# EM78F564N/664N

8-Bit Microcontroller

# Product Specification

Doc. Version 2.5

ELAN MICROELECTRONICS CORP.

March 2016



#### **Trademark Acknowledgments:**

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

# Copyright © 2009~2016 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.



#### **ELAN MICROELECTRONICS CORPORATION**

#### Headquarters:

No. 12, Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw

http://www.emc.com.tw

#### Hong Kong:

# Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376

#### Shenzhen:

#### Elan Microelectronics Shenzhen, Ltd.

Fax: +852 2723-7780

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-tech Industrial Park South Area, Shenzhen CHINA 518057 Tel: +86 755 2601-0565

Fax: +86 755 2601-0500

elan-sz@elanic.com.cn

#### USA:

#### Elan Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8225

#### Shanghai:

# Elan Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 elan-sh@elanic.com.cn



| 1 | Gen   | eral De | scription                                                    | 1 |
|---|-------|---------|--------------------------------------------------------------|---|
| 2 | Feat  | ures    |                                                              | 1 |
| 3 | Pin A | Assignı | ment                                                         | 2 |
| 4 | Pin l | Descrip | otion                                                        | 3 |
| 5 |       | •       | ram                                                          |   |
| 6 |       | _       | Description                                                  |   |
| Ū | 6.1   |         | tional Registers                                             |   |
|   | 0.1   | 6.1.1   | R0 (Indirect Addressing Register)                            |   |
|   |       | 6.1.2   | R1 (Timer Clock/Counter)                                     |   |
|   |       | 6.1.3   | R2 (Program Counter and Stack)                               |   |
|   |       | 6.1.4   | R3 (Status Register)                                         |   |
|   |       | 6.1.5   | R4 (RAM Select Register)                                     |   |
|   |       | 6.1.6   | Bank 0 R5 ~ R8 (Port 5 ~ Port 8)                             |   |
|   |       | 6.1.7   | Bank 0 R9 (TBLP : Table Point Register for instruction TBRD) |   |
|   |       | 6.1.8   | Bank 0 RA (Wake-up Control Register)                         |   |
|   |       | 6.1.9   | Bank 0 RB (EEPROM Control Register, only for EM78F664N)      |   |
|   |       |         | Bank 0 RC (256 Bytes EEPROM Address, only for EM78F664N)     |   |
|   |       |         | Bank 0 RD (256 Bytes EEPROM Data, only for EM78F664N)        |   |
|   |       |         | Bank 0 RE (Mode Select Register)                             |   |
|   |       |         | Bank 0 RF (Interrupt Status Register 1)                      |   |
|   |       |         | R10 ~ R3F                                                    |   |
|   |       |         | Bank 1 R5 TC1CR (Timer 1 Control)                            |   |
|   |       |         | Bank 1 R6 TCR1DA (Timer 1 Data Buffer A)                     |   |
|   |       |         | Bank 1 R7 TCR1DB (Timer 1 Data Buffer B)                     |   |
|   |       |         | Bank 1 R8 TC2CR (Timer 2 Control)                            |   |
|   |       |         | Bank 1 R9 TC2DH (Timer 2 High Byte Data Buffer)              |   |
|   |       |         | Bank 1 RA TC2DL (Timer 2 Low Byte Data Buffer)               |   |
|   |       |         | Bank 1 RB SPIS (SPI Status Register)                         |   |
|   |       |         | Bank 1 RC SPIC (SPI Control Register)                        |   |
|   |       |         | Bank 1 RD SPIRB (SPI Read Buffer)                            |   |
|   |       |         | Bank 1 RE SPIWB (SPI Write Data Buffer)                      |   |
|   |       |         | Bank 1 RF (Interrupt Status Register 2)                      |   |
|   |       |         | Bank 2 R5 AISR (ADC Input Select Register)                   |   |
|   |       |         | Bank 2 R6 ADCON (A/D Control Register)                       |   |
|   |       |         | Bank 2 R7 ADOC (A/D Offset Calibration Register)             |   |
|   |       |         | Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)                   |   |
|   |       |         | Bank 2 R9 ADDL (AD Low 2-Bit Data Buffer)                    |   |
|   |       |         | Bank 2 RA URC1 (UART Control 1)                              |   |
|   |       |         | Bank 2 RB URC2 (UART Control 2)                              |   |
|   |       |         |                                                              |   |



|     | 6.1.33 | Bank 2 RC URS (UART Status)                                                     | 30 |
|-----|--------|---------------------------------------------------------------------------------|----|
|     | 6.1.34 | 4 Bank 2 RD URRD (UART_RD Data Buffer)                                          | 31 |
|     | 6.1.35 | 5 Bank 2 RE URTD (UART_TD Data Buffer)                                          | 31 |
|     | 6.1.36 | Bank 2 RF (Pull-high Control Register 1)                                        | 31 |
|     | 6.1.37 | 7 Bank 3 R5 (TMRCON: Timer A and Timer B Control Register)                      | 31 |
|     | 6.1.38 | Bank 3 R6 (TBHP: Table Point Register for Instruction TBRD)                     | 32 |
|     | 6.1.39 | Bank 3 R7 (CMPCON: Comparator 2 Control Register and PWMA/B Control Register)   | 32 |
|     |        | Bank 3 R8 (PWMCON: PWMA/B Lower 2 Bits of the Period and Duty Control Register) |    |
|     | 6.1.41 | Bank 3 R9 (PRDAH: Most Significant Byte of PWMA)                                | 33 |
|     | 6.1.42 | 2 Bank 3 RA (DTAH: Most Significant Byte of PWMA Duty Cycle)                    | 33 |
|     | 6.1.43 | B Bank 3 RB (PRDBH: Most Significant Byte of PWMB)                              | 33 |
|     | 6.1.44 | 4 Bank 3 RC (DTBH: Least Significant Byte of PWMB Duty Cycle)                   | 33 |
|     | 6.1.45 | 5 Bank 3 RD TC3CR (Timer 3 Control)                                             | 34 |
|     | 6.1.46 | Bank 3 RE TC3D (Timer 3 Data Buffer)                                            | 36 |
|     | 6.1.47 | 7 Bank 3 RF (Pull-down Control Register 1)                                      | 36 |
| 6.2 | Specia | al Function Registers                                                           | 37 |
|     | 6.2.1  | A (Accumulator)                                                                 | 37 |
|     | 6.2.2  | CONT (Control Register)                                                         | 37 |
|     | 6.2.3  | IOC5 ~ IOC8 (I/O Port Control Register)                                         | 38 |
|     | 6.2.4  | IOC9                                                                            | 38 |
|     | 6.2.5  | IOCA (WDT Control Register)                                                     | 38 |
|     | 6.2.6  | IOCB (Pull-down Control Register 2)                                             | 39 |
|     | 6.2.7  | IOCC (Open-drain Control Register)                                              | 39 |
|     | 6.2.8  | IOCD (Pull-high Control Register 2)                                             | 40 |
|     | 6.2.9  | IOCE (Interrupt Mask Register 2)                                                | 40 |
|     | 6.2.10 | O IOCF (Interrupt Mask Register 1)                                              | 41 |
| 6.3 | TCC/V  | WDT and Prescaler                                                               | 42 |
| 6.4 | I/O Po | orts                                                                            | 43 |
| 6.5 |        | t and Wake-up                                                                   |    |
| 0.0 | 6.5.1  | Reset                                                                           |    |
|     | 6.5.2  | Status of T and P of the Status Register                                        |    |
| 6.6 |        | upt                                                                             |    |
| 6.7 |        | EEPROM (Only for EM78F664N)                                                     |    |
| 0.7 | 6.7.1  | Data EEPROM Control Register                                                    |    |
|     | 0.7.1  | 6.7.1.1 RB (EEPROM Control Register)                                            |    |
|     |        | 6.7.1.2 RC (256 Bytes EEPROM Address)                                           |    |
|     |        | 6.7.1.3 RD (256 Bytes EEPROM Data)                                              |    |
|     | 6.7.2  | Programming Steps / Example Demonstration                                       |    |
|     |        | 6.7.2.1 Programming Step                                                        |    |
|     |        | 6.7.2.2 Example Demonstration Programs                                          | 66 |



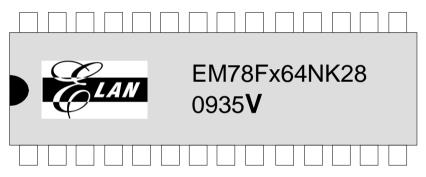
| 6.8  | Analog   | g-to-Digital Converter (ADC)                             | 67 |
|------|----------|----------------------------------------------------------|----|
|      | 6.8.1    | ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)        | 67 |
|      |          | 6.8.1.1 Bank 2 R5 AISR (ADC Input Select Register)       | 67 |
|      |          | 6.8.1.2 Bank 2 R6 ADCON (A/D Control Register)           | 68 |
|      |          | 6.8.1.3 Bank 2 R7 ADOC (A/D Offset Calibration Register) | 69 |
|      | 6.8.2    | ADC Data Buffer (ADDH, ADDL/R8, R9)                      | 70 |
|      | 6.8.3    | A/D Sampling Time                                        | 70 |
|      | 6.8.4    | A/D Conversion Time                                      | 70 |
|      | 6.8.5    | A/D Operation during Sleep Mode                          | 71 |
|      | 6.8.6    | Programming Steps/Considerations                         | 71 |
|      |          | 6.8.6.1 Programming Steps                                |    |
|      |          | 6.8.6.2 Demonstration Programs                           | 72 |
| 6.9  | Dual S   | Set of PWM (Pulse Width Modulation)                      | 74 |
|      | 6.9.1    | Overview                                                 |    |
|      | 6.9.2    | Increment Timer Counter (TMRX: TMRAH/L or TMRBH/L)       | 75 |
|      | 6.9.3    | PWM Period (PRDX : PRDA or PRDB)                         | 75 |
|      | 6.9.4    | PWM Duty Cycle (DTX: DTA or DTB)                         | 75 |
|      | 6.9.5    | Comparator X                                             | 76 |
|      | 6.9.6    | PWM Programming Procedures/Steps                         | 76 |
|      | 6.9.7    | Timer Mode                                               | 76 |
|      |          | 6.9.7.1 Overview                                         |    |
|      |          | 6.9.7.2 Functional Description                           |    |
|      |          | 6.9.7.3 Programming the Related Registers                |    |
|      |          | 6.9.7.4 Timer Programming Procedures/Steps               |    |
| 6.10 | Timer/   | /Counter 1                                               | 78 |
| 6.11 | Timer/   | /Counter 2                                               | 80 |
| 6.12 | Timer/   | /Counter 3                                               | 82 |
| 6.13 | Comp     | arator                                                   | 83 |
|      | •        | External Reference Signal                                |    |
|      |          | Comparator Outputs                                       |    |
|      |          | Interrupt                                                |    |
|      |          | Wake-up from Sleep Mode                                  |    |
| 6 14 |          |                                                          |    |
| 0.14 |          | Bank 2 RA URC1 (UART Control 1)                          |    |
|      |          | Bank 2 RB URC2 (UART Control 2)                          |    |
|      |          | Bank 2 RC URS (UART Status)                              |    |
|      |          | Bank 2 RD URRD (UART_RD Data Buffer)                     |    |
|      |          | Bank 2 RE URTD (UART_TD Data Buffer)                     |    |
|      |          | UART Mode                                                |    |
|      |          | Transmission                                             |    |
|      |          | Receiving                                                |    |
|      |          | Baud Rate Generator                                      |    |
|      | J. 1 T.J |                                                          |    |



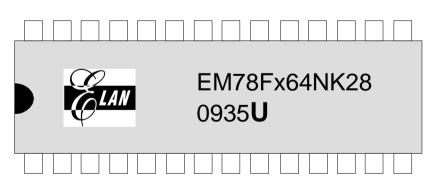
|    | 6.15 SPI                                 | 90  |
|----|------------------------------------------|-----|
|    | 6.15.1 Overview and Features             |     |
|    | 6.15.2 SPI Function Description          |     |
|    | 6.15.3 SPI Signal and Pin Description    |     |
|    | 6.15.4 Programming the Related Registers |     |
|    | 6.15.5 SPI Mode Timing                   |     |
|    | 6.15.6 SPI Software Application          |     |
|    | 6.16 Oscillator                          |     |
|    | 6.16.1 Oscillator Modes                  |     |
|    | 6.16.3 External RC Oscillator Mode       |     |
|    | 6.16.4 Internal RC Oscillator Mode       |     |
|    | 6.17 Code Option Register                |     |
|    | 6.17.1 Code Option Register (Word 0)     |     |
|    | 6.17.2 Code Option Register (Word 1)     |     |
|    | 6.17.3 Customer ID Register (Word 2)     |     |
|    | 6.18 Power-on Considerations             | 108 |
|    | 6.19 External Power-on Reset Circuit     | 108 |
|    | 6.20 Residue-Voltage Protection          | 109 |
|    | 6.21 Instruction Set                     |     |
| 7  | Timing Diagram                           | 114 |
| 8  | Absolute Maximum Ratings                 |     |
| 9  | DC Electrical Characteristics            |     |
| 10 | AC Electrical Characteristics            |     |
|    | APPENDIX                                 |     |
|    |                                          |     |
|    | Ordering and Manufacturing Information   |     |
| В  | Package Type                             |     |
| С  | Packaging Configuration                  | 143 |
|    | C.1 EM78Fx64NK24                         | 143 |
|    | C.2 EM78Fx64NSO24                        | 144 |
|    | C.3 EM78Fx64NK28                         | 145 |
|    | C.4 EM78Fx64NSO28                        | 146 |
|    | C.5 EM78Fx64NQN32                        |     |
| D  | Quality Assurance and Reliability        |     |
|    | Address Trap Detect                      |     |
|    |                                          |     |



# **Specification Revision History**


| Doc. Version | Revision Description                                                                                                                                                                                                    | Date       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.0          | Initial release version                                                                                                                                                                                                 | 2009/01/08 |
| 1.1          | Showed the difference between EM78F664N and ICE652N, particularly on the TCC function.     Modified the DC Electrical Characteristics.                                                                                  | 2009/06/03 |
| 2.0          | <ol> <li>Deleted ICE652N information and PAGE instruction.</li> <li>Added CPU operation with Green/Idle mode,<br/>LCALL/LJMP/TBRD instructions.</li> <li>Indicated the use of ICE660N to simulate EM78F664N.</li> </ol> | 2009/09/08 |
| 2.1          | <ol> <li>Redefined CPU Operation Mode information.</li> <li>Added IRC mode selection information on Bank1<br/>R8&lt;7,6&gt; and Word1&lt;12&gt;.</li> <li>Added Comparison between V/U-Package Versions.</li> </ol>     | 2009/11/20 |
| 2.2          | <ol> <li>Revised the format of the Pin Description and Wake-up signal table.</li> <li>Added Device Characteristics.</li> <li>Combined the Specs of EM78F564N and EM78F664N.</li> </ol>                                  | 2010/04/07 |
| 2.3          | Modified the maximum supportable baud rate of the SPI function.     Added LVR specifications.                                                                                                                           | 2013/05/07 |
| 2.4          | Added HLP in Bit 9 of Code Option Word 1.     Added power consumption for EEPROM.                                                                                                                                       | 2014/11/06 |
| 2.5          | Modified Package Type in the Features section     Modified Appendix A "Ordering and Manufacturing Information"                                                                                                          | 2016/03/25 |




#### Comparison between V/U-Package Versions

| Item                                    | EM78Fx64N-V  | EM78Fx64N-U  |
|-----------------------------------------|--------------|--------------|
| Version                                 | Older        | Newer        |
| 16 MHz Operating Temperature @ VDD = 5V | -40°C ~ 50°C | -40°C ~ 85°C |
| 85°C Operating Frequency @ VDD = 5V     | 14.318 MHz   | 16 MHz       |
| Register Changes IRC Frequency          | ×            | 0            |

**Note:** "0" = function is available if enabled " $\times$ " = function is not available



EM78Fx64N-V Package



EM78Fx64N-U Package



## 1 General Description

The EM78Fx64N are 8-bit microprocessors designed and developed with low-power, high-speed CMOS technology and high noise immunity. They have on-chip 4K×13-bit Electrical Flash Memory and the EM78F664N has 256×8-bit In-System Programmable EEPROM. It provides three protection bits to prevent intrusion of user's Flash memory code. Twelve Code option bits are also available to meet user's requirements.

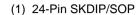
With its enhanced Flash-ROM features, the EM78Fx64N provide a convenient way of developing and verifying user's programs. Moreover, this Flash-ROM device offers the advantages of easy and effective program updates, using development and programming tools. Users can avail of the ELAN Writer to easily program his development code.

#### 2 Features

- CPU configuration
  - 4K×13 bits on-chip Flash memory
  - 144×8 bits on-chip registers (SRAM)
  - 256 bytes in-system programmable EEPROM (Only for EM78F664N)
    - \*Endurance: 1,000,000 write/erase cycles
  - More than 10 years data retention
  - · 8-level stacks for subroutine nesting
  - 3 programmable Level Voltage Reset LVR: 4.1V, 3.7V, 2.7V
  - Less than 1.5 mA at 5V / 4 MHz
  - Typically 20 μA, at 3V / 32kHz
  - Typically 1.5 μA, during sleep mode
- I/O port configuration
  - 4 bidirectional I/O ports: P5, P6, P7 and P8
  - 25 I/O pins
  - Wake-up port : P6
  - High sink port : P6
  - 14 programmable pull-high I/O pins
  - 14 programmable pull-down I/O pins
  - 8 programmable open-drain I/O pins
  - External interrupt with Wake-up: P60
- Operating voltage range
  - 2.5V~5.5V at -40°C~85°C (Industrial)
  - 2.3V~5.5V at 0°C~70°C (Commercial)
- Operating frequency range (base on two clocks)
  - Crystal mode : DC~16MHz @ 4.5V~5.5V;
     DC~8MHz @ 3V~5.5V ; DC~4MHz @ 2.3V~5.5V
  - ERC mode: DC~16MHz @ 4.5V~5.5V;
     DC~8MHz @ 3V~5.5V; DC~4MHz @ 2.3V~5.5V
  - IRC mode : DC~16MHz @ 4.5V~5.5V ; DC~4MHz @ 2.3V~5.5V

| Internal BC           | Drift Rate                  |                        |         |         |  |  |  |  |  |
|-----------------------|-----------------------------|------------------------|---------|---------|--|--|--|--|--|
| Internal RC Frequency | Temperature<br>(-40°C~85°C) | Voltage<br>(2.5V~5.5V) | Process | Total   |  |  |  |  |  |
| 4 MHz                 | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |  |
| 16 MHz                | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |  |
| 8 MHz                 | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |  |
| 455kHz                | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |  |

- Fourteen available interrupts
  - Internal interrupt : 11
  - External interrupt: 3
- 8 channels Analog-to-Digital Converter with 10-bit resolution
- One set of comparator (offset voltage: smaller than 10 mV)
- Two channels Pulse Width Modulation (PWM) with 10-bit resolution
- Two 8-bit Timer/Counter
  - TC1: Timer/Counter/Capture
  - TC3 : Timer/Counter/PDO (Programmable Divider Output)/PWM (Pulse Width Modulation)
- One 16-bit Timer/Counter
  - TC2: Timer/Counter/Window
- Serial transmitter/receiver interface
  - Serial Peripheral Interface (SPI): Three-wire synchronous communication
  - Universal Asynchronous Receiver/Transmitter (UART)
- Peripheral configuration
  - 8-bit Real Time Clock/Counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
  - External interrupt input pin
  - 2/4/8/16 clocks per instruction cycle selected by code option
  - Power down (Sleep) mode
  - High EFT immunity
- Single instruction cycle commands
- Special Features
  - Programmable free running Watchdog Timer
  - Power-on voltage detector available (2.0V ~ 2.2V)
- Package Type:


24-pin skinny DIP 300 mil : EM78Fx64NK24
 24-pin SOP 300 mil : EM78Fx64NSO24
 28-pin skinny DIP 300 mil : EM78Fx64NK28
 28-pin SOP 300 mil : EM78Fx64NSO28
 32-pin QFN 5×5 mm : EM78Fx64NQN32

**Note:** These are all Green products which do not contain hazardous substances.

(This specification is subject to change without prior notice)



# 3 Pin Assignment



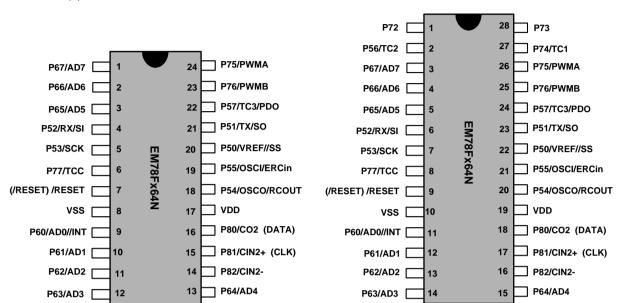



Figure 3-1 24-pin EM78Fx64N

Figure 3-2 28-pin EM78Fx64N

(2) 28-Pin SKDIP/SOP

#### (3) 32-Pin QFN

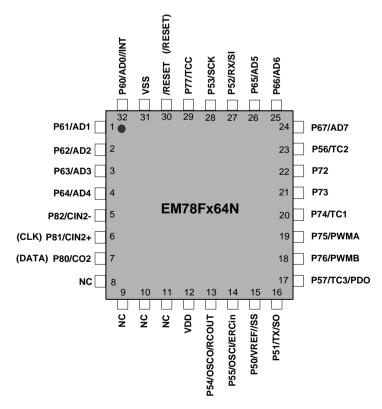



Figure 3-3 32-pin EM78Fx64N



# 4 Pin Description

| Name                                     | Function | Input<br>Type | Output<br>Type | Description                                                                                      |
|------------------------------------------|----------|---------------|----------------|--------------------------------------------------------------------------------------------------|
|                                          | P50      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down                                                |
| P50/VREF//SS P51/TX/SO P52/RX/SI P53/SCK | VREF     | AN            | _              | ADC external voltage reference                                                                   |
|                                          | /SS      | ST            | _              | SPI slave select pin                                                                             |
|                                          | P51      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down                                                |
| P51/TX/SO                                | TX       | 1             | CMOS           | UART TX output                                                                                   |
|                                          | so       | I             | CMOS           | SPI serial data output                                                                           |
|                                          | P52      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down                                                |
| P52/RX/SI                                | RX       | ST            | _              | UART RX input                                                                                    |
|                                          | SI       | ST            | _              | SPI serial data input                                                                            |
| DE2/SCK                                  | P53      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down                                                |
| F33/30K                                  | SCK      | ST            | CMOS           | SPI serial clock input/output                                                                    |
|                                          | P54      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| P54/OSCO/RCOUT                           | osco     | 1             | XTAL           | Clock output of crystal/resonator oscillator                                                     |
|                                          | RCOUT    | ı             | CMOS           | Clock output of internal RC oscillator Clock output of external RC oscillator (open-drain)       |
|                                          | P55      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| P55/OSCI/ERCin                           | OSCI     | XTAL          | -              | Clock input of crystal/resonator oscillator                                                      |
|                                          | ERCin    | AN            | -              | External RC input pin                                                                            |
| P56/TC2                                  | P56      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| F30/102                                  | TC2      | ST            | _              | Timer 2 clock input                                                                              |
|                                          | P57      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| P57/TC3/PDO                              | TC3      | ST            | _              | Timer 3 clock input                                                                              |
|                                          | PDO      | -             | CMOS           | Programmable Divider Output                                                                      |
|                                          | P60      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up |
| P60/AD0//INT                             | AD0      | AN            | _              | ADC Input 0                                                                                      |
|                                          | /INT     | ST            | -              | External interrupt pin                                                                           |
| P61/AD1                                  | P61      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up |
|                                          | AD1      | AN            | _              | ADC Input 1                                                                                      |
| P62/AD2                                  | P62      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up |
|                                          | AD2      | AN            | -              | ADC Input 2                                                                                      |



#### (Continuation)

| (Continuation) |          |               |                |                                                                                                  |
|----------------|----------|---------------|----------------|--------------------------------------------------------------------------------------------------|
| Name           | Function | Input<br>Type | Output<br>Type | Description                                                                                      |
| P63/AD3        | P63      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up |
| . 55// 125     | AD3      | AN            | _              | ADC Input 3                                                                                      |
| P64/AD4        | P64      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-high, open-drain, and pin change wake-up            |
| 10 11/12       | AD4      | AN            | _              | ADC Input 4                                                                                      |
| P65/AD5        | P65      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-high, open-drain, and pin change wake-up            |
| . 55// 125     | AD5      | AN            | _              | ADC Input 5                                                                                      |
| P66/AD6        | P66      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-high, open-drain, and pin change wake-up            |
|                | AD6      | AN            | _              | ADC Input 6                                                                                      |
| P67/AD7        | P67      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-high, open-drain, and pin change wake-up            |
|                | AD7      | AN            | _              | ADC Input 7                                                                                      |
| P72 -          |          | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
| P73            | _        | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
| P74/TC1        | P74      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
|                | TC1      | ST            | _              | Timer 1 clock input                                                                              |
| P75/PWMA       | P75      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
|                | PWMA     | _             | CMOS           | PWMA output                                                                                      |
| P76/PWMB       | P76      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
|                | PWMB     | _             | CMOS           | PWMB output                                                                                      |
| P77/TCC        | P77      | ST            | CMOS           | Bidirectional I/O pin with programmable pull-down and pull-high                                  |
|                | TCC      | ST            | _              | Real Time Clock/Counter clock input                                                              |
| P80/CO2        | P80      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| 1 00/002       | CO2      | _             | CMOS           | Output of Comparator 2                                                                           |
| (DATA)         | (DATA)   | ST            | CMOS           | Data pin for Writer programming                                                                  |
| DO4/CINO       | P81      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| P81/CIN2+      | CIN2+    | AN            | _              | Non-inverting end of Comparator 2                                                                |
| (CLK)          | (CLK)    | ST            | _              | Clock pin for Writer programming                                                                 |
| Dog/Olkio      | P82      | ST            | CMOS           | Bidirectional I/O pin                                                                            |
| P82/CIN2-      | CIN2-    | AN            | -              | Inverting end of Comparator 2                                                                    |



#### (Continuation)

| Name                   | Function | Input<br>Type | Output<br>Type                    | Description                  |  |
|------------------------|----------|---------------|-----------------------------------|------------------------------|--|
| /RESET                 | /RESET   | ST            | -                                 | Internal pull-high reset pin |  |
| (/RESET) (/RESET) ST - |          | -             | /RESET pin for Writer programming |                              |  |
| VDD                    | VDD      | Power         | _                                 | Power                        |  |
| VSS VSS Power -        |          | -             | Ground                            |                              |  |

Legend: ST: Schmitt Trigger input

AN: Analog pin

XTAL: Oscillation pin for crystal/resonator CMOS: CMOS output

# 5 Block Diagram




Figure 5-1 Functional Block Diagram



### 6 Functional Description

#### 6.1 Operational Registers

#### 6.1.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

#### 6.1.2 R1 (Timer Clock/Counter)

R1 is incremented by an external signal edge, which is defined by the TE bit (CONT-4) through the TCC pin, or by the instruction cycle clock. It is writable and readable as any other registers. It is defined by resetting PSTE (CONT-3).

The prescaler is assigned to TCC, if the PSTE bit (CONT-3) is reset. The content of the prescaler counter is cleared only when the TCC register is written with a value.

#### 6.1.3 R2 (Program Counter and Stack)

Depending on the device type, R2 and hardware stack are 12-bit wide. The structure is depicted in Figure 6-1.

The configuration structure generates 4K×13 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 1024 words long.

R2 is set as all "0"s when under a reset condition.

"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows the PC to go to any location within a page.

"CALL" instruction loads the lower 10 bits of the PC and PC+1 are pushed onto the stack. Thus, the subroutine entry address can be located anywhere within a page.

"LJMP" instruction allows direct loading of the program counter bits (A0~A11). Therefore, "LJMP" allows the PC to jump to any location within 4K (2<sup>12</sup>).

"LCALL" instruction loads the program counter bits (A0 ~A11) and PC+1 are pushed onto the stack. Thus, the subroutine entry address can be located anywhere within 4K (2<sup>12</sup>)



"RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.

"ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.

"MOV R2, A" allows loading an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits of the PC remain unchanged.

Any instruction except "ADD R2, A" that is written to R2 (e.g. "MOV R2, A", "BC R2, 6") will cause the ninth bit and the tenth bit (A8~A9) of the PC to remain unchanged.

All instructions are single instruction cycle (fclk/2, fclk/4, fclk/8 or fclk/16) except for instructions that would change the contents of R2 and "LCALL", "LJMP", "TBRD" instruction. The "LCALL", "LJMP" and "TBRD" instructions need two instructions cycle.

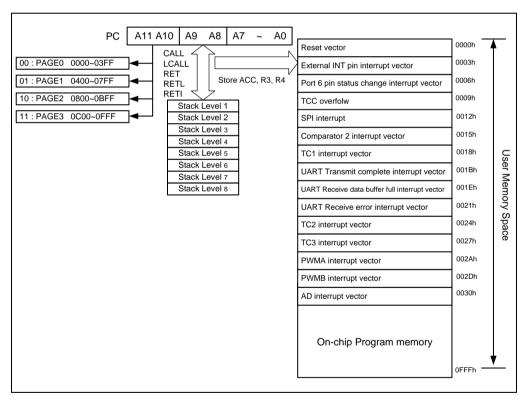



Figure 6-1 Program Counter Organization



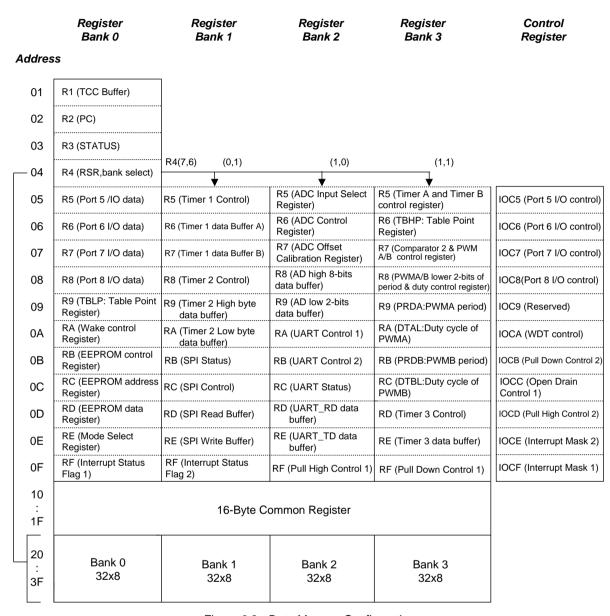



Figure 6-2 Data Memory Configuration



#### 6.1.4 R3 (Status Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | Т     | Р     | Z     | DC    | С     |

Bits 7 ~ 5: Not used, set to "0" at all time.

Bit 4 (T): Time-out bit

Set to "1" with the "SLEP" and "WDTC" commands, or during power up and reset to "0" by WDT time-out.

Bit 3 (P): Power down bit

Set to "1" during power-on or by a "WDTC" command and reset to "0" by a "SLEP" command.

Bit 2 (Z): Zero flag

Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

#### 6.1.5 R4 (RAM Select Register)

Bits 7 ~ 6: Used to select Bank 0 ~ Bank 1

**Bits 5 ~ 0:** Used to select registers (Address: 00~3F) in indirect addressing mode. See the data memory configuration in Figure 6-2.

#### 6.1.6 Bank 0 R5 ~ R8 (Port 5 ~ Port 8)

R5 ~ R8 are I/O registers.

# 6.1.7 Bank 0 R9 (TBLP: Table Pointer Register for TBRD instruction)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RBit7 | RBit6 | RBit5 | RBit4 | RBit3 | RBit2 | RBit1 | RBit0 |

Bits 7 ~ 0: These are the least 8 significant bits of address for program code.

#### **NOTE**

- Bank 0 R9 overflow will carry to Bank 3 R6.
- Bank 0 R9 underflow will borrow from Bank 3 R6.



#### 6.1.8 Bank 0 RA (Wake-up Control Register)

| Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| CMP2WE | ICWE  | ADWE  | EXWE  | SPIWE | -     | -     | -     |

Bit 7 (CMP2WE): Comparator 2 Wake-up Enable bit.

0: Disable Comparator 2 wake-up

1 : Enable Comparator 2 wake-up

When the Comparator 2 output status changed is used to enter an interrupt vector or to wake-up the EM78Fx64N from sleep, the CMP2WE bit must be set to "Enable".

Bit 6 (ICWE): Port 6 Input status Change Wake-up Enable bit

0: Disable Port 6 input status change wake-up

1 : Enable Port 6 input status change wake-up

Bit 5 (ADWE): ADC Wake-up Enable bit

0: Disable ADC wake-up

1: Enable ADC wake-up

When ADC Complete is used to enter an interrupt vector or to wake-up the EM78Fx64N from sleep with A/D conversion running, the ADWE bit must be set to "Enable".

Bit 4 (EXWE): External /INT Wake-up Enable bit

0: Disable External /INT pin wake-up

1 : Enable External /INT pin wake-up

Bit 3 (SPIWE): SPI Wake-up Enable bit, when SPI acts as a slave device

0: Disable SPI wake-up, when SPI acts as a slave device

1: Enable SPI wake-up, when SPI acts as a slave device

Bits 2 ~ 0: Not used, set to "0" at all time.



#### 6.1.9 Bank 0 RB (EEPROM Control Register, only for EM78F664N)

| Bi | t 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----|-----|-------|-------|-------|-------|-------|-------|-------|
| R  | D   | WR    | EEWE  | EEDF  | EEPC  | -     | -     | -     |

Bit 7 (RD): Read control register

0: Does not execute EEPROM read

1 : Read EEPROM contents, (RD can be set by software, RD is cleared by hardware after Read instruction is completed).

Bit 6 (WR): Write control register

**0**: Write cycle to the EEPROM is completed.

1 : Initiate a write cycle, (WR can be set by software, WR is cleared by hardware after Write cycle is completed).

Bit 5 (EEWE): EEPROM Write Enable bit

0 : Prohibit write to the EEPROM1 : Allows EEPROM write cycles

Bit 4 (EEDF): EEPROM Detect Flag

0 : Write cycle is completed1 : Write cycle is unfinished

Bit 3 (EEPC): EEPROM Power-down Control bit

0 : Switch off the EEPROM1 : EEPROM is operating

Bits 2 ~ 0: Not used, set to "0" at all time.

#### 6.1.10 Bank 0 RC (256 Bytes EEPROM Address, only for EM78F664N)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EE_A7 | EE_A6 | EE_A5 | EE_A4 | EE_A3 | EE_A2 | EE_A1 | EE_A0 |

Bits 7 ~ 0: 256 bytes EEPROM address

#### 6.1.11 Bank 0 RD (256 Bytes EEPROM Data, only for EM78F664N)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EE_D7 | EE_D6 | EE_D5 | EE_D4 | EE_D3 | EE_D2 | EE_D1 | EE_D0 |

Bits 7 ~ 0: 256 bytes EEPROM data



#### 6.1.12 Bank 0 RE (Mode Select Register)

| Bit 7 | Bit 6   | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|---------|-------|-------|-------|-------|-------|-------|
| -     | TIMERSC | CPUS  | IDLE  | -     | -     | -     | -     |

Bit 7: Not used, set to "0" at all time

Bit 6 (TIMERSC): TCC, TC1, TC2, TC3, Timer A, Timer B Clock Source Select.

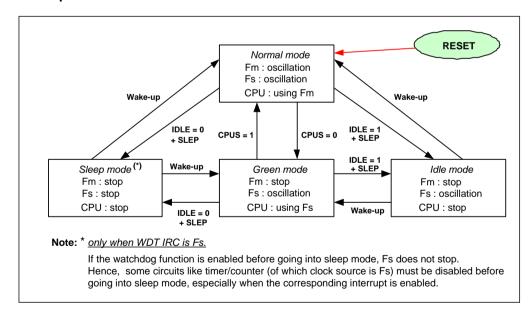
0: Fs is used as Fc

1: Fm is used as Fc

Bit 5 (CPUS): CPU Oscillator Source Select.

0: Fs: Sub frequency for WDT internal RC time base

1: Fm: Main-oscillator clock


When CPUS=0, the CPU oscillator selects the Sub-oscillator and the Main oscillator is stopped.

Bit 4 (IDLE): Idle Mode Enable Bit.

0 : IDLE="0" + SLEP instruction → Sleep mode

1 : IDLE="1" + SLEP instruction → Idle mode

#### **CPU Operation Mode**





| Oscillator<br>(Normal Mode Source) | CPU Mode Status         | Oscillator Stable Time (S) <sup>1</sup> | Count from<br>Normal/Green<br>(CLK) <sup>2</sup> |  |
|------------------------------------|-------------------------|-----------------------------------------|--------------------------------------------------|--|
|                                    | Sleep/Idle → Normal     |                                         | 254 CLK                                          |  |
| Crystal<br>1M ~ 16 MHz             | Green → Normal          | 0.5 1115 ~ 2 1115                       | 254 CLK                                          |  |
| TIVI ~ TO WITE                     | $Sleep/Idle \to Green$  | < 100 µs                                | 32 CLK                                           |  |
| ED0                                | $Sleep/Idle \to Normal$ | , F                                     |                                                  |  |
| ERC<br>3.5 MHz                     | Green → Normal          | < 5 µs                                  | 32 CLK                                           |  |
| 3.3 IVII 12                        | Sleep/Idle → Green      | < 100 µs                                |                                                  |  |
| ID 0                               | Sleep/Idle → Normal     |                                         |                                                  |  |
| IRC<br>455K, 4M, 8M, 16 MHz        | Green → Normal          | < 2 μs                                  | 32 CLK                                           |  |
| 7331X, 71VI, 01VI, 10 IVII IZ      | Sleep/Idle → Green      | < 100 µs                                |                                                  |  |

#### NOTE

- <sup>1</sup>The oscillator stable time depends on the oscillator characteristics.
- After the oscillator has stabilized, the CPU will count 254/32 CLK in Normal/Green mode and continue to work in Normal/Green mode.
  - Ex 1 : The 4 MHz IRC wakes-up from Sleep mode to Normal mode, the total wake-up time is 2  $\mu$ s + 32 CLK @ 4 MHz.
  - Ex 2 : The 4 MHz IRC wakes-up from Sleep mode to Green mode, the total wake-up time is 100  $\mu$ s + 32 CLK @ 16kHz.

Bits 3 ~ 0: Not used, set to "0" at all time.



#### 6.1.13 Bank 0 RF (Interrupt Status Register 1)

| Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|--------|--------|-------|-------|-------|
| -     | ADIF  | SPIIF | PWMBIF | PWMAIF | EXIF  | ICIF  | TCIF  |

Note: "1" means with interrupt request

" 0 " means no interrupt occurs

Bit 7: Not used, set to "0" at all time.

Bit 6 (ADIF): Interrupt flag for Analog to Digital conversion.

Set when AD conversion is completed, reset by software.

Bit 5 (SPIIF): SPI mode Interrupt Flag. The flag is cleared by software.

Bit 4 (PWMBIF): PWMB (Pulse Width Modulation) Interrupt Flag.

Set when a selected period is reached, reset by software.

Bit 3 (PWMAIF): PWMA (Pulse Width Modulation) Interrupt Flag.

Set when a selected period is reached, reset by software.

**Bit 2 (EXIF):** External Interrupt Flag. Set by a falling edge on the /INT pin, reset by software.

**Bit 1 (ICIF):** Port 6 Input Status Change Interrupt Flag. Set when Port 6 input changes, reset by software.

Bit 0 (TCIF): TCC overflow Interrupt Flag. Set when TCC overflows, reset by software.

#### NOTE

- RF can be cleared by instruction but cannot be set.
- IOCF is the interrupt mask register.
- The result of reading RF is the "logic AND" of RF and IOCF.

#### 6.1.14 R10 ~ R3F

All of these are 8-bit general-purpose registers.



#### 6.1.15 Bank 1 R5 TC1CR (Timer 1 Control)

| Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|--------|--------|-------|-------|-------|-------|
| TC1CAP | TC1S  | TC1CK1 | TC1CK0 | TC1M  | TC1ES | -     | -     |

Bit 7 (TC1CAP): Software capture control

0 : Software capture disable

1 : Software capture enable

Bit 6 (TC1S): Timer/Counter 1 start control

0: Stop and clear the counter

1: Start

#### Bit 5 ~ Bit 4 (TC1CK1 ~ TC1CK0): Timer/Counter 1 clock source select

| TC1CK1 | TC1CK0 | Clock Source                | Resolution Max. Time (4 MHz) |           | Resolution<br>(16kHz) | Max. Time<br>(16kHz) |
|--------|--------|-----------------------------|------------------------------|-----------|-----------------------|----------------------|
|        |        | Normal, Idle                | Fc=4M                        | Fc=4M     | Fc=16K                | Fc=16K               |
| 0      | 0      | Fc/2 <sup>12</sup>          | 1024 µs                      | 262144 µs | 256 ms                | 65536 ms             |
| 0      | 1      | Fc/2 <sup>10</sup>          | 256 µs                       | 65536 µs  | 64 ms                 | 16384 ms             |
| 1      | 0      | Fc/2 <sup>7</sup>           | 32 µs                        | 8192 µs   | 8 ms                  | 2048 ms              |
| 1      | 1      | External clock<br>(TC1 pin) |                              | -         | -                     | -                    |

Bit 3 (TC1M): Timer/Counter 1 mode select

0: Timer/Counter 1 mode

1: Capture mode

Bit 2 (TC1ES): TC1 signal edge

**0**: increment if the transition from low to high (rising edge) takes place on the TC1 pin.

1 : increment if the transition from high to low (falling edge) takes place on TC1 pin.

Bits 1 ~ 0: Not used, set to "0" at all time.



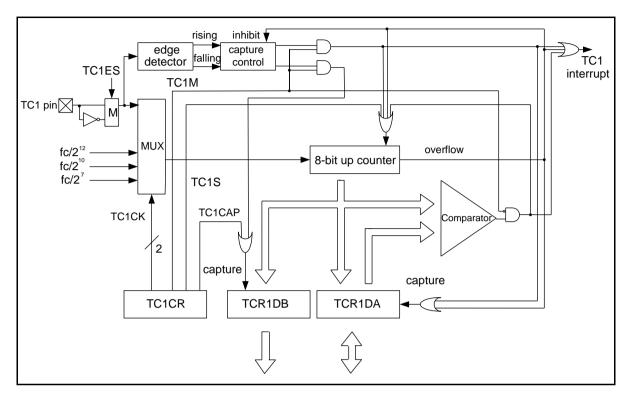



Figure 6-3 Timer/Counter 1 Configuration

**In Timer mode,** counting up is performed using the internal clock. When the contents of the up-counter matched the TCR1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TCR1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.

In Counter mode, counting up is performed using the external clock input pin (TC1 pin) and either rising or falling edge can be selected by TC1ES, but both edges cannot be used. When the contents of the up-counter matched the TCR1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into the TCR1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.



In Capture mode, the pulse width, period and duty of the TC1 input pin are measured in this mode, which can be used to decode the remote control signal. The counter is set as free running by the internal clock. On a rising (falling) edge of TC1 pin input, the contents of the counter is loaded into TCR1DA, then the counter is cleared and interrupt is generated. On a falling (rising) edge of the TC1 pin input, the contents of the counter are loaded into TCR1DB. The counter is still counting, on the next rising edge of the TC1 pin input, the contents of the counter are loaded into TCR1DA, the counter is cleared and interrupt is generated again. If an overflow occurs before an edge is detected, the FFH is loaded into TCR1DA and the overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TCR1DA value is FFH. After an interrupt (capture to TCR1DA or overflow detection) is generated, capture and overflow detection are halted until TCR1DA is read out.

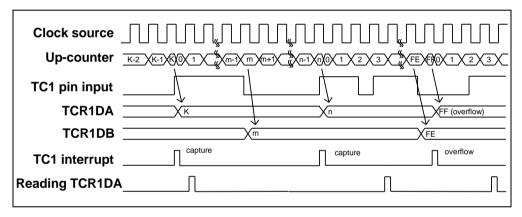



Figure 6-4 Timing Chart of Capture Mode

#### 6.1.16 Bank 1 R6 TC1DA (Timer 1 Data Buffer A)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TC1DA7 | TC1DA6 | TC1DA5 | TC1DA4 | TC1DA3 | TC1DA2 | TC1DA1 | TC1DA0 |

Bit 7 ~ Bit 0 (TC1DA7 ~ TC1DA0): Data buffer of 8-bit Timer/Counter 1.



#### 6.1.17 Bank 1 R7 TC1DB (Timer 1 Data Buffer B)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TC1DB7 | TC1DB6 | TC1DB5 | TC1DB4 | TC1DB3 | TC1DB2 | TC1DB1 | TC1DB0 |

Bit 7 ~ Bit 0 (TC1DB7 ~ TC1DB0): Data buffer of 8-bit Timer/Counter 1.

#### 6.1.18 Bank 1 R8 TC2CR (Timer 2 Control)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  |
|-------|-------|-------|-------|-------|--------|--------|--------|
| RCM1  | RCM0  | TC2ES | TC2M  | TC2S  | TC2CK2 | TC2CK1 | TC2CK0 |

Bits 7 ~ 6 (RCM1 ~ RCM0): IRC mode select bits. The Bank 1 R8<7,6> will be enabled when Word 1<12> COBS0 = "1".

| Weiter Trim IDC | Bank 1 | R8<7,6> | Francis       | Operating Voltage | Stable    |
|-----------------|--------|---------|---------------|-------------------|-----------|
| Writer Trim IRC | RCM1   | RCM0    | Frequency     | Range             | Time      |
|                 | 0      | 0       | 4 MHz ± 2.5%  | 2.2V ~ 5.5V       | < 5 µs    |
| 4 MHz           | 0      | 1       | 16 MHz ± 10%  | 4.5V ~ 5.5V       | < 1.5 µs  |
| 4 IVIDZ         | 1      | 0       | 8 MHz ± 10%   | 3.0V ~ 5.5V       | < 3 µs    |
|                 | 1      | 1       | 455kHz ± 10%  | 2.2V ~ 5.5V       | < 50 µs   |
|                 | 0      | 0       | 4 MHz ± 10%   | 2.2V ~ 5.5V       | < 6 µs    |
| 16 MHz          | 0      | 1       | 16 MHz ± 2.5% | 4.5V ~ 5.5V       | < 1.25 µs |
| 16 IVIDZ        | 1      | 0       | 8 MHz ± 10%   | 3.0V ~ 5.5V       | < 3 µs    |
|                 | 1      | 1       | 455kHz ± 10%  | 2.2V ~ 5.5V       | < 50 µs   |
|                 | 0      | 0       | 4 MHz ± 10%   | 2.2V ~ 5.5V       | < 6 µs    |
| 8 MHz           | 0      | 1       | 16 MHz ± 10%  | 4.5V ~ 5.5V       | < 1.5 µs  |
| O IVITZ         | 1      | 0       | 8 MHz ± 2.5%  | 3.0V ~ 5.5V       | < 2.5 µs  |
|                 | 1      | 1       | 455kHz ± 10%  | 2.2V ~ 5.5V       | < 50 µs   |
|                 | 0      | 0       | 4 MHz ± 10%   | 2.2V ~ 5.5V       | < 6 µs    |
| 455kHz          | 0      | 1       | 16 MHz ± 10%  | 4.5V ~ 5.5V       | < 1.5 µs  |
|                 | 1      | 0       | 8 MHz ± 10%   | 3.0V ~ 5.5V       | < 3 µs    |
|                 | 1      | 1       | 455kHz ± 2.5% | 2.2V ~ 5.5V       | < 45 µs   |

#### **NOTE**

- The initial values of Bank 1 R8<7,6> will be kept the same as Word 1<3,2>.
- If user changes the IRC frequency from A-frequency to B-frequency, the MCU needs to wait for some time for it to work. The waiting time corresponds to the B-frequency.



#### For Example:

1<sup>st</sup> Step When user selects the 4 MHz at the Writer, the initial values of Bank 1 R8<7,6> would be "00", the same as the value of Word 1<3,2> is "00". If the MCU is free-running, it will work at 4 MHz ± 2.5%. Refer to the table below.

| Writer Trim IRC | Bank 1 | R8<7,6> | Fundament    | Operating Voltage | Stable   |
|-----------------|--------|---------|--------------|-------------------|----------|
| Writer Trim IRC | RCM1   |         | Frequency    | Range             | Time     |
|                 | 0      | 0       | 4 MHz ± 2.5% | 2.2V ~ 5.5V       | < 5 µs   |
| 4 MU-           | 0      | 1       | 16 MHz ± 10% | 4.5V ~ 5.5V       | < 1.5 µs |
| 4 MHz           | 1      | 0       | 8 MHz ± 10%  | 3.0V ~ 5.5V       | < 3 µs   |
|                 | 1      | 1       | 455kHz ± 10% | 2.2V ~ 5.5V       | < 50 µs  |

2nd Step If it is desired to set Bank 1 R8<7,6> = "01" while the MCU is working at 4 MHz  $\pm$  2.5%, the MCU needs to hold for 1.5  $\mu$ s, then it will continue to work at 16 MHz  $\pm$  10%.

| Weiter Tring IDC | Bank 1 | R8<7,6> | Evanuaria    | Operating Voltage | Stable Time |
|------------------|--------|---------|--------------|-------------------|-------------|
| Writer Trim IRC  | RCM1   | RCM0    | Frequency    | Range             |             |
|                  | 0      | 0       | 4 MHz ± 2.5% | 2.2V ~ 5.5V       | < 5 µs      |
| 4 MHz            | 0      | 1       | 16 MHz ± 10% | 4.5V ~ 5.5V       | < 1.5 µs    |
| 4 MHZ            | 1      | 0       | 8 MHz ± 10%  | 3.0V ~ 5.5V       | < 3 µs      |
|                  | 1      | 1       | 455kHz ± 10% | 2.2V ~ 5.5V       | < 50 µs     |

 $3^{rd}$  Step If it is desired to set Bank 1 R8<7,6> = "11" while the MCU is working at 16 MHz  $\pm$  10%, the MCU needs to hold for 50  $\mu$ s, then it will continue to work at 455kHz  $\pm$  10%.

| Writer Trim IRC | Bank 1 | R8<7,6> | Fundament       | Operating Voltage | Stable Time |  |
|-----------------|--------|---------|-----------------|-------------------|-------------|--|
| Writer Trim IRC | RCM1   | RCM0    | Frequency Range |                   | Stable Time |  |
|                 | 0      | 0       | 4 MHz ± 2.5%    | 2.2V ~ 5.5V       | < 5 µs      |  |
| 4 MILI-         | 0      | 1       | 16 MHz ± 10%    | 4.5V ~ 5.5V       | < 1.5 µs    |  |
| 4 MHz           | 1      | 0       | 8 MHz ± 10%     | 3.0V ~ 5.5V       | < 3 µs      |  |
|                 | 1      | 1       | 455kHz ± 10%    | 2.2V ~ 5.5V       | < 50 µs     |  |



4<sup>th</sup> Step If it is desired to set Bank 1 R8<7,6> = "00" while the MCU is working at 455kHz  $\pm$  10%, the MCU needs to hold for 5  $\mu$ s, then it will continue to work at 4 MHz  $\pm$  2.5%.

| Writer Trim IRC  | Bank 1 | R8<7,6> | Fraguency    | Operating Voltage | Stable Time |
|------------------|--------|---------|--------------|-------------------|-------------|
| writer Iriii IRC | RCM1   | RCM0    | Frequency    | Range             | Stable Time |
|                  | 0      | 0       | 4 MHz ± 2.5% | 2.2V ~ 5.5V       | < 5 µs      |
| 4 MU-            | 0      | 1       | 16 MHz ± 10% | 4.5V ~ 5.5V       | < 1.5 µs    |
| 4 MHz            | 1      | 0       | 8 MHz ± 10%  | 3.0V ~ 5.5V       | < 3 µs      |
|                  | 1      | 1       | 455kHz ± 10% | 2.2V ~ 5.5V       | < 50 µs     |

Bit 5 (TC2ES): TC2 signal edge

**0**: Increment if a transition from low to high (rising edge) takes place on the TC2 pin.

1: Increment if a transition from high to low (falling edge) takes place on the TC2 pin.

Bit 4 (TC2M): Timer/Counter 2 Mode Select

0: Timer/counter mode

1: Window mode

Bit 3 (TC2S): Timer/Counter 2 Start Control

0: Stop and clear the counter

1: Start

Bit 2 ~ Bit 0 (TC2CK2 ~ TC2CK0): Timer/Counter 2 clock source select

| TC2CK2 | TC2CK1 | TC2CK0 | Clock Source                | Resolution | Max. Time  | Resolution | Max. Time   |
|--------|--------|--------|-----------------------------|------------|------------|------------|-------------|
| ICZCKZ | ICZCKI | TOZUNU | Normal, Idle                | Fc=4M      | Fc=4M      | Fc=16K     | Fc=16K      |
| 0      | 0      | 0      | Fc/2 <sup>23</sup>          | 2.1 sec    | 38.2 hr    | 524.3 s    | 9544 hr     |
| 0      | 0      | 1      | Fc/2 <sup>13</sup>          | 2.048 ms   | 134.22 sec | 512 ms     | 33554.432 s |
| 0      | 1      | 0      | Fc/2 <sup>8</sup>           | 64 µs      | 4.194 sec  | 16 ms      | 1048.576 s  |
| 0      | 1      | 1      | Fc/2 <sup>3</sup>           | 2 µs       | 131.072 ms | 0.5 ms     | 32768 ms    |
| 1      | 0      | 0      | Fc                          | 250 ns     | 16.384 ms  | 0.0625 ms  | 4096 ms     |
| 1      | 0      | 1      | _                           | _          | -          | -          | -           |
| 1      | 1      | 0      | _                           | -          | -          | _          | _           |
| 1      | 1      | 1      | External clock<br>(TC2 pin) | -          | _          | -          | -           |



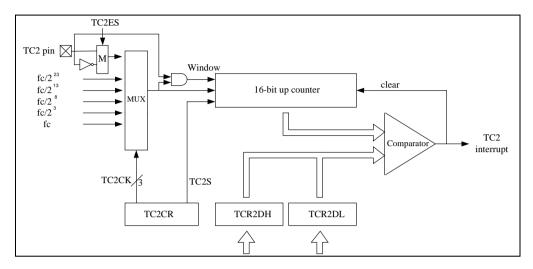



Figure 6-5 Configuration of Timer/Counter 2

**In Timer mode**, counting up is performed using the internal clock. When the contents of the up-counter matched the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

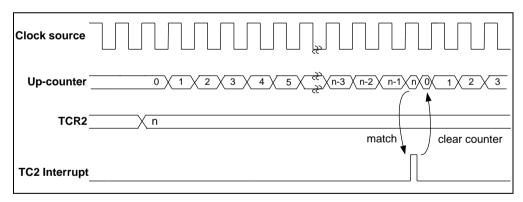



Figure 6-6 Timer Mode Timing Chart



**In Counter mode**, counting up is performed using the external clock input pin (TC2) and either rising or falling can be selected by setting TC2ES. When the contents of the up-counter match the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

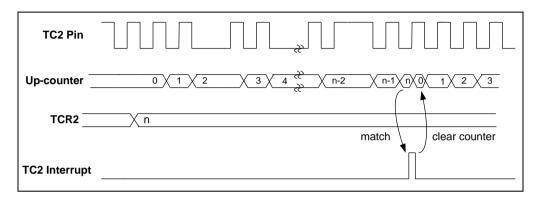



Figure 6-7 Counter Mode Timing Chart

**In Window mode,** counting up is performed on a rising edge of the pulse that is logical AND of an internal clock and the TC2 pin (window pulse). When the contents of up-counter match the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. The frequency (window pulse) must be slower than the selected internal clock.

In Writing to the TCR2DL, comparison is inhibited until TCR2DH is written.

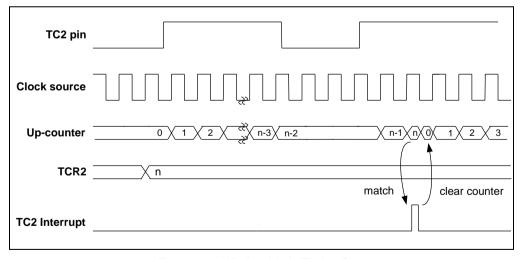



Figure 6-8 Window Mode Timing Chart



#### 6.1.19 Bank 1 R9 TC2DH (Timer 2 High Byte Data Buffer)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|--------|--------|--------|--------|--------|--------|-------|-------|
| TC2D15 | TC2D14 | TC2D13 | TC2D12 | TC2D11 | TC2D10 | TC2D9 | TC2D8 |

Bit 7 ~ Bit 0 (TCR2D15 ~ TCR2D8): High byte data buffer of 16-bit Timer/Counter 2.

#### 6.1.20 Bank 1 RA TC2DL (Timer 2 Low Byte Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TC2D7 | TC2D6 | TC2D5 | TC2D4 | TC2D3 | TC2D2 | TC2D1 | TC2D0 |

Bit 7 ~ Bit 0 (TC2D7 ~ TC2D0): Low byte data buffer of 16-bit Timer/Counter 2.

#### 6.1.21 Bank 1 RB SPIS (SPI Status Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DORD  | TD1   | TD0   | -     | OD3   | OD4   | -     | RBF   |

Bit 7 (DORD): Data Transmission Order

0: Shift left (MSB first)

1 : Shift right (LSB first)

Bit 6 ~ Bit 5 (TD1 ~ TD0): SDO Status output Delay times Options

| TD1 | TD0 | Delay Time |
|-----|-----|------------|
| 0   | 0   | 8 CLK      |
| 0   | 1   | 16 CLK     |
| 1   | 0   | 24 CLK     |
| 1   | 1   | 32 CLK     |

Bit 4: Not used, set to "0" at all time.

Bit 3 (OD3): Open-drain Control bit

0: Open-drain disable for SDO

1 : Open-drain enable for SDO

Bit 2 (OD4): Open-drain Control bit

0: Open-drain disable for SCK

1 : Open-drain enable for SCK

Bit 1: Not used, set to "0" at all time

Bit 0 (RBF): Read Buffer Full flag

**0**: Receiving is not complete, SPIRB has not fully exchanged.

1 : Receiving completed; SPIRB is fully exchanged.



#### 6.1.22 Bank 1 RC SPIC (SPI Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CES   | SPIE  | SRO   | SSE   | SDOC  | SBRS2 | SBRS1 | SBRS0 |

Bit 7 (CES): Clock Edge Select bit

**0**: Data shifts out on a rising edge, and shifts in on a falling edge. Data is on hold during low-level.

**1**: Data shifts out on a falling edge, and shifts in on a rising edge. Data is on hold during high-level.

Bit 6 (SPIE): SPI Enable bit

0 : Disable SPI mode1 : Enable SPI mode

Bit 5 (SRO): SPI Read Overflow bit

0: No overflow

1 : A new data is received while the previous data is still being held in the SPIB register. In this situation, the data in the SPIS register will be destroyed. To avoid setting this bit, users are required to read the SPIRB register although only transmission is implemented.

This can only occur in slave mode.

Bit 4 (SSE): SPI Shift Enable bit

**0**: Reset as soon as the shifting is complete, and the next byte is ready to shift.

1 : Start to shift, and kept at "1" while the current byte is still being transmitted.

This bit will reset to 0 at every 1-byte transmission by the hardware.

Bit 3 (SDOC): SDO Output Status Control bit

0: After the Serial data output, the SDO remains high.

1: After the Serial data output, the SDO remains low.

Bit 2 ~ Bit 0 (SBRS 2 ~ SBRS0): SPI Baud Rate Select bits

| SBRS2 (Bit 2) | SBRS1 (Bit 1) | SBRS0 (Bit 0) | Mode   | Baud Rate   |
|---------------|---------------|---------------|--------|-------------|
| 0             | 0             | 0             | Master | Fosc/2      |
| 0             | 0             | 1             | Master | Fosc/4      |
| 0             | 1             | 0             | Master | Fosc/8      |
| 0             | 1             | 1             | Master | Fosc/16     |
| 1             | 0             | 0             | Master | Fosc/32     |
| 1             | 0             | 1             | Master | Fosc/64     |
| 1             | 1             | 0             | Slave  | /SS enable  |
| 1             | 1             | 1             | Slave  | /SS disable |

**Note:** Up to 2 MHz (maximum) bit frequency. If the system frequency (Fosc) operates at 8 MHz, it is recommended to choose Fosc/4 as maximum baud rate option of the SPI function



#### 6.1.23 Bank 1 RD SPIRB (SPI Read Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRB7  | SRB6  | SRB5  | SRB4  | SRB3  | SRB2  | SRB1  | SRB0  |

Bit 7 ~ Bit 0 (SRB7 ~ SRB0): SPI Read data buffer

#### 6.1.24 Bank 1 RE SPIWB (SPI Write Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SWB7  | SWB6  | SWB5  | SWB4  | SWB3  | SWB2  | SWB1  | SWB0  |

Bit 7 ~ Bit 0 (SWB7 ~ SWB0): SPI Write data buffer

#### 6.1.25 Bank 1 RF (Interrupt Status Register 2)

| Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|--------|-------|-------|
| CMP2IF | -     | TC3IF | TC2IF | TC1IF | UERRIF | RBFF  | TBEF  |

**Bit 7 (CMP2IF):** Comparator 2 Interrupt Flag. Set when a change occurs in the Comparator 2 output, reset by software.

Bit 6: Not used, set to "0" at all time.

Bit 5 (TC3IF): 8-bit Timer/Counter 3 Interrupt Flag.

Bit 4 (TC2IF): 16-bit Timer/Counter 2 Interrupt Flag.

Bit 3 (TC1IF): 8-bit Timer/Counter 1 Interrupt Flag.

Bit 2 (UERRIF): UART receiving error interrupt flag.

Bit 1 (RBFF): UART receive mode data buffer full interrupt flag.

Bit 0 (TBEF): UART transmit mode data buffer empty interrupt flag.

#### NOTE

The Interrupt flag is automatically set by hardware. It must be cleared by software.



#### 6.1.26 Bank 2 R5 AISR (ADC Input Select Register)

The AISR register individually defines the Port 6 pins as analog input or digital I/O.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADE7  | ADE6  | ADE5  | ADE4  | ADE3  | ADE2  | ADE1  | ADE0  |

Bit 7 (ADE7): AD converter enable bit of the P67 pin.

0: Disable ADC7, P67 act as I/O pin.

1: Enable ADC7 to act as analog input pin.

Bit 6 (ADE6): AD converter enable bit of the P66 pin.

0: Disable ADC6, P66 act as I/O pin.

1: Enable ADC6 to act as analog input pin.

Bit 5 (ADE5): AD converter enable bit of the P65 pin

**0**: Disable ADC5, P65 functions as I/O pin.

1 : Enable ADC5 to function as analog input pin.

Bit 4 (ADE4): AD converter enable bit of the P64 pin

0: Disable ADC4, P64 act as I/O pin.

1: Enable ADC4 to act as analog input pin.

Bit 3 (ADE3): AD converter enable bit of the P63 pin.

0: Disable ADC3, P63 act as I/O pin.

1: Enable ADC3 to act as analog input pin.

Bit 2 (ADE2): AD converter enable bit of the P62 pin.

0: Disable ADC2, P62 act as I/O pin.

1: Enable ADC2 to act as analog input pin.

Bit 1 (ADE1): AD converter enable bit of the P61 pin

0: Disable ADC1, P61 act as I/O pin

1 : Enable ADC1 to act as analog input pin

Bit 0 (ADE0): AD converter enable bit of the P60 pin

0: Disable ADC0, P60 act as I/O pin.

1: Enable ADC0 to act as analog input pin.

The following table shows the priority of P60/ADC0//INT.

| P60 / ADC0 / /INT Pin Priority |        |     |  |  |  |  |  |
|--------------------------------|--------|-----|--|--|--|--|--|
| High                           | Medium | Low |  |  |  |  |  |
| /INT                           | ADC0   | P60 |  |  |  |  |  |



#### 6.1.27 Bank 2 R6 ADCON (A/D Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VREFS | CKR1  | CKR0  | ADRUN | ADPD  | ADIS2 | ADIS1 | ADIS0 |

Bit 7 (VREFS): Input source of the Vref of the ADC.

**0**: Vref of the ADC is connected to Vdd (default value), and the P50/VREF pin carries out the function of P50

1: Vref of the ADC is connected to P50/VREF

Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The prescaler of ADC oscillator clock rate

00 = 1: 4 (default value)

01 = 1: 1 10 = 1: 16

11 = 1:2

| CKR1/CKR0 | Operation Mode             | Max. Operation Frequency |  |
|-----------|----------------------------|--------------------------|--|
| 00        | F <sub>OSC</sub> /4        | 4 MHz                    |  |
| 01        | Fosc                       | 1 MHz                    |  |
| 10        | 10 F <sub>OSC</sub> /16 16 |                          |  |
| 11        | Fosc/2                     | 2 MHz                    |  |

Bit 4 (ADRUN): ADC starts to run

**0** : Reset on completion of AD conversion. This bit cannot be reset by software.

1 : A/D conversion is started. This bit can be set by software.

Bit 3 (ADPD): ADC Power-down mode

**0**: Switch off the resistor reference to save power even while the CPU is operating.

1 : ADC is operating.

Bits 2 ~ 0 (ADIS2 ~ ADIS0): Analog Input Select

000 = AN0/P60

001 = AN1/P61

010 = AN2/P62

011 = AN3/P63

100 = AN4/P64

101 = AN5/P65

110 = AN6/P66

111 = AN7/P67



The following table shows the priority of P50/VREF//SS pin. They can only be changed when the ADIF bit and the ADRUN bit are both low.

| P50/VREF//SS Pin Priority |        |     |  |  |  |  |  |
|---------------------------|--------|-----|--|--|--|--|--|
| High                      | Medium | Low |  |  |  |  |  |
| /SS                       | VREF   | P50 |  |  |  |  |  |

#### 6.1.28 Bank 2 R7 ADOC (A/D Offset Calibration Register)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|-------|-------|-------|
| CALI  | SIGN  | VOF[2] | VOF[1] | VOF[0] | -     | -     | -     |

Bit 7 (CALI): Calibration enable bit for A/D offset

0 : Disable Calibration1 : Enable Calibration

Bit 6 (SIGN): Polarity bit of offset voltage

0 : Negative voltage1 : Positive voltage

Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

Bits 2 ~ 0: Not used, set to "0" at all time.

#### 6.1.29 Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   |

When the A/D conversion is completed, the result of high 8-bit is loaded into the ADDH. The ADRUN bit is cleared, and the ADIF is set. R8 is read only.

#### 6.1.30 Bank 2 R9 ADDL (AD Low 2-Bit Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | -     | -     | AD1   | AD0   |

Bits 7 ~ 2: Unimplemented, read as "0".

Bits 1 ~ 0 (AD1 ~ AD0): AD low 2-bit data buffer. R9 is read only.



# 6.1.31 Bank 2 RA URC1 (UART Control 1)

| Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|--------|--------|--------|--------|--------|-------|-------|
| URTD8 | UMODE1 | UMODE0 | BRATE2 | BRATE1 | BRATE0 | UTBE  | TXE   |

Bit 7 (URTD8): Transmission Data Bit 8

Bit 6 ~ Bit 5 (UMODE1 ~ UMODE0): UART mode

| UMODE1 | UMODE0 | UART Mode     |  |  |  |
|--------|--------|---------------|--|--|--|
| 0      | 0      | Mode 1: 7-bit |  |  |  |
| 0 1    |        | Mode 1: 8-bit |  |  |  |
| 1      | 0      | Mode 1: 9-bit |  |  |  |
| 1      | 1      | Reserved      |  |  |  |

### Bit 4 ~ Bit 2 (BRATE2 ~ BRATE0): Transmit Baud Rate Select

| BRATE2 | BRATE1 | BRATE0 | Baud Rate | 4 MHz | 8 MHz |  |  |  |
|--------|--------|--------|-----------|-------|-------|--|--|--|
| 0      | 0      | 0      | Fc/13     | 19200 | 38400 |  |  |  |
| 0      | 0      | 1      | Fc/26     | 9600  | 19200 |  |  |  |
| 0      | 1      | 0      | Fc/52     | 4800  | 9600  |  |  |  |
| 0      | 1      | 1      | Fc/104    | 2400  | 4800  |  |  |  |
| 1      | 0      | 0      | Fc/208    | 1200  | 2400  |  |  |  |
| 1      | 0      | 1      | Fc/416    | 600   | 1200  |  |  |  |
| 1      | 1      | 0      | TC3       |       | _     |  |  |  |
| 1      | 1      | 1      | Reserved  |       |       |  |  |  |

Bit 1 (UTBE): UART transfer buffer empty flag. Set to 1 when transfer buffer is empty. Automatically reset to 0 when writing to the URTD register.

The UTBE bit will be cleared by hardware when enabling transmission.

The UTBE bit is read-only. Therefore, writing to the URTD register is necessary when user wants to start transmission shifting.

Bit 0 (TXE): Enable transmission

0: Disable1: Enable

# 6.1.32 Bank 2 RB URC2 (UART Control 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|--------|-------|-------|-------|
| -     | -     | SBIM1 | SBIM0 | UINVEN |       | ı     | -     |

Bits 7 ~ 6: Not used, set to "0" at all time.



Bit 5 ~ Bit 4 (SBIM1 ~ SBIM0): Serial bus interface operating mode select.

| SBIM1 | SBIM0 | Operating Mode |  |  |  |
|-------|-------|----------------|--|--|--|
| 0     | 0     | I/O mode       |  |  |  |
| 0     | 1     | SPI mode       |  |  |  |
| 1     | 0     | UART mode      |  |  |  |
| 1     | 1     | Reserved       |  |  |  |

Bit 3 (UINVEN): Enable UART TXD and RXD port inverse output.

0: Disable TXD and RXD port inverse output.

1: Enable TXD and RXD port inverse output.

Bits 2 ~ 0: Not used, set to "0" at all time

# 6.1.33 Bank 2 RC URS (UART Status)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URRD8 | EVEN  | PRE   | PRERR | OVERR | FMERR | URBF  | RXE   |

Bit 7 (URRD8): Receiving Data Bit 8

Bit 6 (EVEN): Select parity check

0 : Odd parity1 : Even parity

Bit 5 (PRE): Enable parity addition

0 : Disable1 : Enable

Bit 4 (PRERR): Parity error flag. Set to 1 when parity error occurred.

Bit 3 (OVERR): Over running error flag. Set to 1 when an overrun error occurred.

Bit 2 (FMERR): Framing error flag. Set to 1 when framing error occurred.

#### NOTE

The Interrupt flag is automatically set by hardware. It must be cleared by software.

Bit 1 (URBF): UART read buffer full flag. Set to 1 when one character is received.

Reset to 0 automatically when read from URS and URRD register. The

URBF will be cleared by hardware when enabling receiving. The

URBF bit is read-only. Therefore, reading the URS register is

necessary to avoid overrun error.

Bit 0 (RXE): Enable receiving

0 : Disable1 : Enable



## 6.1.34 Bank 2 RD URRD (UART\_RD Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URRD7 | URRD6 | URRD5 | URRD4 | URRD3 | URRD2 | URRD1 | URRD0 |

Bits 7 ~ 0 (URRD7 ~ URRD0): UART receive data buffer. Read only.

# 6.1.35 Bank 2 RE URTD (UART\_TD Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URTD7 | URTD6 | URTD5 | URTD4 | URTD3 | URTD2 | URTD1 | URTD0 |

Bits 7 ~ 0 (URTD7 ~ URTD0): UART transmit data buffer. Write only.

## 6.1.36 Bank 2 RF (Pull-high Control Register 1)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PH77 | /PH76 | /PH75 | /PH74 | /PH73 | /PH72 | "1"   | "1"   |

Bit 7 (/PH77): Control bit used to enable pull-high of the P77 pin.

0 : Enable internal pull-high

1 : Disable internal pull-high

Bit 6 (/PH76): Control bit used to enable pull-high of the P76 pin.

Bit 5 (/PH75): Control bit used to enable pull-high of the P75 pin.

Bit 4 (/PH74): Control bit used to enable pull-high of the P74 pin.

Bit 3 (/PH73): Control bit used to enable pull-high of the P73 pin.

Bit 2 (/PH72): Control bit used to enable pull-high of the P72 pin.

Bits 1 ~ 0: Not used, set to "1" at all time.

The RF Register is both readable and writable.

## 6.1.37 Bank 3 R5 (TMRCON: Timer A and Timer B Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TAEN  | TAP2  | TAP1  | TAP0  | TBEN  | TBP2  | TBP1  | TBP0  |

Bit 7 (TAEN): Timer A enable bit.

0: disable Timer A (default)

1: enable Timer A

Bits 6 ~ 4 (TAP2 ~ TAP0): Timer A clock prescaler option bits.

Bit 3 (TBEN): Timer B Enable bit.

0: disable Timer B (default)

1: enable Timer B



Bits 2 ~ 0 (TBP2 ~ TBP0): Timer B clock prescaler option bits.

| TAP2/TBP2 | TAP1/TBP1 | TAP0/TBP0 | Prescale      |
|-----------|-----------|-----------|---------------|
| 0         | 0         | 0         | 1:2 (Default) |
| 0         | 0         | 1         | 1:4           |
| 0         | 1         | 0         | 1:8           |
| 0         | 1         | 1         | 1:16          |
| 1         | 0         | 0         | 1:32          |
| 1         | 0         | 1         | 1:64          |
| 1         | 1         | 0         | 1:128         |
| 1         | 1         | 1         | 1:256         |

## 6.1.38 Bank 3 R6 (TBHP: Table Pointer Register for TBRD Instruction)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|-------|-------|--------|--------|-------|-------|
| MLB   | -     | -     | -     | RBit11 | RBit10 | RBit9 | RBit8 |

Bit 7 (MLB): Choose MSB or LSB machine code to be moved to the register.

The machine code is pointed by TBLP and TBHP register.

Bits 6 ~ 4: Not used, set to "0" at all time.

Bits 3 ~ 0 (RBit11~RBit8): These are the four most significant bits of address for program code.

# 6.1.39 Bank 3 R7 (CMPCON: Comparator 2 Control Register and PWMA/B Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|--------|-------|-------|-------|-------|
| -     | -     | -     | CPOUT2 | COS21 | COS20 | PWMAE | PWMBE |

Bit 7 ~ Bit 5: Not used, set to "0" at all time.

Bit 4 (CPOUT2): The result of Comparator 2 output.

Bit 3 ~ Bit 2 (COS21 ~ COS20): Comparator 2 Select bits.

| COS21 | COS20 | Function Description                                              |
|-------|-------|-------------------------------------------------------------------|
| 0     | 0     | Comparator 2 is not used, P80 act as normal I/O pin               |
| 0     | 1     | Act as a Comparator 2 and P80 act as normal I/O pin               |
| 1     | 0     | Act as a Comparator 2 and P80 act as Comparator 2 output pin (CO) |
| 1     | 1     | Not used                                                          |

Bit 1 (PWMAE): PWMA enable bit.

0: PWMA is off and its related pin carries out the P75 function (default).

1: PWMA is on, and its related pin will be set automatically to output.

Bit 0 (PWMBE): PWMB enable bit.

0: PWMB is off and its related pin carries out the P76 function (default).

1 : PWMB is on, and its related pin will be set automatically to output.



# 6.1.40 Bank 3 R8 (PWMCON: PWMA/B Lower 2 Bits of the Period and Duty Control Register)

| Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3   | Bit 2   | Bit 1  | Bit 0  |
|---------|---------|--------|--------|---------|---------|--------|--------|
| PRDA[1] | PRDA[0] | DTA[1] | DTA[0] | PRDB[1] | PRDB[0] | DTB[1] | DTB[0] |

- Bits 7 ~ 6 (PRDA [1], PRDA [0]): Least Significant Bits of PWMA Period Cycle.
- Bits 5 ~ 4 (DTA [1], DTA [0]): Least Significant Bits of PWMA Duty Cycle.
- Bits 3 ~ 2 (PRDB [1], PRDB [0]): Least Significant Bits of PWMB Period Cycle.
- Bits 1 ~ 0 (DTB [1], DTB [0]): Least Significant Bits of PWMB Duty Cycle.

# 6.1.41 Bank 3 R9 (PRDAH: Most Significant Byte (Bit 9 ~ Bit 2) of PWMA)

| Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PRDA[9] | PRDA[8] | PRDA[7] | PRDA[6] | PRDA[5] | PRDA[4] | PRDA[3] | PRDA[2] |

The content of Bank 3 of R9 is a period (time base) of PWMA Bit 9~Bit 2. The frequency of PWMA is the reverse of the period.

# 6.1.42 Bank 3 RA (DTAH: Most Significant Byte (Bit 9 ~ Bit 2) of PWMA Duty Cycle)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DTA[9] | DTA[8] | DTA[7] | DTA[6] | DTA[5] | DTA[4] | DTA[3] | DTA[2] |

A specified value keeps the output of PWMA to remain high until the value matches with TMRA.

# 6.1.43 Bank 3 RB (PRDBH: Most Significant Byte (Bit 9~Bit 2) of PWMB)

| Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PRDB[9] | PRDB[8] | PRDB[7] | PRDB[6] | PRDB[5] | PRDB[4] | PRDB[3] | PRDB[2] |

The content of Bank 3 of RB is a period (time base) of PWMB Bit  $9 \sim$  Bit 2. The frequency of PWMB is the reverse of the period.

# 6.1.44 Bank 3 RC (DTBH: Least Significant Byte (Bit 9 ~ Bit 2) of PWMB Duty Cycle)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DTB[9] | DTB[8] | DTB[7] | DTB[6] | DTB[5] | DTB[4] | DTB[3] | DTB[2] |

A specified value keeps the output of PWMB to remain at high until the value matches with TMRB.



# 6.1.45 Bank 3 RD TC3CR (Timer 3 Control)

| Bit 7  | Bit 6  | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|--------|--------|-------|--------|--------|--------|-------|-------|
| TC3FF1 | TC3FF0 | TC3S  | TC3CK2 | TC3CK1 | TC3CK0 | TC3M1 | TC3M0 |

Bits 7 ~ 6 (TC3FF1 ~ TC3FF0): Timer/Counter 3 flip-flop control

| TC3FF1 | TC3FF0 | Operating Mode |
|--------|--------|----------------|
| 0      | 0      | Clear          |
| 0      | 1      | Toggle         |
| 1      | 0      | Set            |
| 1      | 1      | Reserved       |

Bit 5 (TC3S): Timer/Counter 3 start control

0 : Stop and clear the counter

1 : Start

Bits 4 ~ 2 (TC3CK2 ~ TC3CK0): Timer/Counter 3 clock source select

| TC2CK2 | TC3CK1 | TC2CK0 | Clock Source                | Resolution | Max. Time | Resolution | Max. Time |
|--------|--------|--------|-----------------------------|------------|-----------|------------|-----------|
| ICSCRZ | ICSCKI | ICSCRU | Normal, Idle                | Fc=4M      | Fc=4M     | Fc=16K     | Fc=16K    |
| 0      | 0      | 0      | Fc/2 <sup>11</sup>          | 512 µs     | 131072 µs | 128 ms     | 32768 ms  |
| 0      | 0      | 1      | Fc/2 <sup>7</sup>           | 32 µs      | 8192 µs   | 8 ms       | 2048 ms   |
| 0      | 1      | 0      | Fc/2 <sup>5</sup>           | 8 µs       | 2048 µs   | 2 ms       | 512 ms    |
| 0      | 1      | 1      | Fc/2 <sup>3</sup>           | 2 µs       | 512 µs    | 500 µs     | 128 ms    |
| 1      | 0      | 0      | Fc/2 <sup>2</sup>           | 1 µs       | 256 µs    | 250 µs     | 64 ms     |
| 1      | 0      | 1      | Fc/2 <sup>1</sup>           | 500 ns     | 128 µs    | 125 µs     | 32 ms     |
| 1      | 1      | 0      | Fc                          | 250 ns     | 64 µs     | 62.5 µs    | 16 ms     |
| 1      | 1      | 1      | External clock<br>(TC3 pin) | -          | -         | -          | -         |

Bits 1 ~ 0 (TC3M1 ~ TC3M0): Timer/Counter 3 operating mode select

| TC3M1 | TC3M0 | Operating Mode                |
|-------|-------|-------------------------------|
| 0     | 0     | Timer/Counter                 |
| 0     | 1     | Reserved                      |
| 1     | 0     | Programmable Divider Output   |
| 1     | 1     | Pulse Width Modulation Output |



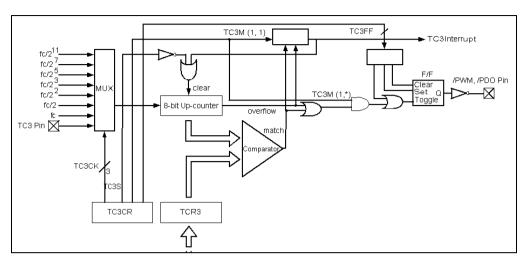



Figure 6-9 Timer / Counter 3 Configuration

**In Timer mode**, counting up is performed using the internal clock (rising edge trigger). When the contents of the up-counter match the TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

**In Counter mode**, counting up is performed using an external clock input pin (TC3 pin). When the contents of the up-counter match the TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the upcounter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. The F/F can be initialized by the program and it is initialized to "0" during reset. A TC3 interrupt is generated each time the /PDO output is toggled.

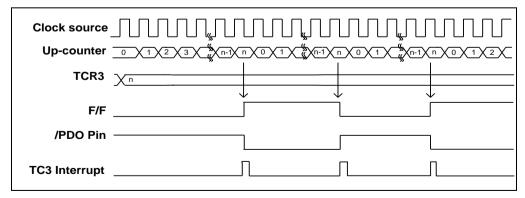



Figure 6-10 PDO Mode Timing Chart



In Pulse Width Modulation (PWM) Output Mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the upcounter. The F/F is toggled when a match is found. The counter continues counting, the F/F is toggled again when the counter overflows, after which the counter is cleared. The F/F output is inverted and output to /PWM pin. A TC3 interrupt is generated each time an overflow occurs. TCR3 is configured as a 2-stage shift register and, during output, will not switch until one output cycle is completed even if TCR3 is overwritten. Therefore, the output can be changed continuously. Also, the first time, TCR3 is shifted by setting TC3S to "1" after data is loaded to TCR3.

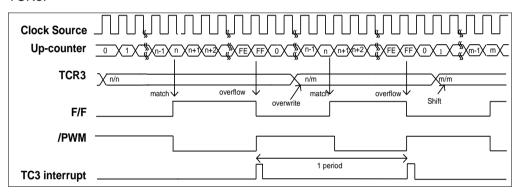



Figure 6-11 PWM Mode Timing Chart

### 6.1.46 Bank 3 RE TC3D (Timer 3 Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TC3D7 | TC3D6 | TC3D5 | TC3D4 | TC3D3 | TC3D2 | TC3D1 | TC3D0 |

Bits 7 ~ 0 (TC3D7 ~ TC3D0): Data Buffer of 8-bit Timer/Counter 3.

### 6.1.47 Bank 3 RF (Pull-down Control Register 1)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PD77 | /PD76 | /PD75 | /PD74 | /PD73 | /PD72 | "1"   | "1"   |

Bit 7 (/PD77): Control bit used to enable pull-down of the P77 pin.

0 : Enable internal pull-down

1 : Disable internal pull-down

Bit 6 (/PD76): Control bit used to enable pull-down of the P76 pin.

Bit 5 (/PD75): Control bit used to enable pull-down of the P75 pin.

Bit 4 (/PD74): Control bit used to enable pull-down of the P74 pin.

Bit 3 (/PD73): Control bit used to enable pull-down of the P73 pin.

Bit 2 (/PD72): Control bit used to enable pull-down of the P72 pin.

Bits 1 ~ 0: Not used, set to "1" at all time.

The RF Register is both readable and writable.



# 6.2 Special Function Registers

# 6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator. The Accumulator is not an addressable register.

## 6.2.2 CONT (Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| INTE  | /INT  | TS    | TE    | PSTE  | PST2  | PST1  | PST0  |

Bit 7 (INTE): INT signal edge

0: interrupt occurs at a rising edge of the INT pin

1: interrupt occurs at a falling edge of the INT pin

Bit 6 (/INT): Interrupt Enable flag

0: masked by DISI or hardware interrupt

1: enabled by ENI/RETI instructions

Bit 5 (TS): TCC signal source

0: internal instruction cycle clock

1: transition on the TCC pin

Bit 4 (TE): TCC signal edge

0: increment if a transition from low to high takes place on the TCC pin

1: increment if a transition from high to low takes place on the TCC pin

Bit 3 (PSTE): Prescaler Enable bit for TCC

0: prescaler disable bit, TCC rate is 1:1

1 : prescaler enable bit, TCC rate is set as Bit 2~Bit 0

Bit 2 ~ Bit 0 (PST2 ~ PST0): TCC prescaler bits

| PST2 | PST1 | PST0 | TCC Rate |
|------|------|------|----------|
| 0    | 0    | 0    | 1:2      |
| 0    | 0    | 1    | 1:4      |
| 0    | 1    | 0    | 1:8      |
| 0    | 1    | 1    | 1:16     |
| 1    | 0    | 0    | 1:32     |
| 1    | 0    | 1    | 1:64     |
| 1    | 1    | 0    | 1:128    |
| 1    | 1    | 1    | 1:256    |

The CONT register is both readable and writable.



# 6.2.3 IOC5 ~ IOC8 (I/O Port Control Register)

A value of "1" sets the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.

IOC5 ~ IOC8 registers are both readable and writable.

#### 6.2.4 IOC9

Reserved registers

# 6.2.5 IOCA (WDT Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WDTE  | EIS   | -     | -     | PSWE  | PSW2  | PSW1  | PSW0  |

Bit 7 (WDTE): Control bit used to enable the Watchdog timer

0: Disable WDT

1: Enable WDT

WDTE is both readable and writable.

Bit 6 (EIS): Control bit used to define the function of P60 (/INT) pin

0: P60, bidirectional I/O pin

1 : /INT, external interrupt pin. In this case, the I/O control bit of P60 (Bit 0 of IOC6) must be set to "1".

When EIS is "0", the path of /INT is masked. When EIS is "1", the status of the /INT pin can also be read by way of reading Port 6 (R6).

The EIS is both readable and writable.

Bits 5 ~ 4: Not used, set to "0" at all time

Bit 3 (PSWE): Prescaler enable bit for WDT

0: prescaler disable bit, WDT rate is 1:1

1 : prescaler enable bit, WDT rate is set at Bit 0 ~ Bit 2

Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits

| PSW2 | PSW1 | PSW0 | WDT Rate |
|------|------|------|----------|
| 0    | 0    | 0    | 1:2      |
| 0    | 0    | 1    | 1:4      |
| 0    | 1    | 0    | 1:8      |
| 0    | 1    | 1    | 1:16     |
| 1    | 0    | 0    | 1:32     |
| 1    | 0    | 1    | 1:64     |
| 1    | 1    | 0    | 1:128    |
| 1    | 1    | 1    | 1:256    |



# 6.2.6 IOCB (Pull-down Control Register 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PD63 | /PD62 | /PD61 | /PD60 | /PD53 | /PD52 | /PD51 | /PD50 |

Bit 7 (/PD63): Control bit used to enable pull-down of the P63 pin.

0 : Enable internal pull-down

1 : Disable internal pull-down

Bit 6 (/PD62): Control bit used to enable pull-down of the P62 pin.

Bit 5 (/PD61): Control bit used to enable pull-down of the P61 pin.

Bit 4 (/PD60): Control bit used to enable pull-down of the P60 pin.

Bit 3 (/PD53): Control bit used to enable pull-down of the P53 pin.

Bit 2 (/PD52): Control bit used to enable pull-down of the P52 pin.

Bit 1 (/PD51): Control bit used to enable pull-down of the P51 pin.

Bit 0 (/PD50): Control bit used to enable pull-down of the P50 pin.

The IOCB Register is both readable and writable.

## 6.2.7 IOCC (Open-drain Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OD67  | OD66  | OD65  | OD64  | OD63  | OD62  | OD61  | OD60  |

Bit 7 (OD67): Control bit used to enable open-drain output of the P67 pin.

0 : Disable open-drain output

1 : Enable open-drain output

Bit 6 (OD66): Control bit used to enable open-drain output of the P66 pin.

Bit 5 (OD65): Control bit used to enable open-drain output of the P65 pin.

Bit 4 (OD64): Control bit used to enable open-drain output of the P64 pin.

Bit 3 (OD63): Control bit used to enable open-drain output of the P63 pin.

Bit 2 (OD62): Control bit used to enable open-drain output of the P62 pin.

Bit 1 (OD61): Control bit used to enable open-drain output of the P61 pin.

Bit 0 (OD60): Control bit used to enable open-drain output of the P60 pin.

The IOCC Register is both readable and writable.



# 6.2.8 IOCD (Pull-high Control Register 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PH67 | /PH66 | /PH65 | /PH64 | /PH63 | /PH62 | /PH61 | /PH60 |

Bit 7 (/PH67): Control bit used to enable pull-high of the P67 pin.

0 : Enable internal pull-high1 : Disable internal pull-high

Bit 6 (/PH66): Control bit used to enable pull-high of the P66 pin.

Bit 5 (/PH65): Control bit used to enable pull-high of the P65 pin.

Bit 4 (/PH64): Control bit used to enable pull-high of the P64 pin.

Bit 3 (/PH63): Control bit used to enable pull-high of the P63 pin.

Bit 2 (/PH62): Control bit used to enable pull-high of the P62 pin.

Bit 1 (/PH61): Control bit used to enable pull-high of the P61 pin.

Bit 0 (/PH60): Control bit used to enable pull-high of the P60 pin.

The IOCD Register is both readable and writable.

# 6.2.9 IOCE (Interrupt Mask Register 2)

| Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|--------|-------|-------|
| CMP2IE | -     | TC3IE | TC2IE | TC1IE | UERRIE | URIE  | UTIE  |

Bit 7 (CMP2IE): CMP2IF interrupt enable bit.

0: Disable CMP2IF interrupt

1 : Enable CMP2IF interrupt

When the Comparator 2 output status changed is used to enter an interrupt vector or enter the next instruction, the CMP2IE bit must be set to "Enable".

Bit 6: Not used, set to "0" at all time.

Bit 5 (TC3IE): Interrupt enable bit

0 : Disable TC3IF interrupt1 : Enable TC3IF interrupt

Bit 4 (TC2IE): Interrupt enable bit

0 : Disable TC2IF interrupt1 : Enable TC2IF interrupt

Bit 3 (TC1IE): Interrupt enable bit

0 : Disable TC1IF interrupt1 : Enable TC1IF interrupt



Bit 2 (UERRIE): UART receive error interrupt enable bit.

0: Disable UERRIF interrupt

1 : Enable UERRIF interrupt

Bit 1 (URIE): UART receive mode Interrupt enable bit.

0: Disable RBFF interrupt

1 : Enable RBFF interrupt

Bit 0 (UTIE): UART transmit mode interrupt enable bit.

0 : Disable TBEF interrupt

1 : Enable TBEF interrupt

#### NOTE

- User must set to "0" Bit 6 of the IOCE register.
- The IOCE register is both readable and writable.

# 6.2.10 IOCF (Interrupt Mask Register 1)

| Bit : | 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|---|-------|-------|--------|--------|-------|-------|-------|
| -     |   | ADIE  | SPIIE | PWMBIE | PWMAIE | EXIE  | ICIE  | TCIE  |

Bit 7: Not used, set to "0" at all time

Bit 6 (ADIE): ADIF interrupt enable bit

0: Disable ADIF interrupt

1 : Enable ADIF interrupt

When the ADC complete status is used to enter an interrupt vector or enter the next instruction, the ADIE bit must be set to "Enable".

Bit 5 (SPIIE): SPIIF interrupt enable bit.

0: Disable SPIIF interrupt

1 : Enable SPIIF interrupt

Bit 4 (PWMBIE): PWMBIF interrupt enable bit.

0: Disable PWMBIF interrupt

1 : Enable PWMBIF interrupt

Bit 3 (PWMAIE): PWMAIF interrupt enable bit.

0 : Disable PWMAIF interrupt

1 : Enable PWMAIF interrupt

Bit 2 (EXIE): EXIF interrupt enable bit

0 : Disable EXIF interrupt

1 : Enable EXIF interrupt



Bit 1 (ICIE): ICIF interrupt enable bit

0 : Disable ICIF interrupt

1 : Enable ICIF interrupt

Bit 0 (TCIE): TCIF interrupt enable bit

0 : Disable TCIF interrupt1 : Enable TCIF interrupt

#### **NOTE**

- User must set to "0" Bit 7 of the IOCF register.
- Individual interrupt is enabled by setting its associated control bit in the IOCF to "1".
- Global interrupt is enabled by the ENI instruction and disabled by the DISI instruction.
- The IOCF register is both readable and writable.

## 6.3 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT respectively. The PST2~PST0 bits of the CONT register are used to determine the ratio of the TCC prescaler. Likewise, the PSW2~PSW0 bits of the IOCA register are used to determine the WDT prescaler. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-12-1 depicts the EM78Fx64N circuit diagram of TCC / WDT.

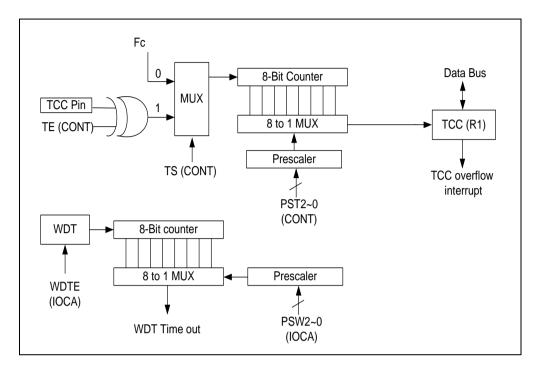
R1 (TCC) is an 8-bit timer/counter. The TCC clock source can be an internal clock or external signal input (edge selectable from the TCC pin). If the TCC signal source is from an internal clock, TCC will be incremented by 1 at Fc clock (without prescaler). If the TCC signal source is from an external clock input, TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin input time length (kept at high or low level) must be greater than 1/ Fc. **The TCC will stop running when sleep mode occurs**.

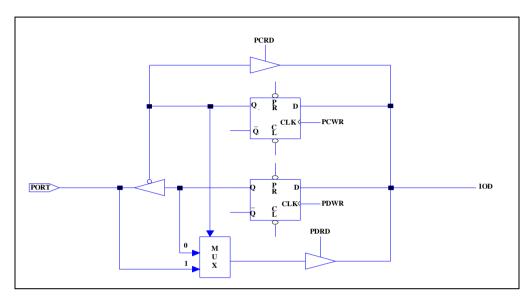
The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during normal mode by software programming. Refer to the WDTE bit of the IOCA register. With no prescaler, the WDT time-out period is approximately 18 ms<sup>1</sup> (one oscillator start-up timer period).

\_

<sup>&</sup>lt;sup>1</sup> VDD=5V, WDT time-out period = 16ms ± 7.5% VDD=3V, WDT time-out period = 18ms ± 7.5%

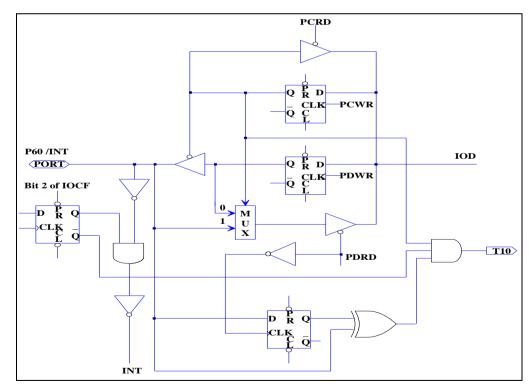






Figure 6-12-1 EM78Fx64N Block Diagram of TCC and WDT

# **6.4 I/O Ports**

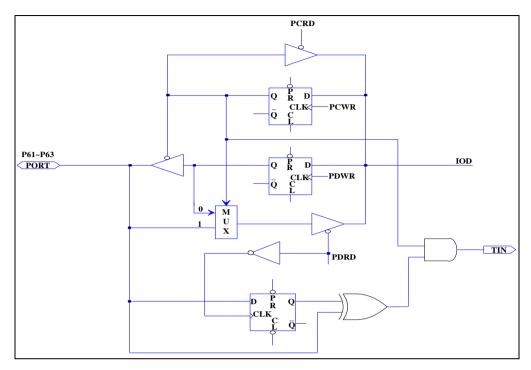
The I/O registers, Ports 5, 6, 7 and 8, are bidirectional tri-state I/O ports. Port 6 or 7 can be pulled high internally by software. In addition, Port 6 can also have open-drain output by software. Input status change interrupt (or wake-up) function on Port 6 P50~P53, P60 ~ P63 and Port 7 pins can be pulled down by software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC8).


The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Ports  $5 \sim 8$  are shown in the following Figures 6-13, 6-14 (a), 6-14 (b), and Figure 6-15.





Note: Pull-down is not shown in the figure.


Figure 6-13 I/O Port and I/O Control Register Circuit for Ports 5 ~ 8



Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-14 (a) I/O Port and I/O Control Register Circuit for P60 (/INT)





Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-14 (b) I/O Port and I/O Control Register Circuit for P61~P67, P72~P77

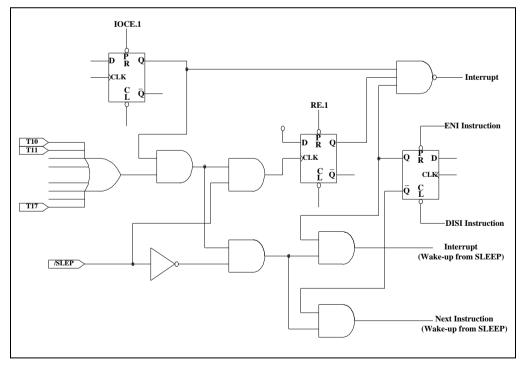



Figure 6-15 Block Diagram of I/O Port 6 with Input Change Interrupt/Wake-up



Table 6.4-1 Usage of Port 6 Input Change Wake-up/Interrupt Function

#### Usage of Port 6 Input Status Changed Wake-up/Interrupt

- (I) Wake-up from Port 6 Input Status Change
  - (a) Before Sleep
  - 1. Disable WDT<sup>2</sup> (use this very carefully)
  - 2. Read I/O Port 6 (MOV R6,R6)
  - 3 a. Enable interrupt (Set IOCF.1), after wake-up if "ENI" switch to interrupt vector (006H), if "DISI" excute next instruction
  - 3 b. Disable interrupt (Set IOCF.1), always execute next instruction
  - 4. Enable wake-up enable bit (Set RA.6)
  - 5. Execute "SLEP" instruction
  - (b) After Wake-up
    - 1. IF "ENI" → Interrupt vector (006H)
    - 2. IF "DISI" → Next instruction

- (II) Port 6 Input Status Change Interrupt
  - 1. Read I/O Port 6 (MOV R6,R6)
  - 2. Execute "ENI"
  - 3. Enable interrupt (Set IOCF.1)
  - IF Port 6 change (interrupt) → Interrupt vector (006H)

# 6.5 Reset and Wake-up

### 6.5.1 Reset

A reset is initiated by one of the following events:

- (1) Power-on reset
- (2) /RESET pin input "low"
- (3) WDT time-out (if enabled)

The device is kept in a reset condition for a period of approximately 18 ms<sup>3</sup> (one oscillator start-up timer period) after a reset is detected.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog timer and prescaler are cleared.
- When power is switched on, the upper three bits of R3 are cleared.

<sup>&</sup>lt;sup>2</sup> The Software disables WDT (Watchdog Timer) but the hardware must be enabled before applying Port 6 Change wake-up function. (Code Option Register and Bit 6 (ENWDTB) are set to "1").

 $<sup>^3</sup>$  Vdd = 5V, set up time period = 16ms  $\pm$  7.5% Vdd = 3V, set up time period = 18ms  $\pm$  7.5%



- The bits of the RB, RC, RD registers are set to their previous status.
- The bits of the CONT register are set to all "0".
- The bits of the IOCA register are set to all "0".
- The bits of the IOCB register are set to all "1".
- The bits of the IOCC register are set to all "0".
- The bits of the IOCD register are set to all "1".
- The bits of the IOCE register are set to all "0".
- The bits of the IOCF register are set to all "0".

Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering sleep mode, the WDT (if enabled) is cleared but keeps on running. After a wake-up, in RC mode the wake-up time is 10  $\mu$ s. High crystal mode wake-up time is 800  $\mu$ s.

#### The controller can be awakened by:

- (1) External reset input on /RESET pin
- (2) WDT time-out (if enabled)
- (3) Port 6 input status changes (if enabled)
- (4) Comparator output status change (if CMPWE is enabled)
- (5) A/D conversion completed (if ADWE is enabled)
- (6) External (P60, /INT) pin changes (if EXWE is enabled)
- (7) SPI received data, When SPI act as slave device (if SPIWE is enabled)

The first two cases will cause the EM78Fx64N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Cases 3, 4, 5, 6, 7 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following a wake-up. If ENI is executed before SLEP, the instruction will begin to execute from the Address  $0\times6$ ,  $0\times15$ ,  $0\times30$ ,  $0\times3$ ,  $0\times12$  after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after wake-up. After a wake-up, in RC mode the wake-up time is 10 µs. High crystal mode wake-up time is 800 µs.



One or more of Cases 2 to 7 can be enabled before entering into sleep mode. That is,

- [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the EM78Fx64N can be awakened only through Case 1 or 2. Refer to the Interrupt section for further details.
- [b] If Port 6 Input Status Change is used to wake-up the EM78Fx64N and the ICWE bit of RA register is enabled before SLEP, WDT must be disabled. Hence, the EM78Fx64N can be awakened only through Case 3.
- [c] If Comparator 2 output status change is used to wake-up the EM78Fx64N and the CMPWE bit of RA register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78Fx64N can be awakened only through Case 4
- [d] If AD conversion completed is used to wake-up the EM78Fx64N and the ADWE bit of RA register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78Fx64N can be awakened only through Case 5.
- [e] If External (P60, /INT) pin change is used to wake-up EM78Fx64N and EXWE bit of RA register is enabled before SLEP, WDT must be disabled. Hence, the EM78Fx64N can be awakened only through Case 6.
- [f] When SPI act as slave device, after receiving data, it will wake-up the EM78Fx64N and the SPIWE bit of RA register is enabled before SLEP, and WDT must be disabled by software. Hence, the EM78Fx64N can be awakened only through Case 7.

If Port 6 Input Status Change Interrupt is used to wake-up the EM78Fx64N, (as in Case [b] above), the following instructions must be executed before SLEP:

```
A, @0xxx1000b ; Select WDT prescaler and
MOV
                            ; Disable the WDT
              TOCA
TOW
WDTC
                            ; Clear WDT and prescaler
MOV
              R6, R6
                            : Read Port 6
ENI (or DISI)
                            ; Enable (or disable) global
                            ; interrupt
              R4, 7
BC.
                            ; Select Bank 0
              R4, 6
BC.
MOV
              A, @0100xxxxb ; Enable Port 6 input change
                            ; wake-up bit
MOV
              RA,A
              A, @xxxxxx1xb ; Enable Port 6 input change
MOV
                            ; interrupt
IOW
              IOCF
SLEP
                            ; Sleep
```



Similarly, if the Comparator 2 Interrupt is used to wake-up the EM78Fx64N (as in Case [c] above), the following instructions must be executed before SLEP:

```
R4, 7
BS
                             ; Select Bank 3
BS
              R4, 6
              A, @xxxx10xxb ; Select a comparator and P80 act
MOV
                             ; as CO pin
MOV
              R7,A
MOV
              A, @0xxx1000b ; Select WDT prescaler and
                             ; Disable the WDT
IOW
              IOCA
WDTC
                             ; Clear WDT and prescaler
                             ; Enable (or disable) global
ENI (or DISI)
                             ; interrupt
ВС
              R4, 7
                             ; Select Bank 0
              R4, 6
ВС
              A, @1000xxxxb ; Enable comparator output status
MOV
                             ; change wake-up bit
              RA,A
MOV
              A, @10000000b ; Enable comparator output status
MOV
                             ; change interrupt
IOW
              IOCE
SLEP
                             ; Sleep
```



# All kinds of wake-up mode and interrupt mode are shown below:

| Wake-up              | Condition                                               | Sleep                                                   | Mode                                                   | Idle I                                                 | Mode                                                   | Green                       | Mode                                  | Norma                | l Mode                                |
|----------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|---------------------------------------|----------------------|---------------------------------------|
| Signal               | Signal                                                  | DISI                                                    | ENI                                                    | DISI                                                   | ENI                                                    | DISI                        | ENI                                   | DISI                 | ENI                                   |
|                      | $\begin{aligned} EXWE &= 0, \\ EXIE &= 0 \end{aligned}$ | Wake-up                                                 | is invalid                                             | Wake-up                                                | is invalid                                             | Interrupt                   | is invalid                            | Interrupt            | is invalid                            |
|                      | EXWE = 0,<br>EXIE = 1                                   | Wake-up                                                 | is invalid                                             | Wake-up                                                | is invalid                                             | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
| External INT         | EXWE = 1,<br>EXIE = 0                                   |                                                         | e up<br>tstruction                                     | -                                                      | Wake up<br>+<br>Next Instruction                       |                             | is invalid                            | Interrupt is invalid |                                       |
|                      | EXWE = 1,<br>EXIE = 1                                   | Wake up + Next Instruction                              | Wake up<br>+<br>Interrupt<br>Vector                    | Wake up + Next Instruction                             | Wake up + Interrupt Vector                             | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
|                      | ICWE = 0,<br>ICIE = 0                                   | Wake-up                                                 | is invalid                                             | Wake-up                                                | is invalid                                             | nvalid Interrupt is invalid |                                       | Interrupt            | is invalid                            |
| Deat Corin           | ICWE = 0,<br>ICIE = 1                                   | Wake-up is invalid                                      |                                                        | Wake-up                                                | Wake-up is invalid                                     |                             | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
| Port 6 pin<br>change | ICWE = 1,<br>ICIE = 0                                   | Wake up<br>+<br>Next Instruction                        |                                                        | Wake up<br>+<br>Next Instruction                       |                                                        | Interrupt                   | Interrupt is invalid                  |                      | is invalid                            |
|                      | ICWE = 1,<br>ICIE = 1                                   | Wake up + Next Instruction                              | Wake up + Interrupt Vector                             | Wake up + Next Instruction                             | Wake up + Interrupt Vector                             | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
|                      | TCIE = 0                                                | Wake-up is invalid                                      |                                                        | Wake-up                                                | is invalid                                             | Interrupt                   | is invalid                            | Interrupt            | is invalid                            |
| TCC overflow         | TCIE = 1                                                | Wake-up                                                 | is invalid                                             | Wake up + Next Instruction                             | Wake up + Interrupt Vector                             | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
|                      | SPIWE = 0,<br>SPIIE = 0                                 | Wake-up                                                 | is invalid                                             | Wake-up                                                | is invalid                                             | Interrupt                   | is invalid                            | Interrupt            | is invalid                            |
|                      | SPIWE = 0,<br>SPIIE = 1                                 | Wake-up                                                 | is invalid                                             | Wake-up                                                | is invalid                                             | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |
| SPI interrupt        | SPIWE = 1,<br>SPIIE = 0                                 | Next Ins<br>(SPI must<br>mo                             | be in slave                                            | Next Ins                                               | e up<br>t<br>struction<br>be in slave<br>de)           | Interrupt                   | is invalid                            | Interrupt is invalid |                                       |
|                      | SPIWE = 1,<br>SPIIE = 1                                 | Wake up  + Next Instruction (SPI must be in slave mode) | Wake up + Interrupt Vector (SPI must be in slave mode) | Wake up + Next Instruction (SPI must be in slave mode) | Wake up + Interrupt Vector (SPI must be in slave mode) | Next<br>Instruction         | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |



| Wake-up                                  | Condition                                                | Sleep                      | Mode                       | ldle l                              | Mode                                | Green               | Mode                                  | Norma                | l Mode                                |  |
|------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------|-------------------------------------|-------------------------------------|---------------------|---------------------------------------|----------------------|---------------------------------------|--|
| Signal                                   | Signal                                                   | DISI                       | ENI                        | DISI                                | ENI                                 | DISI                | ENI                                   | DISI                 | ENI                                   |  |
|                                          | $\begin{array}{c} CMP2WE = 0, \\ CMP2IE = 0 \end{array}$ | Wake-up                    | is invalid                 | Wake-up                             | is invalid                          | Interrupt           | is invalid                            | Interrupt            | is invalid                            |  |
| Comparator 2 (Comparator                 | CMP2WE = 0,<br>CMP2IE = 1                                | Wake-up                    | is invalid                 | Wake-up                             | Wake-up is invalid                  |                     | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
| Output Status Change)                    | CMP2WE = 1,<br>CMP2IE = 0                                | Wake up + Next Instruction |                            | -                                   | Wake up<br>+<br>Next Instruction    |                     | Interrupt is invalid                  |                      | Interrupt is invalid                  |  |
|                                          | CMP2WE = 1,<br>CMP2IE = 1                                | Wake up + Next Instruction | Wake up + Interrupt Vector | Wake up + Next Instruction          | Wake up + Interrupt Vector          | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
|                                          | TC1IE = 0                                                | Wake-up                    | is invalid                 | Wake-up is invalid                  |                                     | Interrupt           | is invalid                            | Interrupt is invalid |                                       |  |
| TC1 interrupt                            | TC1IE = 1                                                | Wake-up                    | is invalid                 | Wake up + Next Instruction          | Wake up<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
| UART                                     | UTIE = 0                                                 | Wake-up                    | Wake-up is invalid         |                                     | is invalid                          | Interrupt           | is invalid                            | Interrupt            | is invalid                            |  |
| Transmit complete interrupt              | UTIE = 1                                                 | Wake-up is invalid         |                            | Wake-up                             | Wake-up is invalid                  |                     | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
| UART                                     | URIE = 0                                                 | Wake-up                    | is invalid                 | Wake-up                             | is invalid                          | Interrupt           | is invalid                            | Interrupt is invalid |                                       |  |
| Receive data<br>buffer full<br>interrupt | URIE = 1                                                 | Wake-up                    | is invalid                 | Wake-up                             | is invalid                          | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
| UART                                     | UERRIE = 0                                               | Wake-up                    | is invalid                 | Wake-up                             | is invalid                          | Interrupt           | is invalid                            | Interrupt            | is invalid                            |  |
| Receive error interrupt                  | UERRIE = 1                                               | wAke-up                    | wAke-up is invalid         |                                     | Wake-up is invalid                  |                     | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |
|                                          | TC2IE = 0                                                | Wake-up                    | is invalid                 | Wake-up                             | is invalid                          | Interrupt           | Interrupt is invalid                  |                      | Interrupt is invalid                  |  |
| TC2 interrupt                            | TC2IE = 1                                                | Wake-up                    | is invalid                 | Wake up<br>+<br>Next<br>Instruction | Wake up<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction  | Interrupt<br>+<br>Interrupt<br>Vector |  |



| Wake-                                | ConditionSign                | Sleep                            | Mode                       | Idle I                     | Mode                                | Green               | Mode                                  | Norma               | l Mode                                |
|--------------------------------------|------------------------------|----------------------------------|----------------------------|----------------------------|-------------------------------------|---------------------|---------------------------------------|---------------------|---------------------------------------|
| upSignal                             | al                           | DISI                             | ENI                        | DISI                       | ENI                                 | DISI                | ENI                                   | DISI                | ENI                                   |
|                                      | TC3IE = 0                    | Wake-up                          | Wake-up is invalid         |                            | Wake-up is invalid                  |                     | is invalid                            | Interrupt           | is invalid                            |
| TC3 interrupt                        | TC3IE = 1                    | Wake-up                          | is invalid                 | Wake up + Next Instruction | Wake up + Interrupt Vector          | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector |
| PWM A/B                              | PWMxIE = 0 $(x = A  or B)$   | Wake-up is invalid               |                            | Wake-up is invalid         |                                     | Interrupt           | Interrupt is invalid                  |                     | is invalid                            |
| (When Timer<br>A/B Match<br>PRD A/B) | PWMxIE = 1<br>( x = A or B ) | Wake-up                          | Wake-up is invalid         |                            | Wake up + Interrupt Vector          | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector |
|                                      | ADWE = 0,<br>ADIE = 0        | Wake-up is invalid               |                            | Wake-up is invalid         |                                     | Interrupt           | is invalid                            | Interrupt           | is invalid                            |
| AD<br>Conversion                     | ADWE = 0,<br>ADIE = 1        | Wake-up                          | is invalid                 | Wake-up                    | is invalid                          | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector |
| Complete                             | ADWE = 1,<br>ADIE = 0        | Wake up<br>+<br>Next Instruction |                            | -                          | e up<br>truction                    | Interrupt           | is invalid                            | Interrupt           | is invalid                            |
| ·                                    | ADWE = 1,<br>ADIE = 1        | Wake up + Next Instruction       | Wake up + Interrupt Vector | Wake up + Next Instruction | Wake up<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector | Next<br>Instruction | Interrupt<br>+<br>Interrupt<br>Vector |



Table 6.5-1 Summary of Registers Initialized Values

| Address | Name     | Reset Type                 | Bit 7 | Bit 6 | Bit 5               | Bit 4       | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|----------|----------------------------|-------|-------|---------------------|-------------|-------|-------|-------|-------|
|         |          | Bit Name                   | C57   | C56   | C55                 | C54         | C53   | C52   | C51   | C50   |
|         |          | Power-on                   | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
| N/A     | IOC5     | /RESET and WDT             | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | C67   | C66   | C65                 | C64         | C63   | C62   | C61   | C60   |
|         |          | Power-on                   | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
| N/A     | IOC6     | /RESET and WDT             | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | C77   | C76   | C75                 | C74         | C73   | C72   | -     | -     |
|         |          | Power-on                   | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
| N/A     | IOC7     | /RESET and WDT             | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | -     | -     | -                   | -           | -     | C82   | C81   | C80   |
|         |          | Power-on                   | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
| N/A     | N/A IOC8 | /RESET and WDT             | 1     | 1     | 1                   | 1           | 1     | 1     | 1     | 1     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | INTE  | /INT  | TS                  | TE          | PSTE  | PST2  | PST1  | PST0  |
|         |          | Power-on                   | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
| N/A     | CONT     | /RESET and WDT             | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | -     | -     | -                   | -           | -     | -     | -     | -     |
|         |          | Power-on                   | U     | U     | U                   | U           | U     | U     | U     | U     |
| 0×00    | R0 (IAR) | /RESET and WDT             | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | -     | -     | 1                   | -           | -     | -     | -     | -     |
|         |          | Power-on                   | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
| 0×01    | R1 (TCC) | /RESET and WDT             | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
|         |          | Wake-up from Pin<br>Change | Р     | Р     | Р                   | Р           | Р     | Р     | Р     | Р     |
|         |          | Bit Name                   | -     | -     | ı                   | -           | -     | -     | -     | -     |
|         |          | Power-on                   | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
| 0×02    | R2 (PC)  | /RESET and WDT             | 0     | 0     | 0                   | 0           | 0     | 0     | 0     | 0     |
|         |          | Wake-up from Pin<br>Change |       | Jum   | p to interru<br>exe | pt vector a |       |       | to    |       |



| Address | Name      | Reset Type                 | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----------|----------------------------|--------|--------|-------|-------|-------|-------|-------|-------|
|         |           | Bit Name                   | -      | -      | -     | Т     | Р     | Z     | DC    | С     |
|         | R3        | Power-on                   | 0      | 0      | 0     | 1     | 1     | U     | U     | U     |
| 0×03    | SR        | /RESET and WDT             | 0      | 0      | 0     | t     | t     | Р     | Р     | Р     |
|         |           | Wake-up from Pin<br>Change | Р      | Р      | Р     | t     | t     | Р     | Р     | Р     |
|         |           | Bit Name                   | Bank 1 | Bank 0 | ı     | -     | -     | -     | -     | -     |
|         | R4<br>RSR | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×04    |           | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         |           | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |
|         |           | Bit Name                   | P57    | P56    | P55   | P54   | P53   | P52   | P51   | P50   |
|         | Bank 0    | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×05    | R5<br>P5  | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         | 13        | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |
|         |           | Bit Name                   | P67    | P66    | P65   | P64   | P63   | P62   | P61   | P60   |
|         | Bank 0    | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×06    | R6<br>P6  | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         | 10        | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |
|         |           | Bit Name                   | P77    | P76    | P75   | P74   | P73   | P72   | -     | -     |
|         | Bank 0    | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×07    | R7<br>P7  | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         | Γ/        | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |
|         |           | Bit Name                   | -      | -      | -     | -     | -     | P82   | P81   | P80   |
|         | Bank 0    | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 80×0    | R8        | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         | P8        | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |
|         |           | Bit Name                   | RBit7  | RBit6  | RBit5 | RBit4 | RBit3 | RBit2 | RBit1 | RBit0 |
|         | Bank 0    | Power-on                   | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| 0×09    | R9        | /RESET and WDT             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
|         | TBLP      | Wake-up from Pin<br>Change | Р      | Р      | Р     | Р     | Р     | Р     | Р     | Р     |



| Address | Name                       | Reset Type                 | Bit 7  | Bit 6   | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|---------|----------------------------|----------------------------|--------|---------|--------|--------|--------|-------|-------|-------|
|         |                            | Bit Name                   | CMP2WE | ICWE    | ADWE   | EXWE   | SPIWE  | -     | -     | -     |
|         | Bank 0                     | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×0A    | RA<br>WUCR                 | /RESET and WDT             | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
|         | WOOK                       | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | RD     | WR      | EEWE   | EEDF   | EEPC   | -     | ı     | -     |
|         | Bank 0                     | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×0B    | RB<br>ECR                  | /RESET and WDT             | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         | LOR                        | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | EE_A7  | EE_A6   | EE_A5  | EE_A4  | EE_A3  | EE_A2 | EE_A1 | EE_A0 |
| _       | Bank 0                     | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×0C    | RC                         | /RESET and WDT             | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | EE_D7  | EE_D6   | EE_D5  | EE_D4  | EE_D3  | EE_D2 | EE_D1 | EE_D0 |
| 0.05    | Bank 0                     | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×0D    | RD                         | /RESET and WDT             | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | -      | TIMERSC | CPUS   | IDLE   | -      | -     | -     | -     |
|         | Bank 0                     | Power-on                   | 0      | 1       | 1      | 1      | 0      | 0     | 0     | 0     |
| 0×0E    | RE<br>MSR                  | /RESET and WDT             | 0      | 1       | 1      | 1      | 0      | 0     | 0     | 0     |
|         |                            | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | -      | ADIF    | SPIIF  | PWMBIF | PWMAIF | EXIF  | ICIF  | TCIF  |
| 0.05    | RF (ISR)                   | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×0F    | (Bank 0)                   | /RESET and WDT             | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
|         |                            | Wake-up from Pin<br>Change | Р      | Р       | Р      | Р      | Р      | Р     | Р     | Р     |
|         |                            | Bit Name                   | TC1CAP | TC1S    | TC1CK1 | TC1CK0 | TC1M   | TC1ES | -     | -     |
| 0.05    | Bank 1                     | Power-on                   | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| 0×05    | R5<br>TC1CR                | /RESET and WDT             | 0      | 0       | 0      | 0      | 0      | 0     | 0     | 0     |
| TC1CR   | Wake-up from Pin<br>Change | Р                          | Р      | Р       | Р      | Р      | Р      | Р     | Р     |       |



| Address | Name                  | Posot Tyme                 | Bit 7       | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|---------|-----------------------|----------------------------|-------------|--------|--------|--------|--------|--------|--------|--------|
| Address | Name                  | Reset Type                 |             |        |        |        |        |        |        |        |
|         |                       | Bit Name                   | TC1DA7      | TC1DA6 | TC1DA5 | TC1DA4 |        | TC1DA2 | TC1DA1 | TC1DA0 |
| 0×06    | Bank 1<br>R6          | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×06    | TC1DA                 | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         |                       | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | TC1DB7      | TC1DB6 | TC1DB5 | TC1DB4 | TC1DB3 | TC1DB2 | TC1DB1 | TC1DB0 |
|         | Bank 1<br>R7<br>TC1DB | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×07    |                       | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | ТСТВВ                 | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | RCM1        | RCM0   | TC2ES  | TC2M   | TC2S   | TC2CK2 | TC2CK1 | TC2CK0 |
|         | Bank 1                | Power-on                   | WORD1 <3,2> | 0      | 0      | 0      | 0      | 0      | 0      |        |
| 80×0    | R8<br>TC2CR           | /RESET and WDT             | WORD1 <3,2> | 0      | 0      | 0      | 0      | 0      | 0      |        |
|         |                       | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | TC2D15      | TC2D14 | TC2D13 | TC2D12 | TC2D11 | TC2D10 | TC2D9  | TC2D8  |
|         | Bank 1                | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×09    | R9<br>TC2DH           | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | 102511                | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | TC2D7       | TC2D6  | TC2D5  | TC2D4  | TC2D3  | TC2D2  | TC2D1  | TC2D0  |
| 0.04    | Bank 1                | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0A    | RA<br>TC2DL           | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | . 0252                | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | DORD        | TD1    | TD0    | =      | OD3    | OD4    | -      | RBF    |
| 0.05    | Bank 1                | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0B    | RB<br>SPIS            | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | C. 10                 | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |                       | Bit Name                   | CES         | SPIE   | SRO    | SSE    | SDOC   | SBRS2  | SBRS1  | SBRS0  |
| 0.50    | Bank 1                | Power-on                   | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0C    | RC<br>SPIC            | /RESET and WDT             | 0           | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | SPIC                  | Wake-up from Pin<br>Change | Р           | Р      | Р      | Р      | Р      | Р      | Р      | Р      |



| Address | Name        | Reset Type                 | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|---------|-------------|----------------------------|--------|-------|--------|--------|--------|--------|-------|-------|
|         |             | Bit Name                   | SRB7   | SRB6  | SRB5   | SRB4   | SRB3   | SRB2   | SRB1  | SRB0  |
|         | Bank 1      | Power-on                   | U      | U     | U      | U      | U      | U      | U     | U     |
| 0×0D    | RD          | /RESET and WDT             | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         | SPIRB       | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | SWB7   | SWB6  | SWB5   | SWB4   | SWB3   | SWB2   | SWB1  | SWB0  |
|         | Bank 1      | Power-on                   | U      | U     | U      | U      | U      | U      | U     | U     |
| 0×0E    | RE<br>SPIWB | /RESET and WDT             | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         | SHWB        | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | CMP2IF | -     | TC3IF  | TC2IF  | TC1IF  | UERRIF | RBFF  | TBEF  |
|         | Bank 1      | Power-on                   | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×0F    | RF<br>ISR2  | /RESET and WDT             | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
|         | 10112       | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | ADE7   | ADE6  | ADE5   | ADE4   | ADE3   | ADE2   | ADE1  | ADE0  |
|         | Bank 2      | Power-on                   | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×05    | R5<br>AISR  | /RESET and WDT             | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
|         | ,           | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | VREFS  | CKR1  | CKR0   | ADRUN  | ADPD   | ADIS2  | ADIS1 | ADIS0 |
|         | Bank 2      | Power-on                   | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×06    | R6<br>ADCON | /RESET and WDT             | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
|         | 7,50011     | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | CALI   | SIGN  | VOF[2] | VOF[1] | VOF[0] | -      | -     | -     |
| 0.07    | Bank 2      | Power-on                   | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×07    | R7<br>ADOC  | /RESET and WDT             | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
|         | 7.000       | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |
|         |             | Bit Name                   | AD9    | AD8   | AD7    | AD6    | AD5    | AD4    | AD3   | AD2   |
| 0.00    | Bank 2      | Power-on                   | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×08    | R8<br>ADDH  | /RESET and WDT             | 0      | 0     | 0      | 0      | 0      | 0      | 0     | 0     |
|         | ADDH        | Wake-up from Pin<br>Change | Р      | Р     | Р      | Р      | Р      | Р      | Р     | Р     |



| Address | Name                 | Reset Type                 | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|---------|----------------------|----------------------------|-------|--------|--------|--------|--------|--------|-------|-------|
|         |                      | Bit Name                   | -     | -      | -      | -      | -      | -      | AD1   | AD0   |
|         | Bank 2               | Power-on                   | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×09    | R9<br>ADDL           | /RESET and WDT             | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
|         | ADDL                 | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | URTD8 | UMODE1 | UMODE0 | BRATE2 | BRATE1 | BRATE0 | UTBE  | TXE   |
|         | Bank 2<br>RA<br>URC1 | Power-on                   | U     | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×0A    |                      | /RESET and WDT             | Р     | Р      | Р      | Р      | Р      | Р      | 0     | 0     |
|         |                      | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | -     | -      | SBIM1  | SBIM0  | UINVEN | -      | -     | -     |
|         | Bank 2               | Power-on                   | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×0B    | RB<br>URC2           | /RESET and WDT             | 0     | 0      | Р      | Р      | Р      | 0      | 0     | 0     |
|         | 01102                | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | URRD8 | EVEN   | PRE    | PRERR  | OVERR  | FMERR  | URBF  | RXE   |
|         | Bank 2               | Power-on                   | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 0×0C    | RC<br>URS            | /RESET and WDT             | Р     | Р      | Р      | 0      | 0      | 0      | 0     | 0     |
|         | ONO                  | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | URRD7 | URRD6  | URRD5  | URRD4  | URRD3  | URRD2  | URRD1 | URRD0 |
|         | Bank 2               | Power-on                   | U     | U      | U      | U      | U      | U      | U     | U     |
| 0×0D    | RD<br>URRD           | /RESET and WDT             | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         | 02                   | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | URTD7 | URTD6  | URTD5  | URTD4  | URTD3  | URTD2  | URTD1 | URTD0 |
| 0.05    | Bank 2               | Power-on                   | U     | U      | U      | U      | U      | U      | U     | U     |
| 0×0E    | RE<br>URTD           | /RESET and WDT             | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |
|         |                      | Bit Name                   | /PH77 | /PH76  | /PH75  | /PH74  | /PH73  | /PH72  | -     | -     |
| 005     | Bank 2               | Power-on                   | 1     | 1      | 1      | 1      | 1      | 1      | 1     | 1     |
| 0×0F    | RF<br>PHCR1          | /RESET and WDT             | 1     | 1      | 1      | 1      | 1      | 1      | 1     | 1     |
|         | PHCR1                | Wake-up from Pin<br>Change | Р     | Р      | Р      | Р      | Р      | Р      | Р     | Р     |



| Address | Name         | Reset Type                 | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|---------|--------------|----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
|         |              | Bit Name                   | TAEN    | TAP2    | TAP1    | TAP0    | TBEN    | TBP2    | TBP1    | TBP0    |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×05    | R5           | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | TMRCON       | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | MLB     | -       | -       | -       | RBit11  | RBit10  | RBit9   | RBit8   |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×06    | R6<br>TBHP   | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | .5           | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | -       | -       | -       | CPOUT2  | COS21   | COS20   | PWMAE   | PWMBE   |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×07    | R7<br>CMPCON | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | CIVII COIN   | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | PRDA[1] | PRDA[0] | DTA[1]  | DTA[0]  | PRDB[1] | PRDB[0] | DTB[1]  | DTB[0]  |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×08    | R8<br>PWMCON | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | T WINCOM     | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | PRDA[9] | PRDA[8] | PRDA[7] | PRDA[6] | PRDA[5] | PRDA[4] | PRDA[3] | PRDA[2] |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×09    | R9<br>PRDAH  | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | TROAIT       | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | DTA[9]  | DTA[8]  | DTA[7]  | DTA[6]  | DTA[5]  | DTA[4]  | DTA[3]  | DTA[2]  |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×0A    | RA<br>DTAH   | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | DIAH         | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |
|         |              | Bit Name                   | PRDB[9] | PRDB[8] | PRDB[7] | PRDB[6] | PRDB[5] | PRDB[4] | PRDB[3] | PRDB[2] |
|         | Bank 3       | Power-on                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 0×0B    | RB<br>PRDRH  | /RESET and WDT             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|         | PRDBH -      | Wake-up from Pin<br>Change | Р       | Р       | Р       | Р       | Р       | Р       | Р       | Р       |



| Address | Name        | Reset Type                 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|---------|-------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|         |             | Bit Name                   | DTB[9] | DTB[8] | DTB[7] | DTB[6] | DTB[5] | DTB[4] | DTB[3] | DTB[2] |
|         | Bank 3      | Power-on                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0C    | RC          | /RESET and WDT             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | DTBH        | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | TC3FF1 | TC3FF0 | TC3S   | TC3CK2 | TC3CK1 | TC3CK0 | TC3M1  | TC3M0  |
|         | Bank 3      | Power-on                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0D    | RD<br>TC3CR | /RESET and WDT             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | 103010      | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | TC3D7  | TC3D6  | TC3D5  | TC3D4  | TC3D3  | TC3D2  | TC3D1  | TC3D0  |
|         | Bank 3      | Power-on                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0E    | RE<br>TC3D  | /RESET and WDT             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         | 1000        | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | /PD77  | /PD76  | /PD75  | /PD74  | /PD73  | /PD72  | ı      | ı      |
|         | Bank 3      | Power-on                   | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| 0×0F    | RF<br>PDCR1 | /RESET and WDT             | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|         | TOOKT       | Wake-Up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | WDTE   | EIS    | -      | -      | PSWE   | PSW2   | PSW1   | PSW0   |
|         | IOCA        | Power-un                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0A    | WDTCR       | /RESET and WDT             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         |             | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | /PD63  | /PD62  | /PD61  | /PD60  | /PD53  | /PD52  | /PD51  | /PD50  |
|         | IOCB        | Power-on                   | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| 0×0B    | PDCR2       | /RESET and WDT             | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|         |             | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |
|         |             | Bit Name                   | OD67   | OD66   | OD65   | OD64   | OD63   | OD62   | OD61   | OD60   |
|         | IOCC        | Power-on                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0×0C    | ODCR        | /RESET and WDT             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|         |             | Wake-up from Pin<br>Change | Р      | Р      | Р      | Р      | Р      | Р      | Р      | Р      |



| Address | Name                      | Reset Type                 | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|---------|---------------------------|----------------------------|--------|-------|-------|--------|--------|--------|-------|-------|
|         |                           | Bit Name                   | /PH67  | /PH66 | /PH65 | /PH64  | /PH63  | /PH62  | /PH61 | /PH60 |
|         | 0×0D IOCD PHCR2           | Power-on                   | 1      | 1     | 1     | 1      | 1      | 1      | 1     | 1     |
| 0×0D    |                           | /RESET and WDT             | 1      | 1     | 1     | 1      | 1      | 1      | 1     | 1     |
|         |                           | Wake-up from Pin<br>Change | Р      | Р     | Р     | Р      | Р      | Р      | Р     | Р     |
|         |                           | Bit Name                   | CMP2IE | =     | TC3IE | TC2IE  | TC1IE  | UERRIE | URIE  | UTIE  |
|         | IOCE                      | Power-on                   | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     |
| 0×0E    | IMR2                      | /RESET and WDT             | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     |
|         |                           | Wake-up from Pin<br>Change | Р      | Р     | Р     | Р      | Р      | Р      | Р     | Р     |
|         |                           | Bit Name                   | =      | ADIE  | SPIIE | PWMBIE | PWMAIE | EXIE   | ICIE  | TCIE  |
|         | IOCF                      | Power-on                   | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     |
| 0×0F    | IMR1                      | /RESET and WDT             | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     |
|         |                           | Wake-up from Pin<br>Change | Р      | Р     | Р     | Р      | Р      | Р      | Р     | Р     |
|         |                           | Bit Name                   | -      | -     | -     | -      | -      | -      | -     | -     |
| 0×10    | 0×10<br>~ R10~R3F<br>0×3F | Power-on                   | U      | U     | U     | U      | U      | U      | U     | U     |
|         |                           | /RESET and WDT             | Р      | Р     | Р     | Р      | Р      | Р      | Р     | Р     |
| UXSF    |                           | Wake-up from Pin<br>Change | Р      | Р     | Р     | Р      | Р      | Р      | Р     | Р     |

**Legend:** "x" = not used

"P" = previous value before reset

"u" = unknown or don't care

"t" = check Table 6-5-2-1

# 6.5.2 Status of T and P of the Status Register

A reset condition is initiated by the following events:

- 1. Power-on condition
- 2. High-low-high pulse on /RESET pin
- 3. Watchdog timer time-out

The values of T and P, listed in Table 6-5-2-1 are used to check how the processor wakes up. Table 6-5-2-2 shows the events that may affect the status of T and P.



Table 6-5-2-1 Values of T and P after Reset

| Reset Type                              | Т  | Р          |
|-----------------------------------------|----|------------|
| Power On                                | 1  | 1          |
| /RESET during Operating mode            | *P | *P         |
| /RESET wake-up during Sleep mode        | 1  | 0          |
| WDT during Operating mode               | 0  | <b>*</b> P |
| WDT wake-up during Sleep mode           | 0  | 0          |
| Wake-up on pin change during Sleep mode | 1  | 0          |

<sup>\*</sup> P: Previous status before reset

Table 6-5-2-2 Status of T and P Being Affected by Events

| Event                                   | Т | Р  |
|-----------------------------------------|---|----|
| Power On                                | 1 | 1  |
| WDTC instruction                        | 1 | 1  |
| WDT time-out                            | 0 | *P |
| SLEP instruction                        | 1 | 0  |
| Wake-up on pin change during Sleep mode | 1 | 0  |

<sup>\*</sup> P: Previous status before reset

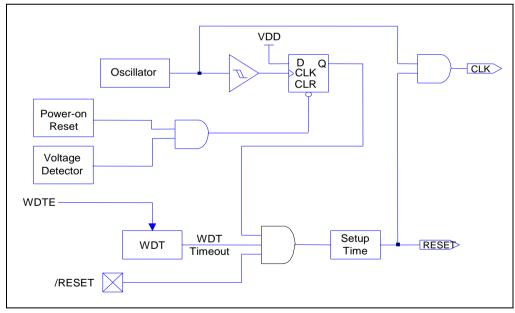



Figure 6-16 Block Diagram of Controller Reset



# 6.6 Interrupt

The EM78Fx64N has 14 interrupts (3 external, 11 internal) as listed below:

| Interrupt Source       |                    | Enable Condition | Int. Flag | Int. Vector | Priority |
|------------------------|--------------------|------------------|-----------|-------------|----------|
| Internal /<br>External | Reset              | -                | -         | 0000        | High 0   |
| External               | INT                | ENI + EXIE=1     | EXIF      | 0003        | 1        |
| External               | Port 6 pin change  | ENI +ICIE=1      | ICIF      | 0006        | 2        |
| Internal               | TCC                | ENI + TCIE=1     | TCIF      | 0009        | 3        |
| Internal               | SPI                | ENI + SPIIE=1    | SPIIF     | 0012        | 4        |
| External               | Comparator 2       | ENI+CMP2IE=1     | CMP2IF    | 0015        | 5        |
| Internal               | TC1                | ENI + TC1IE=1    | TC1IF     | 0018        | 6        |
| Internal               | UART Transmit      | ENI + UTIE=1     | TBEF      | 001B        | 7        |
| Internal               | UART Receive       | ENI + URIE=1     | RBFF      | 001E        | 8        |
| Internal               | UART Receive error | ENI+UERRIE=1     | UERRIF    | 0021        | 9        |
| Internal               | TC2                | ENI + TC2IE=1    | TC2IF     | 0024        | 10       |
| Internal               | TC3                | ENI + TC3IE=1    | TC3IF     | 0027        | 11       |
| Internal               | PWMA               | ENI+PWMAIE=1     | PWMAIF    | 002A        | 12       |
| Internal               | PWMB               | ENI+PWMBIE=1     | PWMBIF    | 002D        | 13       |
| Internal               | AD                 | ENI+ADIE=1       | ADIF      | 0030        | 14       |

RE and RF are the interrupt status registers that record the interrupt requests in the relative flags/bits. IOCE and IOCF are the interrupt mask registers. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occurs, the next instruction will be fetched from their individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICIF bit) in the Interrupt Status Register (RF and RE) is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

The external interrupt has an on-chip digital noise rejection circuit (input pulse less than 8 system clock time is eliminated as noise), but in Low Crystal oscillator (LXT) mode, the noise rejection circuit will be disabled. When an interrupt (Falling edge) is generated by the External interrupt (when enabled), the next instruction will be fetched from Address 003H.



Before the interrupt subroutine is executed, the contents of ACC and the R3 and R4 register will be saved by hardware. If another interrupt occurred, the ACC, R3 and R4 will be replaced by the new interrupt. After the interrupt service routine is finished, ACC, R3 and R4 will be pushed back.

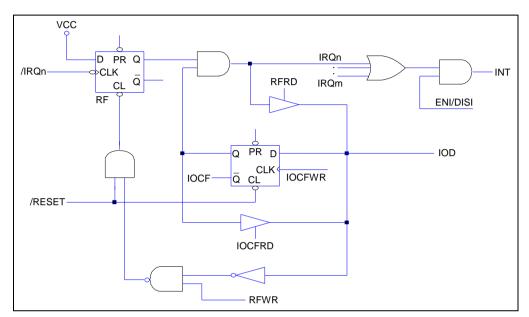



Figure 6-17 Interrupt Input Circuit

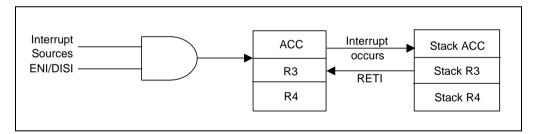



Figure 6-18 Interrupt Back-up Diagram

# 6.7 Data EEPROM (only for EM78F664N)

The Data EEPROM is readable and writable during normal operation over the whole Vdd range. The operation for Data EEPROM is based on a single byte. A write operation makes an erase-then-write cycle to take place on the allocated byte.

The Data EEPROM memory provides high erase and write cycles. A byte write automatically erases the location and writes the new value.



## 6.7.1 Data EEPROM Control Register

### 6.7.1.1 RB (EEPROM Control Register)

The EECR (EEPROM Control Register) is the control register for configuring and initiating the control register status.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD    | WR    | EEWE  | EEDF  | EEPC  | -     | -     | -     |

Bit 7 (RD): Read control register

0: Does not execute EEPROM read

1 : Read EEPROM content, (RD can be set by software, RD is cleared by hardware after Read instruction is completed).

Bit 6 (WR): Write control register

**0**: Write cycle to the EEPROM is complete.

1 : Initiate a write cycle, (WR can be set by software, WR is cleared by hardware after Write cycle is completed)

Bit 5 (EEWE): EEPROM Write Enable bit

0: Prohibit write to the EEPROM

1: Allows EEPROM write cycles.

Bit 4 (EEDF): EEPROM Detect Flag

0: Write cycle is completed

1: Write cycle is unfinished

Bit 3 (EEPC): EEPROM power-down control bit

0: Switch off the EEPROM

1: EEPROM is operating

Bits 2 ~ 0: Not used, set to "0" at all time

### 6.7.1.2 RC (256 Bytes EEPROM Address)

When accessing the EEPROM data memory, the RC (256 bytes EEPROM address register) holds the address to be accessed. In accordance with the operation, the RD (256 bytes EEPROM Data register) holds the data to be written, or the data read, at the address in RC.

| Bi  | 7   | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-----|-------|-------|-------|-------|-------|-------|-------|
| EE_ | _A7 | EE_A6 | EE_A5 | EE_A4 | EE_A3 | EE_A2 | EE_A1 | EE_A0 |

Bits 7 ~ 0: 256 bytes EEPROM address



### 6.7.1.3 RD (256 Bytes EEPROM Data)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EE_D7 | EE_D6 | EE_D5 | EE_D4 | EE_D3 | EE_D2 | EE_D1 | EE_D0 |

Bits 7 ~ 0: 256 bytes EEPROM data

# 6.7.2 Programming Steps / Example Demonstration

### 6.7.2.1 Programming Step

Follow these steps to write or read data from the EEPROM:

- (1) Set the RB.EEPC bit to 1 to enable the EEPROM power.
- (2) Write the address to RC (256 bytes EEPROM address).
  - a.1. Set the RB.EEWE bit to 1, if the write function is employed.
  - a.2. Write the 8-bit data value to be programmed in the RD (256 bytes EEPROM data)
  - a.3. Set the RB.WR bit to 1, then execute write function
  - b. Set the RB.READ bit to 1, after which, execute read function
- (3) a. Wait for the RB.EEDF or RB.WR to be cleared
  - b. Wait for the RB.EEDF to be cleared
- (4) For the next conversion, go to Step 2 as required.
- (5) If user wants to save power and to make sure the EEPROM data is not used, clear the RB.EEPC.

## 6.7.2.2 Example Demonstration Programs

```
;To define the control register
;Write data to EEPROM
RC == 0x0C
RB == 0x0B
RD == 0x0D
Read == 0x07
WR == 0x06
EEWE == 0x05
EEDF == 0x04
EEPC == 0x03
BS RB, EEPC ; Set the EEPROM power on
MOV A,@0x0A
MOV RC, A
                ; Assign the address from EEPROM
BS RB, EEWE
                ; Enable the EEPROM write function
MOV A, @0x55
MOV RD, A
                ; Set the data for EEPROM
BS RB, WR
                ; Write value to EEPROM
JBC RB, EEDF
                 ; Check the EEPROM bit whether complete or not
JMP $-1
```



# 6.8 Analog-to-Digital Converter (ADC)

The analog-to-digital circuitry consists of a 10-bit analog multiplexer, three control registers [AISR/R5 (Bank 2), ADCON/R6 (Bank 2), ADOC/R7 (Bank 2)], two data registers (ADDH, ADDL/R8, R9) and an ADC with 10-bit resolution. The functional block diagram of the ADC is shown in Figure 6-19. The analog reference voltage (Vref) and analog ground are connected via separate input pins.

The ADC module utilizes successive approximation to convert the unknown analog signal into a digital value. The result is feed to the ADDH and ADDL. Input channels are selected by the analog input multiplexer via the ADCON register Bits ADIS2 ~ ADIS0.

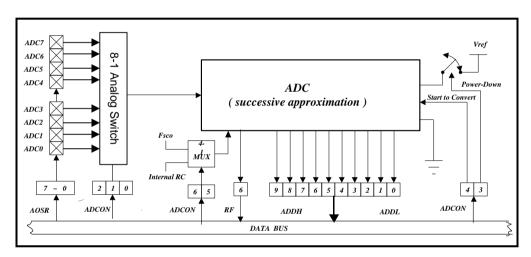



Figure 6-19 Functional Block Diagram of Analog-to-Digital Conversion

## 6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)

### 6.8.1.1 Bank 2 R5 AISR (ADC Input Select Register)

The AISR register individually defines the Port 6 pins as analog input or as digital I/O.

| Bit         | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Symbol      | ADE7  | ADE6  | ADE5  | ADE4  | ADE3  | ADE2  | ADE1  | ADE0  |
| *Init_Value | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Bit 7 (ADE7): AD converter enable bit of P67 pin.

0: Disable ADC7, P67 functions as I/O pin

1 : Enable ADC7 to function as analog input pin

Bit 6 (ADE6): AD converter enable bit of P66 pin

0: Disable ADC6, P66 functions as I/O pin

1 : Enable ADC6 to function as analog input pin



Bit 5 (ADE5): AD converter enable bit of P65 pin

0: Disable ADC5, P65 functions as I/O pin

1 : Enable ADC5 to function as analog input pin

Bit 4 (ADE4): AD converter enable bit of P64 pin.

0: Disable ADC4, P64 functions as I/O pin

1 : Enable ADC4 to function as analog input pin

Bit 3 (ADE3): AD converter enable bit of P63 pin.

0: Disable ADC3, P63 functions as I/O pin

1: Enable ADC3 to function as analog input pin

Bit 2 (ADE2): AD converter enable bit of P62 pin

0: Disable ADC2, P62 functions as I/O pin

1 : Enable ADC2 to function as analog input pin

Bit 1 (ADE1): AD converter enable bit of P61 pin

0: Disable ADC1, P61 functions as I/O pin

1: Enable ADC1 to function as analog input pin

Bit 0 (ADE0): AD converter enable bit of P60 pin.

0: Disable ADC0, P60 functions as I/O pin

1 : Enable ADC0 to function as analog input pin

# 6.8.1.2 Bank 2 R6 ADCON (A/D Control Register)

The ADCON register controls the operation of the A/D conversion and determines which pin should be currently active.

| Bit    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Symbol | VREFS | CKR1  | CKR0  | ADRUN | ADPD  | ADIS2 | ADIS1 | ADIS0 |

Bit 7 (VREFS): ADC's Vref input source

**0** : ADC's Vref is connected to Vdd (default value), and the P50/VREF pin carries out the function of P50

1: ADC's Vref is connected to P50/VREF

Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The prescaler of oscillator clock rate of ADC

**00** = 1: 4 (default value)

**01** = 1: 1

**10** = 1: 16

**11** = 1: 2



| CKR1/CKR0 | Operation Mode      | Max. Operation Frequency |
|-----------|---------------------|--------------------------|
| 00        | F <sub>OSC</sub> /4 | 4 MHz                    |
| 01        | Fosc                | 1 MHz                    |
| 10        | Fosc/16             | 16 MHz                   |
| 11        | Fosc/2              | 2 MHz                    |

Bit 4 (ADRUN): ADC starts to run

**0** : Reset on completion of the conversion. This bit cannot be reset by software.

1 : A/D conversion is started. This bit can be set by software.

Bit 3 (ADPD): ADC Power-down mode

**0**: Switch off the resistor reference to save power even while the CPU is operating

1: ADC is operating

Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select

000 = AN0/P60

001 = AN1/P61

010 = AN2/P62

011 = AN3/P63

100 = AN4/P64

101 = AN5/P65

110 = AN6/P66

111 = AN7/P67

They can only be changed when the ADIF bit and the ADRUN bit are both Low.

### 6.8.1.3 Bank 2 R7 ADOC (A/D Offset Calibration Register)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|--------|--------|--------|-------|-------|-------|
| CALI  | SIGN  | VOF[2] | VOF[1] | VOF[0] | -     | -     | -     |

Bit 7 (CALI): Calibration enable bit for A/D offset

0 : disable Calibration1 : enable Calibration

Bit 6 (SIGN): Polarity bit of offset voltage

0 : Negative voltage1 : Positive voltage

Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

Bits 2 ~ 0: Not used, set to "0" at all time



## 6.8.2 ADC Data Buffer (ADDH, ADDL/R8, R9)

When the A/D conversion is completed, the result is loaded to the ADDH, ADDL. The ADRUN bit is cleared, and the ADIF is set.

## 6.8.3 A/D Sampling Time

The accuracy, linearity, and speed of the successive approximation A/D converter are dependent on the properties of the ADC and the comparator. The source impedance and the internal sampling impedance directly affect the time required to charge the sample holding capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 2  $\mu$ s for each  $\kappa$ 0 of the analog source impedance and at least 2  $\mu$ s for the low-impedance source. The maximum recommended impedance for the analog source is  $10\kappa$ 0 at Vdd=5V. After the analog input channel is selected, this acquisition time must be done before conversion can be started.

### 6.8.4 A/D Conversion Time

CKR1 and CKR0 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU to run at a maximum frequency without sacrificing the AD conversion accuracy. For the EM78Fx64N, the conversion time per bit is  $1\mu$ s. Table 6-8-4-1 shows the relationship between Tct and the maximum operating frequencies.

Table 6-8-4-1 Tct vs. Maximum Operation Frequency

| CKR1: CKR0 Operation Mode |         | Max. Operation<br>Frequency | Max. Conversion<br>Rate/Bit | Max. Conversion Rate                                   |
|---------------------------|---------|-----------------------------|-----------------------------|--------------------------------------------------------|
| 00 Fosc/4                 |         | 4 MHz                       | 1 MHz (1 μs)                | $16 \times 1 \mu s = 16 \mu s (62.5 \text{kHz})$       |
| 01                        | Fosc    | 1 MHz                       | 1 MHz (1 µs)                | $16 \times 1 \ \mu s = 16 \ \mu s \ (62.5 \text{kHz})$ |
| 10                        | Fosc/16 | 16 MHz                      | 1 MHz (1 μs)                | $16 \times 1 \ \mu s = 16 \ \mu s \ (62.5 \text{kHz})$ |
| 11                        | Fosc/2  | 2 MHz                       | 1 MHz (1 µs)                | $16 \times 1 \mu s = 16 \mu s (62.5 \text{kHz})$       |

### **NOTE**

The pin not used as an analog input can be used as regular input or output pin. During conversion, do not perform output instruction to maintain precision for all the pins.



## 6.8.5 A/D Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduced power consumption, the A/D conversion remains operational during sleep mode. As the SLEP instruction is executed, all MCU operations will stop except for the Oscillator, TCC, TC1, TC2, TC3, Timer A, Timer B and A/D conversion.

The AD Conversion is considered completed when:

- 1 ADRUN Bit of R6 Register is cleared to "0".
- 2 Wake-up from A/D Conversion remains in operation during Sleep Mode.

The result is fed to the ADDATA, ADOC when the conversion is completed. If the ADWE is enabled, the device will wake up. Otherwise, A/D conversion will be shut off, no matter what the status of the ADPD bit is.

## 6.8.6 Programming Steps/Considerations

### 6.8.6.1 Programming Steps

Follow these steps to obtain data from the ADC:

- 1. Write to the eight bits (ADE7~ADE0) on the R5 (AISR) register to define the characteristics of R6 (digital I/O, analog channels, or voltage reference pin)
- 2. Write to the R6/ADCON register to configure the AD module:
  - a) Select AD input channel (ADIS2: ADIS0)
  - b) Define the AD conversion clock rate (CKR1 ~ CKR0)
  - c) Select the VREFS input source of the ADC
  - d) Set the ADPD bit to 1 to begin sampling
- 3. Set the ADWE bit, if the wake-up function is employed
- 4. Set the ADIE bit, if the interrupt function is employed
- 5. Write "ENI" instruction, if the interrupt function is employed
- 6. Set the ADRUN bit to 1
- 7. Wait for wake-up or for ADRUN bit to be cleared to "0"
- 8. Read the ADDATAH and ADDATAL conversion data registers.
- 9. Clear the interrupt flag bit (ADIF) when A/D interrupt function has occurred.
- 10. For the next conversion, go to Step 1 or Step 2 as required. At least two TCT's are required before the next acquisition starts.

#### NOTE

To obtain an accurate value, it is necessary to avoid any data transition on the I/O pins during AD conversion.



### 6.8.6.2 Demonstration Programs

```
; To define the general registers
R \ 0 == 0
                          ; Indirect addressing register
PSW == 3
                          ; Status register
PORT5 == 5
PORT6 == 6
RA== 0XA
                          ; Wake-up control register
RF== OXF
                          ; Interrupt status register
; To define the control register
IOC50 == 0X5
                         ; Control Register of Port 5
IOC60 == 0X6
                         ; Control Register of Port 6
C INT == OXF
                          ; Interrupt Control Register
;ADC Control Registers
                         ; The contents are the results of ADC
ADDATAH == 0x8
                        ; The contents are the results of ADC
ADDATAL == 0 \times 9
AISR == 0x05
                        ; ADC input select register
ADCON == 0x6
                         ; 7 6 5 4 3 2 1 0
                         (VREFS) (CKR1:0) (ADRUN) (ADPD) (ADIS2:0)
ADOC == 0x07
                         ; ADC offset calibration register
;To define bits
; In ADCON
ADRUN == 0x4
                         ; ADC is executed as the bit is set
ADPD == 0x3
                         ; Power Mode of ADC
ORG 0
                          ; Initial address
JMP INITIAL
ORG 0x30
                         ; Interrupt vector
(User's program)
                         ; Determined by User
BANK
CLR RF
                         ; To clear the ADIF bit
RANK
BS ADCON , ADRUN
                         ; To start to execute the next AD
                          ; conversion if necessary
RETT
INITIAL:
         2
BANK
MOV A
          , @OB00000001 ; To define P60 as an analog input
MOV AISR
         , A
          , @0B00001000
MOV A
                          ; To select P60 as an analog input
                          ; channel, and AD power on
```



```
MOV ADCON , A
                           ; To define P60 as an input pin and
                           ; set clock rate at fosc/4
           , @OBOOOOOOO
MOV A
MOV ADOC
                           ; To disable calibration
           , A
En ADC:
MOV A
           , @OBXXXXXXX1
                           ; To define P60 as an input pin, and
                           ; the others are dependent
IOW PORT6
                           ; on applications
BANK
MOV A
           , @OBXX1XXXXX
                           ; Enable the ADWE wake-up function
                           ; of ADC, "X" by application
MOV RA
           , A
MOV A
           , @OBX1XXXXXX
                           ; Enable the ADIE interrupt function
                           ; of ADC, "X" by application
IOW C INT
ENI
                           ; Enable the interrupt function
BANK
BS ADCON
           , ADRUN
                           ; Start to run the ADC
                           ; If the interrupt function is
                           ; employed, the following three
                           ; lines may be ignored
SLEP
                           ; Into sleep mode
POLLING:
JBC ADCON , ADRUN
                           ; To check the ADRUN bit
                           ; continuously
JMP POLLING
                           ; ADRUN bit will be reset as the AD
                           ; conversion is completed
(User's program)
                           ; Read AD convert data from ADDATAH/L
```



# 6.9 Dual Set of PWM (Pulse Width Modulation)

### 6.9.1 Overview

In PWM mode, PWMA and PWMB pins produce up to a 10-bit resolution PWM output (see Figure 6-20 for the functional block diagram). A PWM output has a period and a duty cycle, and it keeps the output in high. The baud rate of the PWM is the inverse of the period. Figure 6-21 depicts the relationships between a period and a duty cycle.

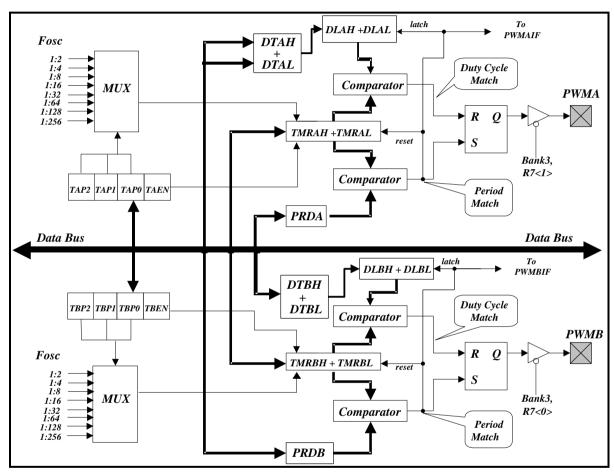



Figure 6-20 Functional Block Diagram of the two PWMs

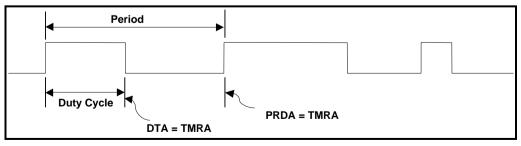



Figure 6-21 PWM Output Timing



## 6.9.2 Increment Timer Counter (TMRX: TMRAH/L or TMRBH/L)

TMRX are 10-bit clock counters with programmable prescalers. They are designed for the PWM module as baud rate clock generators. TMRX can be read only. If employed, they can be turned down for power conservation, by setting TAEN Bit [R5<7> Bank 3] or TBEN Bit [R5<3> Bank 3] to "0".

## 6.9.3 PWM Period (PRDX: PRDA or PRDB)

The PWM period is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- (1) TMRX is cleared.
- (2) The PWMX pin is set to 1.
- (3) The PWM duty cycle is latched from DTA/DTB to DLA/DLB.

#### **NOTE**

The PWM output will not be set, if the duty cycle is 0.

(4) The PWMXIF pin is set to 1.

The following formula describes how to calculate the PWM Time Period:

$$Period = (PRDX + 1) \times \left(\frac{1}{Fosc}\right) \times (TMRX \ prescaler \ value)$$

**Example:** 

$$PRDX = 49$$
;  $Fosc = 4 MHz$   $TMRX (0, 0, 0) = 1 : 2,$ 

Then

$$Period = (49+1) \times \left(\frac{1}{4M}\right) \times 2 = 25 \,\mu\text{s}$$

## 6.9.4 PWM Duty Cycle (DTX: DTA or DTB)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded at any time. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.

The following formula describes how to calculate the PWM duty cycle:

Duty cycle = 
$$(DTX) \times \left(\frac{1}{F_{OSC}}\right) \times \left(TMRX \text{ prescale value}\right)$$



Example:

DTX = 10; Fosc = 4 MHz TMRX 
$$(0, 0, 0) = 1 : 2$$
,

**Then** 

Duty cycle = 
$$(10) \times \left(\frac{1}{4M}\right) \times 2 = 5 \,\mu\text{s}$$

# 6.9.5 Comparator X

Changing the output status while a match occurs will simultaneously set the PWMXIF flag.

## 6.9.6 PWM Programming Procedures/Steps

- (1) Load PRDX with the PWM period.
- (2) Load DTX with the PWM Duty Cycle.
- (3) Enable the interrupt function by writing IOCF, if required.
- (4) Set the PWMX pin to be output by writing a desired value to Bank 3 R7.
- (5) Load a desired value to Bank 3 R5 with the TMRX prescaler value, and enable both PWMX and TMRX.

### 6.9.7 Timer Mode

#### 6.9.7.1 Overview

Timer X: Timer A (TMRA) and Timer B (TMRB) are 10-bit clock counters with programmable prescalers. They are designed for the PWM module as baud rate clock generators. TMRX can be read only. Timer A and Timer B stopped running when sleep mode occurs, with A/D Conversion not running. However, if A/D conversion is running when sleep mode occurs, Timer A and Timer B will keep on running.



# 6.9.7.2 Functional Description

Figure 6-22 shows the TMRX block diagram. Each signal and blocks are described as follows:

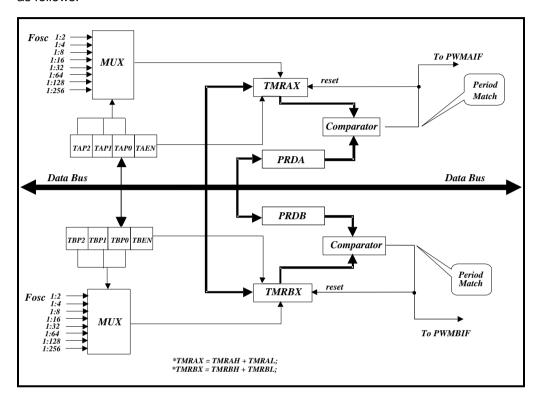



Figure 6-22 TMRX Block Diagram

Fosc: Internal clock

Prescaler (TAP2, TAP1 and TAP0 / TBP2, TBP1 and TBP0): Options of 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 are defined by TMRX. It is cleared when any type of reset occurs.

TMRAX and TMRBX (TMRAH/TMRAL and TMRBH/TMRBL: Timer X register; TMRX is incremented until it matches with PRDX, and then is reset to "1" (default valve).

PRDX (PRDA and PRDB): PWM time period register.

**Comparator X (Comparator A and Comparator B):** 

Reset TMRX while a match occurs. The PWMXIF flag is set at the same time.



### 6.9.7.3 Programming the Related Registers

When defining TMRX, refer to the operation of its related registers, as shown in the Table 6.9.7-1 below. It must be noted that the PWMX bits must be disabled if their related TMRXs are employed. That is, Bit 1: Bit 0 of Bank 3 R7 register must be set to '0'.

Table 6-9-7-1 Related Control Registers of TMRA and TMRB

| Address   | Name                                    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| R5 Bank 3 | Timer A and Timer B<br>Control Register | TAEN  | TAP2  | TAP1  | TAP0  | TBEN  | TBP2  | TBP1  | TBP0  |

### 6.9.7.4 Timer Programming Procedures/Steps

- (1) Load PRDX with the Timer period.
- (2) Enable interrupt function by writing to IOCF, if required.
- (3) Load a desired value to PWMCON and TMRCON with the TMRX prescaler value and enable TMRX and disable PWMX.

## 6.10 Timer/Counter 1

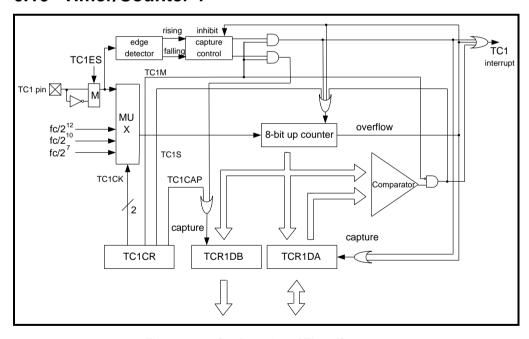



Figure 6-23 Configuration of Timer/Counter 1

**In Timer mode**, counting up is performed using an internal clock. When the contents of the up-counter matched the TCR1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TCR1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.



**In Counter mode,** counting up is performed using an external clock input pin (TC1) and either rising or falling edge can be selected by TC1ES but **both edges cannot be used**. When the contents of the up-counter matched the TCR1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TCR1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.

In Capture mode, the pulse width, period and duty of the TC1 input pin are measured in this mode, which can be used to decode the remote control signal. The counter is free running by the internal clock. On the rising (falling) edge of TC1 pin input, the contents of counter is loaded into TCR1DA, then the counter is cleared and interrupt is generated. On a falling (rising) edge of TC1 pin input, the contents of the counter are loaded into TCR1DB. The counter is still counting, on the next rising edge of TC1 pin input, the contents of the counter are loaded into TCR1DA, the counter is cleared and interrupt is generated again. If an overflow before the edge is detected, the FFH is loaded into TCR1DA and the overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TCR1DA value is FFH. After an interrupt (capture to TCR1DA or overflow detection) is generated, capture and overflow detection are halted until TCR1DA is read out.

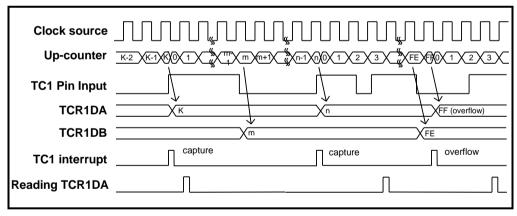



Figure 6-24 Capture Mode Timing Chart



# 6.11 Timer/Counter 2

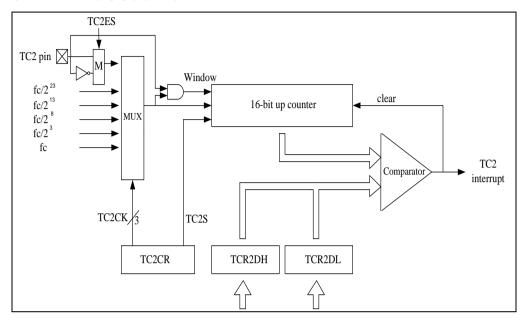



Figure 6-25 Configuration of Timer/Counter 2

**In Timer mode**, counting up is performed using the internal clock. When the contents of the up-counter matched the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

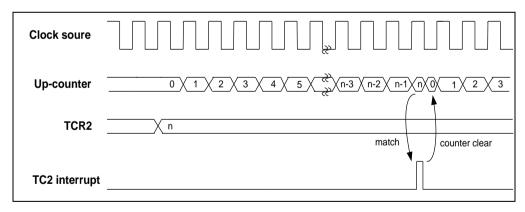



Figure 6-26 Timer Mode Timing Chart



**In Counter mode**, counting up is performed using an external clock input pin (TC2) and either rising or falling can be selected by setting TC2ES. When the contents of the up-counter matched the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

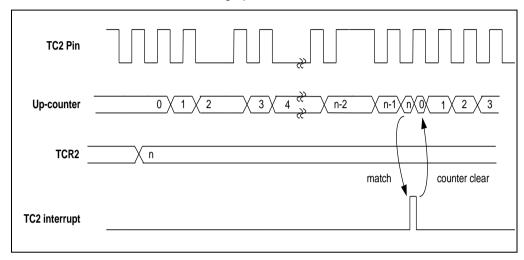



Figure 6-27 Counter Mode Timing Chart

**In Window mode**, counting up is performed on a rising edge of the pulse that is logical AND of an internal clock and the TC2 pin (window pulse). When the contents of the up-counter matched the TCR2 (TCR2DH+TCR2DL), then interrupt is generated and the counter is cleared. The frequency (window pulse) must be slower than the selected internal clock.

While writing to the TCR2DL, the comparison is inhibited until TCR2DH is written.

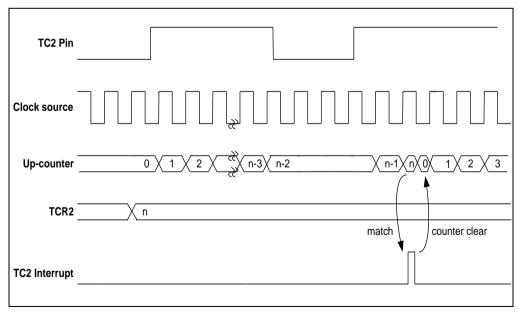



Figure 6-28 Window Mode Timing Chart



## 6.12 Timer/Counter 3

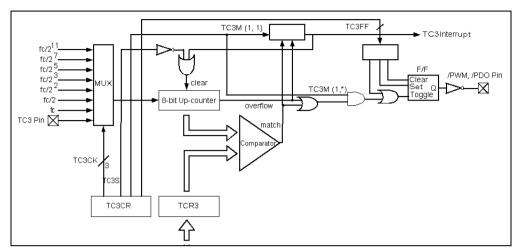



Figure 6-29 Timer/Counter 3 Configuration

**In Timer mode**, counting up is performed using the internal clock (rising edge trigger). When the contents of the up-counter matched with the contents of TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

**In Counter mode**, counting up is performed using the external clock input pin (TC3). When the contents of the up-counter matched with the contents of TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. The F/F can be initialized by program and it is initialized to "0" during reset. A TC3 interrupt is generated each time the /PDO output is toggled.

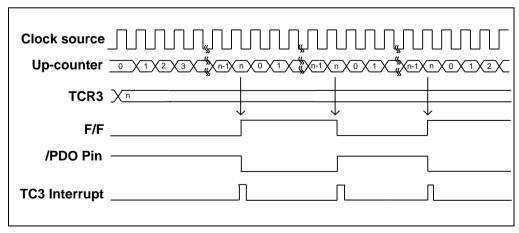



Figure 6-30 PDO Mode Timing Chart



In Pulse Width Modulation (PWM) Output mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the upcounter. The F/F is toggled when a match is found. While the counter is counting, the F/F is toggled again when the counter overflows, the counter is cleared. The F/F output is inverted and output to the /PWM pin. A TC3 interrupt is generated each time an overflow occurs. TCR3 is configured as a 2-stage shift register and during output, will not switch until one output cycle is completed even if TCR3 is overwritten. Hence, the output can be changed continuously. Also, the first time, TCR3 is shifted by setting TC3S to "1" after data is loaded to TCR3.

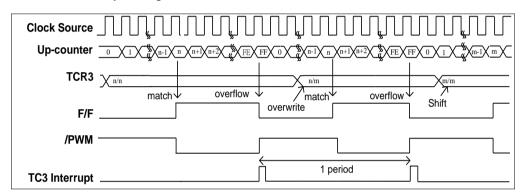



Figure 6-31 PWM Mode Timing Chart

# 6.13 Comparator

The EM78Fx64N has two comparators, which has two analog inputs and one output. The comparator can be employed to wake-up from sleep mode. Figure 6-32 shows the comparator circuit.

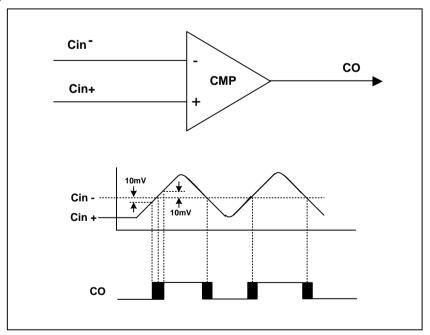



Figure 6-32 Comparator Operating Mode



## 6.13.1 External Reference Signal

The analog signal that is presented at Cin- compares to the signal at Cin+, and the digital output (CO) of the comparator is adjusted accordingly.

- The reference signal must be between Vss and Vdd.
- The reference voltage can be applied to either pin of the comparator.
- Threshold detector applications may be of the same reference.
- The comparator can operate from the same or different reference source.

## 6.13.2 Comparator Outputs

- The compared result is stored in the CPOUT2 of R7 Bit 4 of Bank 3.
- The comparator is output to CO2 (P80) by programming Bit 3, Bit 2 < COS21, COS20> of Register R7 Bank 3.
- Figure 6-33 shows the comparator output block diagram.

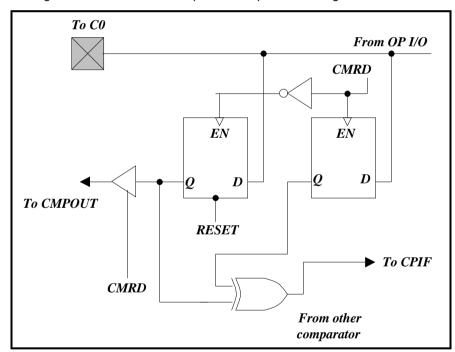



Figure 6-33 Comparator Output Configuration

### 6.13.3 Interrupt

- CMP2IE (IOCE.7) and the "ENI" instruction execution must be enabled.
- Interrupt occurs whenever a change occurs on the output pin of the comparator.
- The actual change on the pin can be determined by reading Bit CPOUT2, R7 Bit 4 of Bank 3.
- CMP2IF (RF.7 Bank 1), the comparator interrupt flag, can only be cleared by software.



## 6.13.4 Wake-up from Sleep Mode

- If enabled, the comparator remains active and the interrupt remains functional, even in Sleep mode.
- If a mismatch occurs, the interrupt will wake-up the device from Sleep mode.
- The power consumption should be taken into consideration for the benefit of energy conservation.
- If the function is unemployed during Sleep mode, turn off the comparator before entering into sleep mode.

### **6.14 UART**

UART is a communication protocol, the control setup are shown in the following:

# 6.14.1 Bank 2 RA URC1 (UART Control 1)

| Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-------|--------|--------|--------|--------|--------|-------|-------|
| URTD8 | UMODE1 | UMODE0 | BRATE2 | BRATE1 | BRATE0 | UTBE  | TXE   |

Bit 7 (URTD8): Transmission data Bit 8.

Bits 6 ~ 5 (UMODE1 ~ UMODE0): UART mode.

| UMODE1 | UMODE0 | UART Mode     |
|--------|--------|---------------|
| 0      | 0      | Mode 1: 7-bit |
| 0      | 1      | Mode 1: 8-bit |
| 1      | 0      | Mode 1: 9-bit |
| 1      | 1      | Reserved      |

Bits 4 ~ 2 (BRATE2 ~ BRATE0): Transmit Baud rate select.

| BRATE2 | BRATE1 | BRATE0 | Baud Rate | 4 MHz | 8 MHz |  |  |
|--------|--------|--------|-----------|-------|-------|--|--|
| 0      | 0      | 0      | Fc/13     | 19200 | 38400 |  |  |
| 0      | 0      | 1      | Fc/26     | 9600  | 19200 |  |  |
| 0      | 1      | 0      | Fc/52     | 4800  | 9600  |  |  |
| 0      | 1      | 1      | Fc/104    | 2400  | 4800  |  |  |
| 1      | 0      | 0      | Fc/208    | 1200  | 2400  |  |  |
| 1      | 0      | 1      | Fc/416    | 600   | 1200  |  |  |
| 1      | 1      | 0      | TC3       | -     | _     |  |  |
| 1      | 1      | 1      | Reserved  |       |       |  |  |

Bit 1 (UTBE): UART transfer buffer empty flag. Set to 1 when transfer buffer is empty. Reset to 0 automatically when writing into the URTD register. UTBE bit will be cleared by hardware when enabling transmission. UTBE bit is read only. Hence, writing to the URTD register is necessary when user wants to start transmit shifting.

Bit 0 (TXE): Enable transmission

0: Disable

1: Enable



# 6.14.2 Bank 2 RB URC2 (UART Control 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|--------|-------|-------|-------|
| -     | -     | SBIM1 | SBIM0 | UINVEN | -     | -     | -     |

Bits 7 ~ 6: Not used, set to "0" at all time

Bit 5 ~ Bit 4 (SBIM1 ~ SBIM0): Serial bus interface operating mode select.

| SBIM1 | SBIM0 | Operating Mode |  |  |
|-------|-------|----------------|--|--|
| 0     | 0     | I/O mode       |  |  |
| 0     | 1     | SPI mode       |  |  |
| 1     | 0     | UART mode      |  |  |
| 1     | 1     | Reserved       |  |  |

Bit 3 (UINVEN): Enable UART TXD and RXD port inverse output.

0: Disable TXD and RXD port inverse output.

1 : Enable TXD and RXD port inverse output.

Bits 2 ~ 0: Not used, set to "0" at all time

# 6.14.3 Bank 2 RC URS (UART Status)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URRD8 | EVEN  | PRE   | PRERR | OVERR | FMERR | URBF  | RXE   |

Bit 7 (URRD8): Receiving data Bit 8

Bit 6 (EVEN): Select parity check

0 : Odd parity1 : Even parity

Bit 5 (PRE): Enable parity addition

0 : Disable1 : Enable

Bit 4 (PRERR): Parity error flag. Set to 1 when parity error occurs.

Bit 3 (OVERR): Overrun error flag. Set to 1 when overrun error occurs.

Bit 2 (FMERR): Framing error flag. Set to 1 when framing error occurs.

#### **NOTE**

The Interrupt flag is automatically set by hardware. It must be cleared by software.

Bit 1 (URBF): UART read buffer full flag. Set to 1 when one character is received.

Reset to 0 automatically when read from URS and URRD register.

URBF will be cleared by hardware when enabling receiving. The

URBF bit is read only. Hence, reading the URS register is necessary to avoid overrun error.

Bit 0 (RXE): Enable receiving

0 : Disable1 : Enable



# 6.14.4 Bank 2 RD URRD (UART\_RD Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URRD7 | URRD6 | URRD5 | URRD4 | URRD3 | URRD2 | URRD1 | URRD0 |

Bits 7 ~ 0 (URRD7 ~ URRD0): UART receive data buffer. Read only.

### 6.14.5 Bank 2 RE URTD (UART TD Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| URTD7 | URTD6 | URTD5 | URTD4 | URTD3 | URTD2 | URTD1 | URTD0 |

Bits 7 ~ 0 (URTD7 ~ URTD0): UART transmit data buffer. Write only.

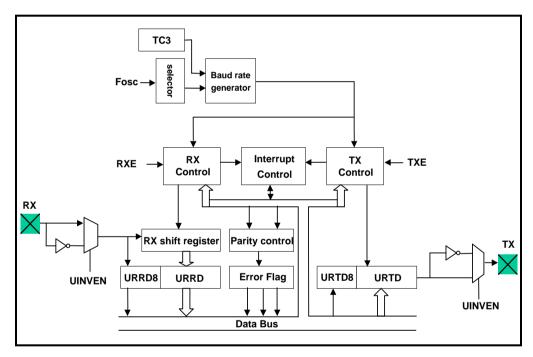



Figure 6-34 UART Functional Block Diagram

In Universal Asynchronous Receiver Transmitter (UART), each transmitted or received character is individually synchronized by framing it with a start bit and a stop bit.

Full duplex data transfer is possible because the UART has independent transmit and receive sections. Double buffering in both sections enable the UART to be programmed for continuous data transfer.

The figure below shows the general format of one character sent or received. The communication channel is normally held in the mark state (high). Character transmission or reception starts with a transition to the space state (low).



The first bit transmitted or received is the start bit (low). It is followed by the data bits, in which the least significant bit (LSB) comes first. The data bits are followed by the parity bit. If present, then the stop bit or bits (high) confirm the end of the frame.

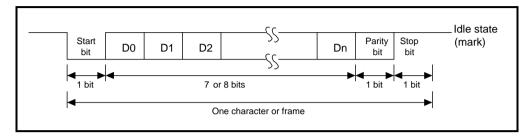



Figure 6-35 Data Format in UART

In receiving, the UART synchronizes on the falling edge of the start bit. When two or three "0" are detected during three samples, it is recognized as normal start bit and the receiving operation is started.

### 6.14.6 UART Mode

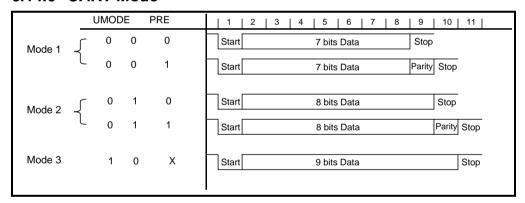



Figure 6-36 UART Mode

There are three modes in UART. Mode 1 (7 bits data) and Mode 2 (8 bits data) allow the addition of a parity bit. The parity bit addition is not available in Mode 3. Figure 6-36 shows the data format in each mode.

### 6.14.7 Transmission

In transmitting serial data, the UART operates as follows.

- 1. Set the **TXE** bit of URC1 register to enable UART transmission function.
- 2. Write data into the URTD register and the **UTBE** bit of URC1 register will be set by hardware. Then start transmitting.
- 3. Serial transmit data are transmitted in the following order from the TX pin.
  - (a) Start bit: one "0" bit is output.
  - (b) Transmit data: 7, 8 or 9 bits data are output from LSB to MSB.



- (c) Parity bit: one parity bit (odd or even selectable) is output.
- (d) Stop bit: one "1" bit (stop bit) is output.
- (e) Mark state: output "1" continues until the start bit of the next transmit data.
- 4. After transmitting the stop bit, the UART generates a **TBEF** interrupt (if enabled).

## 6.14.8 Receiving

In receiving, the UART operates as follows.

- 1. Set the **RXE** bit of the URS register to enable the UART receiving function.
  - The UART monitors the RX pin and synchronizes internally when it detects a start bit.
- 2. Receive data is shifted into the URRD register in the order from LSB to MSB.
- 3. The parity bit and the stop bit are received.
  - After one character is received, the UART generates an **RBFF** interrupt (if enabled). The **URBF** bit of the URS register will be set to 1.
- 4. The UART makes the following checks:
  - (a) Parity check: The number of 1 in the receive data must match the even or odd parity setting of the **EVEN** bit in the URS register.
  - (b) Frame check: The start bit must be 0 and the stop bit must be 1.
  - (c) Overrun check: URBF bit of the URS register must be cleared (this means that the URRD register should be read out) before the next received data is loaded into the URRD register.

If any checks failed, the UERRIF interrupt will be generated (if enabled). The error flag is indicated in **PRERR**, **OVERR** or **FMERR** bit. The error flag should be cleared by software, else the UERRIF interrupt will occur during the next byte received.

5. Read received data from the URRD register. The **URBF** bit will be cleared by hardware.

### 6.14.9 Baud Rate Generator

The baud rate generator comprises of a circuit that generates a clock pulse to determine the transfer speed for transmission/reception in the UART.

The BRATE2~BRATE0 bit of the URC1 register can determine the desired baud rate.

#### Note:

1. Priority of P52/RX/SI pin

| P52/RX/SI Pin Priority |        |     |  |  |  |  |  |
|------------------------|--------|-----|--|--|--|--|--|
| High                   | Medium | Low |  |  |  |  |  |
| SI                     | RX     | P52 |  |  |  |  |  |



### 2. Priority of P51/TX/SO pin

| P51/TX/SO Pin Priority |        |     |  |  |  |  |  |
|------------------------|--------|-----|--|--|--|--|--|
| High                   | Medium | Low |  |  |  |  |  |
| SO                     | TX     | P51 |  |  |  |  |  |

## 6.15 SPI

### 6.15.1 Overview and Features

### Overview:

Figures 6-37, 6-38 and 6-39 show how the EM78Fx64N communicates with other devices through the SPI module. If EM78Fx64N is a master controller, it sends clock pulses through the SCK pin. A couple of 8-bit data are transmitted and received at the same time. However, if the EM78Fx64N is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both the clock rate and the selected edge. User can also set the SPIS Bit 7 (DORD) to determine the SPI transmission order, SPIC Bit 3 (SDOC) to control the SO pin after serial data output status and SPIS Bit 6 (TD1), Bit 5 (TD0) determine the SO status output delay times.

#### Features:

- Operates in either Master mode or Slave mode
- 3-wire or 4-wire full duplex synchronous communication
- Programmable baud rates of communication
- Programming clock polarity, (Bank 1 0x0C CES bit)
- Interrupt flag available for the read buffer full
- SPI transmission order
- After serial data output SO status select
- SO status output delay times
- SPI handshake pin
- Up to 2 MHz (maximum) bit frequency. If the system frequency (Fosc) operates at 8 MHz, it is recommended to choose Fosc/4 as maximum baud rate option of the SPI function.



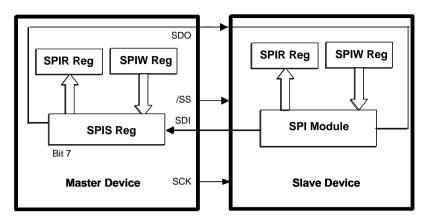



Figure 6-37 SPI Master/Slave Communication

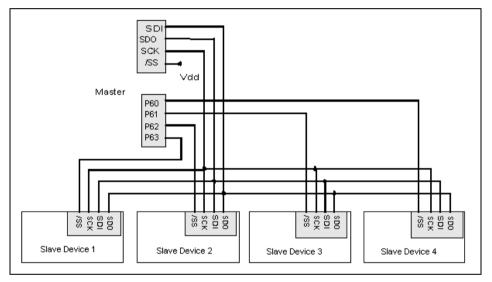



Figure 6-38 SPI Configuration of a Single-Master and Multi-Slave Device

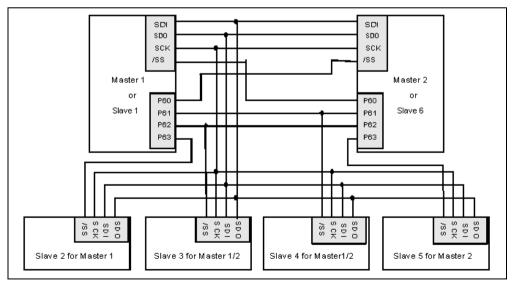



Figure 6-39 SPI Configuration of a Single-Master and Multi-Slave Device



# 6.15.2 SPI Function Description

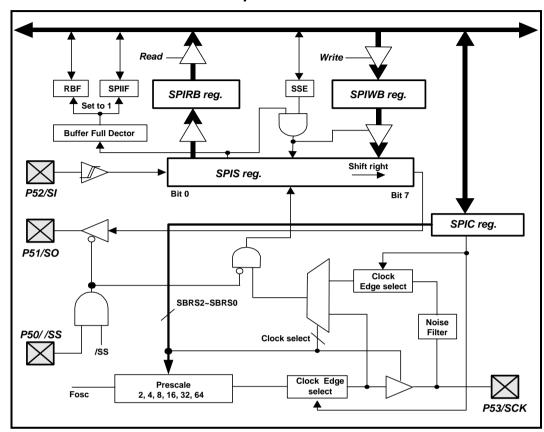



Figure 6-40 SPI Block Diagram

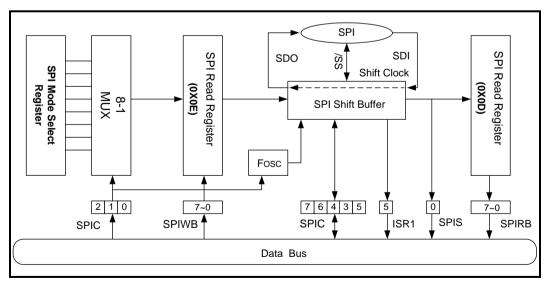



Fig 6-41 Functional Block Diagram of SPI Transmission



Below are the functions of each block and explanations on how to carry out the SPI communication with the signals depicted in Figure 6-40 and Figure 6-41.

P52 / SI : Serial Data In

P51 / SO : Serial Data Out

P53 / SCK : Serial Clock

■ P50 / /SS : /Slave Select (Option). This pin (/SS) may be required in slave mode

RBF: Set by Buffer Full Detector, and reset by hardware.

Buffer Full Detector: Set to 1 when an 8-bit shifting is completed

SSE: Loads the data in the SPIS register, and begin to shift

- SPIS reg.: Shifting byte in and out. The MSB is shifted first. Both the SPIS and the SPIWB registers are loaded at the same time. Once data are written, the SPIS starts transmission/reception. The data received are moved to the SPIRB register as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flag and the SPIIF (Read Buffer Full Interrupt) flags are then set.
- SPIRB reg: Read buffer. The buffer will be updated as the 8-bit shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPIRB register reads.
- SPIWB reg.: Write buffer. The buffer will ignore any attempts to write until the 8-bit shifting is completed.

The SSE bit will be kept in "1" if the communication is still undergoing. This flag must be cleared as the shifting is completed. Users can determine if the next write attempt is available.

- SBRS2~SBRS0 : Program the clock frequency/rates and sources
- Clock Select: Select either internal or external clock as the shifting clock
- Edge Select : Select the appropriate clock edges by programming the CES bit

### 6.15.3 SPI Signal and Pin Description

The detailed functions of the four pins, SDI, SDO, SCK, and /SS, which are shown in Figure 6-40, are as follows:

### SI/P52

- Serial Data In
- Receive sequentially the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Defined as high-impedance, if not selected



- Program the same clock rate and clock edge to latch on both the master and slave devices
- The byte received will update the transmitted byte
- Both the RBF and SPIIF bits (located in Register 0x0B in Bank 1 and 0x0F in Bank 0) will be set as the SPI operation is completed.
- Timing is shown in Figures 6-42 and 6-43.

### SO/P51

- Serial Data Out
- Transmit sequentially; the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The received byte will update the transmitted byte
- The SSE (located in Register 0x0C) bit will be reset, as the SPI operation is completed
- Timing is shown in Figures 6-42 and 6-43.

## SCK/P53

- Serial Clock
- Generated by a master device
- Synchronize the data communication on both the SDI and SDO pins
- The CES (located in Register 0x0C) is used to select the edge to communicate
- The SBRS2~SBRS0 (located in Register 0x0C) is used to determine the baud rate of communication
- The CES, SBRS2, SBRS1, and SBRS0 bits have no effect in slave mode
- Timing is shown in Figure 6-42 and 6-43

### /SS/P50

- Slave Select : negative logic
- Generated by a master device to signify the slave(s) to receive data
- Goes low before the first cycle of SCK appears, and remains low until the last 8<sup>th</sup> cycle is completed
- Ignores the data on the SDI and SDO pins while /SS is high, since the SDO is no longer driven
- Timing is shown in Figure 6-42 and 6-43



## 6.15.4 Programming the Related Registers

As the SPI mode is defined, the related registers are shown in Table 6.15.4-1 and Table 6.15.4-2.

Table 6.15.4-1 Related Control Registers of the SPI Mode

| Addr   | ess  | Name     | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|--------|------|----------|-------|-------|-------|--------|--------|-------|-------|-------|
| Bank 1 | 0x0C | *SPIC/RC | CES   | SPIE  | SRO   | SSE    | SDOC   | SBRS2 | SBRS1 | SBRS0 |
|        | 0x0F | IOCF     | _     | ADIE  | SPIIE | PWMBIE | PWMAIE | EXIE  | ICIE  | TCIE  |

\*SPIC: SPI control register

Bit 7 (CES): Clock Edge Select bit

- **0**: Data shifts out on a rising edge, and shifts in on a falling edge. Data is on hold during a low-level.
- **1**: Data shifts out on a falling edge, and shifts in on a rising edge. Data is on hold during a high-level.

Bit 6 (SPIE): SPI Enable bit

0 : Disable SPI mode1 : Enable SPI mode

Bit 5 (SRO): SPI Read Overflow bit

0 : No overflow

- 1 : A new data is received while the previous data is still being held in the SPIB register. In this situation, the data in the SPIS register will be destroyed. To avoid setting this bit, users are required to read the SPIRB register although only transmission is implemented.
- This can occur only in slave mode.

Bit 4 (SSE): SPI Shift Enable bit

- **0**: Reset as soon as the shifting is complete, and the next byte is ready to shift
- 1 : Start to shift, and keep on "1" while the current byte is still being transmitted
- This bit will reset to "0" at every 1-byte transmission by the hardware.

Bit 3 (SDOC): SDO output status control bit

0: After the Serial data output, the SDO remains high

1 : After the Serial data output, the SDO remains low



Bit 2 ~ Bit 0 (SBRS2 ~ SBRS0): SPI Baud Rate Select bits

| SBRS2 (Bit 2) | SBRS1 (Bit 1) | SBRS0 (Bit 0) | Mode        | Baud Rate  |
|---------------|---------------|---------------|-------------|------------|
| 0             | 0             | 0             | Master      | Fosc/2     |
| 0             | 0             | 1 Master      |             | Fosc/4     |
| 0             | 1             | 0             | 0 Master    |            |
| 0             | 1             | 1             | Master      | Fosc/16    |
| 1             | 0             | 0             | Master      | Fosc/32    |
| 1             | 0             | 1             | Master      | Fosc/64    |
| 1             | 1             | 0             | Slave       | /SS enable |
| 1             | 1             | 1             | 1 Slave /SS |            |

**IOCF:** Interrupt Mask Register

Bit 7: Not used, set to "0" at all time.

Bit 6 (ADIE): ADIF interrupt enable bit.

0 : Disable ADIF interrupt

1 : Enable ADIF interrupt

When the ADC Complete status is used to enter an interrupt vector or enter the next instruction, the ADIE bit must be set to "Enable".

Bit 5 (SPIIE): SPIIF interrupt enable bit

0 : Disable SPIIF interrupt

1 : Enable SPIIF interrupt

Bit 4 (PWMBIE): PWMBIF interrupt enable bit

0: Disable PWMBIF interrupt

1 : Enable PWMBIF interrupt

Bit 3 (PWMAIE): PWMAIF interrupt enable bit

0: Disable PWMAIF interrupt

1 : Enable PWMAIF interrupt

Bit 2 (EXIE): EXIF interrupt enable bit

0: Disable EXIF interrupt

1 : Enable EXIF interrupt

Bit 1 (ICIE): ICIF interrupt enable bit

0 : Disable ICIF interrupt

1 : Enable ICIF interrupt

Bit 0 (TCIE): TCIF interrupt enable bit

0 : Disable TCIF interrupt

1 : Enable TCIF interrupt



Table 6-15-4-2 Related Status/Data Registers of the SPI Mode

| Address   | s   | Name     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bank 1 0× | ×0B | SPIS/RB  | DORD  | TD1   | TD0   | -     | OD3   | OD4   | 1     | RBF   |
| Bank 1 0× | ×0D | SPIRB/RD | SRB7  | SRB6  | SRB5  | SRB4  | SRB3  | SRB2  | SRB1  | SRB0  |
| Bank 1 0× | ×0E | SPIWB/RE | SWB7  | SWB6  | SWB5  | SWB4  | SWB3  | SWB2  | SWB1  | SWB0  |

SPIS: SPI Status register

Bit 7 (DORD): Read Buffer Full Interrupt flag

0 : Shift left (MSB first)1 : Shift right (LSB first)

Bit 6 ~ Bit 5 (TD1 ~ TD0): SDO Status Output Delay Times Options

| TD1 | TD0 | Delay Time |
|-----|-----|------------|
| 0   | 0   | 8 CLK      |
| 0   | 1   | 16 CLK     |
| 1   | 0   | 24 CLK     |
| 1   | 1   | 32 CLK     |

Bit 4: Not used, set to "0" at all time

Bit 3 (OD3): Open-drain Control bit (P51)

0 : SO open-drain disable1 : SO open-drain enable

Bit 2 (OD4): Open drain-Control bit (P53)

0 : SCK open-drain disable1 : SCK open-drain enable

Bit 1: Not used, set to "0" at all time

Bit 0 (RBF): Read Buffer Full flag

0 : Receiving is ongoing, SPIB is empty1 : Receiving is completed, SPIB is full

**SPIRB:** SPI Read Buffer. Once the serial data is received completely, it will load to SPIRB from SPISR. The RBF bit and the SPIIF bit in the SPIS register will also be set.

**SPIWB:** SPI Write Buffer. As a transmitted data is loaded, the SPIS register stands by and starts to shift the data when sensing an SCK edge with SSE set to "1".



# 6.15.5 SPI Mode Timing

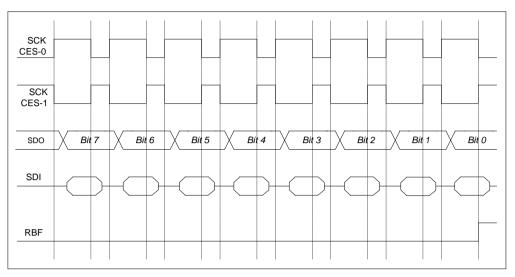



Figure 6-42 SPI Mode with /SS Disable

The SCK edge is selected by programming bit CES. The waveform shown in Figure 6-42 is applicable regardless whether the EM78Fx64N is in master or slave mode, with /SS disabled. However, the waveform in Figure 6-43 can only be implemented in slave mode, with /SS enabled.

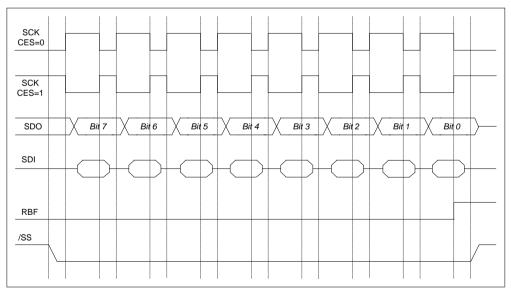



Figure 6-43 SPI Mode with /SS Enable



# 6.15.6 SPI Software Application

```
Example for SPI: (unused interrupt)
For Master
ORG 0X0
SETTING:
BANK
                , @OBOOOOOOO
MOV A
MOV 0x05
                , A
                , @0B0000100
                               ; SDI input and SDO, SCK
MOV A
                                   ; output
IOW 0x05
BANK
MOV A
               , @0B00010000
                                  ; Select SPI Mode
MOV 0x0B
                , A
BANK
                , @0B0100000
MOV A
                                  ; Enable SPI, Master
                                  ; and Baud Rate = Fosc/2
MOV 0x0C
                , A
                , @0B0000000
MOV A
                                  ; Shift left(MSB first)
                , A
MOV 0x0B
START:
BANK
                , @OXAA
MOV A
                                  ; Move OXAA at write SPI
                                   ; buffer
MOV 0X0E
                , A
BS 0X0C
                                  ; Start to shift SPI data
JBC 0X0C
                                   ; Polling loop for checking
                , 4
                                   ; SPI transmission completed
JMP $-1
JMP START
                                   ; Transmit DATA again.
```



```
Example for SPI:(unused interrupt)
For Slave
ORG 0X0
SETTING:
BANK
MOV A
                , @OBOOOOOOO
               , A
MOV 0x05
               , @OBO000100
MOV A
                               ; SDI input and SDO, SCK
                                  ; output
IOW 0x05
BANK
               , @0B00010000 ; Select SPI Mode
MOV A
MOV 0x0B
               , A
BANK
               , @0B01000111
                                 ; Enable SPI, Slave
MOV A
                                  ; and /SS disable
MOV 0x0C
                , A
MOV A
                , @0B0000000
                                 ; shift left(MSB first)
MOV 0x0B
                , A
START:
BANK
BS 0X0C
                , 4
                                  ; Start to receive SPI data
JBS 0X0B
                , 0
                                  ; Polling loop for checking
                                  ; SPI receive completed
JMP $-1
MOV A
                , 0X0D
                                  ; Read SPI buffer and
                                  ; move to SRAM 0x10
MOV 0X10
                , A
                , 0
JBC 0X0B
                                  ; Polling loop for checking
                                  ; whether SPI buffer was
                                  ; read.
JMP $-1
JMP START
                                  ; Receive DATA again.
```



# 6.16 Oscillator

# 6.16.1 Oscillator Modes

The EM78Fx64N device can be operated in four different oscillator modes, such as Internal RC oscillator mode (IRC), External RC oscillator mode (ERC), High Crystal oscillator mode (HXT), and Low Crystal oscillator mode (LXT). User can select one of such modes by programming OSC2, OCS1 and OSC0 in the Code Option register. Table 6-16-1 depicts how these four modes are defined.

The up-limited operation frequency of the crystal/resonator on the different VDD is listed in Table 6-16-1.

Table 6-16-1 Oscillator Modes as Defined by OSC2 ~ OSC0

| Mode                                                                                         | OSC2 | OSC1 | OSC0 |
|----------------------------------------------------------------------------------------------|------|------|------|
| XT (Crystal oscillator mode)                                                                 | 0    | 0    | 0    |
| HXT (High Crystal oscillator mode)                                                           | 0    | 0    | 1    |
| LXT1 (Low Crystal 1 oscillator mode)                                                         | 0    | 1    | 0    |
| LXT2 (Low Crystal 2 oscillator mode)                                                         | 0    | 1    | 1    |
| IRC (Internal RC oscillator mode);<br>P55, P54 act as I/O pin                                | 1    | 0    | 0    |
| IRC (Internal RC oscillator mode); P55 act as I/O pin P54 act as RCOUT pin                   | 1    | 0    | 1    |
| ERC (External RC oscillator mode); P55 act as ERCin pin P54 act as I/O pin                   | 1    | 1    | 0    |
| ERC (External RC oscillator mode); P55 act as ERCin pin P54 act as RCOUT pin with Open-drain | 1    | 1    | 1    |

In LXT2, LXT1, XT, HXT and ERC mode, OSCI and OSCO are used, they cannot be used as normal I/O pins.

In IRC mode, P55 is used as normal I/O pin.

#### NOTE

- 1. Frequency range of HXT mode is 16 MHz ~ 6 MHz.
- 2. Frequency range of XT mode is 6 MHz ~ 1 MHz.
- 3. Frequency range of LXT1 mode is 1 MHz ~ 100kHz.
- 4. Frequency range of LXT2 mode is 32kHz.

Table 6-16-2 Summary of Maximum Operating Speeds

| Conditions                 | VDD | Max. Fxt. (MHz) |
|----------------------------|-----|-----------------|
|                            | 2.5 | 4.0             |
| Two cycles with two clocks | 3.0 | 8.0             |
|                            | 4.5 | 16.0            |



# 6.16.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The EM78Fx64N can be driven by an external clock signal through the OSCI pin as shown in Figure 6-44 below.

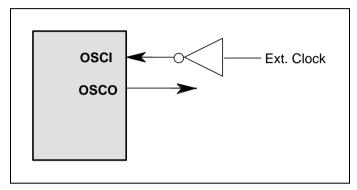



Figure 6-44 Circuit for External Clock Input

In most applications, pin OSCI and pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation. Figure 6-45 depicts such a circuit. The same thing applies whether it is in the HXT mode or in the LXT mode. Table 6-16-3 provides the recommended values of C1 and C2. Since each resonator has its own attribute, user should refer to its specification for appropriate values of C1 and C2. RS, a serial resistor, may be necessary for AT strip cut crystal or low frequency mode.

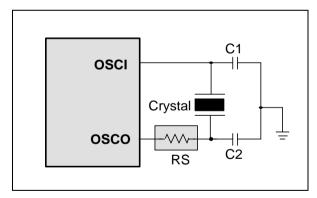



Figure 6-45 Circuit for Crystal/Resonator



Table 6-16-3 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator

| Oscillator Type    | Frequency Mode         | Frequency | C1 (pF) | C2 (pF) |
|--------------------|------------------------|-----------|---------|---------|
|                    |                        | 100kHz    | 45pF    | 45pF    |
|                    | LXT1                   | 200kHz    | 20pF    | 20pF    |
|                    | (100K ~ 1 MHz)         | 455kHz    | 20pF    | 20pF    |
| Ceramic Resonators |                        | 1.0 MHz   | 20pF    | 20pF    |
|                    | XT                     | 1.0 MHz   | 25pF    | 25pF    |
|                    | ∧ I<br>(1M~6 MHz)      | 2.0 MHz   | 20pF    | 20pF    |
|                    | (11VI~O IVII 12)       | 4.0 MHz   | 20pF    | 20pF    |
|                    | LXT2 (32.768kHz)       | 32.768kHz | 40pF    | 40pF    |
|                    |                        | 100kHz    | 45pF    | 45pF    |
|                    | LXT1<br>(100K ~ 1 MHz) | 200kHz    | 20pF    | 20pF    |
|                    |                        | 455kHz    | 20pF    | 20pF    |
|                    |                        | 1.0 MHz   | 20pF    | 20pF    |
|                    |                        | 455kHz    | 30pF    | 30pF    |
|                    | XT<br>(1~6 MHz)        | 1.0 MHz   | 20pF    | 20pF    |
| Crystal Oscillator |                        | 2.0 MHz   | 20pF    | 20pF    |
|                    | (1~0 IVII 12)          | 4.0 MHz   | 20pF    | 20pF    |
|                    |                        | 6.0 MHz   | 20pF    | 20pF    |
|                    |                        | 6.0 MHz   | 25pF    | 25pF    |
|                    | LIVT                   | 8.0 MHz   | 20pF    | 20pF    |
|                    | HXT                    | 10.0 MHz  | 20pF    | 20pF    |
|                    | (6~16 MHz)             | 12.0 MHz  | 20pF    | 20pF    |
|                    |                        | 16.0 MHz  | 15pF    | 15pF    |

### 6.16.3 External RC Oscillator Mode

For some applications that do not need a very precise timing calculation, the RC oscillator (Figure 6-46) offers a cost-effective oscillator configuration. Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variation.

In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF, and the value of Rext should not be greater than 1 M $\Omega$ . If they cannot be kept in this range, the frequency is easily affected by noise, humidity, and leakage.

The smaller the Rext in the RC oscillator, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 K $\Omega$ , the oscillator becomes unstable since the NMOS cannot correctly discharge the current of the capacitance.

Based on the above reasons, it must be kept in mind that all of the supply voltage, the operation temperature, the components of the RC oscillator, the package types, and the PCB layout, will affect the system frequency.



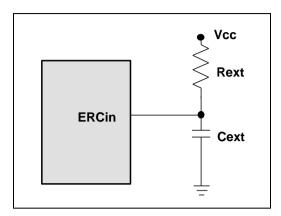



Figure 6-46 Circuit for External RC Oscillator Mode

Table 6-16-4 RC Oscillator Frequencies

| Cext   | Rext | Average Fosc 5V, 25°C | Average Fosc 3V, 25°C |
|--------|------|-----------------------|-----------------------|
|        | 3.3k | 3.5 MHz               | 3.2 MHz               |
| 20 pF  | 5.1k | 2.5 MHz               | 2.3 MHz               |
| 20 με  | 10k  | 1.30 MHz              | 1.25 MHz              |
|        | 100k | 140kHz                | 140kHz                |
|        | 3.3k | 1.27 MHz              | 1.21 MHz              |
| 100 pF | 5.1k | 850kHz                | 820kHz                |
| 100 με | 10k  | 450kHz                | 450kHz                |
|        | 100k | 48kHz                 | 50kHz                 |
|        | 3.3k | 560kHz                | 540kHz                |
| 300 pF | 5.1k | 370kHz                | 360kHz                |
| 300 pr | 10k  | 196kHz                | 192kHz                |
|        | 100k | 20kHz                 | 20kHz                 |

Note: 1. Measured based on DIP packages.

2. The values are for design reference only.

# 6.16.4 Internal RC Oscillator Mode

EM78Fx64N offers a versatile internal RC mode with default frequency value of 4MHz. Internal RC oscillator mode has other frequencies (16 MHz, 8 MHz and 455kHz) that can be set by Code Option Word1<3,2> or switch by Bank1 R8<7,6>, RCM1 and RCM0. All these four main frequencies can be calibrated by programming the Code Option Word1<8~4>, C4~C0 (auto calibration).

Table 6-16-5 Internal RC Drift Rate (Ta=25°C, VDD=5V ± 5%, VSS=0V)

|             | Drift Rate                  |                        |         |         |  |  |  |
|-------------|-----------------------------|------------------------|---------|---------|--|--|--|
| Internal RC | Temperature<br>(-40°C~85°C) | Voltage<br>(2.5V~5.5V) | Process | Total   |  |  |  |
| 4 MHz       | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |
| 16 MHz      | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |
| 8 MHz       | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |
| 455kHz      | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |



# 6.17 Code Option Register

The EM78Fx64N has a Code option word that is not part of the normal program memory. The option bits cannot be accessed during normal program execution.

Code Option Register and Customer ID Register arrangement distribution:

| Word 0       | Word 1       | Word 2       |
|--------------|--------------|--------------|
| Bit 12~Bit 0 | Bit 12~Bit 0 | Bit 12~Bit 0 |

# 6.17.1 Code Option Register (Word 0)

|              | Word 0 |        |         |       |       |       |         |       |       |       |       |        |       |
|--------------|--------|--------|---------|-------|-------|-------|---------|-------|-------|-------|-------|--------|-------|
| Bit          | Bit 12 | Bit 11 | Bit 10  | Bit 9 | Bit 8 | Bit 7 | Bit 6   | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0 |
| Mne<br>monic | _      | NRHL   | NRE     | ı     | CLKS1 | CLKS0 | ENWDTB  | OSC2  | OSC1  | OSC0  | P     | rotec  | :t    |
| 1            | -      | 8/fc   | Disable | 1     | High  | High  | Enable  | High  | High  | High  | Е     | nable  | Э     |
| 0            | _      | 32/fc  | Enable  | _     | Low   | Low   | Disable | Low   | Low   | Low   | D     | isable | е     |

Bit 12: Not used, set to "0" at all time

**Bit 11 (NRHL):** Noise rejection high/low pulse define bit. The INT pin is a falling edge trigger.

0: Pulses equal to 32/fc [s] is regarded as signal (default)

1 : Pulses equal to 8/fc [s] is regarded as signal

#### NOTE

The noise rejection function is turned off in the LXT2 and Sleep mode.

Bit 10 (NRE): Noise Rejection Enable. The INT pin is a falling edge trigger.

- **0**: Enable noise rejection (default) but in Low Crystal oscillator (LXT2) mode, the noise rejection circuit is always disabled
- 1 : Disable noise rejection

Bit 9: Not used, set to "1" at all time.

Bit 8 ~ Bit 7 (CLKS1 ~ CLKS0): Instruction period option bit

| Instruction Period | CLKS1 | CLKS0 |
|--------------------|-------|-------|
| 4 clocks (default) | 0     | 0     |
| 2 clocks           | 0     | 1     |
| 8 clocks           | 1     | 0     |
| 16 clocks          | 1     | 1     |

Refer to the Instruction Set section.



Bit 6 (ENWDTB): Watchdog timer enable bit

0: Disable (default)

1 : Enable

# Bit 5 ~ Bit 3 (OSC2 ~ OSC0): Oscillator Mode Selection bits

Oscillator Modes defined by OSC2 ~ OSC0

| Mode                                                                                         | OSC2 | OSC1 | OSC0 |
|----------------------------------------------------------------------------------------------|------|------|------|
| XT (Crystal oscillator mode) (default)                                                       | 0    | 0    | 0    |
| HXT (High Crystal oscillator mode)                                                           | 0    | 0    | 1    |
| LXT1 (Low Crystal 1 oscillator mode)                                                         | 0    | 1    | 0    |
| LXT2 (Low Crystal 2 oscillator mode)                                                         | 0    | 1    | 1    |
| IRC (Internal RC oscillator mode);<br>P55, P54 act as I/O pin                                | 1    | 0    | 0    |
| IRC (Internal RC oscillator mode); P55 act as I/O pin P54 act as RCOUT pin                   | 1    | 0    | 1    |
| ERC (External RC oscillator mode); P55 act as ERCin pin P54 act as I/O pin                   | 1    | 1    | 0    |
| ERC (External RC oscillator mode); P55 act as ERCin pin P54 act as RCOUT pin with Open-Drain | 1    | 1    | 1    |

Note: 1. Frequency range of HXT mode is 16 MHz ~ 6 MHz.

- 2. Frequency range of XT mode is 6 MHz ~ 1 MHz.
- 3. Frequency range of LXT1 mode is 1 MHz ~ 100kHz.
- 4. Frequency range of LXT2 mode is 32kHz.

Bit 2 ~ Bit 0 (Protect): Protect Bit. Protect type is as follows:

| Protect | Protect |
|---------|---------|
| 1       | Enable  |
| 0       | Disable |



# 6.17.2 Code Option Register (Word 1)

|              | Word 1   |        |        |         |       |       |       |       |       |       |       |       |       |
|--------------|----------|--------|--------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit          | Bit 12   | Bit 11 | Bit 10 | Bit 9   | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mne<br>monic | COBS0    | TCEN   | _      | HLP     | C4    | C3    | C2    | C1    | C0    | RCM1  | RCM0  | LVR1  | LVR0  |
| 1            | Register | TCC    | -      | Enable  | High  |
| 0            | Option   | P77    | _      | Disable | Low   |

Bit 12 (COBS0): IRC mode select bit.

0: IRC frequency select from code option (default)

1: IRC frequency select from register.

Bit 11 (TCEN): TCC enable bit.

0: P77/TCC is set as P77 (default)

1: P77/TCC is set as TCC.

Bit 10: Not used, set to "1" at all time.

Bit 9 (HLP): Power consumption select bit.

0: Disable, Normal power consumption (default)

1: Enable, Low power consumption.

**Bit 8 ~ Bit 4 (C4 ~ C0):** Internal RC mode calibration bits. C4 ~ C0 must be set to "0" only (auto-calibration).

Bit 3 ~ Bit 2 (RCM1 ~ RCM0): RC mode select bits

| RCM1 | RCM0 | *Frequency (MHz) |
|------|------|------------------|
| 0    | 0    | 4 (default)      |
| 0    | 1    | 16               |
| 1    | 0    | 8                |
| 1    | 1    | 455kHz           |

Bit 1 ~ Bit 0 (LVR1 ~ LVR0): Low Voltage Reset Enable bits

| LVR1 | LVR0 | Reset Level | Release Level |
|------|------|-------------|---------------|
| 0    | 0    | NA          | NA            |
| 0    | 1    | 2.7V        | 2.9V          |
| 1    | 0    | 3.7V        | 3.9V          |
| 1    | 1    | 4.1V        | 4.3V          |

LVR1, LVR0="0, 0": LVR disable, power-on reset point of EM78Fx64N is 2.0~2.2V (default)

LVR1, LVR0="0, 1": If Vdd < 2.7V, the EM78Fx64N will be reset.

LVR1, LVR0="1, 0": If Vdd < 3.7V, the EM78Fx64N will be reset.

LVR1, LVR0="1, 1": If Vdd < 4.1V, the EM78Fx64N will be reset.



# 6.17.3 Customer ID Register (Word 2)

|              | Word 2 |        |        |       |       |       |       |       |       |       |       |       |       |
|--------------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit          | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mne<br>monic | SC3    | SC2    | SC1    | SC0   | ı     | I     | ı     | I     | ID4   | ID3   | ID2   | ID1   | ID0   |
| 1            | High   | High   | High   | High  | -     | -     | -     | -     | High  | High  | High  | High  | High  |
| 0            | Low    | Low    | Low    | Low   | _     | _     | _     | _     | Low   | Low   | Low   | Low   | Low   |

Bits 12 ~ 9 (SC3 ~ SC0): Calibrator of sub frequency (WDT frequency, auto calibration).

Bit 8: Not used, set to "0" at all time.

Bit 7: Not used, set to "1" at all time.

Bits 6 ~ 5: Not used, set to "0" at all time.

Bits 4 ~ 0: Customer's ID code.

### 6.18 Power-on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply has stabilized. The EM78Fx64N has an on-chip Power-on Voltage Detector (POVD) with a detecting level of 2.0V~2.2V. It will work well if Vdd can rise quickly enough (50ms or less). In many critical applications, however, extra devices are still required to assist in solving power-up problems.

### 6.19 External Power-on Reset Circuit

The circuit shown in Figure 6-47 uses an external RC to produce a reset pulse. The pulse width (time constant) should be kept long enough for Vdd to reach minimum operation voltage. This circuit is used when the power supply has a slow rise time. Since the current leakage from the /RESET pin is  $\pm\,5~\mu\text{A}$ , it is recommended that R should not be greater than 40 K $\Omega$ . In this way, the /RESET pin voltage is held below 0.2V. The diode (D) functions as a short circuit at the moment of power down.

The capacitor C will discharge rapidly and fully. The current-limited resistor Rin, will prevent high current or ESD (electrostatic discharge) from flowing to the /RESET pin.

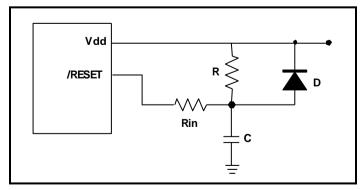



Figure 6-47 External Power-up Reset Circuit



# 6.20 Residue-Voltage Protection

When the battery is replaced, the device power (Vdd) is taken off but the residuevoltage remains. The residue-voltage may trip below Vdd minimum, but not to zero. This condition may cause a poor power-on reset. Figure 6-48 and Figure 6-49 shows how to make a residue-voltage protection circuit.

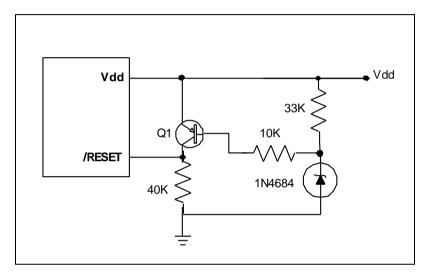



Figure 6-48 Residue Voltage Protection Circuit 1

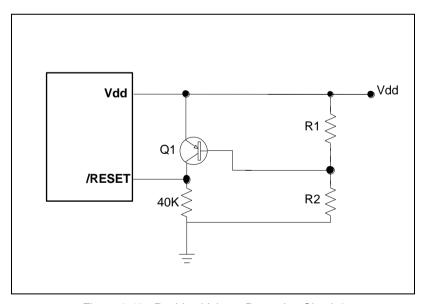



Figure 6-49 Residue Voltage Protection Circuit 2



### 6.21 Instruction Set

Each instruction in the Instruction Set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of two oscillator periods), unless the program counter is changed by instructions "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", ·etc.). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try to modify the instruction as follows:

- (A) Change one instruction cycle to consist of four oscillator periods.
- (B) "LJMP", "LCALL", "TBRD", "RET", "RETL", "RETI", or the conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

Case (A) is selected by the Code Option bit called CLK1:0. One instruction cycle consists of two oscillator clocks if CLK1:0 is "01", and four oscillator clocks if CLK1:0 is "00".

Note that once the four oscillator periods within one instruction cycle is selected as in Case (A), the internal clock source for TCC should be CLK = Fc as indicated in Figure 6-12-1.

In addition, the instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on the I/O register.



### Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.

**k** = 8 or 10-bit constant or literal value

| Binary Instruction | Hex  | Mnemonic | Operation                                                                   | Status Affected   |
|--------------------|------|----------|-----------------------------------------------------------------------------|-------------------|
| 0 0000 0000 0000   | 0000 | NOP      | No Operation                                                                | None              |
| 0 0000 0000 0001   | 0001 | DAA      | Decimal Adjust A                                                            | С                 |
| 0 0000 0000 0010   | 0002 | CONTW    | $A \rightarrow CONT$                                                        | None              |
| 0 0000 0000 0011   | 0003 | SLEP     | 0 → WDT, Stop oscillator                                                    | T, P              |
| 0 0000 0000 0100   | 0004 | WDTC     | $0 \rightarrow WDT$                                                         | T, P              |
| 0 0000 0000 rrrr   | 000r | IOW R    | $A \rightarrow IOCR$                                                        | None <sup>1</sup> |
| 0 0000 0001 0000   | 0010 | ENI      | Enable Interrupt                                                            | None              |
| 0 0000 0001 0001   | 0011 | DISI     | Disable Interrupt                                                           | None              |
| 0 0000 0001 0010   | 0012 | RET      | [Top of Stack] $\rightarrow$ PC                                             | None              |
| 0 0000 0001 0011   | 0013 | RETI     | $ [\text{Top of Stack}] \rightarrow \text{PC}, \\ \text{Enable Interrupt} $ | None              |
| 0 0000 0001 0100   | 0014 | CONTR    | $CONT \rightarrow A$                                                        | None              |
| 0 0000 0001 rrrr   | 001r | IOR R    | $IOCR \rightarrow A$                                                        | None <sup>1</sup> |
| 0 0000 01rr rrrr   | 00rr | MOV R,A  | $A \rightarrow R$                                                           | None              |
| 0 0000 1000 0000   | 0800 | CLRA     | $0 \rightarrow A$                                                           | Z                 |
| 0 0000 11rr rrrr   | 00rr | CLR R    | $0 \rightarrow R$                                                           | Z                 |
| 0 0001 00rr rrrr   | 01rr | SUB A,R  | $R-A \rightarrow A$                                                         | Z, C, DC          |
| 0 0001 01rr rrrr   | 01rr | SUB R,A  | $R-A \rightarrow R$                                                         | Z, C, DC          |
| 0 0001 10rr rrrr   | 01rr | DECA R   | $R-1 \rightarrow A$                                                         | Z                 |
| 0 0001 11rr rrrr   | 01rr | DEC R    | $R-1 \rightarrow R$                                                         | Z                 |
| 0 0010 00rr rrrr   | 02rr | OR A,R   | $A \vee R \to A$                                                            | Z                 |
| 0 0010 01rr rrrr   | 02rr | OR R,A   | $A \vee R \to R$                                                            | Z                 |
| 0 0010 10rr rrrr   | 02rr | AND A,R  | $A \& R \to A$                                                              | Z                 |
| 0 0010 11rr rrrr   | 02rr | AND R,A  | $A \& R \rightarrow R$                                                      | Z                 |
| 0 0011 00rr rrrr   | 03rr | XOR A,R  | $A \oplus R \to A$                                                          | Z                 |
| 0 0011 01rr rrrr   | 03rr | XOR R,A  | $A \oplus R \to R$                                                          | Z                 |
| 0 0011 10rr rrrr   | 03rr | ADD A,R  | $A + R \rightarrow A$                                                       | Z, C, DC          |
| 0 0011 11rr rrrr   | 03rr | ADD R,A  | $A + R \rightarrow R$                                                       | Z, C, DC          |
| 0 0100 00rr rrrr   | 04rr | MOV A,R  | $R \rightarrow A$                                                           | Z                 |
| 0 0100 01rr rrrr   | 04rr | MOV R,R  | $R \rightarrow R$                                                           | Z                 |

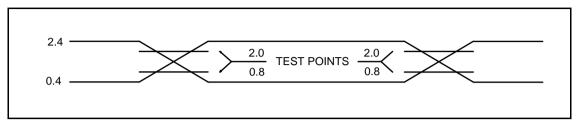
**Note:** <sup>1</sup> This instruction is applicable to IOC5~IOC7, IOCA ~ IOCF only.



| Binary Instruction | Hex  | Mnemonic | Operation                                                              | Status Affected   |
|--------------------|------|----------|------------------------------------------------------------------------|-------------------|
| 0 0100 10rr rrrr   | 04rr | COMA R   | $/R \rightarrow A$                                                     | Z                 |
| 0 0100 11rr rrrr   | 04rr | COM R    | $/R \rightarrow R$                                                     | Z                 |
| 0 0101 00rr rrrr   | 05rr | INCA R   | $R+1 \rightarrow A$                                                    | Z                 |
| 0 0101 01rr rrrr   | 05rr | INC R    | $R+1 \rightarrow R$                                                    | Z                 |
| 0 0101 10rr rrrr   | 05rr | DJZA R   | R-1 → A, skip if zero                                                  | None              |
| 0 0101 11rr rrrr   | 05rr | DJZ R    | $R-1 \rightarrow R$ , skip if zero                                     | None              |
| 0 0110 00rr rrrr   | 06rr | RRCA R   | $R(n) \rightarrow A(n-1),$<br>$R(0) \rightarrow C, C \rightarrow A(7)$ | С                 |
| 0 0110 01rr rrrr   | 06rr | RRC R    | $R(n) \rightarrow R(n-1),$<br>$R(0) \rightarrow C, C \rightarrow R(7)$ | С                 |
| 0 0110 10rr rrrr   | 06rr | RLCA R   | $R(n) \rightarrow A(n+1),$<br>$R(7) \rightarrow C, C \rightarrow A(0)$ | С                 |
| 0 0110 11rr rrrr   | 06rr | RLC R    | $R(n) \rightarrow R(n+1),$<br>$R(7) \rightarrow C, C \rightarrow R(0)$ | С                 |
| 0 0111 00rr rrrr   | 07rr | SWAPA R  | $R(0-3) \rightarrow A(4-7),$<br>$R(4-7) \rightarrow A(0-3)$            | None              |
| 0 0111 01rr rrrr   | 07rr | SWAP R   | $R(0-3) \leftrightarrow R(4-7)$                                        | None              |
| 0 0111 10rr rrrr   | 07rr | JZA R    | $R+1 \rightarrow A$ , skip if zero                                     | None              |
| 0 0111 11rr rrrr   | 07rr | JZ R     | $R+1 \rightarrow R$ , skip if zero                                     | None              |
| 0 100b bbrr rrrr   | 0xxx | BC R,b   | $0 \rightarrow R(b)$                                                   | None <sup>2</sup> |
| 0 101b bbrr rrrr   | 0xxx | BS R,b   | $1 \rightarrow R(b)$                                                   | None <sup>3</sup> |
| 0 110b bbrr rrrr   | 0xxx | JBC R,b  | if R(b)=0, skip                                                        | None              |
| 0 111b bbrr rrrr   | 0xxx | JBS R,b  | if R(b)=1, skip                                                        | None              |
| 1 00kk kkkk kkkk   | 1kkk | CALL k   | $PC+1 \rightarrow [SP],$<br>$(Page, k) \rightarrow PC$                 | None              |
| 1 01kk kkkk kkkk   | 1kkk | JMP k    | $(Page,k)\toPC$                                                        | None              |
| 1 1000 kkkk kkkk   | 18kk | MOV A,k  | $k \rightarrow A$                                                      | None              |
| 1 1001 kkkk kkkk   | 19kk | OR A,k   | $A \vee k \to A$                                                       | Z                 |
| 1 1010 kkkk kkkk   | 1Akk | AND A,k  | $A \& k \rightarrow A$                                                 | Z                 |
| 1 1011 kkkk kkkk   | 1Bkk | XOR A,k  | $A \oplus k \to A$                                                     | Z                 |
| 1 1100 kkkk kkkk   | 1Ckk | RETL k   | $k \to A$ , [Top of Stack] $\to PC$                                    | None              |
| 1 1101 kkkk kkkk   | 1Dkk | SUB A,k  | $k-A \rightarrow A$                                                    | Z, C, DC          |
| 1 1111 kkkk kkkk   | 1Fkk | ADD A,k  | $k+A \rightarrow A$                                                    | Z, C, DC          |
| 1 1110 1001 kkkk   | 1E9k | BANK k   | $K \rightarrow R4(7:6)$                                                | None              |

Note: <sup>2</sup> This instruction is not recommended for interrupt status register operation.

<sup>&</sup>lt;sup>3</sup> This instruction cannot operate under interrupt status register.




| Binary Instruction                   | Hex  | Mnemonic | Operation                                                                                                                     | Status Affected |
|--------------------------------------|------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1 1110 1010 kkkk<br>k kkkk kkkk kkkk | 1EAk | LCALL k  | Next instruction : k kkkk kkkk kkkk PC+1 $\rightarrow$ [SP], k $\rightarrow$ PC                                               | None            |
| 1 1110 1011 kkkk<br>k kkkk kkkk kkkk | 1EBk | LJMP k   | Next instruction: $k$ kkkk kkkk kkkk $k \rightarrow PC$                                                                       | None            |
| 1 1110 11rr rrrr                     | 1Err | TBRD R   | If Bank3 R6.7=0, machine code(7:0) $\rightarrow$ R Else Bank3 R6.7=1, machine code(12:8) $\rightarrow$ R(4:0), R(7:5)=(0,0,0) | None            |



# 7 Timing Diagram

### **AC Test Input / Output Waveform**



**Note:** AC Testing: Input are driven at 2.4V for logic "1" and 0.4V for logic "0" Timing measurements are made at 2.0V for logic "1" and 0.8V for logic "0"

Figure 7-1 AC Test Input / Output Waveform Timing Diagram

# Reset Timing (CLK1:0 = "01")

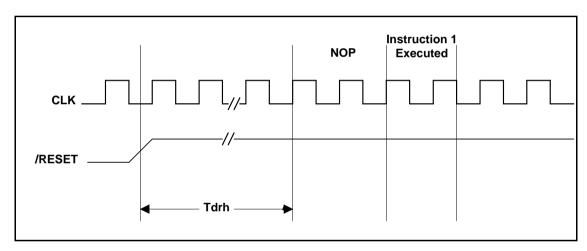



Figure 7-2 Reset Timing Diagram



# 8 Absolute Maximum Ratings

| Items                  | Rating   |    |          |  |  |
|------------------------|----------|----|----------|--|--|
| Temperature under bias | -40°C    | to | 85°C     |  |  |
| Storage temperature    | -65°C    | to | 150°C    |  |  |
| Working voltage        | 2.3      | to | 5.5V     |  |  |
| Working frequency      | DC       | to | 16 MHz   |  |  |
| Input voltage          | Vss-0.3V | to | Vdd+0.5V |  |  |
| Output voltage         | Vss-0.3V | to | Vdd+0.5V |  |  |

Note: These parameters are theoretical values and have not been tested.

# 9 DC Electrical Characteristics

Ta=25°C, VDD=5.0V  $\pm$  5%, VSS=0V

| Symbol | Parameter                                      | Condition                       | Min.   | Тур. | Max.       | Unit |
|--------|------------------------------------------------|---------------------------------|--------|------|------------|------|
|        | Crystal: VDD to 3V                             | Two suches with two sleeks      | DC     | _    | 8          | MHz  |
|        | Crystal: VDD to 5V                             | Two cycles with two clocks      | DC     | _    | 16         | MHz  |
| Fxt    | ERC: VDD to 5V                                 | R: 5.1KΩ, C: 300 pF             | F-30%  | 370  | F+30%      | kHz  |
|        | IRC: VDD to 5 V                                | 4 MHz, 16 MHz, 8 MHz,<br>455kHz | F-2.5% | F    | F+2.5%     | Hz   |
| IIL    | Input Leakage Current for Input pins           | VIN = VDD, VSS                  | _      | _    | ±1         | μΑ   |
| VIHRC  | Input High Threshold Voltage (Schmitt Trigger) | OSCI in RC mode                 | _      | 3.5  | _          | V    |
| IERC1  | Sink current                                   | VI from low to high, VI=5V      | 21     | 22   | 23         | mA   |
| VILRC  | Input Low Threshold Voltage (Schmitt Trigger)  | OSCI in RC mode                 | _      | 1.5  | _          | V    |
| IERC2  | Sink current                                   | VI from high to low, VI=2V      | 16     | 17   | 18         | mA   |
| VIH1   | Input High Voltage<br>(Schmitt Trigger)        | Ports 5, 6, 7, 8                | 0.7VDD | -    | VDD + 0.3V | V    |
| VIL1   | Input Low Voltage<br>(Schmitt Trigger)         | Ports 5, 6, 7, 8                | -0.3V  | ı    | 0.3VDD     | V    |
| VIHT1  | Input High Threshold Voltage (Schmitt Trigger) | /RESET                          | 0.7VDD | -    | VDD + 0.3V | V    |
| VILT1  | Input Low Threshold Voltage (Schmitt Trigger)  | /RESET                          | -0.3V  | _    | 0.3VDD     | V    |



| Symbol | Parameter                                      | Condition                                                        | Min.   | Тур. | Max.       | Unit |
|--------|------------------------------------------------|------------------------------------------------------------------|--------|------|------------|------|
| VIHT2  | Input High Threshold Voltage (Schmitt Trigger) | TCC, INT                                                         | 0.7VDD | _    | VDD + 0.3V | ٧    |
| VILT2  | Input Low Threshold Voltage (Schmitt Trigger)  | TCC, INT                                                         | -0.3V  | _    | 0.3VDD     | ٧    |
| VIHX1  | Clock Input High Voltage                       | OSCI in crystal mode                                             | _      | 3.0  | _          | V    |
| VILX1  | Clock Input Low Voltage                        | OSCI in crystal mode                                             | -      | 1.8  | _          | ٧    |
| IOH1   | Output High Voltage<br>(Ports 5, 6, 7, 8)      | VOH = VDD-0.5V<br>(IOH =3.7mA)                                   | -3.0   | -4.2 | _          | mA   |
| IOL1   | Output Low Voltage (Ports 5, 7, 8)             | VOL = GND+0.5V                                                   | 9      | 11   | -          | mA   |
| IOL2   | Output Low Voltage<br>(Port 6)                 | VOL = GND+0.5V                                                   | 15     | 18   | _          | mA   |
| LVR1   |                                                | Ta = 25℃                                                         | 2.4    | 2.7  | 3.02       | V    |
| LVKI   |                                                | Ta = -40 ~ 85°C                                                  | 2.07   | 2.7  | 3.37       | V    |
| LV/D2  | Law valtage was at lawal                       | Ta = 25℃                                                         | 3.29   | 3.7  | 4.18       | V    |
| LVR2   | Low voltage reset level                        | Ta = -40 ~ 85°C                                                  | 2.78   | 3.7  | 4.66       | ٧    |
| L)/D0  |                                                | Ta = 25°C                                                        | 3.61   | 4.1  | 4.61       | ٧    |
| LVR3   |                                                | Ta = -40 ~ 85°C                                                  | 3.08   | 4.1  | 5.16       | ٧    |
| IPH    | Pull-high current                              | Pull-high active,<br>Input pin at VSS                            | _      | -70  | -80        | μΑ   |
| IPL    | Pull-low current                               | Pull-low active,<br>Input pin at Vdd                             | _      | 20   | 30         | μΑ   |
| ISB1   | Power down current                             | All input and I/O pins at VDD, Output pin floating, WDT disabled | _      | 1.0  | 1.5        | μΑ   |
| ISB2   | Power down current                             | All input and I/O pins at VDD, Output pin floating, WDT enabled  | -      | 8    | 10         | μΑ   |



| Symbol | Parameter                              | Condition                                                                                                           | Min. | Тур. | Max. | Unit |
|--------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| ICC1   | Operating supply current at two clocks | /RESET= 'High', Fosc=32kHz<br>(Crystal type, CLKS1:0="01"),<br>Output pin floating,<br>WDT disabled.                | -    | 37   | 40   | μΑ   |
| ICC2   | Operating supply current at two clocks | /RESET= 'High', Fosc=32kHz<br>(Crystal type, CLKS1:0="01"),<br>Output pin floating,<br>WDT enabled.                 | -    | 39   | 43   | μΑ   |
| ICC3   | Operating supply current at two clocks | /RESET= 'High', Fosc=455kHz (Crystal type, CLKS1:0="01"), Output pin floating, WDT enabled. (*VDD = 3V)             | -    | 110  | 120  | μΑ   |
| ICC4   | Operating supply current at two clocks | /RESET = 'High',<br>Fosc=455kHz<br>(IRC type, CLKS1:0="01"),<br>Output pin floating,<br>WDT enabled.<br>(*VDD = 3V) | -    | 100  | 110  | μΑ   |
| ICC5   | Operating supply current at two clocks | /RESET = 'High', Fosc = 4 MHz (Crystal type, CLKS1:0 = "01"), Output pin floating, WDT enabled                      | -    | 1.1  | 1.5  | mA   |
| ICC6   | Operating supply current at two clocks | /RESET = 'High', Fosc = 10 MHz (Crystal type, CLKS1:0 = "01"), Output pin floating, WDT enabled                     | -    | 2.7  | 3    | mA   |

**Note:** These parameters are theoretical values and have not been tested.

Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C. These data are for design reference only and are not tested.



# Data EEPROM Electrical Characteristics (only for EM78F664N)

| Symbol | Parameter              | Condition                                     | Min. | Тур.  | Max. | Unit   |
|--------|------------------------|-----------------------------------------------|------|-------|------|--------|
| Tprog  | Erase/Write cycle time | .,,,                                          | -    | 4.5   | _    | ms     |
| Treten | Data Retention         | Vdd = 2.5~ 5.5V<br>Temperature = -40°C ~ 85°C | _    | 10    | _    | years  |
| Tendu  | Endurance time         | Temperature = 40 0 % 00 0                     | -    | 1000K | _    | cycles |
| lora   | Programming            |                                               | -    | 0.6   | -    | mA     |
| lprg   |                        | Vdd ≤ 5.5V                                    | _    | 1.0   | _    | mA     |
| Iread  | Dood                   | $Vdd \leq 3.3V$                               | _    | 1.0   | _    | mA     |
|        | Read                   | Vdd ≤ 5.5V                                    | _    | 2.5   | _    | mA     |

# **Program Flash Memory Electrical Characteristics**

| Symbol | Parameter              | Condition                                | Min. | Тур. | Max. | Unit   |
|--------|------------------------|------------------------------------------|------|------|------|--------|
| Tprog  | Erase/Write cycle time | .,,,                                     | _    | -    | -    | ms     |
| Treten | Data Retention         | Vdd = 5.0V<br>Temperature = -40°C ~ 85°C | -    | 10   | -    | years  |
| Tendu  | Endurance Time         | remperature = -40 C ~ 65 C               | _    | 100K | -    | cycles |



### A/D Converter Characteristics (Vdd=2.5V to 5.5V, Vss=0V, Ta=25°C)

| Syı  | mbol  | Parameter                                      | Condition                                            | Min.      | Тур. | Max.              | Unit |
|------|-------|------------------------------------------------|------------------------------------------------------|-----------|------|-------------------|------|
| V    | AREF  | A mala mafa mana a walto ma                    | V > 2.5V                                             | 2.5       | -    | Vdd               | V    |
| V    | ASS   | Analog reference voltage                       | $V_{AREF}$ - $V_{ASS} \ge 2.5V$                      | Vss       | -    | Vss               | V    |
| \    | /AI   | Analog input voltage                           | _                                                    | $V_{ASS}$ | -    | $V_{AREF}$        | V    |
| IAI1 | lvdd  | Analog supply current                          | Vdd=VAREF=5.0V,<br>VASS =0V                          | 1150      | 1300 | 1450              | μΑ   |
|      | lvref |                                                | (V reference from Vdd)                               | -10       | 0    | 10                | μΑ   |
| IAI2 | lvdd  | Analog cupply current                          | Vdd=VAREF=5.0V,<br>VASS =0V                          | 700       | 800  | 900               | μΑ   |
| IAIZ | IVref | 3 11 7                                         | (V reference from VREF)                              | 450       | 500  | 550               | μΑ   |
| F    | RN    | Resolution                                     | Vdd=V <sub>AREF</sub> =5.0V,<br>V <sub>ASS</sub> =0V | 8         | 9    | I                 | Bits |
| ı    | _N    | Linearity error                                | Vdd = 2.5 to 5.5V<br>Ta=25°C                         | -         | ±2   | ±4                | LSB  |
| D    | NL    | Differential nonlinear error                   | Vdd = 2.5 to 5.5V<br>Ta=25°C                         | -         | ±0.5 | ±0.9              | LSB  |
| F    | SE    | Full scale error                               | Vdd=V <sub>AREF</sub> =5.0V,<br>V <sub>ASS</sub> =0V | ı         | ±1   | ±2                | LSB  |
| (    | OE    | Offset error                                   | Vdd=V <sub>AREF</sub> =5.0V,<br>V <sub>ASS</sub> =0V | -         | ±1   | ±2                | LSB  |
| 2    | ZAI   | Recommended impedance of analog voltage source | -                                                    | I         | 8    | 10                | ΚΩ   |
| T    | AD1   | A/D clock period                               | $Vdd=V_{AREF}=2.5\sim5.5V,$ $V_{ASS}=0V$             | 4         | I    | I                 | μs   |
| T.   | AD2   | A/D clock period                               | $Vdd=V_{AREF}=3.0\sim5.5V,$ $V_{ASS}=0V$             | 1         | -    | -                 | μs   |
| Т    | CN    | A/D conversion time                            | Vdd=V <sub>AREF</sub> =5.0V,<br>V <sub>ASS</sub> =0V | 14        |      | 14                | TAD  |
| A    | .DIV  | A/D OP input voltage range                     | Vdd=V <sub>AREF</sub> =5.0V,<br>V <sub>ASS</sub> =0V | 0         | ı    | V <sub>AREF</sub> | V    |
| F    | PSR   | Power Supply Rejection                         | Vdd=5.0V±0.5V                                        | _         | _    | ±2                | LSB  |

**Note:** 1. The parameters are theoretical values and have not been tested. Such parameters are for design reference only.

- 2. When A/D is off, no current is consumed other than minor leakage current.
- 3. The A/D conversion result does not decrease with an increase in the input voltage, and there's no missing code.
- 4. Specifications are subject to change without prior notice.



# **Comparator Electrical Characteristics**

| Symbol | Parameter                        | Condition                                                                                 | Min. | Тур. | Max. | Unit |
|--------|----------------------------------|-------------------------------------------------------------------------------------------|------|------|------|------|
| VOS    | Input offset voltage             | RL = 5.1K (Note <sup>1</sup> )                                                            | _    | _    | 10   | mV   |
| Vcm    | Input common-mode voltages range | (Note <sup>2</sup> )                                                                      | GND  | -    | VDD  | ٧    |
| ICO    | Supply current of Comparator     | I                                                                                         | _    | 200  | -    | μΑ   |
| TRS    | Response time                    | Vin(-)=2.5V, Vdd=5V, CL=15p (comparator output load), overdrive=30mV (Note <sup>3</sup> ) | -    | 0.7  | -    | μs   |
| TLRS   | Large signal response time       | Vin(-)=2.5V, Vdd=5V, CL=15p (comparator output load),                                     | -    | 300  | -    | ns   |
| VS     | Operating range                  | I                                                                                         | 2.5  | _    | 5.5  | V    |

**Note:** <sup>1</sup> The output voltage is in the unit gain circuitry and over the full input common-mode range.

<sup>&</sup>lt;sup>2</sup> The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VDD.

<sup>&</sup>lt;sup>3</sup> The response time specified is a 100 mV input step with 30 mV overdrive.



### **Device Characteristics**

The graphs provided in the following pages were derived based on a limited number of samples and are shown here for reference only. The device characteristics illustrated herein are not guaranteed for its accuracy. In some graphs, the data may be out of the specified warranted operating range.

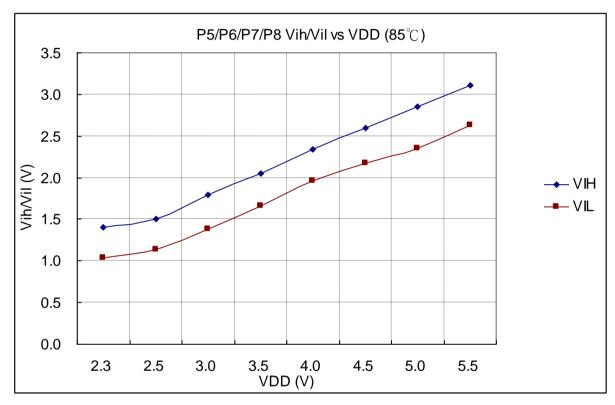



Figure 9-1(a) Vih/Vil vs VDD @ 85°C



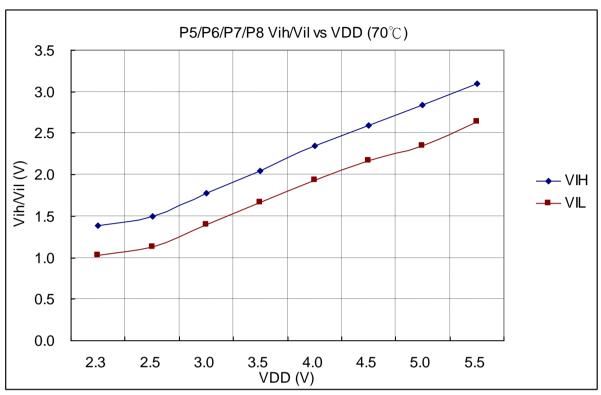



Figure 9-1(b) Vih/Vil vs VDD @ 70°C

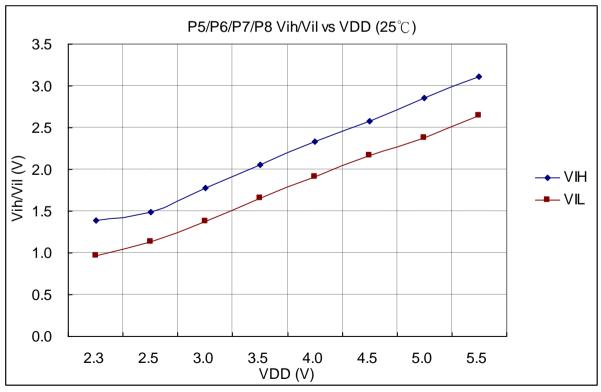



Figure 9-1(c) Vih/Vil vs VDD @ 25°C



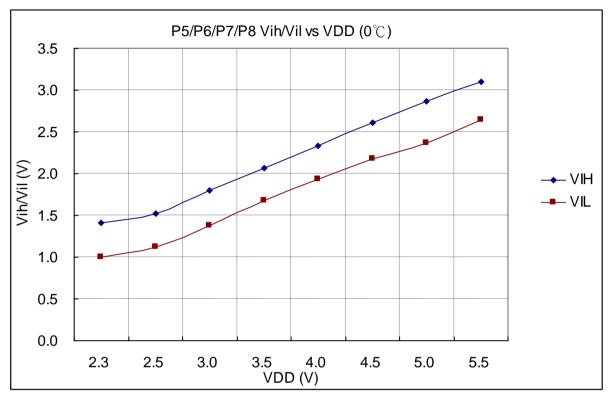



Figure 9-1(d) Vih/Vil vs VDD @ 0°C

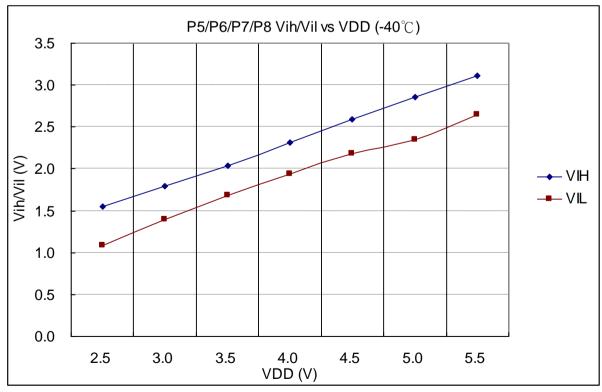



Figure 9-1(e) Vih/Vil vs VDD @ -40°C



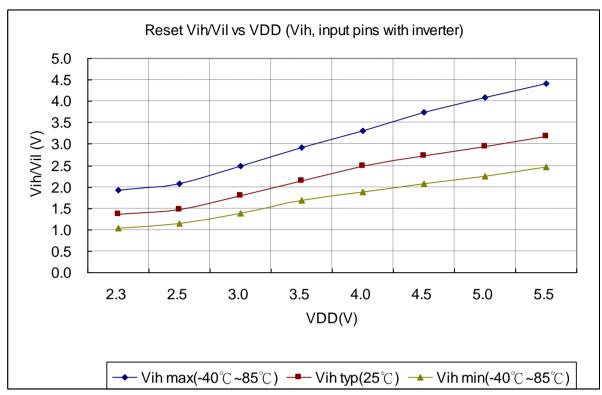



Figure 9-1(f) Reset pin Vih vs VDD

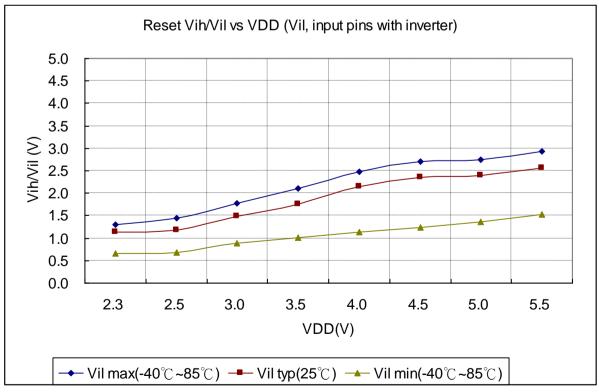



Figure 9-1(g) Reset pin Vil vs VDD



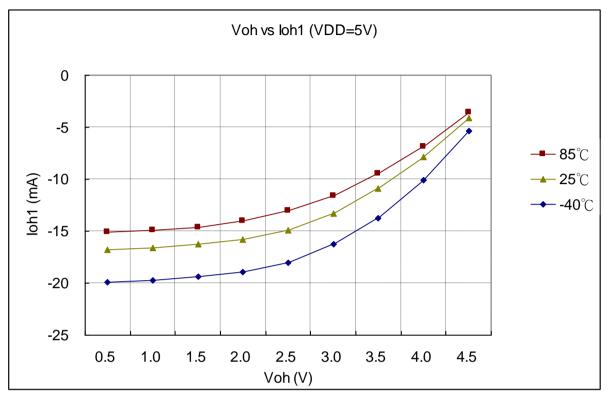



Figure 9-2(a) Voh vs Ioh1, VDD=5V

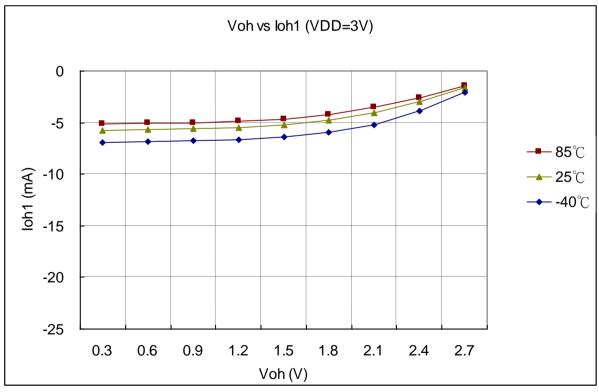



Figure 9-2(b) Voh vs Ioh1, VDD=3V



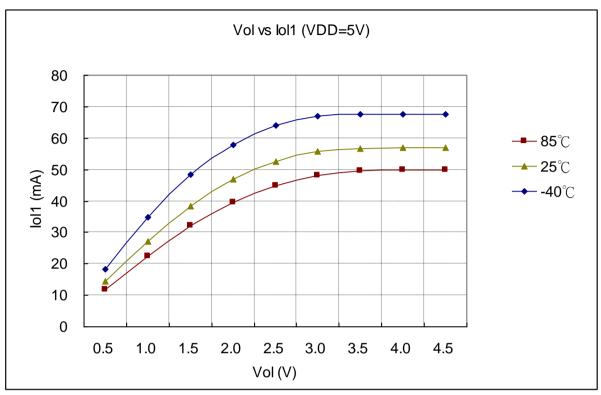



Figure 9-2(c) Vol vs Iol1, VDD=5V

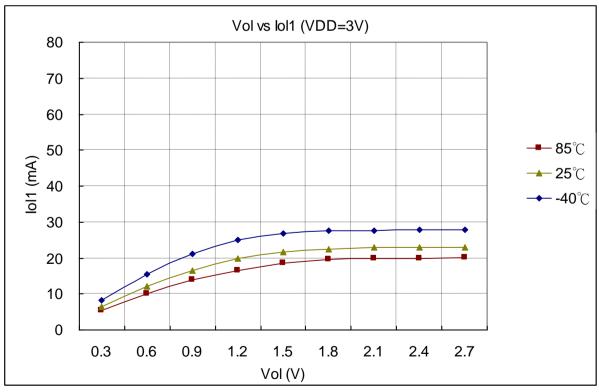



Figure 9-2(d) Vol vs IoI1, VDD=3V



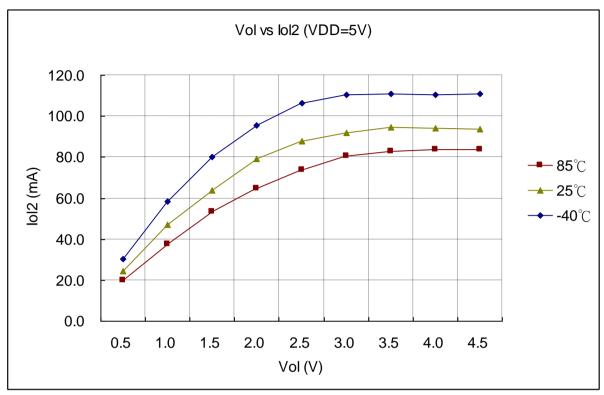



Figure 9-2(e) Vol vs Iol2, VDD=5V

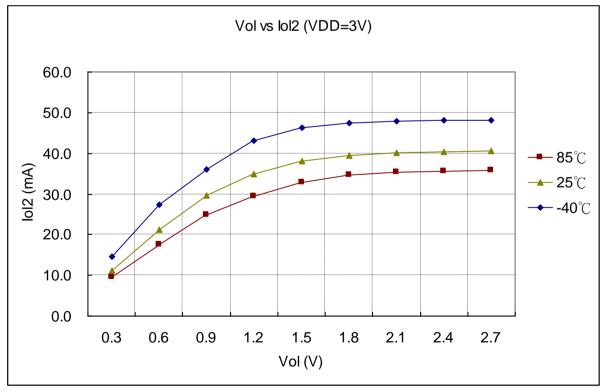



Figure 9-2(f) Vol vs Iol2, VDD=3V



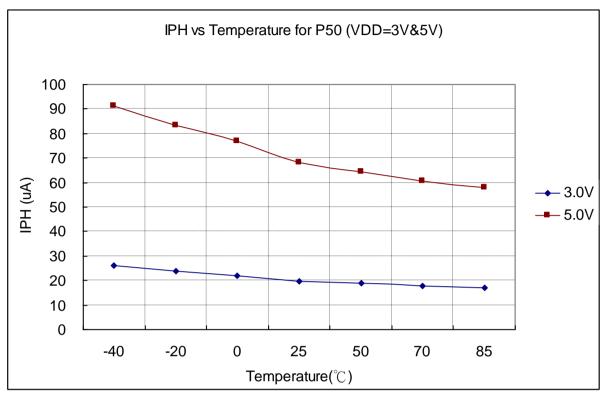



Figure 9-3(a) IPH vs Temperature

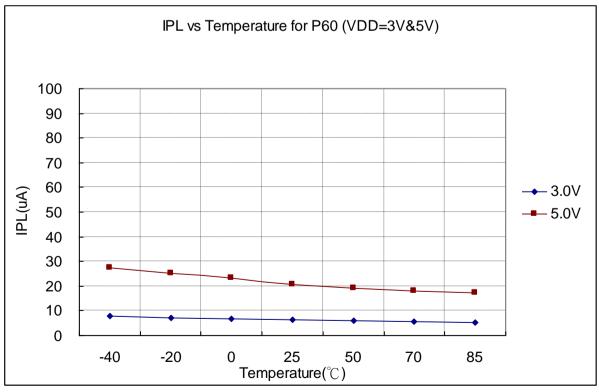



Figure 9-3(b) IPL vs Temperature



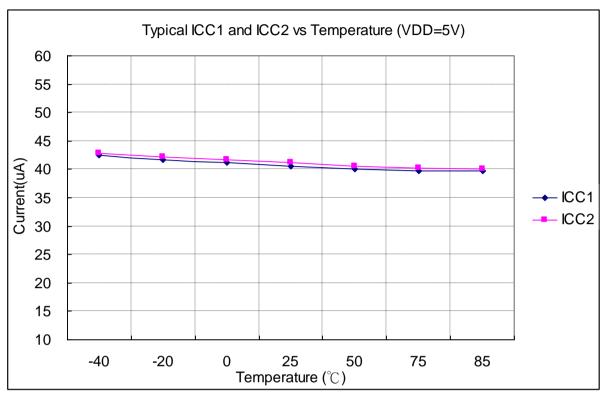



Figure 9-4(a) Typical Operating Current ICC1/ICC2 vs Temperature (VDD=5V)

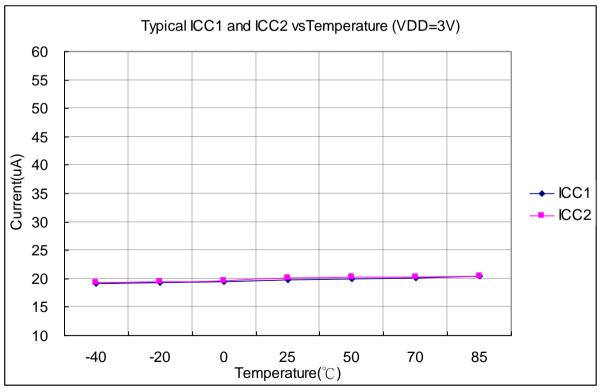



Figure 9-4(b) Typical Operating Current ICC1/ICC2 vs Temperature (VDD=3V)



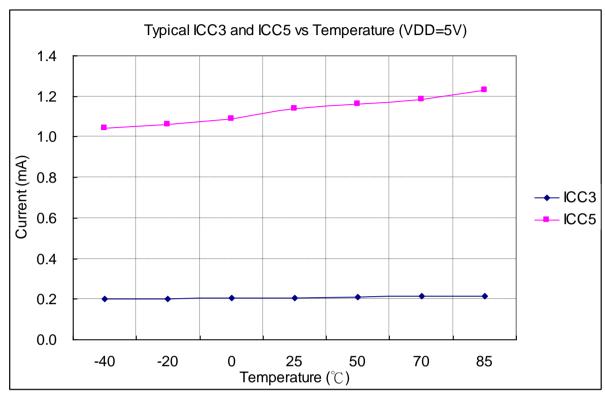



Figure 9-4(c) Typical Operating Current ICC3/ICC5 vs Temperature (VDD=5V)



Figure 9-4(d) Typical Operating Current ICC3/ICC5 vs Temperature (VDD=3V)



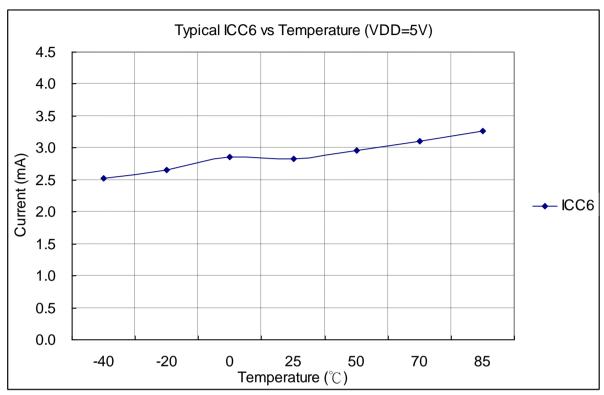



Figure 9-4(e) Typical Operating Current ICC6 vs Temperature (VDD=5V)

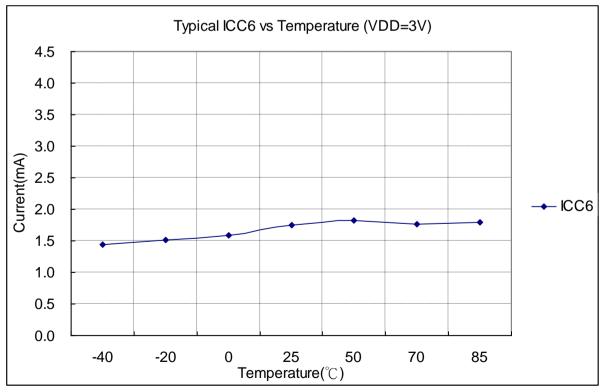



Figure 9-4(f) Typical Operating Current ICC6 vs Temperature (VDD=3V)





Figure 9-5(a) Sleep Wake-up Time vs Operating Voltage (XTAL=4MHz)

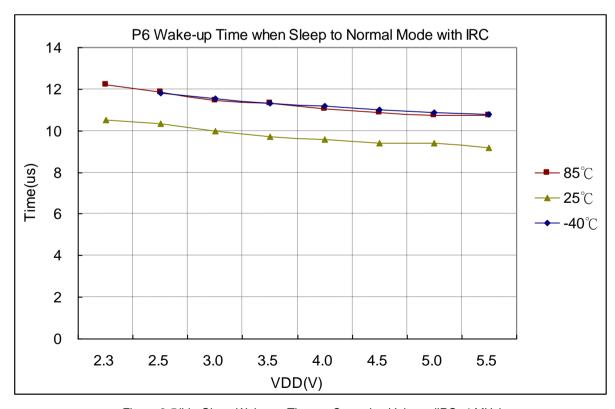



Figure 9-5(b) Sleep Wake-up Time vs Operating Voltage (IRC=4 MHz)



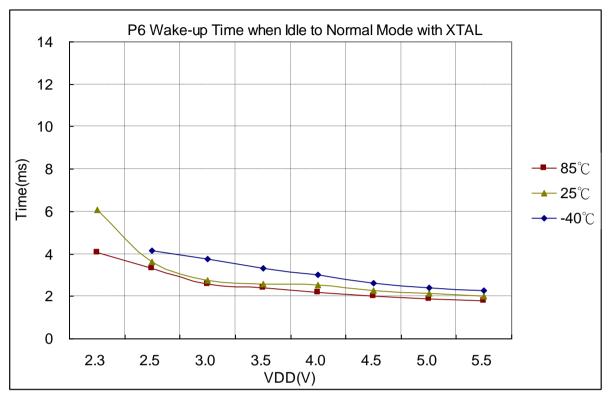



Figure 9-5(c) Idle Wake-up Time vs Operating Voltage (XTAL=4 MHz)

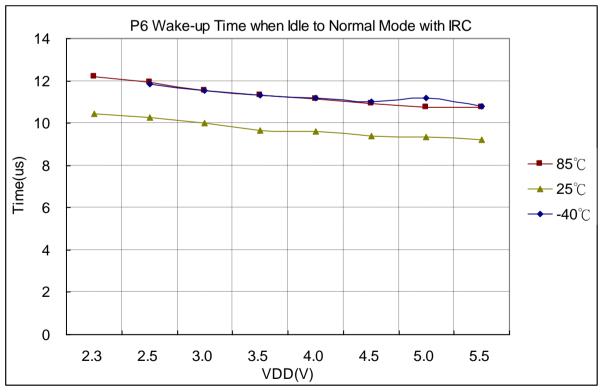



Figure 9-5(d) Idle Wake-up Time vs Operating Voltage (IRC=4 MHz)



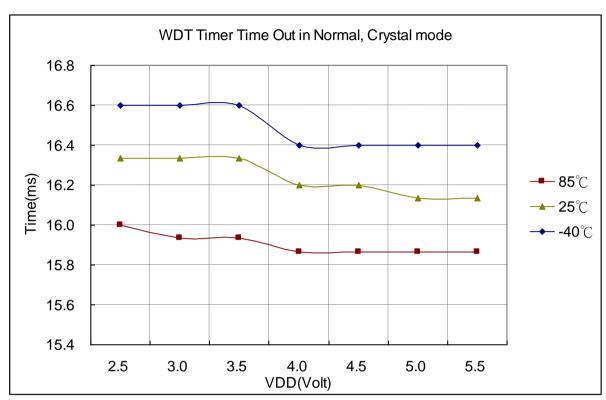



Figure 9-6(a) WDT Timer Time Out vs Operating Voltage (XTAL=4 MHz)

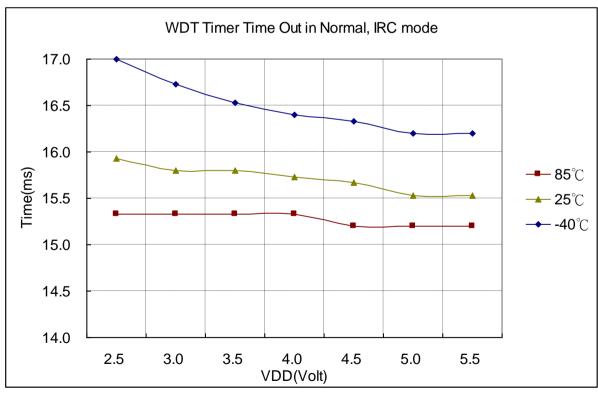



Figure 9-6(b) WDT Timer Time Out vs Operating Voltage (IRC=4 MHz)



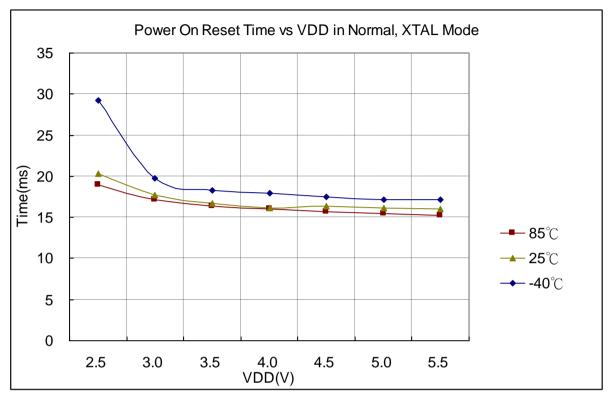



Figure 9-7(a) Power-on Reset Time vs Operating Voltage (XTAL=4 MHz)

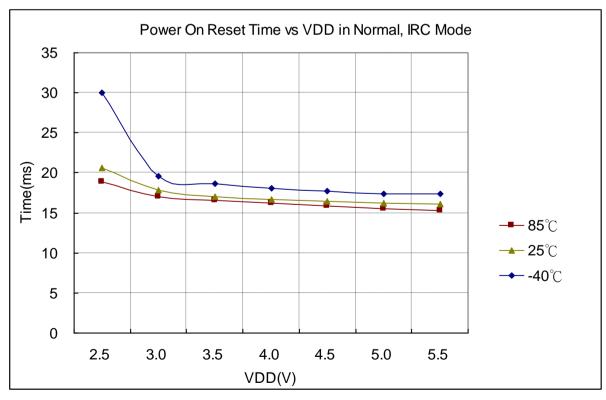



Figure 9-7(b) Power-on Reset Time vs Operating Voltage (IRC=4 MHz)



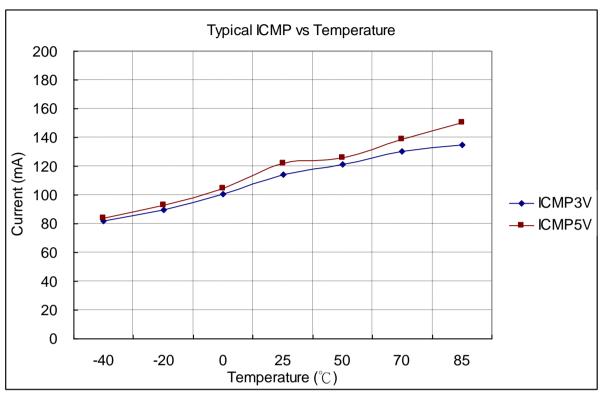



Figure 9-8 ICMP vs Temperature

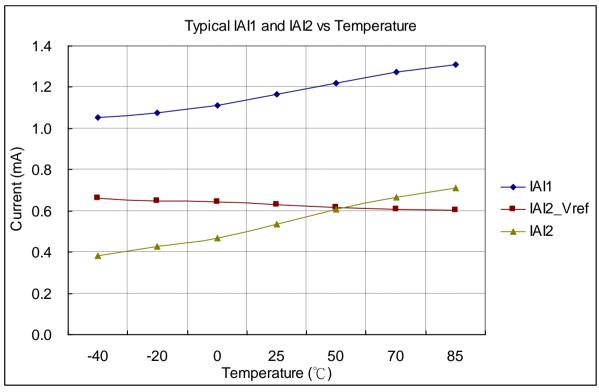



Figure 9-9 AD Current vs Temperature



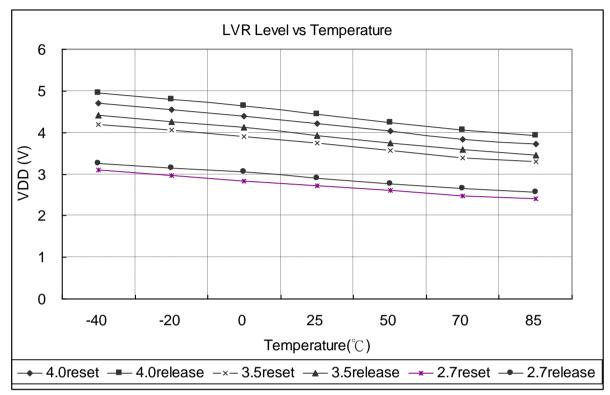



Figure 9-10 LVR Level vs Temperature

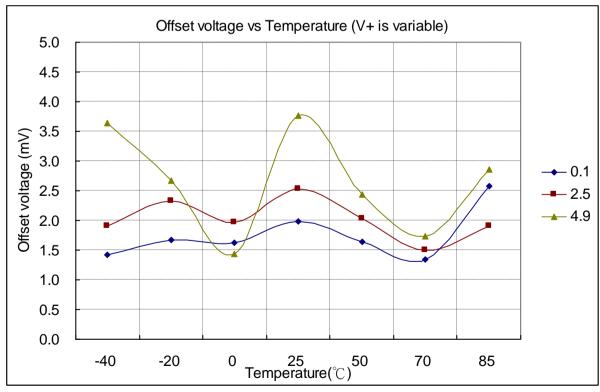



Figure 9-11(a) CMP Offset voltage vs Temperature (V+ is variable)



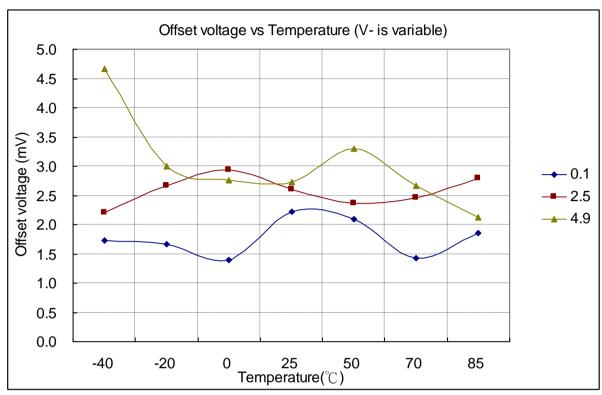



Figure 9-11(b) CMP Offset voltage vs Temperature (V- is variable)



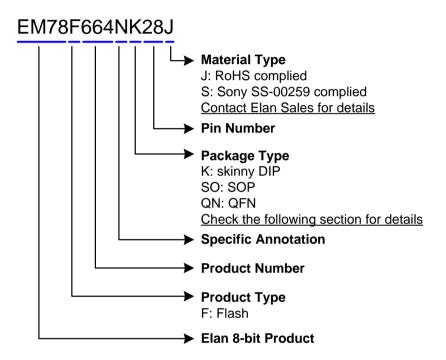
## 10 AC Electrical Characteristics

EM78Fx64N,  $0 \le Ta \le 70^{\circ}C$ , VDD=5V, VSS=0V

 $-40 \le Ta \le 85^{\circ}C$ , VDD=5V, VSS=0V

| Symbol | Parameter                             | Conditions    | Min.         | Тур. | Max. | Unit |
|--------|---------------------------------------|---------------|--------------|------|------|------|
| Dclk   | Input CLK duty cycle                  | _             | 45           | 50   | 55   | %    |
| Tins   | Instruction cycle time (CLKS1:0="01") | Crystal type  | 100          | 1    | DC   | ns   |
|        |                                       | RC type       | 500          | _    | DC   | ns   |
| Ttcc   | TCC input period                      | _             | (Tins+20)/N* | _    | _    | ns   |
| Tdrh   | Device reset hold time                | _             | 14           | 16   | 18   | ms   |
| Trst   | /RESET pulse width                    | Ta = 25°C     | 2000         | _    | _    | ns   |
| Twdt   | Watchdog timer period                 | Ta = 25°C     | 14           | 16   | 18   | ms   |
| Tset   | Input pin setup time                  | _             | -            | 0    | _    | ns   |
| Thold  | Input pin hold time                   | _             | _            | 20   | _    | ns   |
| Tdelay | Output pin delay time                 | Cload = 20 pF | _            | 50   | -    | ns   |

**Note:** The parameters are theoretical values and have not been tested. Such parameters are for design reference only.


Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C.

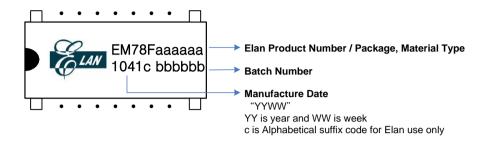
<sup>\*</sup>N = selected prescaler ratio.



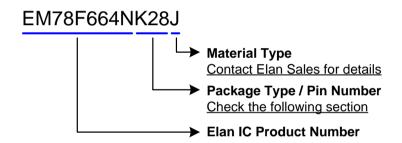
#### **APPENDIX**

## A Ordering and Manufacturing Information




#### For example:

#### EM78F664NSO28S


is EM78F664N with Flash program memory product, in 28-pin SOP 300mil package with Sony SS-00259 complied



## **IC Mark**



## **Ordering Code**





# B Package Type

| Flash MCU     | Package Type | Pin Count | Package Size |
|---------------|--------------|-----------|--------------|
| EM78Fx64NK24  | Skinny DIP   | 24        | 300 mil      |
| EM78Fx64NSO24 | SOP          | 24        | 300 mil      |
| EM78Fx64NK28  | Skinny DIP   | 28        | 300 mil      |
| EM78Fx64NSO28 | SOP          | 28        | 300 mil      |
| EM78Fx64NQN32 | QFN          | 32        | 5×5 mm       |

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

The Pb content is less than 100ppm and complies with Sony specifications.

| Part No.                       | EM78Fx64NxJ/xS |  |  |
|--------------------------------|----------------|--|--|
| Electroplate type              | Pure Tin       |  |  |
| Ingredient (%)                 | Sn: 100%       |  |  |
| Melting point (°C)             | 232°C          |  |  |
| Electrical resistivity (μΩ cm) | 11.4           |  |  |
| Hardness (hv)                  | 8~10           |  |  |
| Elongation (%)                 | >50%           |  |  |



# C Packaging Configuration

## C.1 EM78Fx64NK24

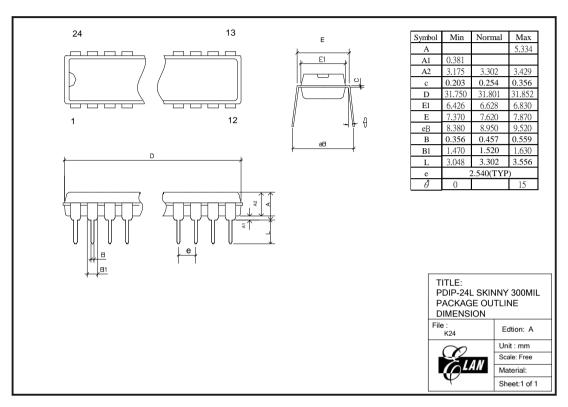



Figure C-1 EM78Fx64N 24-pin Skinny DIP Package Type



## C.2 EM78Fx64NSO24

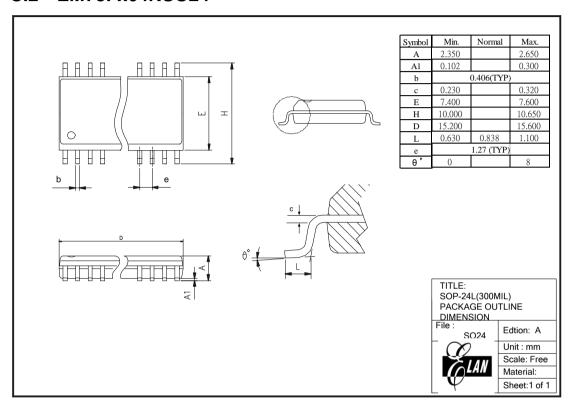



Figure C-2 EM78Fx64N 24-pin SOP Package Type



### C.3 EM78Fx64NK28

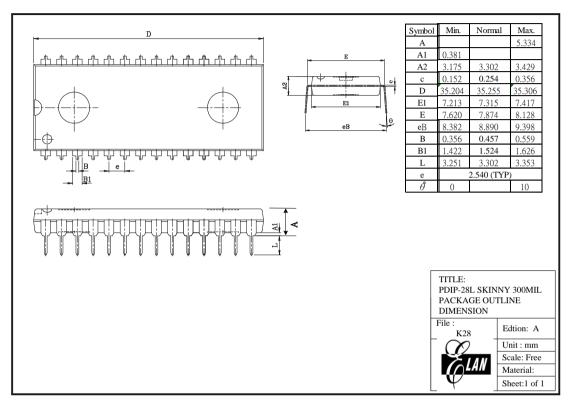



Figure C-3 EM78Fx64N 28-pin Skinny DIP Package Type



#### C.4 EM78Fx64NSO28

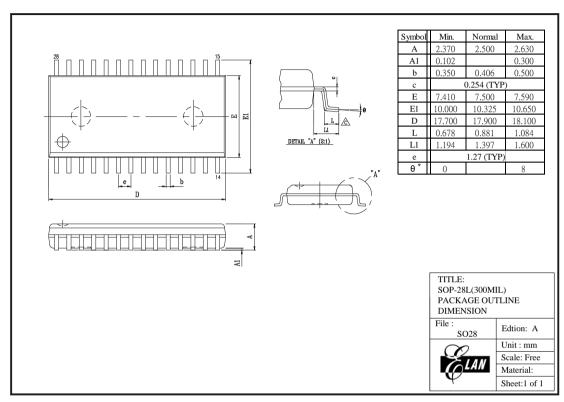



Figure C-4 EM78Fx64N 28-pin SOP Package Type



## C.5 EM78Fx64NQN32

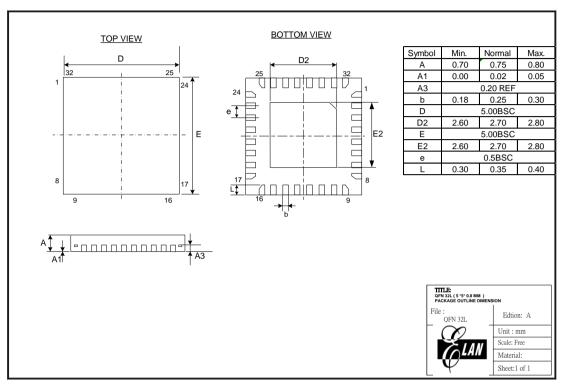



Figure C-5 EM78Fx64N 32-pin QFN Package Type



# D Quality Assurance and Reliability

| Test Category                            | Test Conditions                                                                                                                                                                                                | Remarks                                                |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Solderability                            | Solder temperature=245 $\pm$ 5°C, for 5 seconds up to the stopper using a rosin-type flux                                                                                                                      | -                                                      |  |  |
|                                          | Step 1: TCT, 65°C (15 min)~150°C (15 min), 10 cycles                                                                                                                                                           |                                                        |  |  |
|                                          | Step 2: Bake at 125°C, TD (endurance)=24 hrs                                                                                                                                                                   |                                                        |  |  |
|                                          | Step 3: Soak at 30°C/60% , TD (endurance)=192 hrs                                                                                                                                                              |                                                        |  |  |
| Pre-condition                            | Step 4: IR flow 3 cycles<br>(Pkg thickness $\geq$ 2.5 mm or<br>Pkg volume $\geq$ 350 mm <sup>3</sup> 225 $\pm$ 5°C)<br>(Pkg thickness $\leq$ 2.5 mm or<br>Pkg volume $\leq$ 350 mm <sup>3</sup> 240 $\pm$ 5°C) | For SMD IC (such as SOP, QFP, SOJ, etc)                |  |  |
| Temperature cycle test                   | -65°C (15 min)~150°C (15 min), 200 cycles                                                                                                                                                                      | _                                                      |  |  |
| Pressure cooker test                     | TA =121°C, RH=100%, pressure=2 atm,<br>TD (endurance)= 96 hrs                                                                                                                                                  | -                                                      |  |  |
| High temperature /<br>High humidity test | TA=85°C , RH=85% , TD (endurance) = 168 , 500 hrs                                                                                                                                                              | -                                                      |  |  |
| High-temperature storage life            | TA=150°C, TD (endurance) = 500, 1000 hrs                                                                                                                                                                       | _                                                      |  |  |
| High-temperature operating life          | TA=125°C, VCC = Max. operating voltage,<br>TD (endurance) = 168, 500, 1000 hrs                                                                                                                                 | _                                                      |  |  |
| Latch-up                                 | atch-up TA=25°C, VCC = Max. operating voltage, 150mA/20V                                                                                                                                                       |                                                        |  |  |
| ESD (HBM)                                | TA=25°C, ≥   ± 3KV                                                                                                                                                                                             | IP_ND,OP_ND,IO_ND IP_NS,OP_NS,IO_NS IP_PD,OP_PD,IO_PD, |  |  |
| ESD (MM)                                 | TA=25°C, ≥   ± 300V                                                                                                                                                                                            | IP_PS,OP_PS,IO_PS, VDD-VSS(+),VDD_VSS (-) mode         |  |  |

## **D.1 Address Trap Detect**

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.