EM78680

USB Full Speed Microcontroller

Product Specification

Doc. Version 1.0

ELAN MICROELECTRONICS CORP.

November 2011

Trademark Acknowledgments:.

Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2008~2011 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076

Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376

Fax: +852 2723-3376

USA:

Elan Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8225

Korea:

Elan Korea Electronics Company, Ltd.

301 Dong-A Building 632 Kojan-Dong, Namdong-ku Incheon City, KOREA Tel: +82 32 814-7730 Fax: +82 32 813-7730

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057 Tel: +86 755 2601-0565

Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

Shanghai:

ELAN Microelectronics Shanghai, Ltd.

elan-sh@elanic.com.cn

Rm101, #3 Lane 289, Bisheng Rd., Zhangjiang Hi-Tech Park Pudong New Area, Shanghai, CHINA 201204 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273

1	Gene	ral Descrip	tion	1
2	Feat	ıres		1
3	PIN I	DESCRIPTIO	ON	4
4	Bloc	k Diagram		5
5	Fund	tion Descrip	otion	5
	5.1	Program Me	emory	5
	5.2	Data Memoi	-y	6
		5.2.1 Oper	ational Registers	8
	5.3	Special Fun	ction Registers	18
		=	cumulator)	
		5.3.2 CON	T (Control Register)	18
		5.3.3 IOC5	~ IOC9 Port Direction Control Registers	19
		5.3.4 IOCA	(RFCNT: RF Control Register)	19
		5.3.5 IOCE	B (PWM_CNT: PWM Controller) Default (0b0000_0001)	19
			C (T1CON: Timer 1 Control Register)	
) (Port 9 Pull-high Control Register) Default Value: (0B_1111_1111)	
			(MCU Control Register) Default (0b1101_1111)	
			(Interrupt Mask Register)	
	5.4	USB Device	Controller	22
	5.5	Device Addr	ess and Endpoints	23
	5.6	Reset		23
		5.6.1 Power	er-on Reset	23
		5.6.2 Watc	hdog Reset	23
		5.6.3 USB	Reset	23
	5.7	Power Savir	ng Mode	24
		5.7.1 Power	er-down Mode	24
		5.7.2 Dual	Clock Mode	24
	5.8	Interrupt		25
	5.9	Pattern Dete	ect Application (PDA)	26
		5.9.1 Func	tion Description	26
		5.9.2 Cont	rol Register	26
		5.9.3 Samp	oling Rate and Debounce Length	27
	5.10	Pulse Width	Modulation (PWM)	28
		5.10.1 Func	tion Description	28
		5.10.2 Conti	rol Register	29
	5.11	Analog-To-D	Digital Converter (ADC)	29
		5.11.1 Func	tion Description	29
		5.11.2 Conti	rol Register	30
	5.12	Serial Peripl	neral Interface Mode	31
			view	
		5.12.2 Featu	ures	31

	,
5.12.3 SPI Function Description	33
5.12.4 SPI Signal and Pin Description	35
5.12.5 SPI Control Registers	36
5.12.6 SPI Mode Timing	39
5.12.7 SPI Timer 1 Mode	44
Absolute Maximum Ratings	46
DC Electrical Characteristic	47
APPENDIX	
Special Register Map	48
Instruction Set	54
Code Option	56
Application Circuit	
	5.12.5 SPI Control Registers

Specification Revision History

Doc. Version	Revision Description	Date
0.1	Preliminary version	2008/03/19
1.0	Remove Pin Assignment.	2011/11/23

1 General Description

The EM78680 is a series of 8-bit Universal Serial Bus (USB), RISC architecture, microcontroller. It is specifically designed for USB full speed device application. The EM78680 also supports one device address and six endpoints.

The EM78680 has 8-level stacks and four sets of interrupt sources. It has a maximum of 38 General Input/Output pins with the capacity of sinking large current. Each device has 272 bytes of general purpose SRAM, 6K bytes of program ROM.

These series of ICs have special features that meet user's requirements. Such features are:

- Dual Clock mode which allows the device to run on very low power.
- Pattern Detect Application function which is used in serial transmission to count waveform width.
- Pulse Width Modulation that can generate a duty-cycle-programmable signal
- 24-channel AD converter with up to 10 bits resolution
- Serial Peripheral Interface

2 Features

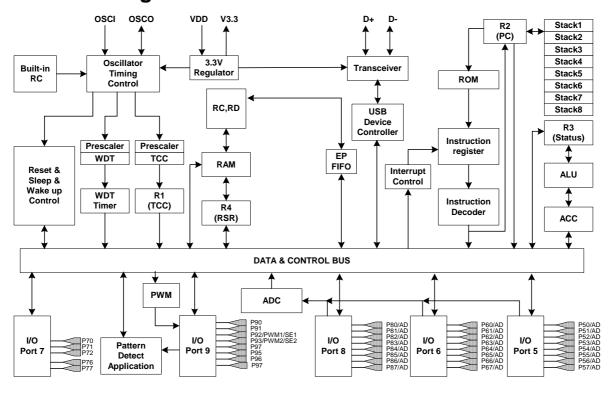
- Operating voltage: 4.0V ~ 5.5V (24MHz operation voltage: 5.0~5.5V)
- USB Specification Compliance
 - Universal Serial Bus Specification Version 1.1
 - USB Device Class Definition for Human Interface Device (HID), Firmware Specification Version 1.1
 - Supports one device address and six endpoints
- USB Application
 - P74 (D+) has an internal pull-high resistor (1.5KΩ)
 - USB protocol handling
 - USB device state handling
 - Identifies and decodes Standard USB commands to Endpoint Zero
- Built-in 8-bit RISC MCU
 - 8-level stacks for subroutine testing, and interrupt
 - Auto saving R3, R4 and RA Bit 7 when interrupt occurs
 - 4 sets of interrupts
 - 8-bit real time clock/counter (TCC) with overflow interrupt
 - Built-in RC oscillator free running for Watchdog Timer and Dual clock mode
 - Two independent programmable prescalers for WDT and TCC

- Two methods of power saving:
 - > Power-down mode (Sleep mode)
 - > Dual clock mode
- Two clocks per instruction cycle
- Multi-time programmable
- Set 1 INT : (jump to 0x08)
 - TCC overflow interrupt
 - EP0 command in interrupt
 - USB suspend interrupt
 - USB reset interrupt
 - USB HOST resume interrupt
- Set 2 INT : (jump to 0x10)
 - RF1 low pattern interrupt
 - RF1 high pattern interrupt
 - RF2 low pattern interrupt
 - RF2 high pattern interrupt
- Set 3 INT : (jump to 0x18)
 - P77 port change interrupt
 - P76 port change interrupt
 - SPI Timer 1 comparator completed interrupt (Note 1)
 - SPI transmission completed interrupt (Note 1).

Note1: When use this interrupt please set code option bit 65 as "0".

- Set 4 INT : (jump to 0x20)
- EP1~5 output Endpoint received O.K interrupt
- I/O Ports
 - 3 LED sink pins
 - Each GPIO pin in Ports 5, 6, 8, 9, P70~P72 and P76~P77 has an internal programmable pull-high resistor (25 KΩ)
 - Ports 5, 6, 8, 9 are 3.3V I/O, Port 7: 5V I/O
 - Each GPIO pin of Port 6, Ports 90~93 can wake-up the MCU from sleep mode by input state change
- Internal Memory
 - Built-in 6K×13 bits Program ROM
 - Built-in 272 bytes general purpose registers (SRAM)
 - Built-in USB Application FIFOs
- Operation Frequency

- Normal Mode: MCU runs on an external oscillator frequency of 4MHz, Internal system frequency of 8MHz, 16MHz or 24MHz
- Dual Clock Mode: MCU runs at a frequency of 256kHz (or 32kHz, 4kHz, 500Hz), using an internal oscillator with an external crystal resonator turned off to save power
- Built-in Pattern Detecting Application for serial signal transmission
- Built-in Pulse Width Modulation (PWM)
 - 2 channels PWM function on P.92 (PWM1) and P.93 (PWM2)
 - 8-bit resolution of PWM output
 - 8 selections of duty cycles
- Built-in 24-Channel Analog-to-Digital Converter (ADC)
 - Built-in AD Converter with 10-bit resolution
 - 4 types of ADC clock source selection: 256K/128K/64K/32K
- Built-in Serial Peripheral Interface (SPI)
 - Operation in either Master mode or Slave mode
 - Programmable baud rates of communication
 - Up to 8 MHz bit frequency
- Built-in 3.3V Voltage Regulator
 - For UDC power supply
 - Pull-up source for the external USB resistor on D+ pin



Pin Description

Symbol	I/O	Function
P50 ~ P57	I/O	General 8-bit bidirectional input/output port. All pins on this port can be internally pulled-high by register IOCE Bit 0. All Port 5 input/output pins can be used for ADC function. (Code Option Bit 65=0) and SPI function enable => P57: SPI /SS bit P56: SCK, P55:SDO, P54:SDI
P60 ~ P67	I/O	General 8-bit bidirectional input/output port. All pins on this port can be internally pulled-high by register IOCE Bit 1. All Port 6 input/output pins can be used for ADC function.
P70 ~ P72 P76 ~ P77	I/O	General 5-bit bidirectional input/output port. All pins on this port can be internally pulled-high by register IOCE Bit 3. The sink current of P70 ~ P72 are used for driving the LED.
P80 ~ P87	I/O	General 8-bit bidirectional input/output port. All pins on this port can be internally pulled-high by register IOCE Bit 2. All Port 8 input/output pins can be used for ADC function.
P90~P97	I/O	General 8-bit bidirectional input/outpu port. Each pin can be internally pulled-high by register IOCD. P92 ~ P93 can be used for PWM (pulse width modulation) or PDA (serial signal transmission application) function.
USB D+	I/O	USB D+ pin. Built-in internal 1.5K pulled-high resistor to V3.3
USB D-	I/O	USB D- pin
OSCI	I	4 MHz crystal input
osco	I/O	Return path for 4 MHz crystal
V3.3	0	3.3V DC voltage output from an internal regulator. This pin has to be tied to a 4.7 µF capacitor.
VDD	-	Connect to the USB power source or to a nominal 5V-power supply. Actual VDD range can vary between 4.4V and 5.25V.
VSS	-	Connect to ground.

4 Block Diagram

5 Function Description

The EM78680 memory is organized into four spaces, namely; User Program memory in 6K×13 bits ROM space, Data Memory in 272 bytes SRAM space, and USB Application FIFOs for Endpoint 0, Endpoint 1, Endpoint 2, Endpoint 3, Endpoint 4, Endpoint 5. Furthermore, several registers are used for special purposes.

5.1 Program Memory

The program space of the EM78680 is 6K bytes, and is divided into six pages. Each page is 1K bytes long. After a Reset, the 13-bit Program Counter (PC) points to location zero of the program space.

The Interrupt Vectors are at 0x0008 (USB and TCC interrupts), 0x0010 (RF function interrupt), 0x0018 (P76 P77 port change and SPI interrupt) and 0x020 (EP1~5 output endpoint interrupt).

When interrupt occurs, the MCU will auto save the Status Register (R3), RA,7, RAM Select Register (R4 Bits 6, 7), Accumulator (A) then clear PS0~PS2 and fetch the instruction from the interrupt vector address. The interrupt vector address is illustrated in the following diagram.

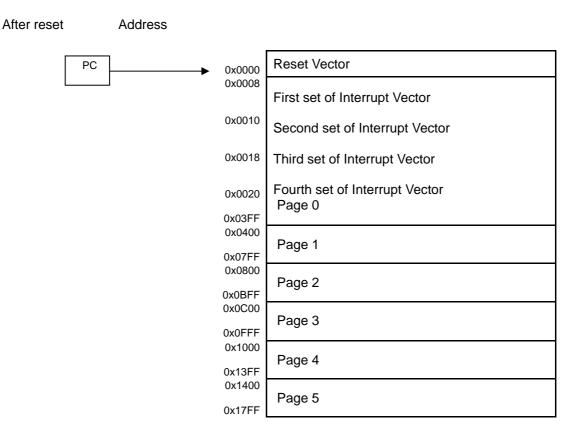


Figure 5-1 EM78680 Data RAM Organization

5.2 Data Memory

The Data Memory has 272 bytes SRAM space. It is also equipped with USB Application FIFO space for USB Application. Figure 5-2 shows the organization of the Data Memory Space.

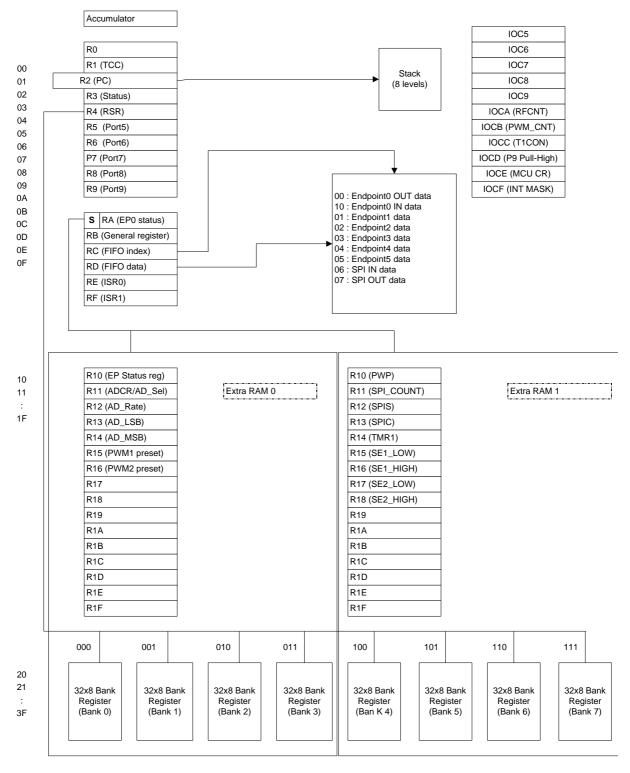


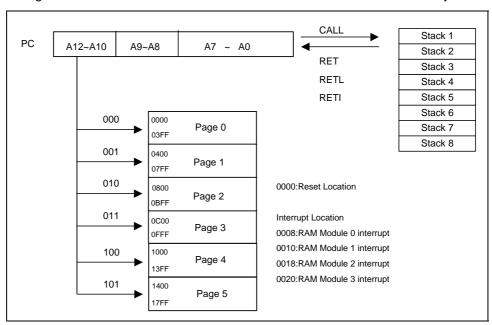
Figure 5-2 Data Memory Configuration

5.2.1 Operational Registers

5.2.1.1 R0 (Indirect Address Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as register actually accesses data pointed by the RAM Select Register (R4).

5.2.1.2 R1 (Timer/Clock Counter, TCC)


This register TCC, is an 8-bit timer or counter. It is incremented by the instruction cycle clock, and is readable and writable as any other register.

5.2.1.3 R2 (Program Counter and Stack)

- R2 and the hardware stacks are 13 bits wide.
- The structure is depicted in Figure 5-3.
- Generates 6K×13 on-chip ROM addresses to the relative programming instruction codes. One program page is 1024 words long.
- All the R2 bits are set to "0"s when a reset condition occurs.
- "JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows jump to any location on one page.
- "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed onto the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents at the top of stack.
- "MOV R2, A" allows the loading of an address from the "A" register to the lower 8 bits of PC, and the ninth and tenth bits (A8~A9) of PC are cleared.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and tenth bits of PC are cleared.
- Any instruction that is written to R2 (e.g. "ADD R2, A", "MOV R2, A", "BC R2,6", etc·), except "TBL" will cause the ninth and tenth bits (A8~A9) of the PC to be cleared. Thus, the computed jump is limited to the first 256 locations of any program page.
- "TBL" allows a relative address to be added to the current PC (R2+A→R2), and the contents of the ninth and tenth bits (A8~A9) of the PC are not changed. Thus, the computed jump can be on the second (third, or 4th) 256 locations on one program page.
- For the EM78680, the most significant bits (A10~A12) will be loaded with the contents of bits PS0~PS2 in the status register (R3) upon the execution of a "JMP", "CALL", or any other instructions which writes to R2.

All instructions are single instruction cycle except for the instruction that would change the contents R2. Such instruction will need one more instruction cycle.

5.2.1.4 R3 (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PS2	PS1	PS0	Т	Р	Z	DC	С

After an interrupt occurs, the MCU will save R3 Bits 5~7 first and clear automatically PS0~PS2.

R3 [0] Carry flag

R3 [1] Auxiliary carry flag

R3 [2] Zero flag. It will be set to 1 when the result of an arithmetic or logic operation is zero.

R3 [3] Power down flag. It will be set to 1 during Power-on phase or by "WDTC" command and cleared when the MCU enters into Power-down mode. It remains in its previous state after a Watchdog Reset.

"0": Power-down mode

"1": Power on

Values of RST, T and P after a Reset

Reset Type	T	Р
Power on	1	1
WDT during Operation mode	0	Р
WDT wake-up during Sleep 1 mode	0	0
WDT wake-up during Sleep 2 mode	0	Р
Wake-up on pin change during Sleep 2 mode	Р	Р

*P: Previous value before reset

Status of RST, T and P Being Affected by Events

Event	Т	Р
Power on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin change during Sleep 2 mode	Р	Р

*P: Previous value before reset

R3 [4] Time-out flag. It will be set to 1 during Power-on phase or by "WDTC" command. It is reset to 0 by WDT time-out.

"0": Watchdog timer with overflow

"1": Watchdog timer without overflow

R3 [5~7] Page select bits. These three bits are used to select the program memory page.

PS2	PS1	PS0	Program Memory Page [Address]
0	0	0	Page 0 [000-3FF]
0	0	1	Page 1 [400-7FF]
0	1	0	Page 2 [800-BFF]
0	1	1	Page 3 [C00-FFF]
1	0	0	Page 4 [1000-13FF]
1	0	1	Page 5 [1400-17FF]

5.2.1.5 R4 (RAM Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BK1	BK0	Ad5	Ad4	Ad3	Ad2	Ad1	Ad0

R4 (RAM select register) contains the address of the registers. When interrupt occurs, the MCU will save R4 value automatically.

R4 [0~5] are used to select registers (Address: 0x00h~0x3Fh) in indirect addressing mode.

R4 [6~7] are used to determine which bank is activated among the 8 banks. To select a register bank, refer to the table below:

R4[7]BK1	R4[6]BK0	RAM Bank #
0	0	Bank 0
0	1	Bank 1
1	0	Bank 2
1	1	Bank 3

5.2.1.6 R5 (Port 5 I/O Register) *Default Value:* (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P57	P56	P55	P54	P53	P52	P51	P50

5.2.1.7 R6 (Port 6 I/O Register) *Default Value:* (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P67	P66	P65	P64	P63	P62	P61	P60

5.2.1.8 R7 (Port 7 I/O Register) Default Value: (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P77	P76	D-/P75	D+/P74	_	P72	P71	P70

5.2.1.9 R8 (Port 8 I/O Register) Default Value: (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P87	P86	P85	P84	P83	P82	P81	P80

5.2.1.10 R9 (Port 9 I/O Register) *Default Value:* (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P97	P96	P95	P94	P93	P92	P91	P90

5.2.1.11 RA (USB Endpoint 0 Status Register) Default Value: (0B0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Extr _R	Remote Status	EP0_W	EP0_R	Dev _Resume	UDC_Suspend	UDC_Writing	STALL

- RA [0] STALL flag. When the MCU receives an unsupported command or invalid parameters from host, this bit will be set to 1 by the firmware to notify the UDC to return a STALL handshake. When a successful setup transaction is received, this bit is cleared automatically. This bit is both readable and writable.
- RA [1] UDC Writing flag. Read only. When this bit is equal to "1," it indicates that the UDC is writing da0ta into the EP0's FIFO or reading data from it. During this time, the firmware will avoid accessing the FIFO until the UDC finishes writing or reading. This bit is readable only.
 - 1: EP0's FIFO is busy
 - 0: EP0's FIFO is free for data transition. ACK, NAK are reset.
- RA [2] UDC Suspend flag. If this bit is equal to 1, it indicates that the USB bus has no traffic for a specified period of 3.0 ms. This bit will also be cleared automatically when a bus activity takes place. This bit is readable only.
- RA [3] Device resume flag. This bit is set by firmware to generate a signal to wake up the USB host and is cleared as soon as the USB Suspend signal becomes low. This bit can only be set by firmware and cleared by hardware. It cam only be used in dual mode. This bit is both readable and writable.
- RA [4] EPO_R flag. This bit informs the UDC to read the data written by the firmware from the FIFO. Then the UDC will automatically send the data to the Host. After the UDC finishes reading the data from the FIFO, this bit will be cleared automatically.

Therefore, before writing data into FIFO, the firmware will first check this bit to avoid overwriting the data. This bit can only be set by the firmware and cleared by the hardware.

RA [5] EP0_W. After the UDC completes writing data to the FIFO, this bit will be set automatically. The firmware will clear it as soon as it gets the data from EP0's FIFO. Only when this bit is cleared will the UDC be able to write a new data into the FIFO.

Therefore, before the firmware can write a data into the FIFO, this bit must first be set by the firmware to prevent the UDC from writing data at the same time. This bit is both readable and writable.

RA [6] Remote wake-up status. Pass device remote wake-up setting from the PC.

RA [7] Extra RAM switch. RAM block switch

- 0: Switch to Bank 0~Bank 3 and external RAM 0
- 1: Switch to Bank 4~Bank 7 and external RAM 1

5.2.1.12 RC (FIFO Indirect Index Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	UAD4	UAD3	UAD2	UAD1	UAD0

RC [0~4] Application FIFO address registers. These five bits are the address pointer of the Application FIFO.

RC [5~7] Undefined registers.

5.2.1.13 RD (FIFO Indirect Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UAD7	UAD6	UAD5	UAD4	UAD3	UAD2	UAD1	UAD0

RD (Application FIFO data register) contains the data in the register of which address is pointed by RC.

5.2.1.14 RE (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P77_IF	P76_IF	TM1IF	SPIIF	RF2_High	RF2_Low	RF1_High	RF1_Low

RE [0] RF1_Low flag: Pattern Detection interrupt flag. RF1 low pattern compare flag.

RE [1] RF1_High flag: Pattern Detection interrupt flag. RF1 high pattern compare flag.

RE [2] RF2_Low flag: Pattern Detection interrupt flag. RF2 low pattern compare flag.

RE [3] RF2_High flag: Pattern Detection interrupt flag. RF2 high pattern compare flag.

RE [4] SPI interrupt flag. Set by data transmission complete, flag is cleared by software. The interrupt is created after the SPI data is saved to SRAM.

- RE [5] Timer 1 interrupt flag. Set by the comparator at Timer 1 application, flag cleared by software.
- RE [6] P76_IF: P76 State Change interrupt flag.
- RE [7] P77_IF: P77 State Change interrupt flag. The Interrupt Vector is in Address 0x0018.

5.2.1.15 RF (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OUT EP_IF	-	1	Resume_IF	USBReset_IF	Suspend_IF	EP0_IF	TCC_IF

- RF [0] TCC timer overflow interrupt flag. It will be set while TCC timer overflows, and is cleared by the firmware.
- RF [1] EndPoint Zero interrupt flag. It will be set when the EM78680 receives Vendor /Customer Command to EndPoint Zero. This bit is cleared by the firmware.
- RF [2] USB Suspend interrupt flag: It will be set when the EM78680 finds the USB Suspend Signal on USB bus. This bit is cleared by the firmware.
- RF [3] USB Reset interrupt flag. It will be set when the Host issues the USB Reset signal.
- RF [4] USB Host Resume interrupt flag. It will be set only under Dual clock mode when the USB suspend signal becomes low.
- RF [5~6] Not used and read as "0".
- RF [7] OUT Endpoint interrupt flag. It will be set when the FIFO of Out Endpoint has received data from host.

Extra RAM0:

5.2.1.16 R10 (USB Endpoint Status Register) Default (0b0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	_	_	EP5_ST	EP4_ST	EP3_ST	EP2_ST	EP1_ST

R10 [0~4] EPx_ST: End point state flag.

For IN Endpoint: Set to "1" by firmware when buffer o.k. This bit is reset after UDC sends data to Host and gets ACK from Host. Before writing data into FIFO, user must check this bit to prevent overwriting the data. This is readable and writable.

For OUT Endpoint: Set 1 by UDC when buffer o.k. Set 0 by firmware when buffer is read.

After an out token finish, and the UDC completes writing data to the FIFO, this bit will be set automatically, and run into Interrupt Vector 0x0020. The firmware should clear it as soon as it gets the data from OUT Endpoint's FIFO. Only when this bit is cleared, the UDC is able to write a new data into the FIFO.

When Code Option Bit 65=0, user can reset the FIFO pointer and counter by setting the EPX_ST bit from high to low.

5.2.1.17 R11 (AD Controller/AD Selection Pin) Default (0b0001_1111)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_start	AD_R1	AD_R0	AD_A4	AD_A3	AD_A2	AD_A1	AD_A0

R11 [0~4] AD channel selector: If the AD number is from 0 to 0x17, the AD converter will be powered on. Otherwise, it will be powered off.

AD number	00000	00001	00010	00011
AD Humber	00000	00001	00010	00011
AD pin	AD0	AD1	AD2	AD3
AD number	00100	00101	00110	00111
AD pin	AD4	AD5	AD6	AD7
AD number	01000	01001	01010	01011
AD pin	AD8	AD9	AD10	AD11
AD number	01100	01101	01110	01111
AD pin	AD12	AD13	AD14	AD15
AD number	10000	10001	10010	10011
AD pin	AD16	AD17	AD18	AD19
AD number	10100	10101	10110	10111
AD pin	AD20	AD21	AD22	AD23

R11 [5~6] AD conversion clock source

00: 256K

01: 128K

10: 64K

11: 32K

R11 [7] AD Converter ready flag

0 → **1:** Start AD Conversion (set by firmware).

1 → 0: When AD finishes converting and has moved the digital data into the AD Data Register, this bit will be reset by hardware.

NOTE

Hardware can enable this function only at the AD Channel Selector of the functional I/O port. After Power-on reset, the initial value of this register is 0b0001 1111.

5.2.1.18 R12 (Dual Mode Control) *Default (0b0000_1000)*

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	USB_Token	LOW FR1	LOW FR0	/LOW FREQ	_	_	-

R12 [3]: /LOW FREQ: Dual Clock Control bit. This bit is used to select the system clock frequency. When this bit is set to 0, the MCU will run on very slow frequency for power saving purposes and the UDC will stop working.

0: Slow frequency (500Hz~256kHz)

1: Normal frequency

R12 [4~5]: LOW FR0 ~ LOW FR1: Low Frequency Switches. These bits select the operation frequency in Dual Clock Mode. Four frequencies are available and can be chosen as Dual Clock Mode for running the MCU program.

Low FR1	Low FR0	Frequency
0	0	500Hz
0	1	4kHz
1	0	32kHz
1	1	256kHz

R12[6] (USB_Token): Set when USB Token from Host. Reset when end of the Token.

5.2.1.19 R13 R14 (ADC Output Data for Selecting Pin) Default (0b0000_0000) Read Only

When the A/D conversion is completed, the result is loaded to R13 and R14.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADB1	ADB0						

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADB9	ADB8	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2

R15: High level time of the 1st PWM module that outputs to P92 (If PWM function is enabled).

R16: The high level time of the 2nd PWM module that outputs to P93 (If PWM function is enabled).

R15~R16 can be a general purpose register if the PWM function is disabled.

5.2.1.20 R17~R1F (General Purpose Register)

R17~R1F are general-purpose registers.

5.2.1.21 R20~R3F (General Purpose Register)

R20~R3F (including Banks 0~3) are general-purpose registers.

Extra RAM1:

R10 ~ R14 (Note that only when Code Option Bit 65 is selected as "0", these registers are valid. If user sets the Code Option Bit 65 as "1", R10~R14 of extra RAM1 is not available).

5.2.1.22 R10 (PWP: Pulse Width Preset Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWP7	PWP6	PWP5	PWP4	PWP3	PWP2	PWP1	PWP0

R10 [0~7] PWP7~PWP0 is bit set of pulse width preset in advance for the desired width of the baud clock.

$$Pulse\ Width = (PWP + 1) \times TMR$$

5.2.1.23 R11 (SPI Byte Number Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	SPIC7	SPIC6	SPIC5	SPIC4	-	-	-

R11 [0~2]: Reserved

R11 [3~6]: SPI byte number: For setting the SPI byte number. The maximum number is 8 bytes

R11 [7]: Reserved

5.2.1.24 R12 (SPIS: SPI Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Lstatus1	Lstatus0	M/LSB		OD3	OD4	-	RBF

R12[0] RBF: Read Buffer Full flag

0: Receiving not completed yet, and SPIRB (SPI Read Buffer) has not fully exchanged

1: Receiving completed; SPIRB (SPI Read Buffer) is fully exchanged.

R12 [1]: Reserved

R12 [2] OD4: Open-Drain Control bit:

0: Open-drain disable for SCK

1: Open-drain enable for SCK

R12 [3] OD3: Open-Drain Control bit:

0: Open-drain disable for SDO

1: Open-drain enable for SDO

R12 [4]: Reserved

R12 [5] M/LSB: The first bit of SPI Shift.

0: LSB

1: MSB

R12 [6~7] Lstatus0~ Lstatus1:

00: The SDO will keep status after transfer over.

01: The SDO will pull-down after transfer over.

10: The SDO will pull-high after transfer over.

11: No defined.

5.2.1.25 R13 (SPIC: SPI Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CES	SPIE	SRO	SSE		SBR2	SBR1	SBR0

R13 [0~2] SBR0~2: SPI Baud Rate Select bits

SPI baud rate table is illustrated in SPI section in the subsequent pages.

R13 [3]: Reserved

R13 [4] SSE: SPI Shift Enable bit

- **0:** Reset as soon as the shifting is complete, and the next transmission is ready to shift.
- 1: Start to shift, and keep on 1 while the current transmissions still being transmitted.

NOTE

This bit will reset to 0 at every transmission by the hardware

R13 [5] SRO: SPI Read Overflow bit

- 0: No overflow
- 1: A new data is received while the previous data is still being held in the SPIB register. In this situation, the data in SPIS register will be destroyed.

NOTE

This can only occur in slave mode.

R13 [6] SPIE: SPI Enable bit

- 0: Disable SPI mode
- 1: Enable SPI mode

R13 [7] CES: Clock Edge Select bit

- **0:** Data shifts out on rising edge, and shifts in on falling edge. Data is on hold during the low level.
- **1:** Data shifts out on falling edge, and shifts in on rising edge. Data is on hold during the high level.

5.2.1.26 R14 (TMR1: Timer 1 Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR17	TMR16	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10

R14 [0~7] TMR: TMR is bit set of Timer 1 register and it increases until the value matches PWP and then resets to 0.

R15 (SE1_LOW): Low signal counter of the 1st RF module that is input from P92.

R16 (SE1_HIGH): High signal counter of the 1st RF module that is input from P92.

R17 (SE2_LOW): Low signal counter of the 2nd RF module that is input from P93.

R18 (SE2 HIGH): Low signal counter of the 2nd RF module that is input from P93.

R15 ~ R18 are RF Timing counter registers if RF function is enabled by setting Bit 2 or Bit 3 of IOCF. Otherwise, they are general registers.

R19~R1F (General Purpose Registers)

R19~R1F are general-purpose registers.

R20~R3F (General Purpose Registers)

R20~R3F (including Banks 4~7) are general-purpose registers.

5.3 Special Function Registers

5.3.1 A (Accumulator)

The accumulator is an 8-bit register that holds operands and results of arithmetic calculations. It is not addressable. After an interrupt occurs, the Accumulator is auto-saved by hardware.

5.3.2 CONT (Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	INT	TSR2	TSR1	TSR0	PSR2	PSR1	PSR0

Except for Bit 6 (Interrupt enable control bit), the CONT register can be read by the instruction "CONTR" and written to by the instruction "CONTW".

CONT [6] INT: An interrupt enable flag cannot be written by the CONTW instruction.

CONT [3~5] TSR0 ~ TSR2: TCC prescaler bits

CONT [0~2] PSR0 ~ PSR2: WDT prescaler bits

PSR2	PSR1	PSR0	TCC Rate (Base Freq: Fosc/2)	WDT Rate
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

5.3.3 IOC5 ~ IOC9 Port Direction Control Registers

These are I/O port (Port5 \sim Port9) direction control registers. Each bit controls the I/O direction of three I/O ports respectively. When these bits are set to 1, the relative I/O pins become input pins. Similarly, the I/O pins becomes output when the relative control bits are cleared.

0: Output direction

1: Input direction

5.3.4 IOCA (RFCNT: RF Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	RF2	RF1	RF0	RF_DBN2	RF_DBN1	RF_DBN0

IOCA [0~2] RF_DBN0 ~ RF_DBN2: These are used for defining debounce times in RF pattern detecting application.

IOCA [3 \sim 5] RF0 \sim RF2: RF Timing prescaler bits. Base on the MCU frequency.

RF2	RF1	RF0	Timing Rate	8MHz System Clock (Time(Cnt.))	256kHz RC Mode (Time (Cnt.))
0	0	0	1:1	0.125 µs (1), 31.875 µs (255)	3.91 µs (1), 996.1 µs (255)
0	0	1	1:2	0.25 µs (1), 63.75 µs (255)	7.81 µs (1), 1992 µs (255)
0	1	0	1:4	0.5 μs (1), 127.5 μs (255)	15.625 µs (1), 3984 µs (255)
0	1	1	1:8	1 μs (1), 255 μs (255)	31.25 µs (1), 7969 µs (255)
1	0	0	1:16	2 μs (1), 510 μs (255)	62.5 µs (1), 15.938 ms (255)
1	0	1	1:32	4 μs (1), 1020 μs (255)	125 µs (1), 31.875 ms (255)
1	1	0	1:64	8 μs (1), 2040 μs (255)	250 µs (1), 63.75 ms (255)
1	1	1	1:128	16 µs (1), 4080 µs (255)	500 μs (1), 127.5 ms (255)

5.3.5 IOCB (PWM_CNT: PWM Controller) Default (0b0000_0001)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PW2_E	PW1_E	-	-	-	PWM_SR2	PWM_SR1	PWM_SR0

IOCB [0~2] PWM_SR0 ~ PWM_SR2: PWM clock prescaler

Base on MCU frequency

PWM_SR2	PWM_SR1	PWM_SR0	Clock (Hz)
0	0	0	Fosc / 2
0	0	1	Fosc / 4
0	1	0	Fosc / 8
0	1	1	Fosc / 16
1	0	0	Fosc / 32
1	0	1	Fosc / 64
1	1	0	Fosc / 128
1	1	1	Fosc / 256

IOCB [6] (PW1_E): PW1 Enable. The 1st PWM (P92) module enable bit.

0: Disable the PWM function of the 1st module

1: Enable the PWM function of the 1st module

IOCB [7] (PW2_E): PWM2 Enable: The 2nd PWM (P93) module enable bit.

0: Disable the PWM function of the 2nd module

1: Enable the PWM function of the 2nd module

5.3.6 IOCC (T1CON: Timer 1 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	TM1E	TM1P1	TM1P0

IOCC[0~1]: Timer 1 Prescaler bit

Timer 1 prescaler table for FOSC will be illustrated in the Section on Timer 1 in the subsequent pages.

IOCC[2]: Timer 1 Function Enable bit

0: Disable Timer 1 function as default

1: Enable Timer 1 function.

5.3.7 IOCD (Port 9 Pull-high Control Register) Default Value:

(0B_1111_1111)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PH97	/PH96	/PH95	/PH94	/PH93	/PH92	/PH91	/PH90

IOCD [0~6] /PH90 ~ /PH97: These bits control the $25 \mathrm{K}\Omega$ pull-high resistor of the individual pins in Port 9. If the I/O port is set as output, the pull-high function is disabled.

0: Enable the pull-high function

1: Disable the pull-high function

5.3.8 IOCE (MCU Control Register) Default (0b1101_1111)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
S7	/WUE	WTE	SLPC	/PU7	/PU8	/PU6	/PU5

IOCE [0~3] /PU5~/PU8: Pull-high Control register. Default=1, Disable the pull high function. If the I/O port is set as output, the pull-high function is disabled.

0: Enable the pull-high function

1: Disable the pull-high function

IOCE [4] SLPC: This bit can be cleared by the firmware and set during power-on, or by the hardware at a falling edge of the wake-up signal. When this bit is cleared, the system clock is disabled and the MCU enters into Power down mode. At the transition of a wake-up signal from high to low, this bit is set to enable the system clock.

0: Sleep mode. The device is in power down mode.

1: Run mode. The device is working normally.

IOCE [5] WTE: Watchdog timer enable bit. WDT is disabled/enabled by the WTE bit.

0: Disable WDT

1: Enable WDT

IOCE [6] /WUE: Enable the wake-up function as triggered by a port change.

0: Enable the wake-up function

1: Disable the wake-up function

IOCE [7] S7 Bit: S7 defines the driving ability of P70-P72

0: Normal output

1: Enhance the driving ability of the LED

5.3.9 IOCF (Interrupt Mask Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OUTEP_IE	P76/P77_IE	SPI_IE	Resume_IE	RF2_IE	RF1_IE	USB_IE	TCC_IE

IOCF [0] TCC_IE: TCIF interrupt enable bit

0: Disable TCIF interrupt

1: Enable TCIF interrupt

IOCF [1] USB_IE: USB interrupt enable bit. Bits 1, 2, 3 of RF interrupt will be enabled while this bit is set.

0: Disable USB_IE interrupt

1: Enable USB_IE interrupt

- IOCF [2] RF1_IE: RF1 pattern compare interrupt enable bit. Bits 0, 1 of the RE interrupt will be enabled while this bit is set.
 - 0: Disable RF1_IE interrupt
 - 1: Enable RF1_IE interrupt
- IOCF [3] RF2_IE: RF2 pattern compare interrupt enable bit. Bits 2, 3 of the RE interrupt will be enabled while this bit is set.
 - 0: Disable RF2_IE interrupt
 - 1: Enable RF2_IE interrupt
- IOCF [4] Resume_IE: USB Resume interrupt enable bit
 - 0: Disable Resume_IE interrupt
 - 1: Enable Resume_IE interrupt
- IOCF [5] SPI & TM1 interrupt enable bit. Bits 4, 5 of the RE interrupt will be enabled while this bit is set.
 - 0: disable SPI interrupt
 - 1: enable SPI interrupt
- IOCF [6] P76/77_IE: P76/P77 port change interrupt enable bit. Bit 6, 7 of the RE interrupt will be enabled while this bit is set.
 - 0: Disable P76/P77_IE interrupt
 - 1: Enable P76/P77_IE interrupt
- IOCF [7] OUTEP_IE: Output Endpoint interrupt enable bit
 - 0: disable OUTEP_IE interrupt
 - 1: enable OUTEP_IE interrupt

Only when the global interrupt is enabled by the ENI instruction will the individual interrupt work. After DISI instruction, any interrupt will not work even if the respective control bits of IOCF are set to 1.

The USB Host Resume Interrupt works only in Dual clock mode. This is because when the MCU is in sleep mode, it will be automatically woken up by the UDC Resume signal.

5.4 USB Device Controller

The USB Device Controller (UDC) built-in in the EM78680 can interpret the USB Standard Command and response automatically without involving firmware. The embedded Series Interface Engine (SIE) handles the serialization and de-serialization of actual USB transmission. Thus, a developer can concentrate his efforts more in perfecting the device actual functions and spend less energy in dealing with USB transaction.

The UDC handles and decodes most Standard USB commands defined in the USB Specification Rev 1.1. If the UDC receives an unsupported command, it will set a flag to notify the MCU the receipt of such command.

Each time the UDC receives a USB command, it writes the command into EP0's FIFO. Only when it receives unsupported command will the UDC notify the MCU through interrupt.

Therefore, the EM78680 is very flexible for USB applications since developers can freely choose the method of decoding the USB command as required by different situations.

5.5 Device Address and Endpoints

The EM78680 supports one device address and six endpoints, EP0 for control endpoint, EP1 ~ EP5 for interrupt/bulk /isochronous endpoints. Sending data to the USB host in EM78680 is very easy. Just write data into the EP's FIFO, then set the flag, and the UDC will handle the rest. It will then confirm that the USB host has received the correct data from the EM78680.

5.6 Reset

The EM78680 provides three types of reset: (1) Power-on Reset, (2) Watchdog Reset, and (3) USB Reset.

5.6.1 Power-on Reset

Power-on Reset occurs when the device is attached to power and a reset signal is initiated. The signal will last until the MCU becomes stable. After a Power-on Reset, the MCU enters the following predetermined states (see below), and then, it is ready to execute the program.

- a. The program counter is cleared.
- b. The TCC timer and Watchdog timer are cleared.
- c. Special registers and Special Control registers are all set to their initial value.

5.6.2 Watchdog Reset

When the Watchdog timer overflows, it causes the Watchdog to reset. After it resets, the program is executed from the beginning and some registers will be reset. The UDC however, remains unaffected.

5.6.3 USB Reset

When the UDC detects a USB Reset signal on the USB Bus, it interrupts the MCU, then proceeds to perform the specified process that follows. After a USB device is attached to the USB port, it cannot respond to any bus transactions until it receives a USB Reset signal from the bus.

5.7 Power Saving Mode

The EM78680 provides two options of power-saving modes for energy conservation, i.e., Power-down mode and Dual clock mode.

5.7.1 Power-down Mode

The EM78680 enters into Power Down mode by clearing the SLPC register (IOCE[4]). During this mode, the oscillator is turned off and the MCU goes to sleep. It will wake up when signal from USB host is resumed, or when the Watchdog resets or the input port state changes.

If the MCU wakes up when the I/O port status changes, the direction of the I/O port should be set to input direction, then read the port status.

```
For example:
// Set the Port 6 to input port
MOV
         A , @OXFF
IOW
         PORT6
// Read the status of Port 6
         PORT6, PORT6
MOV
// Clear the RUN bit
IOR
         0XE
         A , 0B11101111
AND
IOW
         0XE
```

If the MCU is awakened by a USB Resume signal, the next instruction will be executed and one flag, IOCE[4] will be set to 1.

5.7.2 Dual Clock Mode

The EM78680 has one internal oscillator for power saving application. Clearing the Bit R12 [3] of ExteraRAM0 will enable the low frequency oscillator. At the same time, the external oscillator will be turned off. Then the MCU will run under very low frequency to conserve power. Four types of frequency are available for selection in setting Bits R12 [4, 5].

The USB Host Resume Interrupt can only be used in this mode. If this interrupt is enabled, the MCU will be interrupted when the USB Resume signal is detected on USB Bus.

5.8 Interrupt

The EM78680 has four Interrupt Vectors 0x0008, 0x0010, 0x0018, 0x0020. When an interrupt occurs during an MCU running program, it will jump to the interrupt vector and execute the instructions sequentially from the interrupt vector. RE and RF are the interrupt status registers.

The interrupt condition could be one of the following:

- Set 1 INT: (jump to 0x08)
- TCC overflow interrupt
- EP0 command in interrupt
- USB suspend interrupt
- USB reset interrupt
- USB HOST resume interrupt
- Set 2 INT: (jump to 0x10)
- RF1 low pattern interrupt
- RF1 high pattern interrupt
- RF2 low pattern interrupt
- RF2 high pattern interrupt
- Set 3 INT: (jump to 0x18)
- P77 port change interrupt
- P76 port change interrupt
- SPI Timer 1 comparator completed interrupt (Note1)
- SPI transmission completed interrupt (See Note).
- Set 4 INT: (jump to 0x20)
- EP5~8 output Endpoint received O.K interrupt

IOCF is an interrupt mask register which can be set bit by bit. While their respective bit is written to 0, the hardware interrupt will inhibit, that is, the EM78680 will not jump to the interrupt vector to execute instructions. But the interrupt status flags still records the conditions no matter whether the interrupt is masked or not. The interrupt status flags must be cleared by firmware before leaving the interrupt service routine and enabling interrupt.

The global interrupt is enabled by the ENI (RETI) instruction and is disabled by the DISI instruction.

Note: When employing this interrupt, user has to set the Code Option Bit 65 to "0".

5.9 Pattern Detect Application (PDA)

5.9.1 Function Description

This function is designed for the serial signal transmission, e.g., the transmission between a wireless device and its receiver box. The EM78680 has two sets of built-in Pattern Detect Application block that ensures the EM78680 is equipped with a compound device, such as the receiver box controller for a wireless keyboard, paired with a wireless mouse.

Pattern Detect Application (PDA) can calculate the length of one pattern and interrupt the MCU while the serial signal is transiting from high to low (or vise-versa). Then the MCU reads the length value from a specified register.

5.9.2 Control Register

The PDA includes two enable control bits, one control register and four length counter registers in 0x15 ~0x18 in ExtraRAM1.

5.9.2.1 IOCF [2~3] PDA Enable Control Bit

When this bit is set, the PDA function starts and the P92 and P93 automatically become input pin to sample the serial signal. (**Note:** Enabling these two bits also enables the interrupt mask of the PDA.)

0: Disable PDA function

1: Enable PDA function

5.9.2.2 IOCA (PDA Control Register) Default Value: (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	_	RF.2	RF.1	RF.0	DB2	DB1	DB0

This register is used to define two parameters of the PDA function; signal sampling rate and debounce length. When a pattern ends, the value in the counter is loaded into its respective register and the RE[0~4] is set to indicate which channel and which type of pattern (high or low) is at its end or which type of pattern counter is on overflow.

0: low pattern

1: high pattern

5.9.2.3 R15 ExtraRAM1 (P.92 Low Pattern Counter)

This register records the length of P.92 in low status.

5.9.2.4 R16 ExtraRAM1 (P.92 High Pattern Counter)

This register records the length of P.92 in high status.

5.9.2.5 R17 ExtraRAM1 (P.93 Low Pattern Counter)

This register records the length of P.93 in low status

5.9.2.6 R18 ExtraRAM1 (P.93 High Pattern Counter)

This register records the length of P.93 in high status.

R15~R18 function as general registers if this function is not enabled. Once the enabled bit is set, these four registers will be loaded with the value of the pattern counter.

5.9.3 Sampling Rate and Debounce Length

The two pattern detect pins are separate, and each pin has its own pattern counter. Both pins use the same Sampling Rate and Debounce Length parameters.

The PDA samples the serial signal for every fixed interval. The pattern counter will be incremented by one at sampling time if the signal remains unchanged. If the signal is at high state, then the "high pattern counter" will be incremented, otherwise the "low pattern counter" is incremented. As long as the signal state changes, the PDA will debounce the signal and load the value of the pattern counter into the respective register for the firmware to read. For example, if the signal in P.92 is in "low" state, the low counter of P.92 will count continuously until the state of the input signal in P.92 changes. When a state change occurs (in this case, the signal changes from "low" to "high" state), the PDA will take a time break (which is equal to the result of the sampling interval multiplied by the debounce length), to avoid possible noise. After the debounce length time, if the signal remains in high state, the high pattern counter will start to count and load the low pattern counter's value into R15 ExtraRAM1. At the same time, RE [0] is set to indicate that the low pattern is over.

The correlation between the control register value and debounce time are as follows:

DB.2	DB.1	DB.0	Debounce Time		
0	0	0	No Sampling clock		
0	0	1	1 Sampling clock		
0	1	0	2 Sampling clocks		
0	1 1		3 Sampling clocks		
1	0	0	4 Sampling clocks		
1	0	1	5 Sampling clocks		
1	1 1 0		6 Sampling clocks		
1	1 1 1		7 Sampling clocks		

Now consider another situation of this case, where the signal of P92 always stays "low". The low pattern counter of P92 will eventually overflow. Once the counter overflows, the contents of the counter will also be loaded into R15, that is, the register is written to 0xFF, then the counter is reset to count from zero again.

If a PDA function hardware interrupt is enabled, (IOCF[2] is equal to "1"), then the program will go to 0x0010 to execute an interrupt routine while the contents of a pattern counter is loaded into the register.

The correlation between the value of control register and actual sampling rate are as shown below:

RF2	RF1	RF0	Timing Rate	8MHz System Clock (Time(Cnt.))	256kHz RC Mode (Time (Cnt.))
0	0	0	1:1	0.125 µs (1), 31.875 µs (255)	3.91 µs (1), 996.1 µs (255)
0	0	1	1:2	0.25 µs (1), 63.75 µs (255)	7.81 µs (1), 1992 µs (255)
0	1	0	1:4	0.5 µs (1), 127.5 µs (255)	15.62 5 µs (1), 3984 µs (255)
0	1	1	1:8	1 μs (1), 255 μs (255)	31.25 µs (1), 7969 µs (255)
1	0	0	1:16	2 μs (1), 510 μs (255)	62.5 µs (1), 15.938 ms (255)
1	0	1	1:32	4 μs (1), 1020 μs (255)	125 µs (1), 31.875 ms (255)
1	1	0	1:64	8 µs (1), 2040 µs (255)	250 µs (1), 63.75 ms (255)
1	1	1	1:128	1 6µs (1), 4080 µs (255)	500 μs (1), 127.5 ms (255)

User can write a default value to the High Pattern counter register and Low Pattern counter register. Then set the corresponding interrupt enable bit (IOCF [2, 3]). When the counting value of one "H" pattern is bigger than the default value of R15_ExtraRAM1, a Pattern Detecting interrupt will be generated. Similarly, if the counting value of one "L" pattern is bigger than the default value of R16_ExtraRAM1, a Low Pattern Detecting interrupt will occur. Thus, the EM78680 is notified and aware that one effective pattern is received from P.92.

5.10 Pulse Width Modulation (PWM)

5.10.1 Function Description

In PWM mode, both PWM1 (P.92) and PWM2 (P.93) produce plus programmable signal of up to 8 bits resolution.

The PWM Period is defined as $0xFF \times Timer$ Counter Clock. The Timer Counter clock source is controlled by the control register IOCB. For example; if the clock source is 1MHz, then the Period will be $255\mu s$. Period = $255 \times (1/Timer Counter Clock)$. The PWM duty cycle is defined by writing to the R15/R16 Register of ExtraRAM0 for PWM1/PWM2.

Duty Cycle = $(R15 \text{ of ExtraRAM0/} 255) \times 100\% \text{ for PWM1}$ $(R16 \text{ of ExtraRAM0/} 255) \times 100\% \text{ for PWM2}$

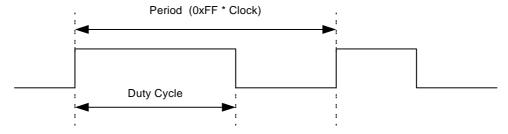


Figure 5-3 PWM Output Timing Diagram

5.10.2 Control Register

5.10.2.1 R15 of Extra RAM0 (PWM1 Duty Period Register)

Duty period setting of PWM1

5.10.2.2 R16 of Extra RAM0 (PWM2 Duty Period Register)

Duty period setting of PWM2

5.10.2.3 IOCB (PWM Control Register) Default Value: (0B_0000_0001)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PW2_E	PW1_E	_	_	_	PWM_SR2	PWM_SR1	PWM_SR0

IOCB [0~2] PWM Clock Prescaler

Base on MCU frequency (ex: Fosc = 8 MHz)

PWM_SR2	PWM_SR1	PWM_SR0	Clock (Hz)	Period / 255
0	0	0	Fosc / 2	0.25 μs
0	0	1	Fosc / 4	0.5 µs
0	1	0	Fosc / 8	1 μs
0	1	1	Fosc / 16	2 µs
1	0	0	Fosc / 32	4 μs
1	0	1	Fosc / 64	8 µs
1	1	0	Fosc / 128	16 µs
1	1	1	Fosc / 256	32 µs

IOCB [6, 7] PWM1/PWM2 Enable Bit

"0": Disable

"1": Enable

5.11 Analog-To-Digital Converter (ADC)

5.11.1 Function Description

The Analog to Digital converter consists of a 5-bit analog multiplexer, one Control Register (R11_ExtraRAM0), and two data registers (R13_ExtraRAM0 ~ R14_ExtraRAM0) for a 10-bit resolution.

The ADC module utilizes successive approximation to convert the unknown analog signal to a digital value. The result is fed to the ADDATA. Input channels are selected by the analog input multiplexer via the ADCR/AD_Sel bits AD0~AD4.

■ 10-bit resolution: 0x00-00~0xC0-FF (0b11000000-11111111)

■ Start (0x00-00): 0 Vref~(1/1024)*Vref

■ Full (0xC0-FF): (1023/1024)*Vref~Vref

■ Conversion Time: 12 clock time of the internal clock source

5.11.2 Control Register

5.11.2.1 R11 (AD Channel Select Register0 *Default Value:* (0B_0001_1111)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_start	AD_R1	AD_R0	AD4	AD3	AD2	AD1	AD0

R11 [0~4]: AD Channel Selector

KTT [0~4]. AD Chaille Selector								
AD4	AD3	AD2	AD1	AD0	Channel	I/O Port		
0	0	0	0	0	0	P50		
0	0	0	0	1	1	P51		
0	0	0	1	0	2	P52		
0	0	0	1	1	3	P53		
0	0	1	0	0	4	P54		
0	0	1	0	1	5	P55		
0	0	1	1	0	6	P56		
0	0	1	1	1	7	P57		
0	1	0	0	0	8	P80		
0	1	0	0	1	9	P81		
0	1	0	1	0	10	P82		
0	1	0	1	1	11	P83		
0	1	1	0	0	12	P84		
0	1	1	0	1	13	P85		
0	1	1	1	0	14	P86		
0	1	1	1	1	15	P87		
1	0	0	0	0	16	P60		
1	0	0	0	1	17	P61		
1	0	0	1	0	18	P62		
1	0	0	1	1	19	P63		
1	0	1	0	0	20	P64		
1	0	1	0	1	21	P65		
1	0	1	1	0	22	P66		
1	0	1	1	1	23	P67		

R11 [5 6]: AD Conversion Clock Source

00: 256kHz

01: 128kHz

10: 64kHz

11: 32kHz

R11 [7] AD Converter Start Flag

0 → **1**: Start AD Conversion (set by firmware)

1 → 0: When AD finishes converting and has moved the digital data into the AD Data Register, this bit will be reset by hardware.

NOTE

Hardware can enable this function only at the AD Channel Selector of the functional I/O port. After Power-on reset, the Initial Value of this Register is 0b0001 1111.

5.11.2.2 R13 (AD LSB Data Register) Default Value: (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 1	Bit 0	-	-	_	-	-	-

AD Digital Data LSB 2 bits

5.11.2.3 R14 (AD MSB Data Register) *Default Value:* (0B_0000_0000)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2

AD Digital Data MSB 8 bits

5.12 Serial Peripheral Interface Mode

5.12.1 Overview

Figures 5-4, 5-5, and 6-6 show how the EM78680 communicates with other devices through the SPI module. If the EM78680 is a master controller, it sends clock through the SCK pin. A couple of 8-bit multiple data are transmitted and received at the same time. However, if the EM78680 is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both the clock rate and the selected edge.

5.12.2 Features

- Operation in either Master mode or Slave mode
- Full duplex, 3-wire or 4-wire synchronous communication
- Programmable baud rates of communication
- Programming clock polarity, (ExtraRAM1 R13 Bit 7)
- Interrupt flag available for the read buffer full
- Up to 8 Mbps (maximum baud rates)

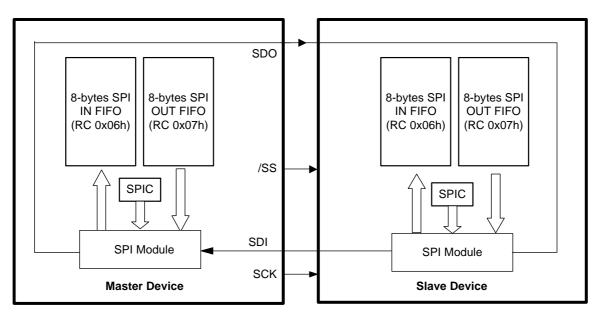


Figure 5-4 SPI Master/Slave Communication

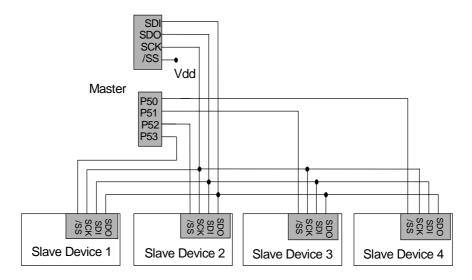


Figure 5-5 SPI Configuration of Single-Master and Multi-Slave

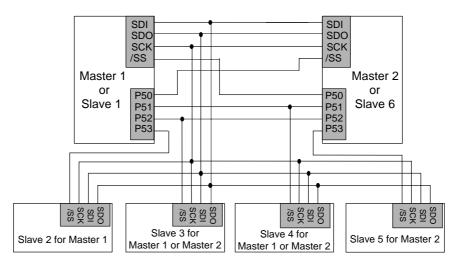


Figure 5-6 SPI Configuration of Single-Master and Multi-Slave

5.12.3 SPI Function Description

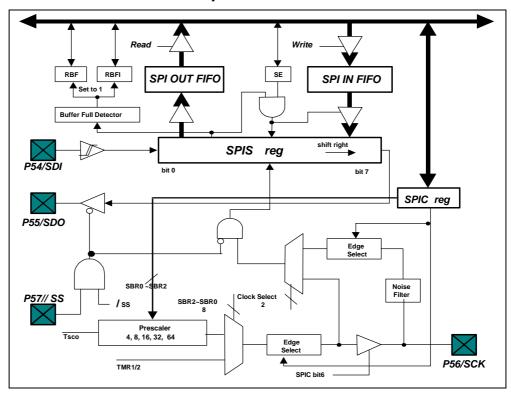


Figure 5-7 SPI Block Diagram

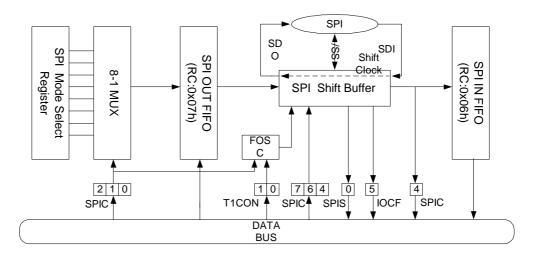


Figure 5-8 The Function Block Diagram of SPI Transmission

The following describes the function of each block and explains how to carry out the SPI communication with the signals depicted in Figure 5-7 and Figure 5-8:

P54/SDI: Serial Data In

P55/SDO: Serial Data Out

P56/SCK: Serial Clock

P57//SS: /Slave Select (Option). This pin (/SS) may be required during a slave mode.

RBF: Set by Buffer Full Detector, and reset by software.

RBFIF: Set by Buffer Full Detector, and reset by software.

SSE: Loads the data in SPIS register, and begin to shift.

SPIS reg.: Shifting byte in and out. The MSB is shifted first. Both the SPI IN FIFO data and the SPI OUT FIFO data are loaded at the same time. Once data are written, SPIS starts transmission / reception. The received data will be moved to the SPI IN FIFO register as the shifting of the 8-bytes data is completed. The RBF (Read Buffer Full) flag and the RBFIF (Read Buffer Full Interrupt) flag are then set.

SPI IN FIFO reg: Read buffer. The buffer will be updated as the 8-byte data shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPI IN FIFO data is read.

SPI OUT FIFO reg: Write buffer. The buffer will deny any attempt to write until the 8-bytes data shifting is completed.

The SSE bit will be kept at 1 if the communication is still undergoing. This flag must be cleared as the shifting is completed.

SBRS2~SBRS0: Programming the clock frequency/rates and sources.

Edge Select: Selecting the appropriate clock edges by programming the CES bit.

5.12.4 SPI Signal and Pin Description

The detailed functions of the four pins, SDI, SDO, SCK, and /SS, which are shown in Figure 5-5, are as follows:

SDI/P54:

- Serial Data In
- Receive serially, the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Defined as high-impedance, if not selected
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The received byte will update the transmitted byte
- Both the RBF and RBFIF bits (ExtraRAM1 Register 0x12h) will be set as the SPI operation is completed.
- Timing is shown in Figure 5-9 and 5-10.

SDO/P55:

- Serial Data Out
- Transmit serially; the Most Significant Bit (MSB) first, Least Significant Bit (LSB)
- Program the same clock rate and clock edge to latch on both the master and slave devices.
- The received byte will update the transmitted byte.
- The CES (ExtraRAM1 Register 0x13h) bit will be reset, as the SPI operation is completed.
- Timing is shown in Figure 5-9 and 5-10.

SCK/P56:

- Serial Clock
- Generated by a master device
- Synchronize the data communication on both the SDI and SDO pins
- The CES (ExtraRAM1 Register 0x13h) is used to select the edge to communicate.
- The SBR0~SBR2 (ExtraRAM1 Register 0x13h) is used to determine the baud rate of communication.
- The CES, SBR0, SBR1, and SBR2 bits have no effect in the slave mode.
- Timing is shown in Figure 5-9 and 5-10.

/SS/P57:

- Slave Select; negative logic
- Generated by a master device to signify the slave(s) to receive data.
- Goes low before the first cycle of SCK appears, and remains low until the last (8th) cycle is completed.
- Ignores the data on the SDI and SDO pins while /SS is high, because SDO is no longer driven.
- Timing is shown in Figures 5-9 and 5-10.

5.12.5 SPI Control Registers

As the SPI mode is defined, the related registers involved in this operation are shown in Table 2 and Table 3.

Table 2 Related Control Registers in SPI Mode

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x13	SPIC/R13	CES	SPIE	SRO	SSE	-	SBR2	SBR1	SBR0
0x0F	IOCF	-	_	SPI_IE	-	-	-	-	-

SPIC: SPI Control Register.

CES (Bit 7): Clock Edge Select bit

- **0:** Data shifts out on a rising edge, and shifts in on a falling edge. Data is on hold during the low level.
- **1:** Data shifts out on a falling edge, and shifts in on a rising edge. Data is on hold during the high level.

SPIE (Bit 6): SPI Enable bit

0: Disable SPI mode

1: Enable SPI mode

SRO (Bit 5): SPI Read Overflow bit

0: No overflow

1: A new data is received while the previous data is still being on hold in the SPIB register. Under this condition, the data in SPIS register will be destroyed. To avoid setting this bit, users should read the SPIRB (SPI Read Buffer) register even if the transmission is implemented only.

NOTE

This can only occur in slave mode.

SSE (Bit 4): SPI Shift Enable bit

- **0:** Reset as soon as the shifting is completed and the next byte is ready to shift.
- 1: Start to shift, and stays on 1 while the current byte continues to transmit.

NOTE

This bit can be reset by hardware only.

SBRS (Bits 2~0):SPI Baud Rate Select Bits

SBRS2 (Bit 2)	SBRS1 (Bit 1)	SBRS0 (Bit 0)	Mode	Baud Rate
0	0	0	Master	Fosc/2
0	0	1	Master	Fosc/4
0	1	0	Master	Fosc/8
0	1	1	Master	Fosc/16
1	0	0	Master	Fosc/32
1	0	1	Slave	/SS enable
1	1	0	Slave	/SS disable
1	1	1	Master	TMR1 / TMR2

NOTE

- 1. In master mode, disable /SS connection.
- 2. Do not select SRB2~0 as 0, 0, 0 when selecting FOSC as 24 MHz

(Baud Rate = 12 MHz), since the SPI maximum baud rate is 8 MHz.

IOCF: Interrupt control register

Bit 5 (SPI_IE): SPI and TM1 interrupt enable bit

0: disable SPI and TM1 interrupt

1: enable SPI and TM1 interrupt

Table 3 Related Status/Data Registers in SPI Mode

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPIS (0x12)	Lstatus1	Lstatus0	M/LSB	_	OD3	OD4	_	RBF

SPIS: SPI Status register

RBF (Bit 0): Read Buffer Full flag

0: Receive is ongoing, SPIB is empty

1: Receive is completed, SPIB is full.

RBFIF (Bit 1): Read Buffer Full Interrupt flag

0: Receive is ongoing, SPIB is empty.

1: Receive is completed, SPIB is full, and an interrupt occurs if enabled.

OD4 (Bit 2): Open Drain-Control bit (P94)

0: Open-drain disable for SCK.

1: Open-drain enable for SCK.

OD3 (Bit 3): Open-Drain Control bit (P93)

0: = Open-drain disable for SDO.

1: Open-drain enable for SDO.

M/LSB (Bit 5): The first bit of SPI Shift.

0: LSB

1: MSB

Lstatus (Bits 6~7):

00: The SDO will keep status after transfer over.

01: The SDO will pull-down after transfer over.

10: The SDO will pull-high after transfer over.

11: Not defined.

Table 4 R11 (SPI Byte Number Register)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPIS(0x11)	-	SPIB3	SPIB2	SPIB1	SPIB0		-	-

SPI byte counter. For setting SPI byte number. The SPI transfer and receive bytes are based on this register. Max byte number is 8 bytes.

NOTE

Code Option Bits 11~12

5.12.6 SPI Mode Timing

The SCK edge is selected by programming bit CES. The waveform shown in Figure 5-9 is applicable regardless whether the EM78680 is in master or slave mode with /SS disabled. However, the waveform in Figure 5-10 can only be implemented in slave mode with /SS enabled.

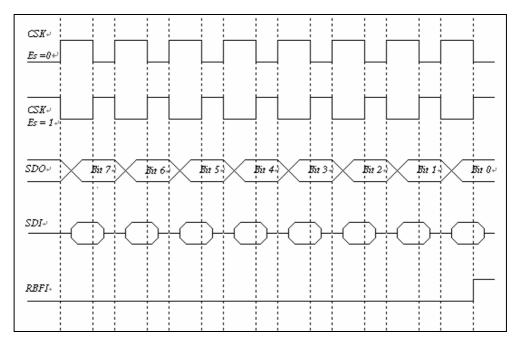


Figure 5-9 SPI Mode with /SS Disabled

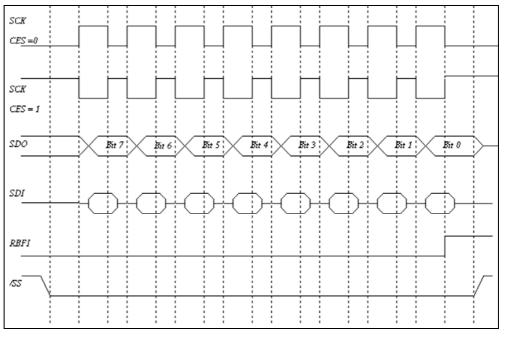


Figure 5-10 SPI Mode with /SS Enabled

Example for SPI:

```
For Master
```

ORG 0X00

JMP SETTING

ORG 0X0080

SETTING:

DISI

CLRA

IOW 0X08 ; SET PORT 8 OUTPUT
IOW 0X06 ; SET PORT 6 OUTPUT

MOV 0X08,A

MOV A,@0B01010000 ; DISABLE WAKE-UP FUNCTION, DISABLE WATCHDOG

IOW 0X0E

MOV A,@0B00000000 ; DISABLE INTERRUPT

IOW 0X0F

MOV A,@0X10 ; SDI INPUT AND SDO, SCK OUTPUT

IOW 0X05

BS 0XA,7 MOV A,@0X18

MOV 0X11, A ; SET SPI 2 BYTES

MOV A,@0X00 ; CLEAR RBF AND RBFIF FLAG; SDO KEEP STATUS, MSB

; FIRST

MOV 0X12,A

MOV A,@0B11000010 ; SELECT CLOCK EDGE AND ENABLE SPI FUNCTION

MOV 0X13,A

BC 0XA,7 START:

BS 0X0A, 7

BC 0XE,4 ; CLEAR RBFIF FLAG

MOV A,@0XFF

MOV 0X08,A ; SHOW A SIGNAL AT PORT 8 MOV A,@0X06 ; POINT TO SPI IN FIFO

MOV 0XC,A MOV A,@0XFF

MOV 0XD,A ; MOVE FF AT READ BUFFER

MOV A,@0X07

MOV 0XC,A

MOV A,@0XAA ; MOVE AA AT WRITE BUFFER MOV 0XD,A ; WRITE 0XAATO BYTE 0 MOV 0XD,A ; WRITE 0XAA TO BYTE 1

COMA 0XD

MOV 0XD,A ; WRITE 0X55 TO BYTE 2 MOV 0XD,A ; WRITE 0X55 TO BYTE 3

NOP

BS 0X13,4 ; START TO SHIFT SPI DATA

NOP

JBC 0X13,4 ; POLLING LOOP FOR CHECKING SPI TRANSMISSION

; COMPLETED


```
JMP $-2
BC 0X03,2
CALL DELAY
                   ; TO CATCH THE DATA FROM SLAVER
MOV A,@0X06
MOV 0XC,A
MOV A, 0XD
                   ; COMPARE THE DATA FROM SLAVER
XOR A,@0X5A
JBS 0X03,2
JMP START
FLAG:
                   ; SHOW 0X55 TO PORT 8 WHEN RECEIVING CORRECT DATA
 MOV A,@0X55
                    ; FROM SLAVER
 MOV 0X08,A
 CALL DELAY
 JMP START
DELAY:
                   ; (USER'S PROGRAM)
   RET
  EOP
  ORG OXFFF
  JMP SETTING
For Slaver example:
ORG 0X0000
JMP START
ORG 0X0018
JMP INT_3_STATE
INT_3_STATE:
 DISI
 CLR RSR
  CLR STATUS
  JBC RE,4
  JMP SPI_INT_STATE
  RETI
SPI_INT_STATE:
  MOV A,@0X06
  MOV RC,A
              ; SET SPI FIFO IN INDEX
  MOV A,RD
  MOV 0X19,A
                  ; READ SPI IN FIFO DATA
  MOV A,@0B0000010
  XOR PORT5,A
              ; SPI INTERRUPT FINISH SIGINAL
  MOV A,@0B11101111
```

MOV RE,A RETI

; INITIAL

INITIAL:

CLR RSR

IOW IOCF ; DISABLE ALL INTERRUPT

IOR IOCE

OR A,@0B00000001

IOW IOCE ; DISABLE PORT 5 PULL-HIGH

IOR IOCD

AND A,@0B11110000

IOW IOCD

MOV A,@0B11111111 ; P9 TEST PIN; INPUT PULL HIGH

IOW IOC9

CLRA

MOV PORT6, A MOV PORT8, A

MOV A,@0XFF IOW IOC6 IOR IOCE

AND A,@0B11111101

IOW IOCE

BS RA,7 ; SET EXTRA RAM #1

MOV A,@0B01000000

MOV R11,A ; SPI BYTE NUM = 1

MOV A,@0B11010000

IOW IOC5 ; SDI, /SS INPUT & SDO SCLK OUTPUT

CLR PORT5

CLR RE ; CLR SPI AND TMIIF FLAG
MOV A,@0B00000000 ; BIT5: 1 / 0 = MSB / LSB

MOV R12,A ; CLR RBFIF ,SET LSTUS = SAME ,MSB ,DISABLE OP DRAIN

MOV A,@0B11000110 ; /SS DISABLE

MOV R13,A $\,$; SET CES=1 ,SPI ENABLE ,SLAVE MODE WITH /SS $\,$

; DISABLE

BS R13,6

BS PORT5,3

MOV A,@0B00100000

IOW IOCF ; ENABLE SPI

MOV A,@0X07 ; POINTER TO SPI OUT FIFO, FILL DATA

MOV RC,A

MOV A,@0X5A MOV RD,A RET


```
CLR_RAM:
                      ; CLR 0X20~0X3F
 CLR 0X20
 MOV A,@0X1F
 MOV 0X20,A
                      ; SET CLR COUNTER
 MOV A,@0XC0
 AND A,RSR
 OR A,@0X20
 MOV RSR,A
                      ; SET RSR INDEX
 INC RSR
 CLR R0
 DJZ 0X20
 JMP $-3
 CLR RSR
 RET
ORG 0X100
START:
 DISI
 CALL INITIAL
 CALL SET_INITIAL_VALUE
 BS R13,SSE
 ENI
 JMP MAIN
SET_INITIAL_VALUE:
 CLRA
 MOV R1C,A
 CLR RSR
 CALL CLR_RAM
                    ; CLR BANKO 0X20~0X3F
 MOV A,@0X40
 MOV RSR,A
 CALL CLR_RAM
                     ; CLR BANK1 0X20~0X3F
 MOV A,@0X08
 MOV 0X11,A
                     ; SET SPI BYTE NUMBER REISTER
 RET
MAIN:
 WDTC
 BC PORT5,2
ROUTINE:
 WDTC
 JBC R13,SSE
 JMP $-2
                ; DATA TRANSMISSION COMPLETE
 DISI
 BC PORT5,1
 BC PORT5,0
READLOOP:
 JBC R13,5
 JMP SLAVE_READ_OVERFLOW
 BS PORT5,0
 MOV A,0X19
```



```
XOR A,@0XAA
 JBS STATUS, 2
 JMP ERROR
 JMP NEXTTURN
ERROR:
 BC R13,SSE
 BC R13,6
 DISI
 BC PORT5,0
 BS PORT5,1
 JMP $
SLAVE_READ_OVERFLOW:
 BC R13,6
 DISI
 BS PORT5,1
 BC PORT5,1
 JMP $-2
NEXTTURN:
 NOP
 BS RA,7
                   ; SET EXTRA RAM1
                         MOV A,@0B00001000; SET SPI BYTE NUMBER
                          MOV R11,A
                          CLR R1C
SLAVE_SEND_DATA:
                     ; SET SPI OUT FIFO DATA
 MOV A,@0X07
 MOV RC, A
 MOV A,@0X5A
 MOV RD, A
 RET
 BS R13,SSE
 ENI
 JMP MAIN
```

5.12.7 SPI Timer 1 Mode

5.12.7.1 Overview

Timer 1 (TMR1) is an 8-bit clock counter with a programmable prescaler. It is designed for the SPI module as a baud rate clock generator. TMR1 can be read and written to and cleared on any reset conditions. If employed, it can be turned-down for power conservation by setting TMR1EN Bit [T1CON<2>] to 0.

5.12.7.2 Function Description

Figure 5-11 shows Timer 1 block diagram. Each signal and block is described as follows:

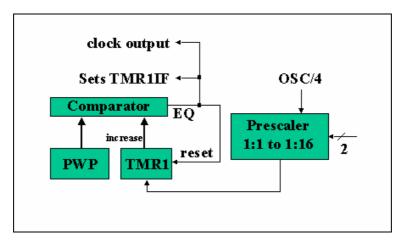


Figure 5-11 Timer 1 Block Diagram

OSC/4: Input clock

Prescaler: Option of 1:4, 1:16, 1:32, and 1:64 defined by T1P1 and T1P02 (T1CON<1, 0>). It is cleared when a value is written to TMR1 or T1CON, and during any kind of reset as well.

PWP: Pulse width preset register. The desired width of baud clock is written in advance.

TMR1: Timer 1 register. TMR1 increases until it matches with PWP, and then resets to 0. If it is chosen optionally in the SPI mode, its output is fed as a shifting clock.

Comparator: To change the output status while a match occurs. The TMR1IF flag will be set at the same time.

5.12.7.3 Programmed the Related Registers

The related registers of the defining TMR1 operation are shown in Table 5 and Table 6.

Table 5 TMR1Related Control Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0F	IOCF			TMRIE/SPIIE					
0x12	SPIS	Lstatus1	Lstatus0	M/LSB	-	OD3	OD4	-	RBF
0x0E	ISR	P77_IF	P76_IF	TM1IF	SPIIF	RF_2High	RF_2Low	RF_1High	RF_1Low

Table 6 TMR1Related Status/Data Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0X14	TMR1	TMR17	TMR16	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10
0x10	PWP	PWP7	PWP6	PWP5	PWP4	PWP3	PWP2	PWP1	PWP0
0x0C	T1CON	0	0	0	0	0	TM1E	TM1P1	TM1P0

TMR1: Timer 1 Register

TMR17~TMR10 bits are set of Timer 1 registers and it increases until the value matches PWP and then it reset to 0.

PWP: Pulse Width Preset Register

PWP7~PWP0 bits are set of pulse width preset in advance for the desired width of baud clock.

T1CON: Timer 1 Control Register

TM1E (Bit 2): Timer 1 enable bit

TM1P1 and TM1P0 (Bits 1~0): Timer 1 prescaler for FSCO

TM1P1	TM1P0	Prescaler Rate
0	0	1:4
0	1	1:16
1	0	1:32
1	1	1:64

6 Absolute Maximum Ratings

Items	Min	Max	Unit
Temperature under bias	0	70	°C
Storage temperature	-65	150	°C
Input voltage	-0.5	6.0	V
Output voltage	-0.5	6.0	V

7 DC Electrical Characteristic

Ta=25°C, VDD=5V, VSS=0V

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Operation condition	4.0	5.0	5.25	V
VDD	Operating voltage	Fosc= 8,16MHz	7.0	0.0	0.20	•
		Fosc=24MHz	5.0	5.0	5.25	V
IIL	Input Leakage Current	VIN = VDD, VSS	_	_	±1	μΑ
VIH	Input High Voltage	-	2.0	_	_	V
VIL	Input Low Voltage	_	_	-	8.0	V
VIHX	Clock Input High Voltage	OSCI	2.5	_	-	V
VILX	Clock Input Low Voltage	OSCI	-	-	1.0	V
VOH1	Output High Voltage	IOH = 10.0mA	2.4	_		V
	(P70~P72, P76~P77)	VDD = 5 V				•
VOH2	Output High Voltage (Ports 5, 6, 8, 9)	IOH = 1.0mA Vreg = 3.3 V	2.4	-	_	V
VOL1	Output Low Voltage (P70~P72, P76~77)	IOL = -10.0mA VDD = 5 V	_	_	0.4	V
	Output Low Voltage	IOL = -10.0mA				
VOL2	(P70~P72 : LED drive mode)	VDD = 5 V	_	_	3.0	V
VOL3	Output Low Voltage	IOL = -10.0mA	_		0.4	V
VOLO	(Ports 5, 6, 8, 9)	Vreg = 3.3 V			0.4	· ·
IPH1	Pull-high current (Ports 5, 6, 7, 8, 9)	Pull-high active, Input pin at VSS Vreg=3.3V	-20%	132	+20%	μΑ
IDIJO	Pull-high current	Pull-high active, Input pin at VSS	000/	400	. 000/	^
IPH2	(P70~P72, P76~77)	VDD = 5 V	-20%	132	+20%	μΑ
IPH3	Pull-high current (USB D+)	Pull-high active, Input pin at VSS Vreg=3.3V (PH rsister =1.5K)	-	2.2	-	mA
ICC1	Operating supply current Normal operation	Fosc= 8MHz , no GPIO loading	_	_	10	mA
ICC2	Operating supply current Sleep mode	All input and I/O pin at VDD Output pin floating, WDT disabled	-	-	300	μΑ
ICC3	Operating supply current Dual clock mode – 256kHz	All input and I/O pin at VDD Output pin floating, WDT disabled	_	_	250	μΑ
Vreg	Output voltage of 3.3V regulator	VDD = 4.0V ~ 5.25V	3.0	3.3	3.6	V

APPENDIX

A Special Register Map

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	C57	C56	C55	C54	C53	C52	C51	C50
		Power-on	1	1	1	1	1	1	1	1
N/A	IOC5	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C67	C66	C65	C64	C63	C62	C61	C60
		Power-on	1	1	1	1	1	1	1	1
N/A	IOC6	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C77	C76	-	-	-	C72	C71	C70
		Power-on	1	1	1	1	1	1	1	1
N/A	IOC7	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C87	C86	C85	C84	C83	C82	C81	C80
		Power-on	1	1	1	1	1	1	1	1
N/A	IOC8	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C97	C96	C95	C94	C93	C92	C91	C90
		Power-on	1	1	1	1	1	1	1	1
N/A	IOC9	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	RF2	RF1	RF0	RF_DB2	RF_DB1	RF_DB0
	IOCA	Power-on	0	0	0	0	0	0	0	0
0x0A	(RFCNT)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PW2_E	PW1_E	-		-	PWM_2	PWM_1	PWM_0
0.05	IOCB	Power-on	0	0	0	0	0	0	0	0
0x0B	(PWM_CNT)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	GPB	GPB	GPB	GPB	GPB	T1E	T1P1	T1P0
	IOCC	Power-on	0	0	0	0	0	0	0	0
0x0C	(T1CON)	/RESET and WDT	0	0	0	0	0	0	0	0
0x0C 0x0D		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	/PH96	/PH95	-	/PH93	/PH92	/PH91	/PH90
	IOCD	Power-on	1	1	1	1	1	1	1	1
0x0D	(P9_PH)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	S7	/WUE	WTE	SLPC	-	/PU8	/PU6	/PU5
	IOCE	Power-on	1	1	0	1	U	1	1	1
0x0E	(MCU Cnt)	/RESET and WDT	1	1	0	1	U	1	1	1
		Wake-up from Pin Change	Р	Р	Р	1	U	Р	Р	Р
		Bit Name	OUTEP	P7IE	SPIIE	ResulE	RF2IE	RF1IE	USBIE	TCIE
		Power-on	0	0	0	0	0	0	0	0
0x0F	IOCF	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	INT	TSR2	TSR1	TSR0	PSR2	PSR1	PSR0
		Power-on	U	0	1	1	1	1	1	1
N/A	CONT	/RESET and WDT	U	Р	1	1	1	1	1	1
		Wake-up from Pin Change	U	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
		Power-on	U	U	U	U	U	U	U	U
0x00	R0(IAR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
		Power-on	0	0	0	0	0	0	0	0
0x01	R1(TCC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0::00	D0(D0)	Power-on	0	0	0	0	0	0	0	0
0x02	R2(PC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	**P	**P	**P	**P	**P	**P	**P	**P

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PS2	PS1	PS0	Т	Р	Z	DC	С
		Power-on	0	0	0	t	t	U	U	U
0x03	R3 (SR)	/RESET and WDT	0	0	0	t	t	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	t	t	Р	Р	Р
		Bit Name	RSR.1	RSR.0	-	-	-	-	-	-
		Power-on	0	0	U	U	U	U	U	U
0x04	R4 (RSR)	/RESET and WDT	0	0	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
		Power-on	U	U	U	U	U	U	U	U
0x05	R5 (P5)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
		Power-on	U	U	U	U	U	U	U	U
0x06	R6 (P6)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P77	P76	-	-	-	P72	P71	P70
		Power-on	J	U	J	U	U	U	J	J
0x07	R7 (P7)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P87	P86	P85	P84	P83	P82	P81	P80
		Power-on	U	U	U	U	U	U	U	U
0x08	R8 (P8)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P97	P96	P95	P94	P93	P92	P91	P90
	Do (Do)	Power-on	U	U	U	U	U	U	U	U
0x09	R9 (P9)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Ext_R	Remote	EP0_W		D_Resu	UDC_Su		
004	DA/HODEO)	Power-on	0	0	0	0	0	0	0	0
0x0A	RA(USBES)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	GPB	GPB	GPB	GPB	GPB	GPB	GPB	GPB
		Power-on	U	U	U	U	U	U	U	U
0x0B	GPR	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Index7	Index6	Index5	Index4	Index3	Index2	Index1	Index0
	RC	Power-on	0	0	0	0	0	0	0	0
0x0C	(FIFO_Index)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	FIFO7	FIFO6	FIFO5	FIFO4	FIFO3	FIFO2	FIFO1	FIFO0
	RD	Power-un	0	0	0	0	0	0	0	0
0x0D	(FIFO_Data)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P77_IF	P76_IF	TM1IF	SPIIF-	RF2_H	RF2_L	RF1_H	RF1_L
		Power-un	0	0	0	0	0	0	0	0
0x0E	RE (ISR0)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Out_EP	GPB	GPB	ResumlF	USBres	Suspend	EP0_IF	TCCIF
		Power-un	0	U	U	0	0	0	0	0
0x0F	RF (ISR0)	/RESET and WDT	0	Р	Р	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	GPB	GPB	GPB	EP5_ST	EP4_ST	EP3_ST	EP2_ST	EP1_ST
	R10	Power-on	U	U	U	0	0	0	0	0
0x10	(USB EP stat)	/RESET and WDT	Р	Р	Р	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADstart	AD_R1	AD_R0	AD4	AD3	AD2	AD1	AD0
	R11	Power-on	0	0	0	1	1	1	1	1
0x11	(AD/Control)	/RESET and WDT	0	0	0	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name		USB_To	Low_F1	Low_F0	/LowFre	-	-	-
	R12	Power-on	U	U	0	0	1	U	U	U
0x12	(Dual)	/RESET and WDT	Р	U	0	0	1	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	ADD1	ADD0	-	-	-	-	-	-
	R13	Power-on	0	0	0	0	0	0	0	0
0x13	(ADLoData)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2
	R14	Power-on	0	0	0	0	0	0	0	0
0x14	(ADHiData)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PWM17	PWM16	PWM15	PWM14	PWM13	PWM12	PWM11	PWM10
	R15	Power-on	0	0	0	0	0	0	0	0
0x15	(PWM1_T)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PWM27	PWM26	PWM25	PWM24	PWM23	PWM22	PWM21	PWM20
	R16	Power-on	0	0	0	0	0	0	0	0
0x16	(PWM2_T)	/5-6/5-		0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x17~0x	0.55	Power-on	U	U	U	U	U	U	U	U
3F	GPR	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PWP7	PWP6	PWP5	PWP4	PWP3	PWP2	PWP1	PWP0
	R10	Power-on	1	1	1	1	1	1	1	1
0x10	(PWP)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	GPB	SPI7	SPI6	SPI5	SPI4	GPB	GPB	GPB
	R11	Power-on	U	0	0	0	0	U	U	U
0x11	(SPIN)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Lstatus1	Lstatus0	M/LSB	GPB	OD3	OD4	GPB	RBF
	R12	Power-on	0	0	0	U	0	0	U	0
0x12	(SPIS)	/RESET and WDT	0	0	0	Р	0	0	Р	0
	(3213)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
		Bit Name	CES	SPIE	SRO	SPISE	GPB	SBRS2	SBRS1	SBRS0
	R13	Power-on	0	0	0	0	U	0	0	0
0x13	(SPIC)	/RESET and WDT	0	0	0	0	Р	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMR17	TRM16	TRM15	TRM14	TRM13	TRM12	TRM11	TRM10
	R14	Power-on	0	0	0	0	0	0	0	0
0x14	(TMR1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SE1_L7	SE1_L6	SE1_L5	SE1_L4	SE1_L3	SE1_L2	SE1_L1	SE1_L0
	R15	Power-on	0	0	0	0	0	0	0	0
0x15	(SE1_LOW)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SE1_H7	SE1_H6	SE1_H5	SE1_H4	SE1_H3	SE1_H2	SE1_H1	SE1_H0
	R16	Power-on	0	0	0	0	0	0	0	0
0x16	(SE1_HIGH)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SE2_L7	SE2_L6	SE2_L5	SE2_L4	SE2_L3	SE2_L2	SE2_L1	SE2_L0
	R17	Power-on	0	0	0	0	0	0	0	0
0x17	(SE2_LOW)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SE2_H7	SE2_H6	SE2_H5	SE2_H4	SE2_H3	SE2_H2	SE2_H1	SE2_H0
	R18	Power-on	0	0	0	0	0	0	0	0
0x18	(SE2_HIGH)	/RESET and WDT	0	0	0	0	0	0	0	0
	(SLZ_I IIOI I)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x19~0x		Power-on	U	U	U	U	U	U	U	U
3F	GPR	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

^{**} Execute the next instruction after the "SLPC" bit status of IOCE register has been on high-to-low transition.

X: Not for use. U: Unknown or don't care. P: Previous value before reset.

B Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. All instructions are executed within one single instruction cycle (consisting of 2 oscillator periods), unless the program counter is changed by-

- (a) Executing the instruction "MOV R2,A", "ADD R2,A", "TBL", or any other instructions that write to R2 (e.g. "SUB R2,A", "BS R2,6", "CLR R2", ····).
- (b) Execute CALL, RET, RETI, RETL, JMP, Conditional skip (JBS, JBC, JZ, JZA, DJZ, DJZA) which were tested to be true.

Under these cases, the execution takes two instruction cycles.

In addition, the instruction set has the following features:

- (1). Every bit of any register can be set, cleared, or tested directly.
- (2). The I/O register can be regarded as general register. That is, the same instruction can operate on I/O register.

Legend:

- R = Register designator that specifies which one of the 64 registers (including operation and general purpose registers) is to be utilized by the instruction.
 Bits 6 and 7 in R4 determine the selected register bank.
- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.

k =	8 or	10-bit	constant	٥r	literal	value

Binary Instruction	Hex	Mnemonic	Operation	Status Affected
0 0000 0000 0000	0000	NOP	No Operation	None
0 0000 0000 0001	0001	DAA	Decimal Adjust A	С
0 0000 0000 0010	0002	CONTW	$A \to CONT$	None
0 0000 0000 0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	T, P
0 0000 0000 0100	0004	WDTC	$0 \rightarrow WDT$	T, P
0 0000 0000 rrrr	000r	IOW R	$A \rightarrow IOCR$	None <note 1=""></note>
0 0000 0001 0000	0010	ENI	Enable Interrupt	None
0 0000 0001 0001	0011	DISI	Disable Interrupt	None
0 0000 0001 0010	0012	RET	[Top of Stack] \rightarrow PC	None
0 0000 0001 0011	0013	RETI	[Top of Stack] \rightarrow PC, Enable Interrupt	None
0 0000 0001 0100	0014	CONTR	$CONT \to A$	None
0 0000 0001 rrrr	001r	IOR R	$IOCR \rightarrow A$	None <note 1=""></note>
0 0000 0010 0000	0020	TBL	R2+A → R2, Bits 8~9 of R2 unchanged	Z, C, DC

Bi	nary Ir	nstruc	ction	Hex	Mnemonic	Operation	Status Affected
0	0000	01rr	rrrr	00rr	MOV R,A	$A \rightarrow R$	None
0	0000	1000	0000	0080	CLRA	$0 \rightarrow A$	Z
0	0000	11rr	rrrr	00rr	CLR R	$0 \rightarrow R$	Z
0	0001	00rr	rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z, C, DC
0	0001	01rr	rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z, C, DC
0	0001	10rr	rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z
0	0001	11rr	rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z
0	0010	00rr	rrrr	02rr	OR A,R	$A \lor VR \to A$	Z
0	0010	01rr	rrrr	02rr	OR R,A	$A \lor VR \rightarrow R$	Z
0	0010	10rr	rrrr	02rr	AND A,R	$A \& R \rightarrow A$	Z
0	0010	11rr	rrrr	02rr	AND R,A	A & $R \rightarrow R$	Z
0	0011	00rr	rrrr	03rr	XOR A,R	$A \oplus R \to A$	Z
0	0011	01rr	rrrr	03rr	XOR R,A	$A \oplus R \to R$	Z
0	0011	10rr	rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z, C, DC
0	0011	11rr	rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z, C, DC
0	0100	00rr	rrrr	04rr	MOV A,R	$R \rightarrow A$	Z
0	0100	01rr	rrrr	04rr	MOV R,R	$R \rightarrow R$	Z
0	0100	10rr	rrrr	04rr	COMA R	$/R \rightarrow A$	Z
0	0100	11rr	rrrr	04rr	COM R	$/R \rightarrow R$	Z
0	0101	00rr	rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z
0	0101	01rr	rrrr	05rr	INC R	$R+1 \rightarrow R$	Z
0	0101	10rr	rrrr	05rr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
0	0101	11rr	rrrr	05rr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
0	0110	00rr	rrrr	06rr	RRCA R	$R(n) \rightarrow A(n-1),$ $R(0) \rightarrow C, C \rightarrow A(7)$	С
0	0110	01rr	rrrr	06rr	RRC R	$R(n) \rightarrow R(n-1),$ $R(0) \rightarrow C, C \rightarrow R(7)$	С
0	0110	10rr	rrrr	06rr	RLCA R	$R(n) \rightarrow A(n+1),$ $R(7) \rightarrow C, C \rightarrow A(0)$	С
0	0110	11rr	rrrr	06rr	RLC R	$R(n) \rightarrow R(n+1),$ $R(7) \rightarrow C, C \rightarrow R(0)$	С
0	0111	00rr	rrrr	07rr	SWAPA R	$R(0-3) \rightarrow A(4-7),$ $R(4-7) \rightarrow A(0-3)$	None
0	0111	01rr	rrrr	07rr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
0	0111	10rr	rrrr	07rr	JZA R	$R+1 \rightarrow A$, skip if zero	None
0	0111	11rr	rrrr	07rr	JZ R	R+1 → R, skip if zero	None

Binary Instruction	Hex	Mnemonic	Operation	Status Affected
0 100b bbrr rrrr	0xxx	BC R,b	$0 \rightarrow R(b)$	None <note 2=""></note>
0 101b bbrr rrrr	0xxx	BS R,b	$1 \rightarrow R(b)$	None
0 110b bbrr rrrr	0xxx	JBC R,b	if R(b)=0, skip	None
0 111b bbrr rrrr	0xxx	JBS R,b	if R(b)=1, skip	None
1 00kk kkkk kkkk	1kkk	CALL k	$PC+1 \rightarrow [SP],$ (Page, k) $\rightarrow PC$	None
1 01kk kkkk kkkk	1kkk	JMP k	$(Page, k) \rightarrow PC$	None
1 1000 kkkk kkkk	18kk	MOV A,k	$k \rightarrow A$	None
1 1001 kkkk kkkk	19kk	OR A,k	$A\vee k\to A$	Z
1 1010 kkkk kkkk	1Akk	AND A,k	$A \& k \rightarrow A$	Z
1 1011 kkkk kkkk	1Bkk	XOR A,k	$A \oplus k \to A$	Z
1 1100 kkkk kkkk	1Ckk	RETL k	$k \rightarrow A$, [Top of Stack] $\rightarrow PC$	None
1 1101 kkkk kkkk	1Dkk	SUB A,k	$k-A \rightarrow A$	Z, C, DC
1 1110 0000 0kkk	1E0k			None
1 1111 kkkk kkkk	1Fkk	ADD A,k	$k+A \rightarrow A$	Z, C, DC

Note: ¹ This instruction is applicable to IOCx only.

C Code Option

Address 000:

Bit 1	2 Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEL	1 DEL0	/AD_hold	_	PKG_1	PKG_0	FRQ_1	FRQ_0	OST_1	OST_0	/D+ resistor	USB	/Protect

■ Address 001:

Bit 25	Bit 24	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13
EP2_	EP2_	EP2_	EP2_	EP2_	EP1_	EP1_	EP1_	EP1_	EP1_Ty	EPX_SEL2	EPX_SEL1	EPX_SEL0
Max_	Max_	Direct	Type1	Type0	Max_	Max_	Direct	Type1	pe0			
Size1	Size0	ion			Size1	Size0	ion					

■ Address 002:

Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26
EP5_	EP5_	EP5_	EP4_	EP4_	EP4_	EP4_	EP4_	EP3_	EP3_Ma	EP3_Di	EP3_Type1	EP_3 Type0
Direct	Type1	Type0	Max_	Max_	Direct	Type1	Type0	Max_	x_Size0	rection		
ion			Size1	Size0	ion			Size1				

■ Address 003:

Bit 51	Bit 50	Bit 49	Bit 48	Bit 47	Bit 46	Bit 45	Bit 44	Bit 43	Bit 42	Bit 41	Bit 40	Bit 39
USER			EP5_Max_Si	EP5_Max								
_ID8	_ID7	_ID6	_ID5	_ID4	_ID3	_ID2	_ID1	_ID0			ze1	_Size0

² This instruction is not recommended for RE, RF operation.

Address 004:

Bit 64	Bit 63	Bit 62	Bit 61	Bit 60	Bit 59	Bit 58	Bit 57	Bit 56	Bit 55	Bit 54	Bit 53	Bit 52
	QTP_	QTP_	QTP_	QTP_	USER	USER	USER	USER	USER_I	USER_I	USER_ID10	USER_ID9
	Code	Code	Code	Code	_ID16	_ID15	_ID14	_ID13	D12	D11		
	3	2	1	0								

■ Address 005:

Bit 66~75	Bit 65	
	/Ver_Sel	

Bit 0 (/Protect): Protect bit.

0: Enable

1: Disable

Bit 1 (USB): Operation mode.

0: Non-USB mode. Close UDC and Transceiver function.

1: USB mode

Bit 2 (/D+ resistor): D+ Resistor pull-high switch.

0: Enable internal USB D+ pull-high resistor.

1: Disable internal USB D+ pull-high resistor.

Bits 4~3 (OST1~OST0): Oscillator start time. WDT time-out time.

00: 500 μs

01: 2 ms

10: 4 ms

11: 8 ms

Bits 6~5 (FRQ1~FRQ0): System clock frequency switch.

00: 8 MHz, External Crystal \times 2

01: 16 MHz, External Crystal \times 4

10: 24 MHz, External Crystal × 6

11: Not Defined

Bits 8~7 (PKG1~PKG0): Package switch.

00: 20 pins

01: 24 pins

10: 40 pins

11: 44 pins

Bit 9 (Reverse): set to "0" as default value

Bit 10 (/ADHold): Setting for the MCU during AD conversion

0: Set the MCU on hold during AD conversion

1: Keep the MCU running during AD conversion

Bit 11 ~ Bit 12 : DEL 0~DEL1: Set as 0, 0.

Bits 15 ~ 13 (EPX_SEL2 ~ EPX_SEL0): Endpoint function selection

	EPX Status / EPX FIFO Max Size					
EPX_SEL[2:0] (USB Mode)	EP1	EP2	EP3	EP4	EP5	
000	Enable / 64-byte	Disable / NA	Disable / NA	Disable / NA	Disable / NA	
001	Enable / 64- byte	Enable / 64- byte	Disable / NA	Disable / NA	Disable / NA	
010	Enable / 64- byte	Enable / 32- byte	Enable / 32- byte	Disable / NA	Disable / NA	
011	Enable / 64- byte	Enable / 32- byte	Enable / 16- byte	Enable / 16- byte	Disable / NA	
100	Enable / 64- byte	Enable / 32- byte	Enable / 16- byte	Enable / 8- byte	Enable / 8- byte	
101	Enable / 64- byte	Enable / 16- byte	Enable / 16- byte	Enable / 16- byte	Enable / 16- byte	
110	Enable / 32- byte	Enable / 32- byte	Enable / 32- byte	Enable / 32- byte	Disable / NA	
111	Enable / 32- byte	Enable / 32- byte	Enable / 32- byte	Enable / 16- byte	Enable / 16- byte	

Bits 16 ~ 40:

EPx Type:

00: Not defined

01: Isochronous mode transfer

10: Bulk mode transfer

11: Interrupt mode transfer

EPx Direction:

0: Output way

1: Input way

EPx Max Size:

00: 8 bytes

01: 16 bytes

10: 32 bytes

11: 64 bytes

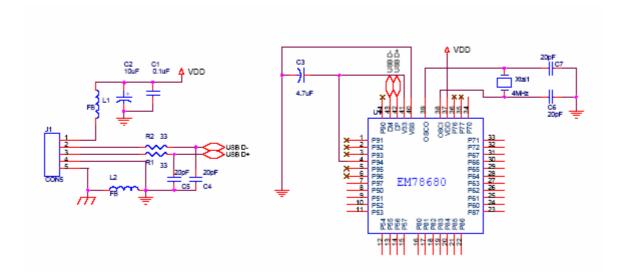
If EPx Max Size selection is larger than Endpoint function selection, EPX FIFO size will depend on the size of Endpoint function selector (EPX_Sel0~2]).

Bits 41 ~ 42 (Reserved): reserved bit

Default: 1

Bits 43~ Bit 59 (USER ID): Defined by user.

Bits 60~64 (Reserved): Reserved bit


Bits 65 (Ver_Sel):

0: New Version (Additional SPI function)

1: Original Version

Bits 66~75 (Reserved)

D Application Circuit

