

ISSUED 3-19-09

12.75-13.25 GHz 8-Watt Internally Matched Power FET

FEATURES

- 12.75– 13.25 GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +39 dBm Output Power at 1dB Compression
- 6.5 dB Power Gain at 1dB Compression
- 28% Power Added Efficiency
- Hermetic Metal Flange Package
- 100% Tested for DC, RF, and R_{TH}

EIC1213-8

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)

Caution! ESD sensitive device.

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	TYP	МАХ	UNITS
P _{1dB}	Output Power at 1dB Compression $f = 12.75-13.25$ GHz $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 2200$ mA	38.5	39		dBm
G _{1dB}	Gain at 1dB Compression $f = 12.75-13.25$ GHz $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 2200$ mA	5.5	6.5		dB
∆G	Gain Flatness f = 12.75-13.25GHz V _{DS} = 10 V, I _{DSQ} ≈2200mA Image: Comparison of the second sec			±0.6	dB
IMD3	Output 3rd Order Intermodulation Distortion $\Delta f = 10 \text{ MHz 2-Tone Test}; \text{ Pout} = 28.0 \text{ dBm S.C.L}^2$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 65\% \text{ IDSS}$ f = 13.25 GHz	-41	-45		dBc
PAE	Power Added Efficiency at 1dB Compression V_{DS} = 10 V, $I_{DSQ} \approx 2200$ mAf = 12.75-13.25GHz		28		%
Id _{1dB}	Drain Current at 1dB Compression f = 12.75-13.25GHz		2200	2600	mA
I _{DSS}	Saturated Drain Current $V_{DS} = 3 V, V_{GS} = 0 V$		3.8	4.6	А
VP	Pinch-off Voltage V _{DS} = 3 V, I _{DS} = 40 mA		-2.5	-4.0	V
R _{TH}	Thermal Resistance ³		3.5	3.8	°C/W

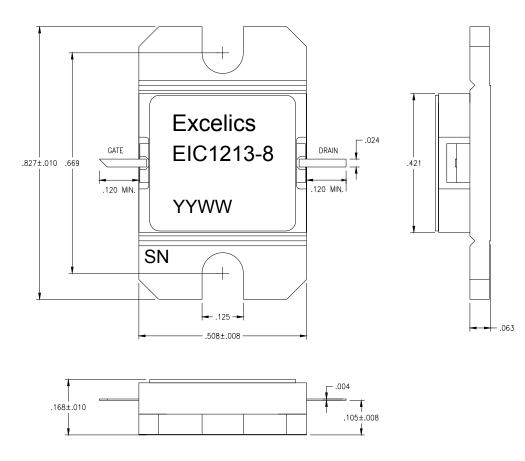
Note: 1) Tested with 50 Ohm gate resistor. 2) S.C.L. = Single Carrier Level. 3) Overall Rth depends on case mounting.

MAXIMUM RATING AT 25°C^{1,2}

SYMBOLS	PARAMETERS		CONTINUOUS ²
Vds	Drain-Source Voltage	15	10V
Vgs	Gate-Source Voltage	-5	-4V
Pin	Input Power	35dBm	@ 3dB Compression
Tch	Channel Temperature	175 °C	175 °C
Tstg	Storage Temperature	-65 to +175 °C	-65 to +175 °C
Pt	Total Power Dissipation	39.5W	39.5W

Note: 1. Exceeding any of the above ratings may result in permanent damage. 2. Exceeding any of the above ratings may reduce MTTF below design goals.

page 1 of 2 Revision A1


EIC1213-8

ISSUED 3-19-09

12.75-13.25 GHz 8-Watt Internally Matched Power FET

PACKAGE OUTLINE

Dimensions in inches, Tolerance <u>+</u> .005 unless otherwise specified

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.