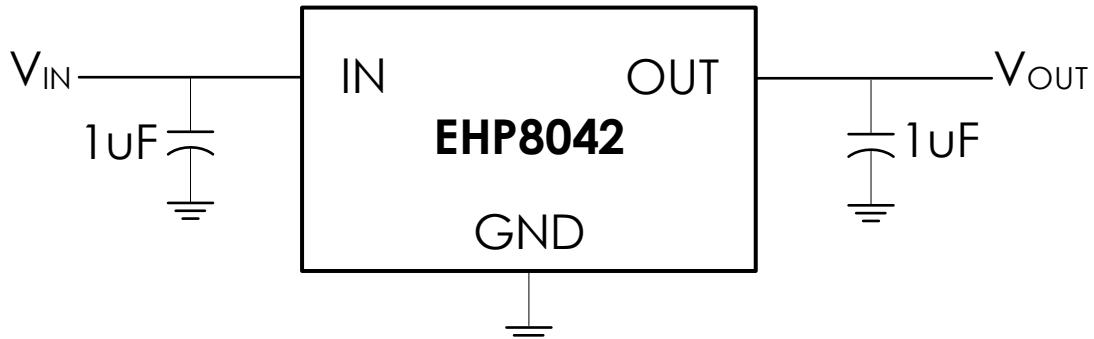
The EHP8042 is a high voltage, low quiescent current, low dropout regulator with 150mA output driving capacity. The EHP8042, which operates over an input range up to 24V, is stable with any capacitors, whose capacitance is larger than 1 $\mu$ F, and suitable for powering battery-management ICs because of the virtue of its low quiescent current consumption and low dropout voltage.

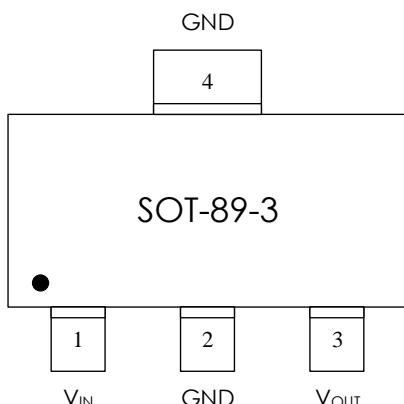
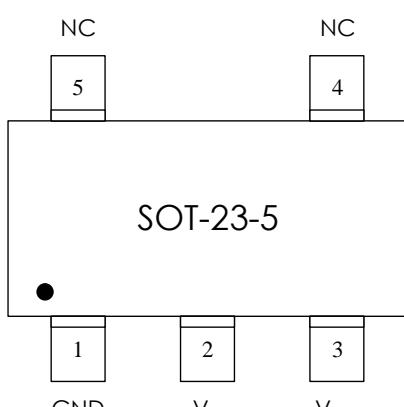
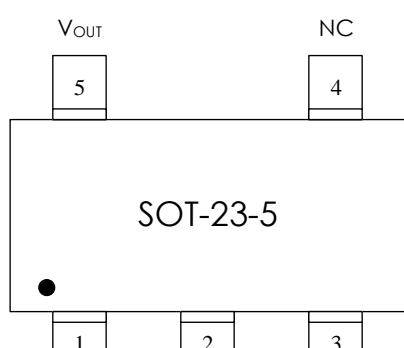
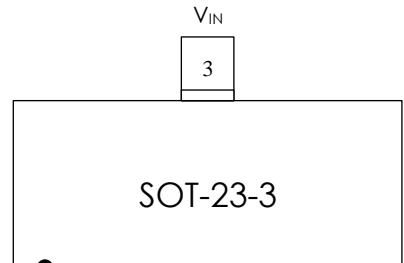
The EHP8042 is available in SOT-23-3, SOT-23-5, SOT-89-3 and uDFN1x1-4 surface mount packages.

### Applications

- E-meters, Water Meters and Gas Meters
- Fire Alarm, Smoke Detector
- Appliances and White Goods

### Features


- Up to 24V input voltage range
- 150mA output current driving capacity
- Ultra low quiescent current (typical 1.5 $\mu$ A)
- 1200mV typical dropout at  $I_{OUT} = 150$  mA
- Thermal shutdown protection
- Short circuit protection
- Stable with 1 $\mu$ F output capacitor

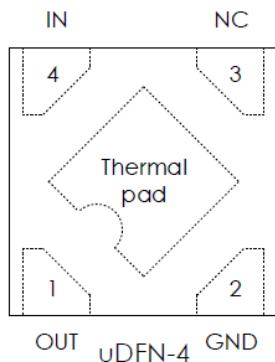




### Ordering Information

| Part Number       | Remark                             |
|-------------------|------------------------------------|
| EHP8042-XXVD03NRR | $\pm 2\%$ output voltage tolerance |
| EHP8042-XXVF05NRR | $\pm 2\%$ output voltage tolerance |
| EHP8042-XXVNP5NRR | $\pm 2\%$ output voltage tolerance |
| EHP8042-XXVL03NRR | $\pm 2\%$ output voltage tolerance |
| EHP8042-XXDC04NRR | $\pm 2\%$ output voltage tolerance |

XX:15=1.5V, 18=1.8V, 25=2.5V, 30=3.0V, 33=3.3V, 50=5.0V

### Typical Application

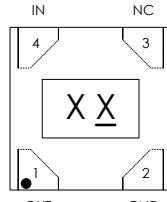
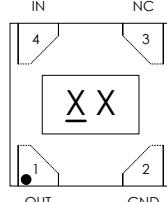
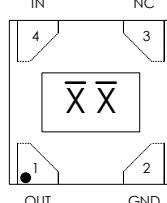
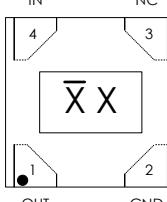
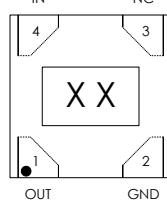
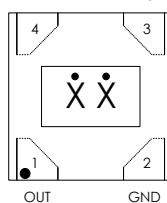



**Connection Diagrams****Order information**

EHP8042-XXVD03NRR  
XX Output voltage  
VD03 SOT-23-3 Package  
NRR RoHS & Halogen free package  
Rating: -40 to 85°C  
Package in Tape & Reel

EHP8042-XXVF05NRR  
XX Output voltage  
VF05 SOT-23-5 Package  
NRR RoHS & Halogen free package  
Rating: -40 to 85°C  
Package in Tape & Reel

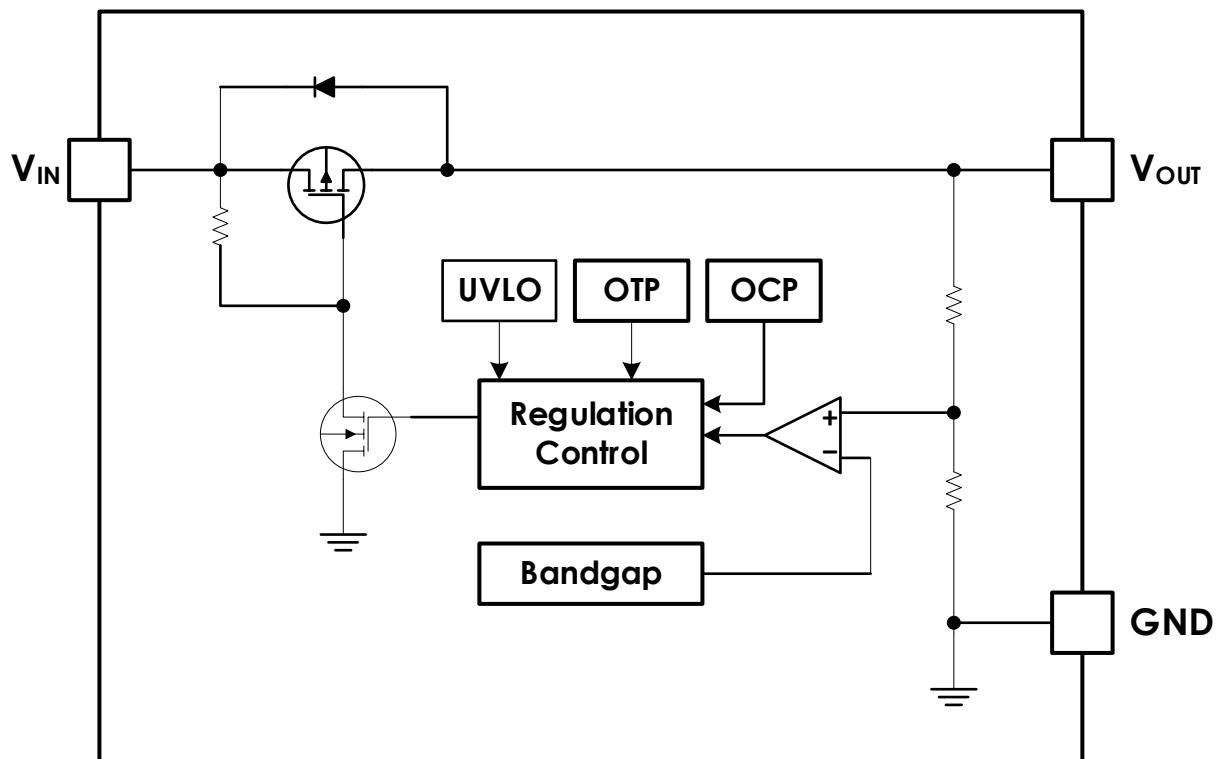
EHP8042-XXVNP5NRR  
XX Output voltage  
VNP5 SOT-23-5 Package  
NRR RoHS & Halogen free package  
Rating: -40 to 85°C  
Package in Tape & Reel







EHP8042-XXVL03NRR  
XX Output voltage  
VL03 SOT-89-3 Package  
NRR RoHS & Halogen free package  
Rating: -40 to 85°C  
Package in Tape & Reel



EHP8042-XXDC04NRR  
 XX DC04 NRR  
 Output voltage  
 uDFN1x1-4 Package  
 RoHS & Halogen free package  
 Rating: -40 to 85°C  
 Package in Tape & Reel

### Order, Marking and Packing Information


| Package  | Vout | Product ID.       | Marking | Packing              |
|----------|------|-------------------|---------|----------------------|
| SOT-23-3 | 1.5V | EHP8042-15VD03NRR |         | Tape & Reel<br>3Kpcs |
|          | 1.8V | EHP8042-18VD03NRR |         |                      |
|          | 2.5V | EHP8042-25VD03NRR |         |                      |
|          | 3.0V | EHP8042-30VD03NRR |         |                      |
|          | 3.3V | EHP8042-33VD03NRR |         |                      |
|          | 5.0V | EHP8042-50VD03NRR |         |                      |
| SOT-23-5 | 1.5V | EHP8042-15VF05NRR |         | Tape & Reel<br>3Kpcs |
|          | 1.8V | EHP8042-18VF05NRR |         |                      |
|          | 2.5V | EHP8042-25VF05NRR |         |                      |
|          | 3.0V | EHP8042-30VF05NRR |         |                      |
|          | 3.3V | EHP8042-33VF05NRR |         |                      |
|          | 5.0V | EHP8042-50VF05NRR |         |                      |
| SOT-23-5 | 1.5V | EHP8042-15VNP5NRR |         | Tape & Reel<br>3Kpcs |
|          | 1.8V | EHP8042-18VNP5NRR |         |                      |
|          | 2.5V | EHP8042-25VNP5NRR |         |                      |
|          | 3.0V | EHP8042-30VNP5NRR |         |                      |
|          | 3.3V | EHP8042-33VNP5NRR |         |                      |
|          | 5.0V | EHP8042-50VNP5NRR |         |                      |
| SOT-89-3 | 1.5V | EHP8042-15VL03NRR |         | Tape & Reel<br>1Kpcs |
|          | 1.8V | EHP8042-18VL03NRR |         |                      |
|          | 2.5V | EHP8042-25VL03NRR |         |                      |
|          | 3.0V | EHP8042-30VL03NRR |         |                      |
|          | 3.3V | EHP8042-33VL03NRR |         |                      |
|          | 5.0V | EHP8042-50VL03NRR |         |                      |

|           |      |                   |                                                                                                              |                      |
|-----------|------|-------------------|--------------------------------------------------------------------------------------------------------------|----------------------|
| uDFN1x1-4 | 1.5V | EHP8042-15DC04NRR |  <p>XX=tracking code</p>   | Tape & Reel<br>8Kpcs |
|           | 1.8V | EHP8042-18DC04NRR |  <p>XX=tracking code</p>   |                      |
|           | 2.5V | EHP8042-25DC04NRR |  <p>XX=tracking code</p>   |                      |
|           | 3.0V | EHP8042-30DC04NRR |  <p>XX=tracking code</p> |                      |
|           | 3.3V | EHP8042-33DC04NRR |  <p>XX=tracking code</p> |                      |
|           | 5.0V | EHP8042-50DC04NRR |  <p>XX=tracking code</p> |                      |

## Pin Functions

| Name        | SOT-23-3 | SOT-23-5 |      | SOT-89-3 | uDFN1x1-4 | Function                                                                                                                                                  |
|-------------|----------|----------|------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |          | VF05     | VNP5 |          |           |                                                                                                                                                           |
| VIN         | 3        | 1        | 2    | 1        | 4         | <b>Supply Voltage Input</b><br>Require a minimum input capacitor of close to 1 $\mu$ F to ensure stability and sufficient decoupling from the ground pin. |
| GND         | 1        | 2        | 1    | 2, 4     | 2         | <b>Ground Pin</b>                                                                                                                                         |
| NC          | N/A      | 3, 4     | 4, 5 | N/A      | 3         | <b>No connection</b>                                                                                                                                      |
| VOUT        | 2        | 5        | 3    | 3        | 1         | <b>Output Voltage</b><br>A small 1 $\mu$ F ceramic capacitor is needed from this pin to ground to assure stability.                                       |
| Thermal Pad | N/A      | N/A      | N/A  | YES      | YES       | The thermal pad with large thermal land area on the PCB will help chip power dissipation, to connect it to GND together normally.                         |

## Functional Block Diagram



Functional Block Diagram of EHP8042

**Absolute Maximum Ratings (Note 1, 2)**

|                                |                |                                       |             |
|--------------------------------|----------------|---------------------------------------|-------------|
| $V_{IN}$                       | -0.3V to 26V   | $V_{OUT}$                             | -0.3V to 6V |
| Junction Temperature ( $T_J$ ) | 150°C          | Lead Temperature (Soldering, 10 sec.) | 260°C       |
| Storage Temperature Range      | -65°C to 150°C | ESD Rating: Human Body Model          | 2kV         |

**Recommended Operating Conditions (Note 1, 2)**

|                            |                |                             |               |
|----------------------------|----------------|-----------------------------|---------------|
| Supply Voltage $V_{IN}$    | 2.7V to 24V    | Operating Temperature Range | -40°C to 85°C |
| Junction Temperature Range | -40°C to 125°C |                             |               |

**Thermal Resistance:**

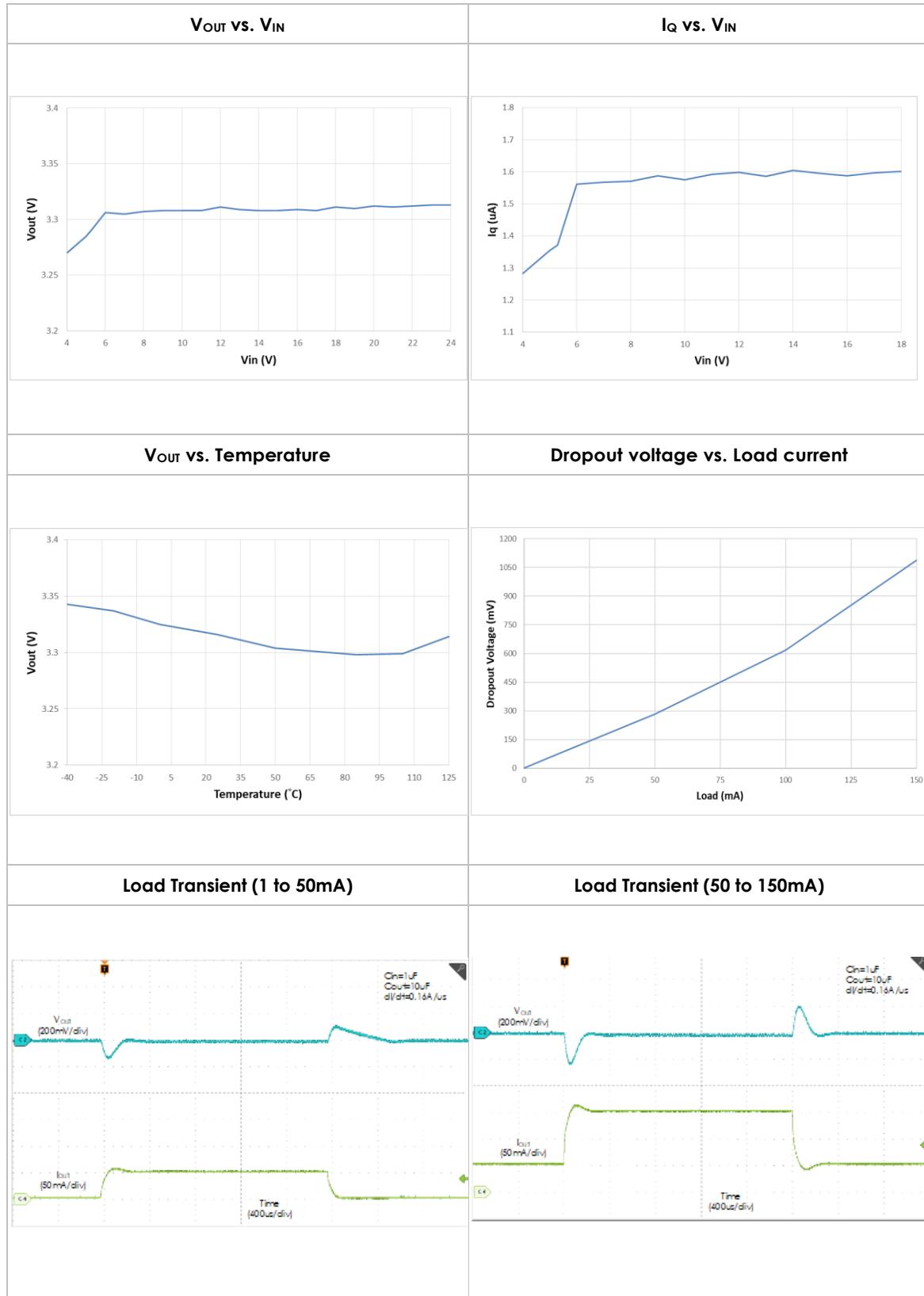
| Symbol    | $\theta_{JA}$ (Note 3) | $\theta_{JC}$ (Note 4) |
|-----------|------------------------|------------------------|
| SOT-23-3  | 250(°C/W)              | 81(°C/W)               |
| SOT-23-5  | 152(°C/W)              | 81(°C/W)               |
| SOT-89-3  | 90(°C/W)               | 52(°C/W)               |
| uDFN1x1-4 | 110(°C/W)              | 23(°C/W)               |

**Electrical Characteristics**

$V_{IN}=V_{OUT}+2V$ ,  $I_{OUT}=1mA$ ,  $C_{IN}=C_{OUT}=1\mu F$ ,  $T_a = 25^\circ C$ , unless otherwise specified

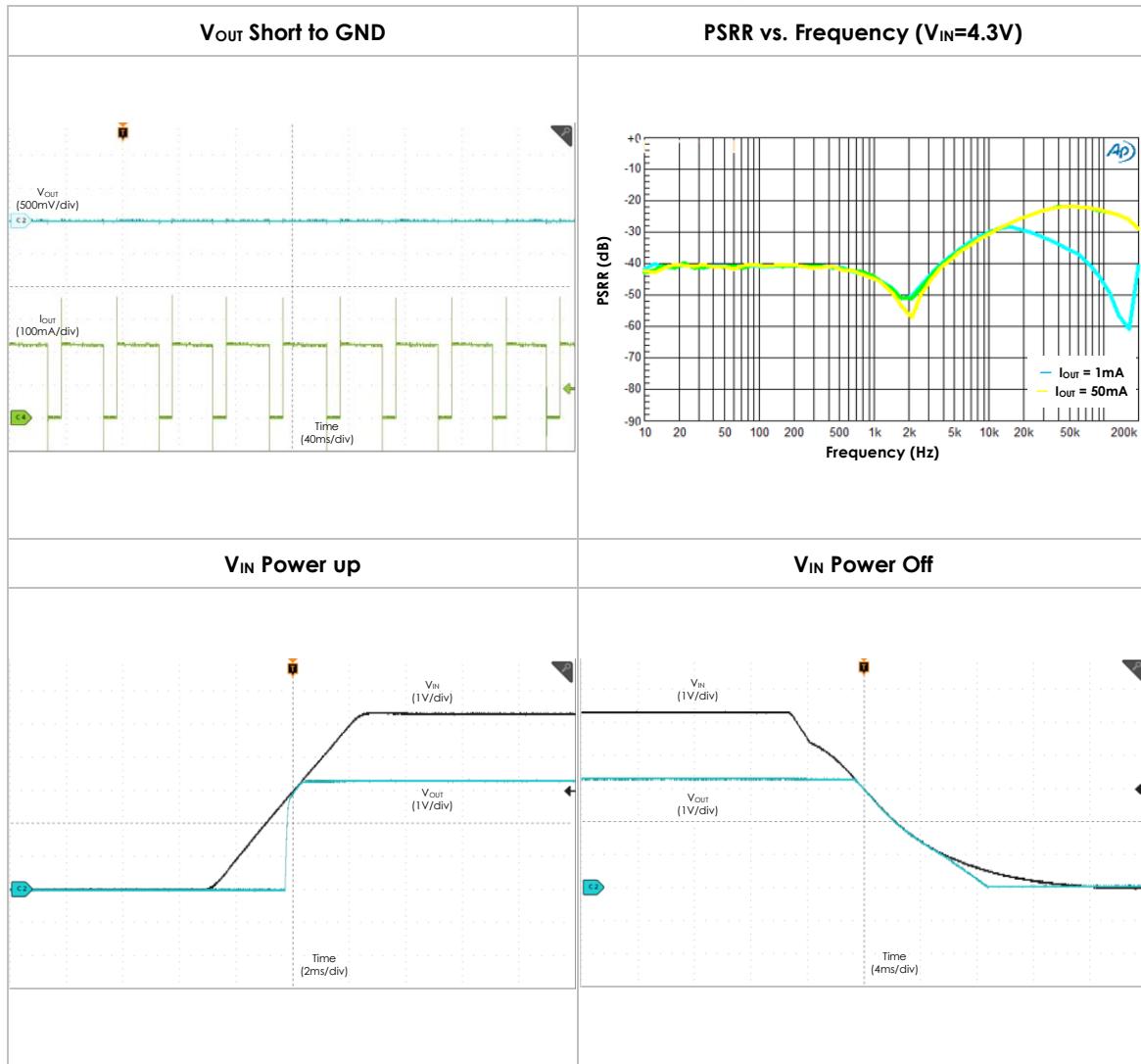
| Parameter                    | Symbol            | Test Conditions                                                                  | Min | Typ  | Max | Units |
|------------------------------|-------------------|----------------------------------------------------------------------------------|-----|------|-----|-------|
| Output Voltage               | $V_{OUT}$         |                                                                                  | -2% |      | 2%  | V     |
| Line Regulation              | $\Delta V_{LINE}$ | $V_{IN}=V_{OUT} + 2V$ to 24V,                                                    |     | 0.1  |     | %     |
| Load Regulation              | $\Delta V_{LOAD}$ | $I_{OUT}=1mA$ to 100mA                                                           |     | 0.7  |     | %     |
| Dropout Voltage              | $V_{DROP}$        | $V_{OUT}=3.3V$ , $I_{OUT}=10mA$                                                  |     | 60   |     | mV    |
|                              |                   | $V_{OUT}=3.3V$ , $I_{OUT}=50mA$                                                  |     | 300  |     | mV    |
|                              |                   | $V_{OUT}=3.3V$ , $I_{OUT}=100mA$                                                 |     | 650  |     | mV    |
|                              |                   | $V_{OUT}=3.3V$ , $I_{OUT}=150mA$                                                 |     | 1200 |     | mV    |
| Quiescent Current            | $I_Q$             | $T_a = 25^\circ C$ , $I_{OUT}=0mA$                                               |     | 1.5  | 4.0 | uA    |
| Current Limit                | $I_{CL}$          |                                                                                  | 170 | 210  |     | mA    |
| Thermal Shutdown             | $T_{SD}$          |                                                                                  |     | 140  |     | °C    |
| Thermal Shutdown Hysteresis  | $T_{HY}$          |                                                                                  |     | 20   |     | °C    |
| Power-supply rejection ratio | PSRR              | $f = 1kHz$ , $V_{IN}=4.3V$ $V_{OUT} = 3.3V$ ,<br>Ripple 0.2Vp-p, $I_{OUT} = 1mA$ |     | 55   |     | dB    |

**Note 1:** Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.


**Note 2:** All voltages are with respect to the potential at the ground pin.

**Note 3:**  $\theta_{JA}$  is measured in the natural convection at  $T_a=25^\circ C$  on a high effective thermal conductivity test board (2 layers, 2SOP).

**Note 4:**  $\theta_{JC}$  represents the resistance to the heat flows the chip to package top case.


## Typical Performance Characteristics

$V_{IN} = V_{OUT} + 2V$ ,  $I_{OUT} = 1\text{mA}$ ,  $V_{OUT} = 3.3V$ ,  $C_{IN} = C_{OUT} = 1\text{uF}$ ,  $T_a = 25^\circ\text{C}$ , unless otherwise specified



## Typical Performance Characteristics

$V_{IN} = V_{OUT} + 2V$ ,  $I_{OUT} = 1mA$ ,  $V_{OUT} = 3.3V$ ,  $C_{IN} = C_{OUT} = 1\mu F$ ,  $T_a = 25^\circ C$ , unless otherwise specified



## Application Information

### Output Capacitor

The EHP8042 is specially designed for use with ceramic output capacitors of as low as 1 $\mu$ F to take advantage of the savings in cost and space as well as the superior filtering of high frequency noise. Capacitors of higher value or other types may be used, but it is important to make sure its equivalent series resistance (ESR) is restricted to less than 0.5 $\Omega$ . The use of larger capacitors with smaller ESR values is desirable for applications involving large and fast input or output transients, as well as for situations where the application systems are not physically located immediately adjacent to the battery power source. Typical ceramic capacitors suitable for use with the EHP8042 are X5R and X7R. The X5R and the X7R capacitors are able to maintain their capacitance values to within  $\pm 20\%$  and  $\pm 10\%$ , respectively, as the temperature increases.

### Input Capacitor

A minimum input capacitance of 1 $\mu$ F is required for EHP8042. The capacitor value may be increased without limit. Improper workbench set-ups may have adverse effects on the normal operation of the regulator. A case in point is the instability that may result from long supply lead inductance coupling to the output through the gate capacitance of the pass transistor. This will establish a pseudo LCR network, and is likely to happen under high current conditions or near dropout. A 10 $\mu$ F tantalum input capacitor will dampen the parasitic LCR action thanks to its high ESR. However, cautions should be exercised to avoid regulator short-circuit damage when tantalum capacitors are used, for they are prone to fail in short-circuit operating conditions.

### Power Dissipation and Thermal Shutdown

Thermal overload results from excessive power dissipation that causes the IC junction temperature to increase beyond a safe operating level. The EHP8042 relies on dedicated thermal shutdown circuitry to limit its total power dissipation. An IC junction temperature  $T_J$  exceeding 140°C will trigger the thermal shutdown logic, turning off the P-channel MOS pass transistor. The pass transistor turns on again after the junction cools off by about 20°C. When continuous thermal overload conditions persist, this thermal shutdown action then results in a pulsed waveform at the output of the regulator. The concept of thermal resistance  $\theta_{JA}$  (°C/W) is often used to describe an IC junction's relative readiness in allowing its thermal energy to dissipate to its ambient air. An IC junction with a low thermal resistance is preferred because it is relatively effective in dissipating its thermal energy to its ambient, thus resulting in a relatively low and desirable junction temperature. The relationship between  $\theta_{JA}$  and  $T_J$  is as follows:

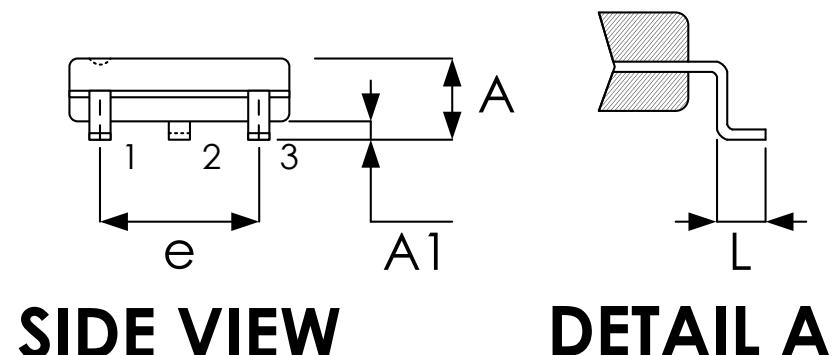
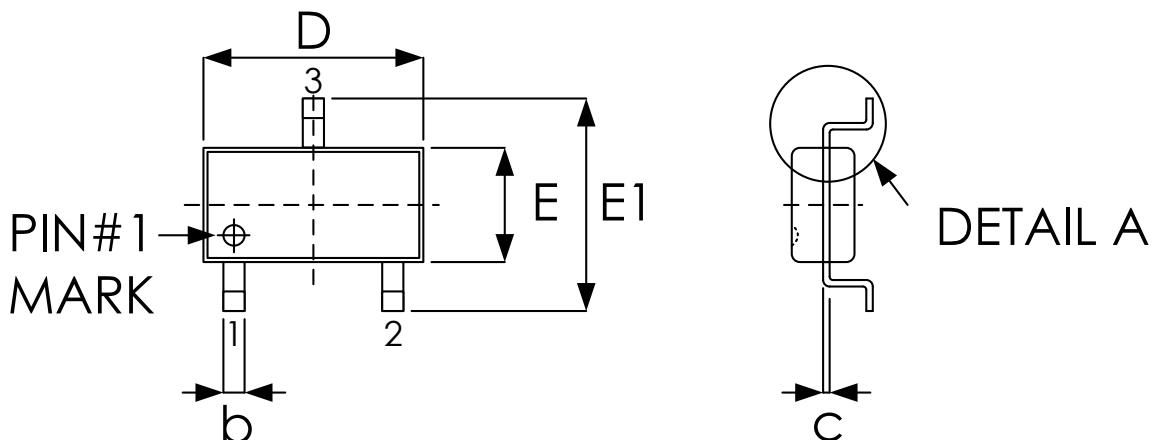
$$T_J = \theta_{JA} \times (P_D) + T_A$$

$T_A$  is the ambient temperature, and  $P_D$  is the power generated by the IC and can be written as:

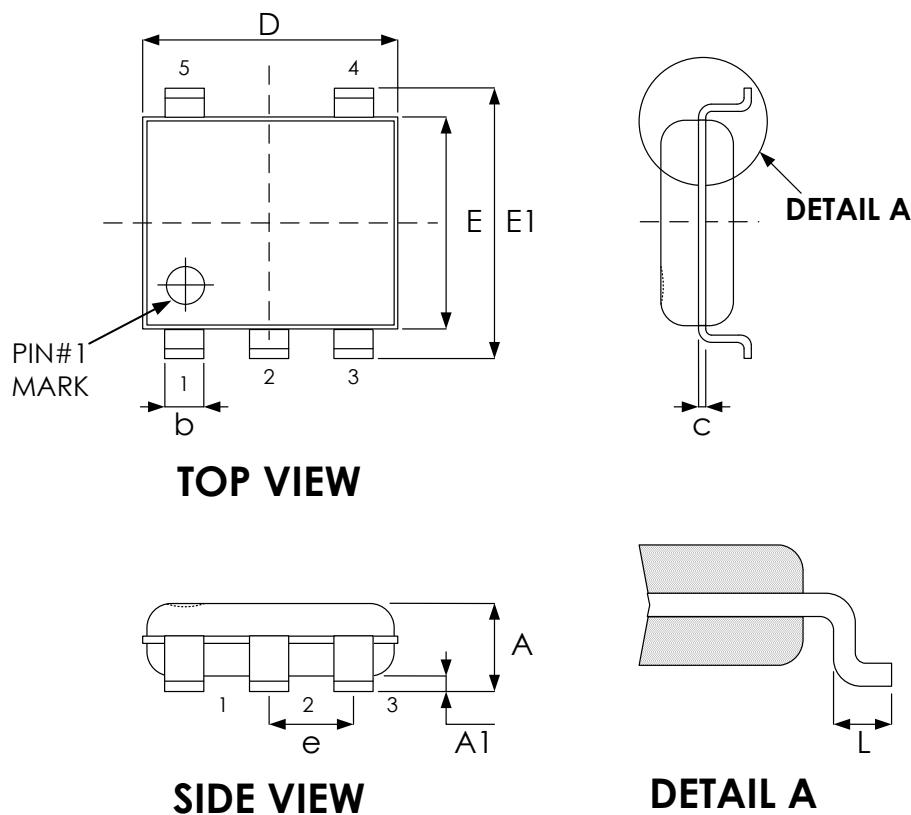
$$P_D = I_{OUT} (V_{IN} - V_{OUT})$$

As the above equations show, it is desirable to work with ICs whose  $\theta_{JA}$  values are small such that  $T_J$  does not

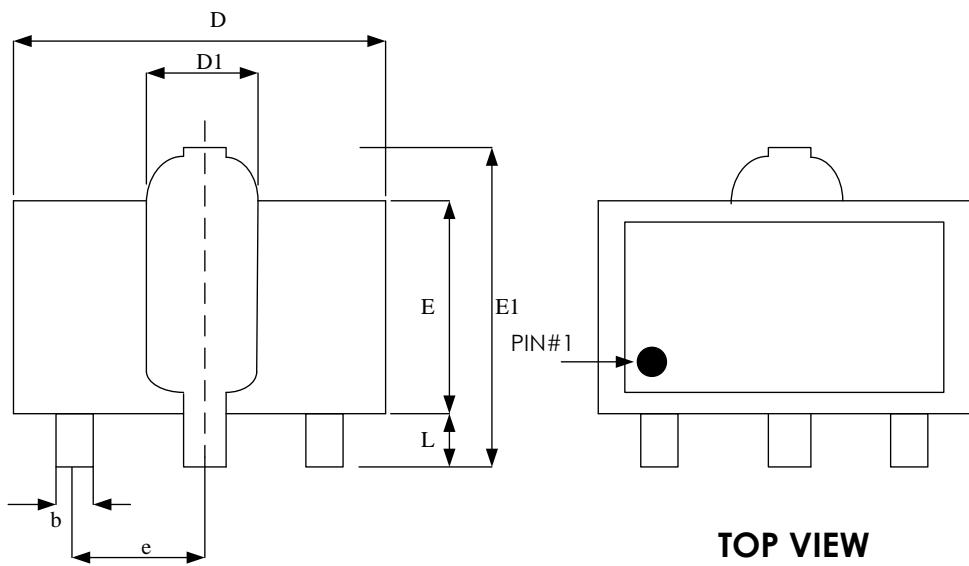
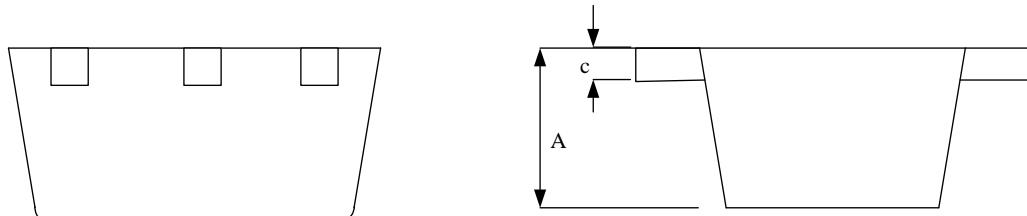
---



increase strongly with  $P_D$ . To avoid thermally overloading the EHP8042, refrain from exceeding the recommended maximum junction temperature rating of 125°C under continuous operating conditions. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly.

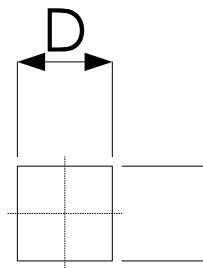
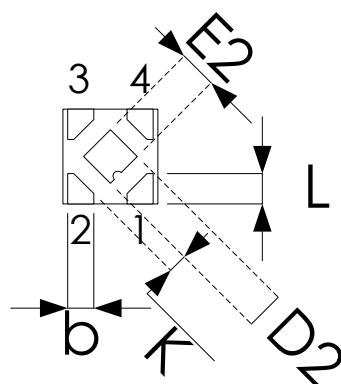
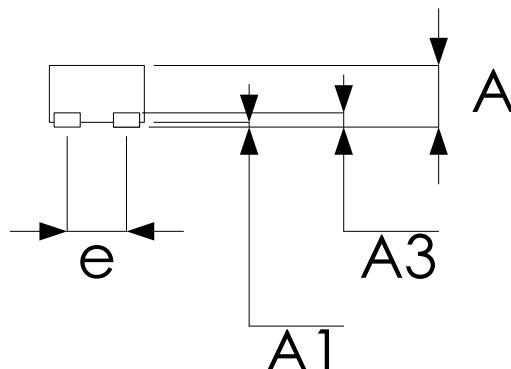
Maximum power dissipation for the device is calculated using the following equation:


$$PD = \frac{T_J(\max) - T_A}{\theta_{JA}}$$

Where  $T_{J(\max)}$  is the maximum junction temperature,  $T_A$  is the ambient temperature, and  $\theta_{JA}$  is the junction-to-ambient thermal resistance. For example,



- SOT-23-3 package,  $\theta_{JA}=250^\circ\text{C}/\text{W}$ ,  $T_{J(\max)}=125^\circ\text{C}$  and using  $T_A=25^\circ\text{C}$ , the maximum power dissipation is 0.4W.
- SOT-23-5 package,  $\theta_{JA}=152^\circ\text{C}/\text{W}$ ,  $T_{J(\max)}=125^\circ\text{C}$  and using  $T_A=25^\circ\text{C}$ , the maximum power dissipation is 0.65W.
- SOT-89-3 package,  $\theta_{JA}=90^\circ\text{C}/\text{W}$ ,  $T_{J(\max)}=125^\circ\text{C}$  and using  $T_A=25^\circ\text{C}$ , the maximum power dissipation is 1.1W.
- uDFN1x1-4 package,  $\theta_{JA}=110^\circ\text{C}/\text{W}$ ,  $T_{J(\max)}=125^\circ\text{C}$  and using  $T_A=25^\circ\text{C}$ , the maximum power dissipation is 0.9W.

**Package Outline Drawing**  
**SOT-23-3****DETAIL A**




| Symbol | Dimension in mm |      |
|--------|-----------------|------|
|        | Min.            | Max. |
| A      | 0.90            | 1.45 |
| A1     | 0.00            | 0.15 |
| b      | 0.30            | 0.50 |
| c      | 0.08            | 0.25 |
| D      | 2.70            | 3.10 |
| E      | 1.40            | 1.80 |
| E1     | 2.60            | 3.00 |
| e      | 1.90 BSC        |      |
| L      | 0.30            | 0.60 |

**Package Outline Drawing**  
**SOT-23-5**

| Symbol | Dimension in mm |      |
|--------|-----------------|------|
|        | Min.            | Max. |
| A      | 0.90            | 1.45 |
| A1     | 0.00            | 0.15 |
| b      | 0.30            | 0.50 |
| c      | 0.08            | 0.25 |
| D      | 2.70            | 3.10 |
| E      | 1.40            | 1.80 |
| E1     | 2.60            | 3.00 |
| e      | 0.95 BSC        |      |
| L      | 0.30            | 0.60 |

**Package Outline Drawing  
SOT-89-3****TOP VIEW****BOTTOM VIEW****SIDE VIEW**

| Symbol | Dimension in mm |      |
|--------|-----------------|------|
|        | Min             | Max  |
| A      | 1.4             | 1.6  |
| b      | 0.4             | 0.56 |
| c      | 0.35            | 0.41 |
| D      | 4.4             | 4.6  |
| D1     | 1.5             | 1.83 |
| E      | 2.29            | 2.6  |
| E1     | 3.94            | 4.25 |
| e      | 1.50 BSC        |      |
| L      | 0.89            | 1.2  |

**Package Outline Drawing****uDFN-4 (1mm x 1mm)****TOP VIEW****BOTTOM VIEW****SIDE VIEW**

| Symbol | Dimension in mm |       |
|--------|-----------------|-------|
|        | Min             | Max   |
| A      | 0.35            | 0.60  |
| A1     | 0.00            | 0.05  |
| A3     | 0.12 REF.       |       |
| b      | 0.175           | 0.275 |
| D      | 1.00 BSC        |       |
| E      | 1.00 BSC        |       |
| e      | 0.65 BSC        |       |
| L      | 0.20            | 0.30  |
| K      | 0.20 REF.       |       |

Exposed pad

|    | Dimension in mm |      |
|----|-----------------|------|
|    | Min             | Max  |
| D2 | 0.40            | 0.60 |
| E2 | 0.40            | 0.60 |

**Revision History**

| Revision | Date       | Description                               |
|----------|------------|-------------------------------------------|
| 1.0      | 2025.05.27 | Original                                  |
| 1.1      | 2025.09.17 | Add $V_{out}=3.0V$                        |
| 1.2      | 2026.01.20 | Add dropout voltage when $I_o=10mA, 50mA$ |

**Important Notice**

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express , implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.