

DATASHEET

4 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER EL816(D)-G Series

Features:

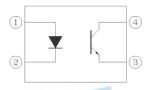
- Compliance Halogens Free (Br < 900 ppm, Cl < 900 ppm, Br+Cl < 1500 ppm)
- Current transfer ratio

(CTR: $50\sim600\%$ at $I_F = 5mA$, $V_{CE} = 5V$)

(CTR: $63\sim125\%$ at $I_F = 10\text{mA}$, $V_{CE} = 5\text{V}$)

(CTR: $10\sim265\%$ at $I_F = 0.5\text{mA}$, $V_{CE} = 5\text{V}$)

- High isolation voltage between input and output (Viso = 5000 V rms)
- Compact small outline package
- Compliance with EU REACH
- The product itself will remain within RoHS compliant version
- UL and cUL approved (No. E214129)
- VDE approved (No. 132249)
- SEMKO approved (No. 1406091)
- NEMKO approved (No. P11214765)
- DEMKO approved (No. D-03301)
- FIMKO approved (No. FI 27474)
- CQC approved (No. CQC08001022757)


Description

The EL816(D)-G series of devices each consist of an infrared emitting diodes, optically coupled to a phototransistor detector encapsulated with green compound. It is packaged in a 4-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Programmable controllers
- System appliances, measuring instruments
- Telecommunication equipments
- Home appliances, such as fan heaters, etc.
- Signal transmission between circuits of different potentials and impedances

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. Emitter
- 4. Collector

Absolute Maximum Ratings (Ta=25°C) *1

	Parameter	Symbol	Rating	Unit	
	Forward current	I _F	60	mA	
	Peak forward current (1us, pulse)	I _{FP}	1	А	
Input	Reverse voltage	V_R	6	V	
·	Power dissipation	D	100	mW	
	Derating factor (above $T_a = 100^{\circ}C$)	P _D —	2.9	mW/°C	
	Power dissipation	P _C —	150	mW	
	Derating factor (above T _a = 100°C)	rc —	5.8	mW/°C	
Output	Collector current	I _C	50	mA	
	Collector-Emitter voltage	$V_{\sf CEO}$	80	V	
	Emitter-Collector voltage	V_{ECO}	7	V	
Total Power	Dissipation	P _{TOT}	200	mW	
Isolation Vo	oltage* ²	V_{ISO}	5000	Vrms	
Operating Temperature		T _{OPR}	-55 ~ +110	°C	
Storage Temperature		T _{STG}	-55 ~ +125	°C	
Soldering T	Soldering Temperature*3		260	°C	
Maximum J	Junction Temperature*4	TJ(max)	-J(max) 125		

Notes

^{*1} Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

^{*2} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

^{*3} For 10 seconds

^{*4} This value is for information only and is for the bare chip condition, not for the module conditions.

Electrical Characteristics (Ta=25°C unless specified otherwise)

Inpu	ıt
------	----

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	-	1.2	1.4	V	$I_F = 20 \text{mA}$
Reverse Current	I _R	-	-	10	μΑ	V _R = 4V
Input capacitance	C _{in}	-	30	250	pF	V = 0, f = 1kHz

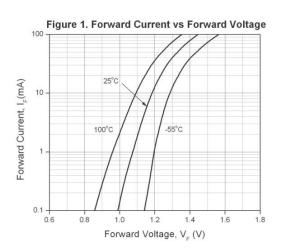
Output

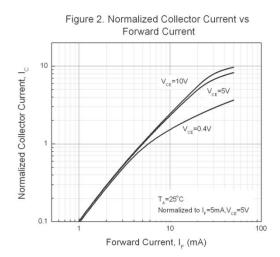
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Collector-Emitter dark	I _{CEO}	-	-	100	nA	$V_{CE} = 20V, I_F = 0mA$
current						
Collector-Emitter	BV_CEO	80	_	_	V	$I_{C} = 0.1 \text{mA}$
breakdown voltage	D A CEO	00			•	10 = 0.11117
Emitter-Collector	BV _{ECO}	7	_	_	V	$I_F = 0.1 \text{mA}$
breakdown voltage	DVECO	•			v	IE = 0. IIIIA

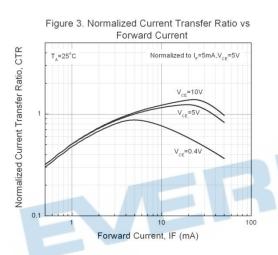
Transfer Characteristics

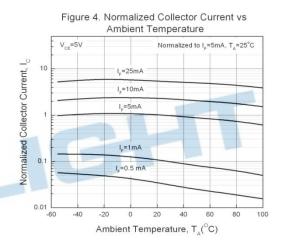
Param	neter	Symbol	Min.	Тур.*	Max.	Unit	Condition
	EL816A		50		150		
	EL816B		130	-	260	%	
	EL816C	_	200	-	400		
	EL816D	_	300	-	600		$I_F = 5mA$, $V_{CE} = 5V$
	EL816X	- - - CTR - - -	100	-	200		
	EL816Y		150	-	300		
Current	EL816A		10	-	70		
Transfer ratio	EL816B		25	-	120		
	EL816C		45	-	180		
	EL816D		70	-	265		$I_F = 0.5 \text{mA}, \ V_{CE} = 5 \text{V}$
	EL816X		20	-	95		
	EL816Y		30	-	135		
	EL816J		10	-	60		
	EL816J	_	63	-	125		$I_F = 10 \text{mA}, \ V_{CE} = 5 \text{V}$

Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Collector-Emitter saturation voltage	$V_{CE(sat)}$	-	0.1	0.2	V	$I_F = 20$ mA, $I_C = 1$ mA
Isolation resistance	R _{IO}	5×10 ¹⁰	-	-	Ω	V _{IO} = 500Vdc, 40~60% R.H.
Floating capacitance	C_{IO}	-	0.6	1.0	pF	$V_{IO} = 0$, $f = 1MHz$
Cut-off frequency	fc	-	80	-	kHz	$V_{CE} = 5V, I_{C} = 2mA$ $R_{L} = 100\Omega, -3dB$

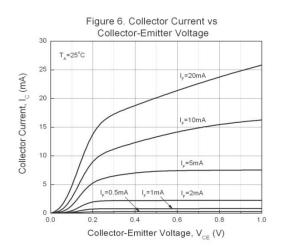

^{*} Typical values at T_a = 25°C

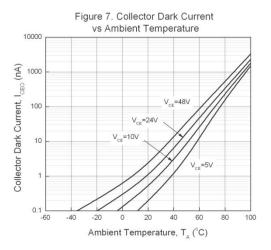

Transfer Characteristics (T_a=25°C unless specified otherwise)

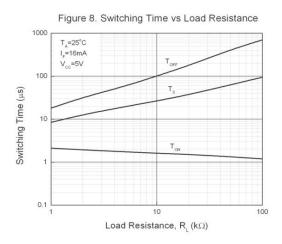

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Turn on time	Ton	-	5	-	μs	
Turn off time	Toff	-	6	-	μs	$V_{CE} = 2V$, $I_C = 2mA$,
Rise time	t _r	-	-	18	μs	$R_L = 100\Omega$
Fall time	t _f		-	18	μs	
EV	13					

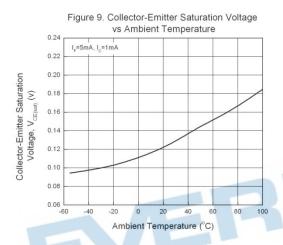


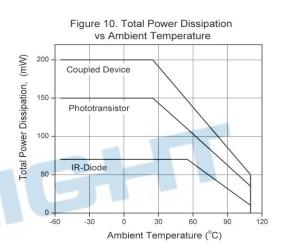

Typical Electro-Optical Characteristics Curves

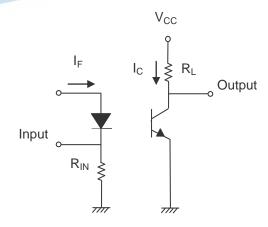












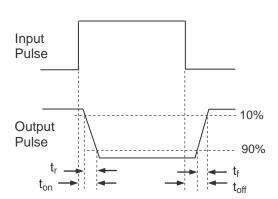


Figure 11. Switching Time Test Circuit & Waveforms

Order Information

Part Number

EL816X(Y)(Z)(D)-VG

Notes

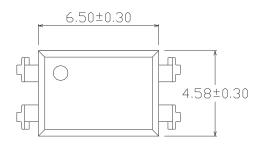
X = Lead form option (S, S1, M or none)

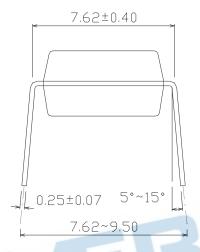
Y = CTR Rank (A, B, C, D, X, Y or J)

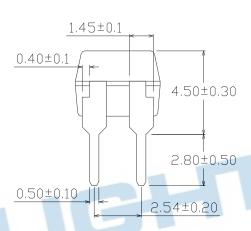
Z = Tape and reel option (TU, TD or none)

Customer code

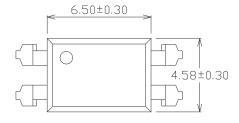
V = VDE safety (optional)

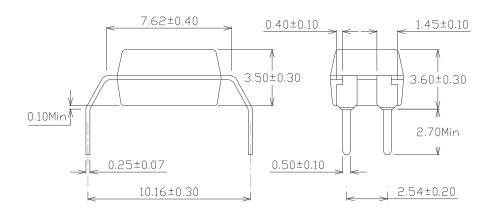

G = Halogens free

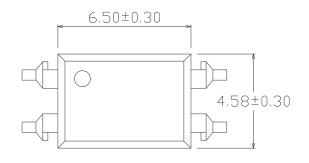

Option	Description	Packing quantity
None	Standard DIP-4	100 units per tube
M	Wide lead bend (0.4 inch spacing)	100 units per tube
S (TU)	Surface mount lead form + TU tape & reel option	1500 units per reel
S (TD)	Surface mount lead form + TD tape & reel option	1500 units per reel
S1 (TU)	Surface mount lead form (low profile) + TU tape & reel option	1500 units per reel
S1 (TD)	Surface mount lead form (low profile) + TD tape & reel option	1500 units per reel

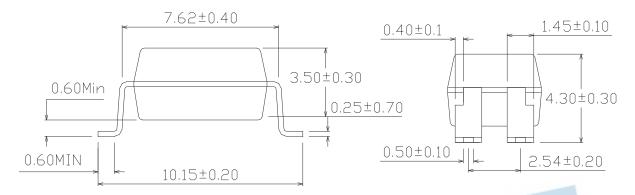


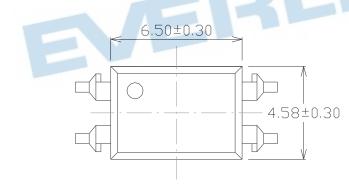
Package Dimension (Dimensions in mm)

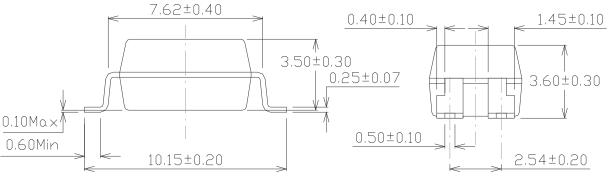

Standard DIP Type



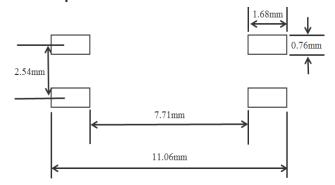

Option M Type



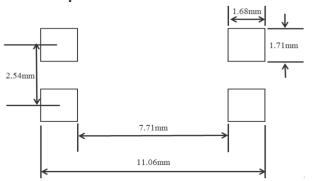



Option S Type

Option S1 Type



Ver.:10



Recommended pad layout for surface mount leadform

For S option

For S1 option

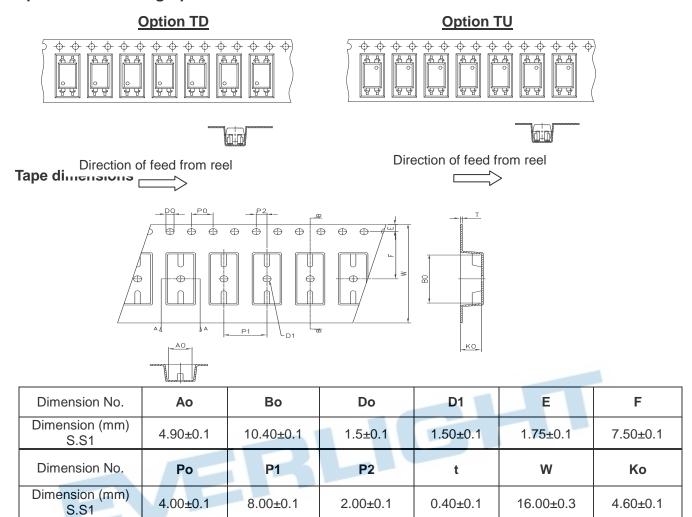
GHT

Notes

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

Device Marking

Notes


EL816 denotes Device Number

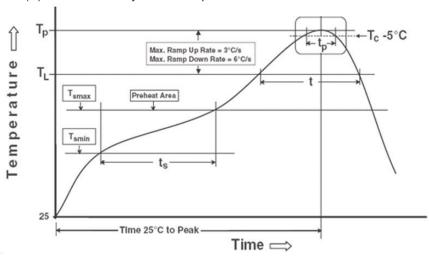
G denotes Factory Code (G: China and Green part)
R denotes CTR Rank (A, B, C, D, X, Y or J)

Y denotes 1 digit Year code WW denotes 2 digit Week code V denotes VDE safety (optional)

Tape & Reel Packing Specifications

Label Format

Inner packing box



Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Notes Reference: IPC/JEDEC J-STD-020D

Preheat

150 °C Temperature min (T_{smin}) Temperature max (T_{smax}) 200°C Time $(T_{smin} \text{ to } T_{smax}) (t_s)$ 60-120 seconds

Average ramp-up rate (T_{smax} to T_p) 3 °C/second max

Other

Liquidus Temperature (T_L) Time above Liquidus Temperature (t L)

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

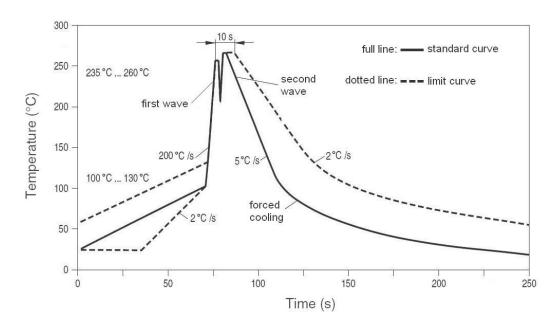
Reflow times

217 °C

60-100 sec

260°C

30 s


6°C /second max.

8 minutes max.

3 times

Wave solder Temperature prolife

DISCLAIMER

- 1. The specifications in this datasheet may be changed without notice. EVERLIGHT reserves the authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for use as outlined in this datasheet. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in this datasheet.
- These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.