EM78P211/2N

8-Bit Microcontroller with OTP ROM

Product Specification

Doc. Version 1.0

ELAN MICROELECTRONICS CORP.

October 2007

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2007 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, Taiwan 308 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057

Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

USA:

Elan Information Technology Group (USA)

P.O. Box 601 Cupertino, CA 95015 USA

Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

Elan Microelectronics Shanghai, Ltd.

#23, Zone 115, Lane 572, Bibo Rd. Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-4600

Contents

			Package version	
EM7			Package version	
1	Gen	eral Des	scription	2
2	Feat	ures		2
3	Pin A	Assignr	ment	3
4	Pin I	Descrip	tion	4
	4.1	EM78F	² 212N	4
	4.2	EM78F	P211N	5
5	Bloc	k Diagr	ram	6
6	Fund	ction De	escription	7
	6.1		er Configuration	
	6.2	-	ers Description	
	0	6.2.1	A (Accumulator)	
		6.2.2	CONT (Control Register)	
		6.2.3	R0 (Indirect Addressing Register)	
		6.2.4	R1 (Memory Switch Register)	
		6.2.5	R2 (Program Counter) and Stack	9
		6.2.6	R3 (Status Register)	10
		6.2.7	R4 (Select Indirect Address)	.11
		6.2.8	Bank 0-R5 (Port 5)	.11
		6.2.9	Bank 0-R6 (Port 6)	.11
		6.2.10	Bank 0-R7 (Port 7)	.11
			Bank 0-R8 (Port 8)	
			Bank 0-R9~RD (Reserve)	
		6.2.13	Bank 0-RE (WUCR: Wake-up Control Register)	12
			Bank 0-RF (Interrupt Status Register)	
			Bank 1-R5 ~R7 (I/O Port Control Register)	
			Bank 1-R8 (I/O Port Control Register)	
			Bank 1-R9 (Reserve)	
			Bank 1-RA (CMPCON: Comparator Control Register)	
			Bank 1-RB (Pull-down Control Register)	
			Bank 1-RC (Open-Drain Control Register)	
			Bank 1-RD (Pull-high Control Register)	
			Bank 1-RE (WDT Control Register)	
			Bank 1-RF (Interrupt Mask Register)	
			Bank 2-R5 (HDCR: High Drive Control Register for Port 6)	
			Bank 2-R6 (HSCR1: High Sink Control Register for Port 5)	
			Bank 2-R7 (HSCR1: High Sink Control Register for Port 6)	
			Bank 2-R9~RF (Reserve)	
			Bank 3-R5 (Timer Clock /Counter)	
		0.2.29	Daily 2-10 (Tillier Clock/Couliter)	ıσ

		Bank 3-R6 (IRC Control)-only for ICE	
		Bank 3-R7 (Noise and LVR Control) -only for ICE	
		Bank 3-R8~RF (Reserve)	
		R10 ~ R1F	
		Banks 0~3 - R20 ~ R3F	
6.3	TCC/V	VDT and Prescaler	22
6.4	I/O Po	rts	
	6.4.1	Usage of Port 6 Input Change Wake-up/Interrupt Function	25
6.5	Reset	and Wake-up	26
	6.5.1	Reset and Wake-up Operation	26
		6.5.1.1 Wake-up and Interrupt Modes Operation Summary	28
		6.5.1.2 Register Initial Values after Reset	30
		6.5.1.3 Controller Reset Block Diagram	34
	6.5.2	The T and P Status under Status Register	35
6.6	Interru	pt	36
6.7	Compa	arator	38
	6.7.1	External Reference Signal	38
	6.7.2	Comparator Outputs	38
	6.7.3	Using a Comparator as an Operation Amplifier	39
		6.7.3.1 Bank 0-RE (WUCR: Wake-up Control Register)	39
		6.7.3.2 Bank 1-RA (CMPCON: Comparator Control Register)	
		6.7.3.3 Bank 1-RE (WDT Control Register)	40
	6.7.4	Comparator Interrupt	
	6.7.5	Wake-up from Sleep Mode	40
6.8	Oscilla	itor	41
	6.8.1	Oscillator Modes	
	6.8.2	Crystal Oscillator/Ceramic Resonators (Crystal)	
	6.8.3	External RC Oscillator Mode	
	6.8.4	Internal RC Oscillator Mode	
6.9		-on Considerations	
	6.9.1	External Power-on Reset Circuit	
	6.9.2	Residual Voltage Protection	
6.10	Low V	oltage Reset	46
6.11	Code	Option	47
		Code Option Register (Word 0)	
		Code Option Register (Word 1)	
	6.11.3	Customer ID Register (Word 2)	50
6.12	Instruc	ction Set	51
Abso	olute M	aximum Ratings	53
DC E	Electric	al Characteristics	54
8.1	Compa	arator (OP) Characteristic	56
AC E	•	al Characteristic	
		grams	
	- '	-	

7 8

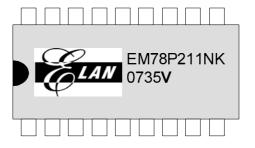
9 10

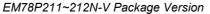
APPENDIX

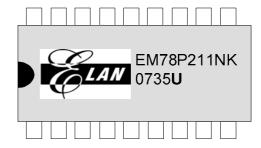
Α	Pac	kage Type	58
В	Pac	kaging Configurations	59
	B.1	20-Lead Plastic Dual in line (PDIP) — 300 mil	59
	B.2	20-Lead Plastic Small Outline (SOP) — 300 mil	60
	B.3	20-Lead Plastic Shrink Small Outline (SSOP) — 209 mil	61
	B.4	24-Lead Shrink Plastic Dual in Line (SDIP) — 300mil	62
	B.5	24-Lead Plastic Small Outline (SOP) — 300 mil	63
	B.6	24-Lead Plastic Shrink Small Outline (SSOP) — 209 mil	64
С	Qua	lity Assurance and Reliability	65
	C 1	Address Trap Detect	65

Specification Revision History

Doc. Version	Revision Description	Date
0.9	Preliminary version	2007/03/20
1.0	Initial released version	2007/10/19




Read Me First!


Comparison between V-Package and U-Package version

This series of microcontrollers comprise of the older V-package version and the newer U-package version. In the newer U-package version, a Code Option NRM is added and various features such as Crystal mode Operating frequency range, IRC mode wake-up time, WDT Time-out time, Comparator function and Pins function have been modified to favorably meet users' requirements. The following table is provided for quick comparison between the two package version and for user convenience in the choice of the most suitable product for their application.

	EM78P211~212N-V	EM78P211~212N-U
Crystal mode Operating frequency range at 0°C ~ 70°C	DC ~ 12MHz, 4.0V; DC ~ 8MHz, 3.0V; DC ~ 4MHz, 2.1V	DC ~ 16MHz, 4.5V; DC ~ 8MHz, 3.0V; DC ~ 4MHz, 2.1V
IRC mode wake-up time Sleep mode → Normal mode Condition: 5V, 4MHzIRC mode	64μs	10μs
P52, P53 function	Output only	Input / Output
Comparator Function	Comparator only	Comparator / OPA
WDT Time-out time (Prescaler = 1 : 1) Condition: VDD = 5V	16.5 ms ± 30 %	15.2 ms ± 30 %
Code Option	×	Added a code option NRM

EM78P211~212N-U Package Version

1 General Description

EM78P211N and EM78P212N are 8-bit microprocessors designed and developed with low-power and high-speed CMOS technology. Each device in the series has as an on-chip 2K×13-bit Electrical One Time Programmable Read Only Memory (OTP-ROM). Each provides a protection bit to prevent intrusion of user's OTP memory code. Two Code option bits are also available to meet user's requirements.

With its enhanced OTP-ROM features, each device provides a convenient way of developing and verifying user's programs. Moreover, this OTP devices offer the advantages of easy and effective program updates, using development and programming tools. User can avail of the ELAN Writer to easily program his development code.

2 Features

- CPU configuration
 - 2K×13 bits on-chip OTP-ROM
 - 80×8 bits on-chip registers (SRAM)
 - · 8-level stacks for subroutine nesting
 - 3 programmable Level Voltage Reset (LVR): 4.0V, 3.0V, 2.5V
 - Less than 1.5 mA at 5V/4MHz
 - Typically 15 μA, at 3V/32kHz
 - Typically 2 μA, during sleep mode
- I/O port configuration
 - 4 bidirectional I/O ports: P5, P6, P7 and P8
 - Wake-up port: P6
 - 22 I/O pins
 - 8 programmable pull-down I/O pins
 - 8 programmable pull-high I/O pins
 - 8 programmable open-drain I/O pins
 - 16 Programmable high sink current I/O pins
 - 8 Programmable high drive current I/O pins
 - External interrupt : P77, P71
- Operating voltage range:
 - OTP version:

Operating voltage: 2.1V~5.5V (commercial)
Operating voltage: 2.3V~5.5V (industrial)

Operating temperature range:

Operating temperature: 0°C~70°C (commercial) Operating temperature: -40°C~85°C (industrial)

- Operating frequency range
 - Crystal mode:

DC~16MHz/2 clks @ 4.5V; DC~125ns inst. cycle @ 4.5V DC~8MHz/2 clks @ 3V; DC~250ns inst. Cycle @ 3V

• ERC mode:

DC~16MHz/2 clks @ 4.5V; DC~125ns inst. cycle @ 4.5V DC~8MHz/2 clks @ 3V; DC~250ns inst Cycle @ 3V

IRC mode:

Oscillation mode: 16MHz, 4 MHz, 1 MHz, 455kHz Process deviation: Typ \pm 3%, Max. \pm 5% Temperature deviation: \pm 5% (-40°C~85°C)

		Drift Rate		
Internal RC Frequency	Temperature (-40°C+85°C)	Voltage (2.1V~5.5V)	Process	±14% ±14%
4MHz	±5%	±5%	±4%	±14%
16MHz	±5%	±5%	±4%	±14%
1MHz	±5%	±5%	±4%	±14%
455kHz	±5%	±5%	±4%	±14%

All these four main frequencies can be trimmed by programming with four calibrated bits in the ICE220N Simulator. OTP is auto trimmed by ELAN Writer (DWTR).

- Fast set-up time requires only 800μs (VDD:5V, Crystal: 4MHz, C1/C2: 30pF) in HXT2 mode and 10μs in IRC mode (VDD:5V IRC:4MHz)
- Peripheral configuration
 - 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
 - One comparator (can act as an OP). (offset voltage is smaller than 10mV)
- Five available interrupts
 - · TCC overflow interrupt
 - Input-port status changed interrupt (wake up from sleep mode)
 - Two External interrupts
 - Comparator high/low interrupt
- Special Features
 - Programmable free running Watchdog Timer
 - Two clocks per instruction cycle
 - Power-on voltage detector available (1.8 V± 0.1V)
 - High EFT immunity (better performance at 4MHz or below
 - Power saving Sleep mode
 - Selectable Oscillation mode
- Package Type:

20-pin DIP 300mil
 20-pin SOP 300mil
 20-pin SOP 300mil
 20-pin SSOP 209mil
 24-pin skinny DIP 300mil
 24-pin SOP 300mil
 24-pin SOP 300mil
 24-pin SOP 300mil
 24-pin SOP 300mil
 24-pin SSOP 209mil
 24-pin SSOP 209mil
 24-pin SSOP 209mil

3 Pin Assignment

(1) 24-Pin DIP/SOP/SSOP

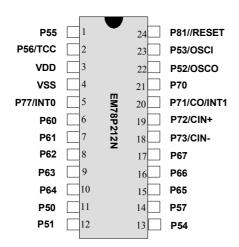


Fig. 3-1 EM78P212NK/M/AM Pin Assignment

(2) 20-Pin DIP/SOP/SSOP

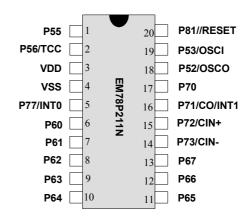


Fig. 3-2 EM78P211NP/M/AM Pin Assignment

4 Pin Description

4.1 EM78P212N

Symbol	Pin No.	Туре	Function		
P50~P57	11~14 22~23 1~2	I/O	8-bit General purpose input/output pins. Default value at power-on reset.		
P60~P67	6 ~ 10 15 ~17 I/O		8-bit General purpose input/output pins. Default value at power-on reset.		
P70~P73 P77	18 ~ 21 5	I/O	5-bit General purpose input/output pins. Default value at power-on reset. P72 and P73 are open drain pins when used as output pins in ICE 220N simulator.		
P81	24 I/O		1-bit General purpose input or output open-drain pin. Default value at power-on reset.		
CIN- CIN+ CO	18 19 20	- - 0	"-": input pin of Vin- of the comparator "+": input pin of Vin+ of the comparator Pin CO is the comparator output. Defined by CMPCON (Bank 1-RA) <3: 4>		
OSCI	23	I	Crystal type: Crystal input terminal RC type: RC oscillator input pin		
osco	22	0	Crystal type: Output terminal for crystal oscillator. RC type: Clock output with a duration of one instruction cycle time. External clock signal input.		
/RESET	24	I	If it remains at logic low, the device will be reset Wake-up from sleep mode when pin status changes Voltage on /RESET must not exceed Vdd during normal mode		
INT0~INT1	5, 20	I	External interrupt pin		
VDD	3	-	Power supply		
VSS	4	-	Ground		

4.2 EM78P211N

Symbol	Pin No.	Туре	Function
P52~P53 P55~P56	18~19 1~2	I/O	4-bit General purpose input/output pins. Default value at power-on reset.
P60~P67	6 ~ 13	I/O	8-bit General purpose input/output pins. Default value at power-on reset.
P70~P73 P77	14 ~ 17 5	I/O	5-bit General purpose input/output pins. Default value at power-on reset. P72 and P73 are open drain pins when used as output pins in ICE 220N simulator.
P81	20	I/O	1-bit General purpose input or output open-drain pin. Default value at power-on reset.
CIN- CIN+ CO	14 15 16	- - 0	"-": input pin of Vin- of the comparator "+": input pin of Vin+ of the comparator Pin CO is the comparator output Defined by CMPCON (Bank 1-RA) <3: 4>
OSCI	19	I	Crystal type: Crystal input terminal RC type: RC oscillator input pin
osco	18	0	Crystal type: Output terminal for crystal oscillator. RC type: Clock output with a duration of one instruction cycle time. External clock signal input.
/RESET	20	I	If it remains at logic low, the device will be reset Wake-up from sleep mode when pin status changes Voltage on /RESET must not exceed Vdd during normal mode
INT0~INT1	5, 16	I	External interrupt pin
VDD	3	-	Power supply
VSS	8	-	Ground

5 Block Diagram

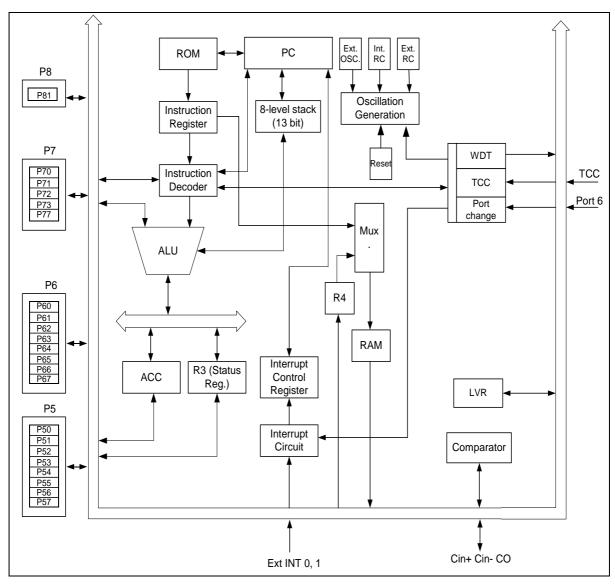


Fig. 5 EM78P211/2N Functional Block Diagram

6 Function Description

6.1 Register Configuration

Addr	Bank 0 Registers	Bank 1 Registers	Bank 2 Registers	Bank 3 Registers					
00	R0 (Indirect Addressing	Register)							
01	R1 (Memory switch regis	ster)							
02	R2 (Program Counter)								
03	R3 (Status Register)								
04	R4 (Select Indirect Addr	ress)							
05	R5 (Port 5)	R5 (I/O Port Control Register)	R5 (High Drive Control Register for Port 6)	R5 (Time Clock / Counter)					
06	R6 (Port 6)	R6 (I/O Port Control Register)	R6 (High Sink Control Register for Port 5)	Reserve*					
07	R7 (Port 7)	R7 (I/O Port Control Register)	R7 (High Sink Control Register for Port 6	Reserve*					
80	R8 (Port 8)	R8 (I/O Port Control Register)	Reserve	Reserve					
09	Reserve	Reserve	Reserve	Reserve					
0A	Reserve	RA (Comparator Control Register)	Reserve	Reserve					
0B	Reserve	RB (Pull-down Control Register)	Reserve	Reserve					
0C	Reserve	RC (Open-drain Control Register)	Reserve	Reserve					
0D	Reserve	serve RD (Pull-high Control Register)		Reserve					
0E	RE (Wake-up Control Register)	RE (WDT Control Register)	Reserve	Reserve					
0F	RF (Interrupt Status Register)	RF (Interrupt Mask Register)	Reserve	Reserve					
10									
:	General Registers (16×8	3 bits)							
1F			<u> </u>	Г					
20	General Registers	General Registers							
: 3F	(32×8 bits)	(32×8 bits)							

Note: 1. All registers are 8 bits.

- 2. When using ICE, some registers code options are set. Refer to Section 6.2 for detailed register description.
- 3. Registers with * can only be used in ICE220N simulator.

6.2 Registers Description

6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator. The Accumulator is not an addressable register.

6.2.2 CONT (Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE	INT	TS	TE	PSTE	PST2	PST1	PST0

Bit 7 (INTE): INT signal edge

0 = interrupt occurs at the rising edge on the INT0 and INT1 pin

1 = interrupt occurs at the falling edge on the INT0 and INT1 pin

Bit 6 (INT): Interrupt enable flag

0 = masked by DISI or hardware interrupt

1 = enabled by the ENI/RETI instructions

This bit is readable only.

Bit 5 (TS): TCC signal source

0 = internal instruction cycle clock. If P56 is used as I/O pin, TS must be 0.

1 = transition on the TCC pin

Bit 4 (TE): TCC signal edge

0 = increment if the transition from low to high takes place on the TCC pin

1 = increment if the transition from high to low takes place on the TCC pin.

Bit 3 (PSTE): Prescaler enable bit for TCC

0 = prescaler disable bit. TCC rate is 1:1

1 = prescaler enable bit. TCC rate is set as Bit 2 ~ Bit 0.

Bit 2 ~ Bit 0 (PST2 ~ PST0): TCC prescaler bits

PST2	PST1	PST0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Note: Tcc time-out period [1/Fosc x prescaler x (256 -Tcc cnt) x 1]

Fosc: Oscillator (Crystal, ERC, IRC) frequency

6.2.3 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect address pointer. Any instruction using R0 as a pointer, actually accesses the data pointed by the RAM Select Register (R4).

6.2.4 R1 (Memory Switch Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
"0"	"0"	"0"	"0"	"0"	"0"	BS1	BS0

Bits 7~2: not used, fixed to 0 all the time.

Bit 1~0: is used to select Banks $0 \sim 1$ for R20~R3F and select Banks $0 \sim 3$ for control register.

See the table under Section 6.1 *Registers Configuration* for the data memory configuration.

6.2.5 R2 (Program Counter) and Stack

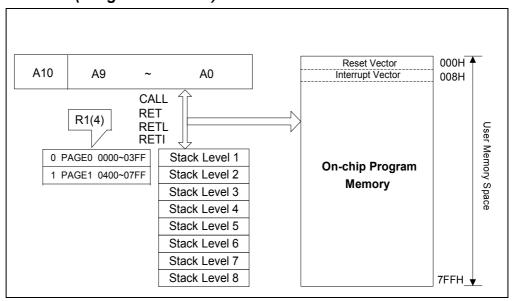


Fig. 6-1 Program Counter Organization

R2 and hardware stacks are 11-bit wide. The structure is depicted in the table under Section *6.1Register Configuration*.

Generates 2K×13 bits on-chip ROM addresses to the relative programming instruction codes. One program page is 1024 words long.

The contents of R2 are all set to "0"s when a reset condition occurs.

"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows PC to jump to any location within a Page (1K).

"CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page (1K).

"LJMP" instruction allows direct loading of the lower 11 program counter bits. Therefore, "LJMP" allows PC to jump to any location within $2K(2^{11})$.

"LCALL" instruction loads the lower 11 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within 2K (2¹¹).

"RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top of stack.

"ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.

"MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of the PC, and the ninth and above bits of the PC will remain unchanged.

Any instruction (except "ADD R2,A") that is written to R2 (e.g., "MOV R2, A", "BC R2, 6" etc.) will cause the ninth bit and above bits of the PC to remain unchanged.

All instructions are single instruction cycle (fclk/2) except "LCALL" and "LJMP" instructions. The "LCALL" and "LJMP" instructions need two instructions cycle.

6.2.6 R3 (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	Т	Р	Z	DC	С

Bits 7~5: not used, fixed to 0 all the time.

Bit 4 (T): Time-out bit. Set to 1 by the "SLEP" and "WDTC" commands or during power on and reset to 0 by WDT time-out.

Bit 3 (P): Power-down bit. Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.

NOTE Bit 4 & Bit 3 (T & P) are read only.

Bit 2 (Z): Zero flag. Set to "1" if the result of an arithmetic or logic operation is

zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

6.2.7 R4 (Select Indirect Address)

Bits 7~6: not used, fixed to 0 all the time.

Bit 5 ~ Bit 0: used to select registers (Address: 00 ~ 3F) in indirect addressing mode.

6.2.8 Bank 0-R5 (Port 5)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ī	P57	P56	P55	P54	P53	P52	P51	P50

Bits 7 ~ 0 (P57 ~ P50): I/O data bits

6.2.9 Bank 0-R6 (Port 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P67	P66	P65	P64	P63	P62	P61	P60

Bits 7 ~ 0 (P67 ~ P60): I/O data bits

6.2.10 Bank 0-R7 (Port 7)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P77	0	0	0	P73	P72	P71	P70

Bits 7, 3 ~ 0 (P77, P73 ~ P70): I/O data bits

[With Simulator]: P73 ~ P72 are input or open-drain for output pins.

[With EM78P211/2N]: P73 ~ P72 are general input or output pins.

Bits 6~4: not used, fixed to 0 all the time.

6.2.11 Bank 0-R8 (Port 8)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	NREN	0	0	0	P81	0

Bits 7~6, 4~2, 0: not used, fixed to 0 all the time.

Bit 5 (NREN): Noise rejection enable

0 = disable noise rejection. (Default)

1 = enable noise rejection. However in crystal oscillator mode

(LXT2), the noise rejection circuit is always disabled.

Bit 1 (P81): I/O data bit.

6.2.12 Bank 0-R9~RD (Reserve)

Bits 7~0: not used, fixed to "0" all the time.

6.2.13 Bank 0-RE (WUCR: Wake-up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EX1IF	0	0	ICWE	0	CMPWE	0	CMPIF

Bit 7 (EX1IF): External interrupt flag. Set by INT1 pin, reset by software.

0 = no interrupt occurs

1 = with interrupt request

Bits 6~5, 3, 1: not used, fixed to 0 all the time

Bit 4 (ICWE): Port 6 input change to wake-up status enable bit

0 = Disable Port 6 input change to wake-up status

1 = Enable Port 6 input change wake-up status

When the Port 6 Input Status Change is used to enter interrupt vector or to wake-up EM78P211N//2N from sleep, the ICWE bit must be set to "Enable".

Bit 2 (CMPWE): Comparator wake-up enable bit

0 = Disable Comparator wake-up

1 = Enable Comparator wake-up

When the Comparator output status change is used to enter interrupt vector or to wake-up from sleep, the CMPWE bit must be set to "Enable".

Bit 0 (CMPIF): Comparator interrupt flag. Set when a change occurs in the output of Comparator. Reset by software.

0 = no interrupt occurs

1 = with interrupt request

NOTE

- Bank 0-RE <7, 0> can be cleared by instruction but cannot be set.
- Bank 1-RE <0> is an interrupt mask register.
- Interrupt results from "logic AND" of Bank 0-RE <7, 0> and Bank 1-RE <0>, with instruction "ENI".

6.2.14 Bank 0-RF (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	EX0IF	ICIF	TCIF

Bits 7~3: not used, fixed to 0 all the time

Bit 2 (EX0IF): External interrupt flag. Set by INT0 pin. Reset by software.

0 = no interrupt occurs

1 = with interrupt request

Bit 1 (ICIF): Port 6 input status change interrupt flag. Set when Port 6 input changes. Reset by software.

0 = no interrupt occurs

1 = with interrupt request

Bit 0 (TCIF): TCC overflow interrupt flag. Set when TCC overflows. Reset by software.

0 = no interrupt occurs

1 = with interrupt request

NOTE

- Bank 0-RF <2, 1, 0> can be cleared by instruction but cannot be set.
- Bank 1-RF <2, 1, 0> is an interrupt mask register.
- Interrupt results from "logic AND" of Bank 0-RF <2, 1, 0> and Bank 1-RF <2, 1, 0> with instruction "ENI".

6.2.15 Bank 1-R5 ~R7 (I/O Port Control Register)

0 = defines the relative I/O pin as output

1 = puts the relative I/O pin into high impedance

Bank 1-R5, R6 and R7 registers are all readable and writable.

6.2.16 Bank 1-R8 (I/O Port Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	C81	0

Bits 7~2, 0: not used, fixed to 0 all the time

Bit 1: 0 = defines the relative I/O pin as output

1 = puts the relative I/O pin into high impedance

[With Simulator]: P81 is General I/O pin

[With EM78P211/2N]: P81 is input or open-drain for output pin.

6.2.17 Bank 1-R9 (Reserve)

Bits 7~0: not used, fixed to 0 all the time

6.2.18 Bank 1-RA (CMPCON: Comparator Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EIS1	EIS0	CMPOUT	CMPCOS1	CMPCOS0	0	0	0

Bit 7 (EIS1): Control bit used to define the function of the P71 (/INT1) pin

0 = P71, normal I/O pin

1 = /INT1, external interrupt pin. In this case, the I/O control bit of P71 (Bit 1 of Bank 1-R7) must be set to "1"

Bit 6 (EIS0): Control bit used to define the function of the P77 (/INT0) pin

0 = P77, normal I/O pin

1 = /INT0, external interrupt pin. In this case, the I/O control bit of P77 (Bit 7 of Bank 1-R7) must be set to "1"

NOTE

- When EIS is "0," the path of /INT is masked. When EIS is "1," the status of /INT pin can also be read by way of reading Port 7 (Bank 0-R7). Refer to Fig. 6-4 (I/O Port and I/O Control Register Circuit for P77 (/INT0) and P71 (/INT1) under Section 6.4 (I/O Ports).
- EIS0 and EIS1 are both readable and writable.
- The highest priority of P71/INT1/CO is INT1. When EIS1=0, the working type of P71/INT1/CO is determined by CMPCOS1 and CMPCOS0.

Bit 5 (CMPOUT): The result of the comparator output

Bit 4 ~ Bit 3 (CMPCOS1 ~ CMPCOS0): Comparator Select bits

CMPCOS1	CMPCOS0	Function Description
0	0	Comparator is not used. P72, P73, and P71 are normal I/O pins
0	1	P72 and P73 are Comparator input pins and P71 is normal I/O pin
1	0	P72 and P73 are Comparator input pins and P71 is Comparator output pin (CO)
1	1	Used as OP and P71 is OP output pin (CO)

Bits 2~0: not used, fixed to 0 all the time

6.2.19 Bank 1-RB (Pull-down Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PD7	/PD6	/PD5	/PD4	/PD3	/PD2	/PD1	/PD0

Bank 1-RB register is both readable and writable

Bit 7 (/PD7): Control bit is used to enable the pull-down of the P67 pin

0 = Enable internal pull-down

1 = Disable internal pull-down

Bit 6 (/PD6): Control bit used to enable the P66 pull-down pin

Bit 5 (/PD5): Control bit used to enable the P65 pull-down pin

Bit 4 (/PD4): Control bit used to enable the P64 pull-down pin

Bit 3 (/PD3): Control bit used to enable the P63 pull-down pin

Bit 2 (/PD2): Control bit used to enable the P62 pull-down pin

Bit 1 (/PD1): Control bit used to enable the P61 pull-down pin

Bit 0 (/PD0): Control bit used to enable the P60 pull-down pin

6.2.20 Bank 1-RC (Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/OD7	/OD6	/OD3	/OD2	/OD5	/OD4	/OD1	/OD0

Bank 1-RC register is both readable and writable.

Bit 7 (OD7): Control bit is used to enable the open-drain of the P57 pin.

0 = Enable open-drain output

1 = Disable open-drain output

Bit 6 (OD6): Control bit used to enable the open-drain output of the P56 pin.

Bit 5 (OD5): Control bit used to enable the open-drain output of the P55 pin.

Bit 4 (OD4): Control bit used to enable the open-drain output of the P54 pin.

Bit 3 (OD3): Control bit used to enable the open-drain output of the P53 pin.

Bit 2 (OD2): Control bit used to enable the open-drain output of the P52 pin.

Bit 1 (OD1): Control bit used to enable the open-drain output of the P51 pin.

Bit 0 (OD0): Control bit used to enable the open-drain output of the P50 pin.

6.2.21 Bank 1-RD (Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PH7	/PH6	/PH5	/PH4	/PH3	/PH2	/PH1	/PH0

Bank 1-RD register is both readable and writable.

Bit 7 (/PH7): Control bit used to enable the pull-high function of the P67 pin.

0 = Enable internal pull-high

1 = Disable internal pull-high

Bit 6 (/PH6): Control bit used to enable the pull-high function of the P66 pin

Bit 5 (/PH5): Control bit used to enable the pull-high function of the P65 pin

Bit 4 (/PH4): Control bit used to enable the pull-high function of the P64 pin

Bit 3 (/PH3): Control bit used to enable the pull-high function of the P53 pin

Bit 2 (/PH2): Control bit used to enable the pull-high function of the P52 pin

Bit 1 (/PH1): Control bit used to enable the pull-high function of the P51 pin

Bit 0 (/PH0): Control bit used to enable the pull-high function of the P50 pin

6.2.22 Bank 1-RE (WDT Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	0	PSWE	PSW2	PSW1	PSW0	0	CMPIE

NOTE

- Bank 1-RE <0> register is both readable and writable
- Individual interrupt is enabled by setting its associated control bit in the Bank 1-RF <0 > to "1."
- Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig. 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).

Bit 7 (WDTE): Control bit is used to enable Watchdog Timer

0 = Disable WDT

1 = Enable WDT

WDTE is both readable and writable.

Bits 6, 1: not used, fixed to 0 all the time

Bit 5 (PSWE): Prescaler enable bit for WDT

0 = prescaler disable bit. WDT rate is 1:1

1 = prescaler enable bit. WDT rate is set as Bit 4~Bit 2

Bit 4 ~ Bit 2 (PSW2 ~ PSW0): WDT prescaler bits

PSW2	PSW1	PSW0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 0 (CMPIE): CMPIF interrupt enable bit

0 = Disable CMPIF interrupt

1 = Enable CMPIF interrupt

When the Comparator output status change is used to enter an interrupt vector or to enter next instruction, the CMPIE bit must be set to "Enable." But actually the output of the comparator must be read to latch the status first. Then the output of the comparator is compared to this latch to produce the information of output status change.

6.2.23 Bank 1-RF (Interrupt Mask Register)

В	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0	0	0	0	0	EXIE	ICIE	TCIE

NOTE

- RF register is both readable and writable
- Individual interrupt is enabled by setting its associated control bit in the RF to "1."
- Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig. 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).

Bits 7~3: not used, fixed to 0 all the time

Bit 2 (EXIE): EX0IF and EX1IF interrupts enable bit

0 = Disable EX0IF and EX1IF interrupts1 = Enable EX0IF and EX1IF interrupts

Bit 1 (ICIE): ICIF interrupt enable bit

0 = Disable ICIF interrupt1 = Enable ICIF interrupt

If Port 6 Input Status Change Interrupt is used to enter an interrupt vector or to enter next instruction, the ICIE bit must be set to

"Enable".

Bit 0 (TCIE): TCIF interrupt enable bit

0 = Disable TCIF interrupt1 = Enable TCIF interrupt

6.2.24 Bank 2-R5 (HDCR: High Drive Control Register for Port 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HD67	HD66	HD65	HD64	HD63	HD62	HD61	HD60

[With Simulator]: function nonexistent

[With EM78P211/2N]: General I/O pins

Bit 7 (HD67): Output High Drive Current Select for P67

Bit 6 (HD66): Output High Drive Current Select for P66

Bit 5 (HD65): Output High Drive Current Select for P65

Bit 4 (HD64): Output High Drive Current Select for P64

Bit 3 (HD63): Output High Drive Current Select for P63

Bit 2 (HD62): Output High Drive Current Select for P62

Bit 1 (HD61): Output High Drive Current Select for P61

Bit 0 (HD60): Output High Drive Current Select for P60

HDxx	VDD = 5V, Drive Current
0	9mA (in 0.9VDD)
1	27mA (in 0.7VDD)

6.2.25 Bank 2-R6 (HSCR1: High Sink Control Register for Port 5)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HS57	HS56	HS55	HS54	HS53	HS52	HS51	HS50

[With Simulator]: function nonexistent

[With EM78P211/2N]: General I/O pins

Bit 7 (HS57): Output High Sink Current Select for P57

Bit 6 (HS56): Output High Sink Current Select for P56

Bit 5 (H55): Output High Sink Current Select for P55

Bit 4 (H54): Output High Sink Current Select for P54

Bit 3 (H53): Output High Sink Current Select for P53

Bit 2 (H52): Output High Sink Current Select for P52

Bit 1 (H51): Output High Sink Current Select for P51

Bit 0 (H50): Output High Sink Current Select for P50

HDxx	VDD = 5V, Sink Current
0	18mA (in 0.1VDD)
1	75mA (in 0.3VDD)

6.2.26 Bank 2-R7 (HSCR1: High Sink Control Register for Port 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HS67	HS66	HS65	HS64	HS63	HS62	HS61	HS60

[With Simulator]: function nonexistent

[With EM78P211/2N]: General I/O pins.

Bit 7 (HS67): Output High Sink Current Select for P67

Bit 6 (HS66): Output High Sink Current Select for P66

Bit 5 (H65): Output High Sink Current Select for P65

Bit 4 (H64): Output High Sink Current Select for P64

Bit 3 (H63): Output High Sink Current Select for P63

Bit 2 (H62): Output High Sink Current Select for P62

Bit 1 (H61): Output High Sink Current Select for P61

Bit 0 (H60): Output High Sink Current Select for P60

HDxx	VDD = 5V, Sink Current				
0	18mA (in 0.1VDD)				
1	75mA (in 0.3VDD)				

6.2.27 Bank 2-R8 (Operating Mode Control Register)

ı	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0	1	1	0	0	0	0	0

Bits 7, 4~0: not used, fixed to "0" all the time.

Bits 6~5: not used, fixed to "1" all the time.

NOTE

■If you want the MCU working normally, you must set the bit6 and bit5 of R8 register as "1" and clear the bit4 of R8 register to "0".

6.2.28 Bank 2-R9~RF (Reserve)

Bits 7~0: not used, fixed to "0" all the time

6.2.29 Bank 3-R5 (Timer Clock /Counter)

- Increased by an external signal edge through the TCC pin, or by the instruction cycle clock.
- External signal of TCC trigger pulse width must be greater than one instruction.
- The signals to increase the counter are determined by Bit 4 and Bit 5 of the CONT register.
- Writable and readable as any other registers.

6.2.30 Bank 3-R6 (IRC Control)-only for ICE

Bit	7	6	5	4	3	2	1	0
EM78P211/2N	·0'	'0'	'0'	·0'	'0'	'0'	,0,	'0'
ICE220N	C3	C2	C1	C0	RCM1	RCM0	,0,	'0'

Bits 7 ~ 2:

[With Simulator (C3~C0, RCM1~RCM0)]: IRC calibration bits in IRC oscillator mode.

In IRC oscillator mode of ICE220N simulator, these are the IRC mode selection bits and IRC calibration bits.

[With EM78P211/2N]: Unimplemented, read as '0'.

Bits 7 ~ 4 (C3 ~ C0): Calibrator of internal RC mode

C3	C2	C1	C0	Frequency (MHz)
0	0	0	0	(1-36%) × F
0	0	0	1	(1-31.5%) × F
0	0	1	0	(1-27%) × F
0	0	1	1	(1-22.5%) × F
0	1	0	0	(1-18%) × F
0	1	0	1	(1-13.5%) × F
0	1	1	0	(1-9%) × F
0	1	1	1	(1-4.5%) × F
1	1	1	1	F (default)
1	1	1	0	(1+4.5%) × F
1	1	0	1	(1+9%) × F
1	1	0	0	(1+135%) × F
1	0	1	1	(1+18%)×F
1	0	1	0	(1+22.5%) × F
1	0	0	1	(1+27%) × F
1	0	0	0	(1+31.5%) × F

- Frequency values shown are theoretical and taken at an instance of a high frequency mode. Hence, frequency values are shown for reference only. Definite values depend on the actual process.
- 2. Similar way of calculation is also applicable to low frequency mode.

Bits 3 ~ 2 (RCM1 ~ RCM0): IRC mode selection bits

RCM 1	RCM 0	Frequency (MHz)			
1	1	4 (default)			
1	0	16			
0	1	1			
0	0	455kHz			

Bits 1 ~ 0: are not used, fixed to "0" all the time.

6.2.31 Bank 3-R7 (Noise and LVR Control) -only for ICE

Bit	7	6	5	4	3	2	1	0
EM78P211/2N	'0'	,0,	' 0'	'0'	'0'	'0'	'0'	'0'
ICE220N	"0"	"0"	"0"	"0"	NRHL	NRE	LVR1	LVR0

Bits 7 ~ 4: are not used, fixed to "0" all the time.

Bits 3 ~ 0:

[With EM78P211/2N]: Unimplemented, read as '0'.

[With Simulator]:

Bit 3 (NRHL): Noise rejection high/low pulses define bit. The INT pin is a falling

edge trigger

0 = Pulses equal to 8/fc [s] are regarded as signal.

1 = Pulses equal to 32/fc [s] are regarded as signal (default)

NOTE

The noise rejection function is turned off in the LXT2 and sleep mode.

Bit 2 (NRE): Noise rejection enable

0 = disable noise rejection

1 = enable noise rejection (default). However in Low Crystal oscillator (LXT) mode, the noise rejection circuit is always disabled.

Bits 1 ~ 0 (LVR1 ~ LVR0): Low Voltage Reset enable bits. If Vdd has crossover at Vdd reset level as Vdd changes, the system will be reset.

LVR1, LVR0	VDD Reset Level	VDD Release Level				
11	NA (Power-on Reset) (default)					
10	2.5V	2.7V				
01	3.0V	3.2V				
00	4.0V	4.2V				

6.2.32 Bank 3-R8~RF (Reserve)

Bit 7~0: are not used, fixed to "0" all the time.

6.2.33 R10 ~ R1F

All of these are 8-bit general-purpose registers.

6.2.34 Banks 0~3 - R20 ~ R3F

All of these are 8-bit general-purpose registers.

6.3 TCC/WDT and Prescaler

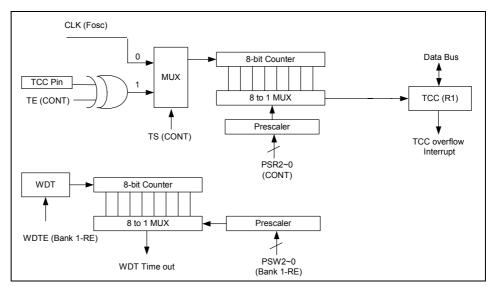
There are two 8-bit counters available as prescalers for the TCC and WDT. The PST0~PST2 bits of the CONT register are used to determine the ratio of the TCC prescaler, and the PWR0~PWR2 bits of the Bank 1-RE register are used to determine the WDT prescaler. The prescaler counter is cleared by the instructions each time such instructions are written into TCC. The WDT and prescaler are cleared by the "WDTC" and "SLEP" instructions. Fig. 6-2 depicts the block diagram of TCC/WDT.

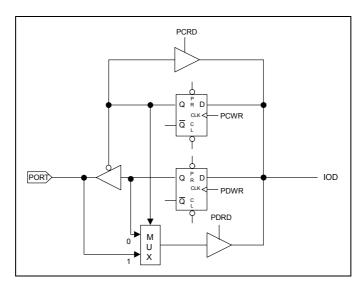
TCC (Bank 3-R5) is an 8-bit timer/counter. The TCC clock source can be internal clock (Fosc) or external signal input (edge selectable from the TCC pin). If the TCC signal source is from an external clock input, TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin input time length (kept at High or Low level) must be greater than 1CLK. 1 CLK is always Fosc/2..Referring to Fig. 6-2

NOTE

The internal TCC will stop running when in sleep mode.

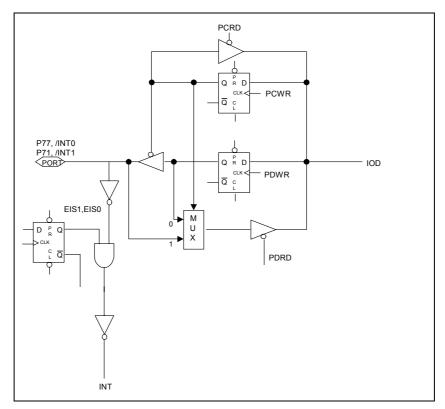
The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even when the oscillator driver has been turned off (i.e., in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during normal mode through software programming. Refer to WDTE bit of Bank 1-RE register (Section 6.2.10 Bank 1-RE (WDT Control Register). With no prescaler, the WDT time-out duration is approximately 18ms.¹



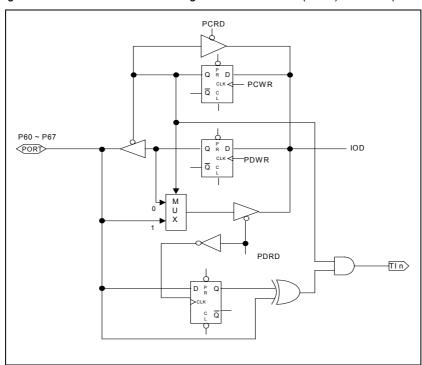

Fig. 6-2 TCC and WDT Block Diagram

VDD=5V, WDT Time-out period = 15.2ms ± 30%..
VDD=3V, WDT Time-out period = 18ms ± 30%.

6.4 I/O Ports


The I/O registers (Port 5, Port 6, Port 7, and Port 8) are bidirectional tri-state I/O ports. The Pull-high, Pull-down, and Open-drain functions can be set internally by Bank 1-RB, Bank 1-RC, and Bank 1-RD respectively. The High drive, and High Sink functions can be set internally by Bank 2-R5, Bank 2-R6, and Bank 2-R7 respectively. Port 6 features an input status change interrupt (or wake-up) function. Most I/O pin can be defined as "input" or "output" pin by the I/O control registers (P52, P53 are only used as output pins). The I/O registers and I/O control registers are both readable and writable. However, the initial states of these I/O ports (Port 5, Port 6, Port 7 and Port 8) are unknown input (high impedance). Then, if the I/O pin is pulled to a level at external circuit, the pin must induce a voltage. Hence, user must take into consideration whether the induced voltage causes a wrong action in the system. The I/O interface circuits for Port 5, Port 6, Port 7, and Port 8 are illustrated in Figures 6-3, 6-4, & 6-5 respectively. Port 6 with Input Change Interrupt/Wake-up is shown in Fig. 6-6.

Note: Pull-high and Open-drain are not shown in the figure.


Fig. 6-3 I/O Port and I/O Control Register Circuit for Port 5, Port 7 and Port 8

Note: CO2, Pull-high and Open-drain are not shown in the figure.

Fig. 6-4 I/O Port and I/O Control Register Circuit for P77 (/INT0) and P71 (/INT1)

Note: Pull-high (down) and Open-drain are not shown in the figure.

Fig. 6-5 I/O Port and I/O Control Register Circuit for Port 6

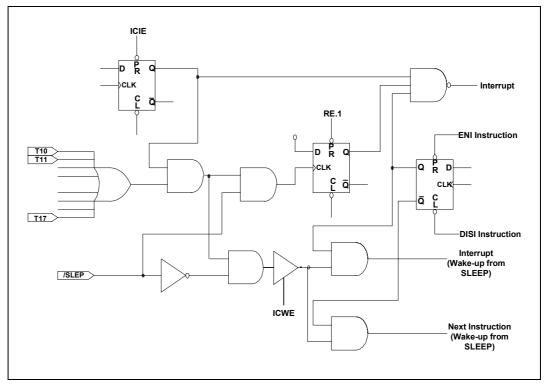


Fig. 6-6 Port 6 Block Diagram with Input Change Interrupt/Wake-up

6.4.1 Usage of Port 6 Input Change Wake-up/Interrupt Function

Usage of Port 6 Input Status Change Wake-up/Interrupt							
(1) Wake-up	(2) Wake-up and Interrupt						
(a) Before Sleep	(a) Before Sleep						
1. Disable WDT	1. Disable WDT						
2. Read I/O Port 6 (MOV R6,R6)	2. Read I/O Port 6 (MOV R6,R6)						
3. Execute "ENI" or "DISI"	3. Execute "ENI" or "DISI"						
4. Enable wake-up bit (Set Bank 0-RE ICWE =1)	4. Enable wake-up bit (Set Bank 0-RE ICWE =1)						
5. Execute "SLEP" instruction	5. Enable interrupt (Set BANK1-RF ICIE =1)						
(b) After wake-up	6. Execute "SLEP" instruction						
→ Next instruction	(b) After wake-up						
	1. IF "ENI" → Interrupt vector (008H)						
	2. IF "DISI" → Next instruction						
(3) Interrupt							
(a) Before Port 6 pin change							
1. Read I/O Port 6 (MOV R6,R6)	1. Read I/O Port 6 (MOV R6,R6)						
2. Execute "ENI" or "DISI"							
3. Enable interrupt (Set BANK1-RF ICIE =1)							
(b) After Port 6 pin changed (interrupt)							
1. IF "ENI" → Interrupt vector (008H)							
2. IF "DISI" → Next instruction							

6.5 Reset and Wake-up

6.5.1 Reset and Wake-up Operation

A reset is initiated by one of the following events:

- 1. Power-on reset
- 2. /RESET pin input "low"
- 3. WDT time-out (if enabled)

A device is kept in a reset condition for the duration of approximately 18ms² after the reset is detected. When in LXT 2 mode, the reset time is 500ms. Once a reset occurs, the following functions are performed (the initial address is 000h):

- The oscillator continues running, or will be started (if in sleep mode)
- The Program Counter (R2) is set to all "0"
- All I/O port pins are configured as input mode (high-impedance state)
- The Watchdog Timer and prescaler are cleared
- When power is switched On, the Memory switch register (R1) is set to 0
- The CONT register bits are set to all "0" except for Bit 6 (INT flag)
- The Bank 0-RF register bits are set to all "0"
- The Bank 1-RB register bits are set to all "1"
- The Bank 1-RC register bits are set to all "1"
- The Bank 1-RD register bits are set to all "1"
- The Bank 1-RE register bits are set to all "0"
- The Bank 1-RF register bits are set to all "0"

Executing the "SLEP" instruction will assert the sleep (power down) mode. While entering sleep mode, the Oscillator and TCC are stopped. The WDT (if enabled) is cleared but keeps on running.

The controller can be awakened by:

- Case 1 External reset input on /RESET pin
- Case 2 WDT time-out (if enabled)
- Case 3 Port 6 input status changes (if ICWE is enabled)
- Case 4 Comparator output status changes (if CMPWE is enabled)

_

VDD=5V, Setup time period = 16.5ms ± 30%.
VDD=3V, Setup time period = 18ms ± 30%.

The first two cases (1 & 2) will cause the EM78P211/2N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Cases 3 & 4 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) decides whether or not the controller branches to the interrupt vector following a wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 0x8 after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction next to SLEP after wake-up. All sleep mode wake up time is dependent on the oscillator mode, no matter what the oscillator type or mode is (except when it's in LXT2 mode). In LXT2 mode, wake-up time is 2~3s.

Although each one from Cases 1 to 4 can be enabled but only one at a time can be enabled before entering sleep mode. That is:

- Case [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the EM78P211/2N can be awakened only with Case 1 or Case 2. Refer to the section on Interrupt (Section 6.6) for further details.
- Case [b] If Port 6 Input Status Change is used to wake -up EM78P211/2N and ICWE bit of Bank 0-RE register is enabled before SLEP, WDT must be disabled. Hence, the EM78P211/2N can be awakened only with Case 3. Wake-up time is dependent on the oscillator mode. In RC mode (VDD: 5V, IRC: 4MHz), wake-up time is 10μs (for stable oscillators). In HXT2 mode (VDD: 5V, Crystal: 4MHz, C1/C2: 30 pF), wake-up time is 800μs (for stable oscillators), and in LXT2 mode, wake-up time is 2~3s.
- Case [c] If the Comparator output status change is used to wake-up the EM78P211N/ 212N and the CMPWE bit of the RE register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P211/2N can be awakened only with Case 4.

Wake-up time is dependent on the oscillator mode. In RC mode (VDD: 5V, IRC: 4MHz), wake-up time is $10\mu s$ (for stable oscillators). In HXT2 mode (VDD: 5V, Crystal: 4MHz, C1/C2: 30 pF), wake-up time is $800\mu s$ (for stable oscillators), and in LXT2 mode, wake-up time is $2\sim3s$.

If Port 6 Input Status Change Interrupt is used to wake up the EM78P211/2N (as in Case b above), the following instructions must be executed before SLEP:

```
A, @000110xxb
MOV
                                 ; Select WDT prescaler and disable WDT
BANK
              1
              RE, A
VOM
                                 ; Clear WDT and prescaler
WDTC
BANK
              0
VOM
              R6, R6
                                 ; Read Port 6
ENI (or DISI)
                                 ; Enable (or disable) global interrupt
MOV
              A, @xxxlxxxxb
                                 ; Enable Port 6 input change wake-up bit
MOV
              RE
              A, @00000x1xb
                                 ; Enable Port 6 input change interrupt
MOV
              1
BANK
MOV
              RF, A
SLEP
                                 ; Sleep
```

Similarly, if the Comparator Interrupt is used to wake up the EM78P211/2N (as in Case [c] above), the following instructions must be executed before SLEP:

```
MOV
              A, @xxx01xxxb
                             ; Select Comparator and P71 functions as
                               general I/O pin
BANK
              1
MOV
              RA, A
MOV
              A, @000110xxb ; Select WDT prescaler and Disable WDT
MOV
              RE, A
                              ; Clear WDT and prescaler
WDTC
ENI (or DISI)
                              ; Enable (or disable) global interrupt
                              ; Enable comparator output status change
              A, @00000100b
MOV
                                wake-up bit
              0
BANK
              RE, A
MOV
BANK
              1
              A, @0x00000001b; Enable Comparator output status change
VOM
                               interrupt
MOV
              RE, A
SLEP
                              ; Sleep
```

6.5.1.1 Wake-up and Interrupt Modes Operation Summary

All categories under Reset, Wake-up and Interrupt modes are summarized below.

Wake-up Signal	Sleep Mode	Normal Mode			
External interrupt	x	Interrupt (if interrupt enable)			
External interrupt	^	or next instruction			
Port 6 pin change	If enable ICWE bit Wake-up	Interrupt (if interrupt enable)			
Tort o pin change	+ interrupt (if interrupt enable)+ next instruction	or next instruction			
TCC overflow interrupt	V	Interrupt (if interrupt enable)			
TCC overnow interrupt	X	or next instruction			
Comparator interrupt	If enable CMPWE bit Wake-up	Interrupt (if interrupt enable)			
Comparator interrupt	+ interrupt (if interrupt enable) + next instruction	or next instruction			
WDT Time out	Reset to Normal mode	Reset to Normal mode			
Low Voltage Reset	Reset to Normal mode	Reset to Normal mode			

After wake up:

- 1. If interrupt enable \rightarrow interrupt+ next instruction
- 2. If interrupt disable \rightarrow next instruction

The controller can be awakened from sleep mode and idle mode. The wake-up signals are listed as follows:

Signal	Sleep Mode	Normal Mode				
		DISI + Bank 1-RF (EXIE) Bit 2 = 1				
INTO	N/A	Next Instruction+ Set Bank 0-RF (EX0IF) = 1 or Set Bank 0-RE (EX1IF) = 1				
INTT		ENI + Bank 1-RF (EXIE) Bit 2 = 1 Interrupt Vector (0x08)+ Set Bank 0-RF (EX0IF) = 1				
	Bank 0-RE (ICWE) Bit 4 = 0, Bank 1-RF (ICIE) Bit 1 = 0	Bank 1-RF (ICIE) Bit 1 = 0				
	Oscillator, TCC and TCC are stopped. Port 6 input status changed wake-up is invalid.	Port 6 input status change interrupted is invalid				
	Bank 0-RE (ICWE) Bit 4 = 0, Bank 1-RF (ICIE) Bit 1 = 1	N/A				
	Set Bank 0-RF (ICIF) = 1, Oscillator and TCC are stopped. Port 6 input status changed wake-up is invalid.	N/A				
	Bank 0-RE (ICWE) Bit 4 = 1, Bank 1-RF (ICIE) Bit 1 = 0	N/A				
Port 6 Input Status Change	Wake-up+ Next Instruction Oscillator and TCC are stopped.	N/A				
	Bank 0-RE (ICWE) Bit 4 = 1, DISI + Bank 1-RF (ICIE) Bit 1 = 1	DISI + Bank 1-RF (ICIE) Bit 1 = 1				
	Wake-up+ Next Instruction+ Set Bank 0-RF (ICIF) = 1 Oscillator and TCC are stopped.	Next Instruction+ Set Bank 0-RF (ICIF) = 1				
	Bank 0-RE (ICWE) Bit 4 = 1, ENI + Bank 1-RF (ICIE) Bit 1 = 1	ENI + Bank 1-RF (ICIE) Bit 1 = 1				
	Wake-up+ Interrupt Vector (0x08)+ Set Bank 0-RF (ICIF) = 1 Oscillator, TCC and TIMERX are stopped.	Interrupt Vector (0x08)+ Set Bank 0-RF (ICIF) = 1				
	occinator, 100 and 111121 at all occopposit	DISI + Bank 1-RF (TCIE) Bit 0 = 1				
TCC Over Flow	N/A	Next Instruction+ Set Bank 0-RF (TCIF) = 1 ENI + Bank 1-RF (TCIE) Bit 0=1 Interrupt Vector (0x08)+ Set Bank 0-RF (TCIF) = 1				
	Bank 0-RE (CMPWE) Bit 2 = 0, Bank 1-RE (CMPIE) Bit 0 = 0	Bank 1-RE (CMPIE) Bit 0 = 0				
	Comparator output status changed wake-up is invalid. Oscillator and TCC are stopped.	Comparator output status change interrupted is invalid.				
	Bank 0-RE (CMPWE) Bit 2 = 0, } Bank 1-RE (CMPIE) Bit 0 = 1					
	Set Bank 0-RE (CMPIF) = 1, Comparator output status changed wake-up is					
	invalid. Oscillator and TCC are stopped.					
Comparator (Comparator Output Status	Bank 0-RE (CMPWE) Bit 2 = 1, Bank 1-RE (CMPIE) Bit 0 = 0					
Change)	Wake-up+ Next Instruction, Oscillator and TCC are stopped.					
	Bank 0-RE (CMPWE) Bit 2 = 1, DISI + Bank 1-RE (CMPIE) Bit 0 =1	DISI + Bank 1-RE (CMPIE) Bit 0 = 1				
	Wake-up+ Next Instruction+ Set Bank 0-RE (CMPIF) Bit 0 =1, Oscillator and TCC are stopped.	Next Instruction+ Set Bank 0-RE (CMPIF) Bit 0 = 1				
	Bank 0-RE (CMPWE) Bit 2 = 1, ENI + Bank 1-RE (CMPIE) Bit 0 = 1	ENI + Bank 1-RE (CMPIE) Bit 0 = 1				
	Wake-up+ Interrupt Vector (0x08)+ Set Bank 0- RE (CMPIF) Bit 0 = 1, Oscillator and TCC are stopped.	Interrupt Vector (0x08)+ Bank 0-RE (CMPIF) Bit 0 = 1				
WDT Time-out Bank 1-RE (WDTE) Bit 7=1	Wake-up+ Reset (Address 0x00)	Reset (Address 0x00)				
Low Voltage Reset	Wake-up+ Reset (Address 0x00)	Reset (Address 0x00)				

6.5.1.2 Register Initial Values after Reset

The following table summarizes the registers initialized values.

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
N/A		Bit Name	INTE	INT	TS	TE	PSTE	PST2	PST1	PST0
		Power-on	0	0	0	0	0	0	0	0
	CONT	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
		Power-on	U	U	U	U	U	U	U	U
0x00	R0(IAR)	/RESET & WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	BS1	BS0
		Power-on	0	0	0	0	0	0	0	0
0x01	R1(MSR)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
		Power-on	0	0	0	0	0	0	0	0
0x02	R2(PC)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Jump to address 0x08 or continue to execute next instruction							ion
		Bit Name	-	-	-	Т	Р	Z	DC	С
		Power-on	0	0	0	1	1	U	U	U
0x03	R3(SR)	/RESET & WDT	0	0	0	t	t	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	t	t	Р	Р	Р
		Bit Name	1	-	_	-	-	-	-	-
		Power-on	0	0	U	U	U	U	U	U
0x04	R4(RSR)	/RESET & WDT	0	0	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
		Power-on	U	U	U	U	U	U	U	U
0x05	Bank 0-R5	/RESET & WDT	U	U	U	U	U	U	U	U
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 0-R6	Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
		Power-on	U	U	U	U	U	U	U	U
0x06		/RESET & WDT	J	U	U	U	U	U	U	J
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P77	-	-	-	P73	P72	P71	P70
		Power-on	U	U	U	U	U	U	U	U
0x07	Bank 0-R7	/RESET & WDT	U	U	U	U	U	U	U	U
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	NREN	-	-	-	P81	-
		Power-on	0	0	0	0	0	0	U	U
0x8	Bank 0-R8	/RESET & WDT	0	0	0	0	0	0	U	U
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x9~	Bank 0-	Power-on	0	0	0	0	0	0	0	0
0XD	R9~RD	/RESET & WDT	0	0	0	0	0	0	0	0
	(Reserve)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 0- RE (WUCR)	Bit Name	EX1IF	-	_	ICWE	-	CMPWE	-	CMPIF
		Power-on	0	0	0	0	0	0	0	0
0xE		/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	EX0IF	ICIF	TCIF
	Bank 0-	Power-on	0	0	0	0	0	0	0	0
0xF	RF (ISR)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C57	C56	C55	C54	C53	C52	C51	C50
		Power-on	1	1	1	1	1	1	1	1
0x05	Bank 1-R5	/RESET & WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C67	C66	C65	C64	C63	C62	C61	C60
		Power-on	1	1	1	1	1	1	1	1
0x06	Bank 1-R6	/RESET & WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	C77	-	-	-	C73	C72	C71	C70
		Power-on	1	1	1	1	1	1	1	1
0x07	Bank 1-R7	/RESET & WDT	1	1	1	1	1	1	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit	t 4	Bi	t 3	Bi	t 2	Bit 1	Bit 0
		Bit Name	-	-	-	ICE 220N	211N 212N	ICE 220N	211N 212N		211N 212N	C81	-
0x8	Bank 1-R8	Power-on	0	0	0	1	0	1	0	1	0	1	1
0.00	Dalik 1-10	/RESET & WDT	0	0	0	1	0	1	0	1	0	1	1
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	•	ı	-	-	-		=	,	=	-	-
	Bank 1-R9	Power-on	0	0	0	C)	()	0		0	0
0x9	(Reserve)	/RESET & WDT	0	0	0	C)	()	0		0	0
		Wake-up from Pin Change	Р	Р	Р	F	Р)	ı)	Р	Р
		Bit Name	EIS1	EIS0	CMP OUT	CN			MP OSO		-	-	-
0xA	Bank 1-RA	Power-on	0	0	0	C)	()	0		0	0
	(CMPCON)	/RESET & WDT	0	0	0	0)	(0)	0	0
		Wake-up from Pin Change	Р	Р	Р	F	P P)	Р		Р	Р
		Bit Name	/PD7	/PD6	/PD5	/PI	D4	/P	D3	/P	D2	/PD1	/PD0
		Power-on	1	1	1	1		,	1		1	1	1
0xB	Bank 1-RB	/RESET & WDT	1	1	1	1	I		1		1	1	1
		Wake-up from Pin Change	Р	Р	Р	F	Р)	ı)	Р	Р
		Bit Name	/OD7	/OD6	/OD5	/OI	D4	/0	D3	/0	D2	/OD1	/OD0
		Power-on	1	1	1	1	1		1		1	1	1
0xC	Bank 1-RC	/RESET & WDT	1	1	1	1	l		1		1	1	1
		Wake-up from Pin Change	Р	Р	Р	F)	F)	ı)	Р	Р
		Bit Name	/PH7	/PH6	/PH5	/PI	 4	/P	Н3	/P	H2	/PH1	/PH0
		Power-on	1	1	1	1			1		1	1	1
0xD	Bank 1-RD	/RESET & WDT	1	1	1	1		,	1		1	1	1
		Wake-up from Pin Change	Р	Р	Р	F)	F)	ı)	Р	Р
	<u> </u>	Bit Name	WDTE	-	PSWE	PS	W2	PS	W1	PS	W0	-	CMPIE
		Power-on	0	0	0	C)	())	0	0
0xE	Bank 1-RE	/RESET & WDT	0	0	0	C)	())	0	0
		Wake-up from Pin Change	Р	Р	Р	F)	F)	I)	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	ı	-	-	-	-	EXIE	ICIE	TCIE
		Power-on	0	0	0	0	0	0	0	0
0xF	Bank 1-RF	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HD67	HD66	HD65	HD64	HD63	HD62	HD61	HD60
	Bank 2-R5	Power-on	0	0	0	0	0	0	0	0
0x05	(HDCR)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HS57	HS56	HS55	HS54	HS53	HS52	HS51	HS50
	Bank 2-R6	Power-on	0	0	0	0	0	0	0	0
0x06	(HSCR1)	/RESET & WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HS67	HS66	HS65	HS64	HS63	HS62	HS61	HS60
	Bank 2-R7	Power-on	0	0	0	0	0	0	0	0
0x07	(HSCR2)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 2-R8	Bit Name	ı	-	-	-	-	-	-	-
		Power-on	U	1	1	1	U	U	U	U
0x8	(OMCR)	/RESET & WDT	Р	1	1	1	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x9	Bank 2-R9	Power-on	0	0	0	0	0	0	0	0
~ 0xF	(RF)	/RESET & WDT	0	0	0	0	0	0	0	0
OXI		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
	Bank 3-R5	Power-on	0	0	0	0	0	0	0	0
0x05	(TCC)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 3-R6	Bit Name	C3	C2	C1	C0	RCM1	RCM0	-	-
0,00	(IRC)	Power-on	1	1	1	1	1	1	U	U
0x06	(only for	/RESET & WDT	1	1	1	1	1	1	Р	Р
	ICE)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	1	1	1	ı	NRHL	NRE	LVR1	LVR0-
	Bank 3-R7	Power-on	U	U	U	U	1	1	1	1
0x07	(only for	/RESET & WDT	Р	Р	Р	Р	1	1	1	1
	ICE)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	1	1	1	ı	i	1	-	-
0x10 ~	R10 ~ R1F	Power-on	U	U	U	U	C	U	U	U
0x10 %		/RESET & WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	-	-
0x20 ~	Bank 0∼1	Power-on	U	U	U	U	U	U	U	U
0x3F	R20 ~ R3F	/RESET & WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Legend: "x" = not used

"P" = previous value before reset

"u" = unknown or don't care

"t" = check "Reset Type" Table in Section 6.5.2

6.5.1.3 Controller Reset Block Diagram

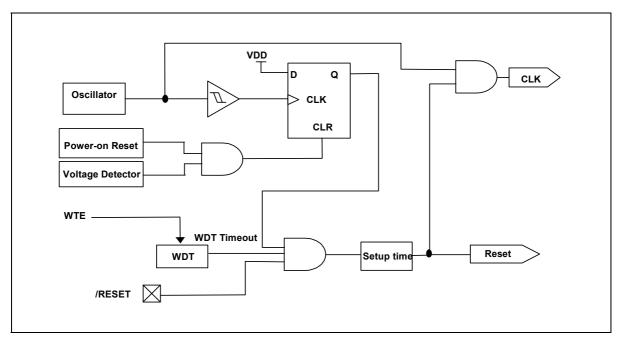


Fig. 6-7 Controller Reset Block Diagram

6.5.2 The T and P Status under Status Register

A reset condition is initiated by one of the following events:

- 1. Power-on reset
- 2. /RESET pin input "low"
- 3. WDT time-out (if enabled)

The values of T and P as listed in the table below, are used to check how the processor wakes up.

Reset Type	Т	Р
Power-on	1	1
/RESET during Operating mode	*P	*P
/RESET wake-up during Sleep mode	1	0
LVR during Operating mode,	*P	*P
LVR wake-up during SLEEP mode	1	0
WDT during Operating mode	0	*P
WDT wake-up during Sleep mode	0	0
Wake-up on pin change during Sleep mode	1	0

^{*} P: Previous status before reset

The following shows the events that may affect the status of T and P.

Event	Т	Р
Power-on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin changed during Sleep mode	1	0

^{*} P: Previous value before reset

6.6 Interrupt

The EM78P211/2N has four interrupts as listed below:

- 1. TCC overflow interrupt
- 2. Port 6 Input Status Change Interrupt
- 3. External interrupt INT0, INT1
- 4. When the Comparator output status changes

Before the Port 6 Input Status Change Interrupt is enabled, reading Port 6 (e.g., "MOV R6, R6") is necessary. Each Port 6 pin will have this feature if its status changes. Port 6 Input Status Change Interrupt will wake up the EM78P211/2N from sleep mode if it is enabled prior to going into sleep mode by executing SLEP. When wake-up occurs, the controller will continue to execute the succeeding program if the global interrupt is disabled. If enabled, it will branch out to the interrupt vector 008H.

The external interrupt has a built-in digital noise rejection circuit (if the input pulse is less than 8 system clock time, it is eliminated as noise. Edge selection is possible with /INT. Refer to Word 1 Bits 8~7 (Section 6.13.2, *Code Option Register (Word 1)*) for digital noise rejection definition.

During a power source unstable situation, like during external power noise interference or EMS test condition, it will cause the power to vibrate fiercely. While Vdd is still unsettled, the supply voltage may be below the working voltage. When the system supply voltage Vdd is below the working voltage, the IC kernel must automatically keep all register status.

Bank 0-RE and Bank 0-RF are the interrupt status register that records the interrupt requests in the relative flags/bits. Bank 1-RE and Bank 1-RF are interrupt mask registers. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the interrupts (when enabled) occurs, the next instruction will be fetched from address 008H. Once in the interrupt service routine, the source of an interrupt can be determined by polling the flag bits in Bank 0-RE and Bank 0-RF. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine to avoid recursive interrupts.

When interrupt mask bits are "Enabled", the flag in the Interrupt Status Register (RF) is set regardless of the ENI execution. Note that the result of Bank 0-RE/RF will be the logic AND of BANK 0-RE/RF and Bank 1-RE/RF (refer to Figure 6-8). The RETI instruction ends the interrupt routine and enables the global interrupt (the ENI execution).

When any interrupt occurs, the contents of ACC, R1 (Bits 5, 4, 1, 0), R3 (Bits 2 \sim 0), R4 registers are pushed to the corresponding stack (Fig 6-9). After the RETI instruction is executed, the contents of the corresponding stack are popped to ACC, R1 (Bits 5, 4, 1, 0), R3 (Bits 2 \sim 0), R4 registers.

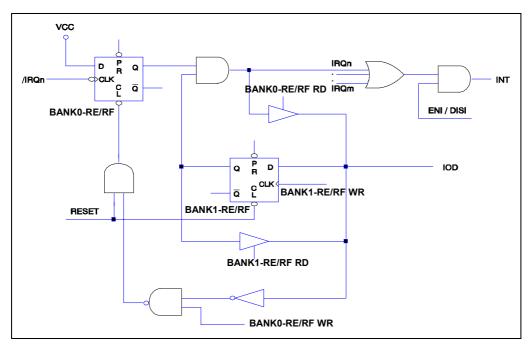


Fig. 6-8 Interrupt Input Circuit

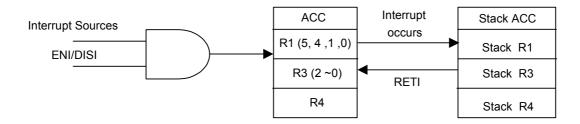
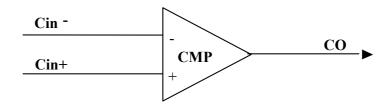



Fig. 6-9 Interrupt Backup Diagram

6.7 Comparator

The EM78P211/2N has one comparator comprising of two analog inputs and one output. The comparator can be utilized to wake up the EM78P211/2N from sleep mode. The comparator circuit diagram is depicted in the figure below.

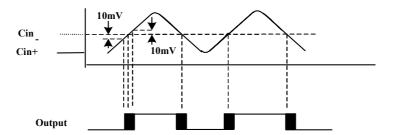


Fig. 6-10 Comparator Circuit Diagram & Operating Mode

6.7.1 External Reference Signal

The analog signal presented at Cin– compares to the signal at Cin+, and the digital output (CO) of the comparator is adjusted accordingly by taking the following notes into considerations:

NOTE

- The reference signal must be between Vss and Vdd.
- The reference voltage can be applied to either pin of the comparator.
- Threshold detector applications may be of the same reference.
- The comparator can operate from the same or different reference sources.

6.7.2 Comparator Outputs

- The compared result is stored in the CMPOUT of Bank 1-RA.
- Bits 3 ~ 4 <CMPCOS1, CMPCOS0> of the Bank 1-RA register. See Section 6.2.18, BANK1-RA (CMPCON: Comparator Control Register) for Comparator select bits function description.

NOTE

- The highest priority of P71/INT1/CO is INT1. When EIS1=0, the working type of P71/INT1/CO is determined by CMPCOS1 and CMPCOS2.
- The CO and P71of the P71/CO pins cannot be used at the same time.
- The P71/CO pin priority is as follows:

P71/INT1/CO Pin Priority								
High Medium Low								
/INT1	CO	P71						

The following figure shows the Comparator Output block diagram.

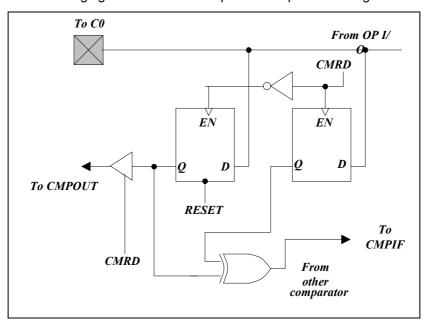


Fig. 6-11 Comparator Output Configuration

6.7.3 Using a Comparator as an Operation Amplifier

6.7.3.1 Bank 0-RE (WUCR: Wake-up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EX1IF	0	0	ICWE	0	CMPWE	0	CMPIF

Bit 2 (CMPWE): Comparator wake-up enable bit

0 = Disable Comparator wake-up

1 = Enable Comparator wake-up

When the Comparator output status change is used to enter an interrupt vector or to wake-up the EM78P211/2N from sleep, the CMPWE bit must be set to "Enable".

Bit 0 (CMPIF): Comparator interrupt flag. Set when a change occurs in the Comparator output. Reset by software

6.7.3.2 Bank 1-RA (CMPCON: Comparator Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EIS1	EIS0	CMPOUT	CMPCOS1	CMPCOS0	0	0	0

Bit 5 (CMPOUT): The result of the Comparator output

Bit 4 ~ Bit 3 (CMPCOS1 ~ CMPCOS0): Comparator Select bits

CMPCOS1	CMPCOS0	Function Description
0	0	Comparator is not used. P72, P73, and P71 are normal I/O pins
0	1	P72 and P73 are Comparator input pins and P71 is normal I/O pin
1	0	P72 and P73 are Comparator input pins and P71 is Comparator output pin (CO)
1	1	Used as OP and P71 is OP output pin (CO)

6.7.3.3 Bank 1-RE (WDT Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	0	PSWE	PSW2	PSW1	PSW0	0	CMPIE

Bit 0 (CMPIE): CMPIF interrupt enable bit

0 = Disable CMPIF interrupt

1 = Enable CMPIF interrupt

When the Comparator output status change is used to enter an interrupt vector or to enter the next instruction, the CMPIE bit must be set to "Enable." But actually the comparator output must be read to latch the status at first. Then the comparator output is compared to this latch to produce the information of output status change.

6.7.4 Comparator Interrupt

- CMPIE must be enabled for the "ENI" instruction to take effect
- Interrupt is triggered whenever a change occurs on the comparator output pin
- The actual change on the pin can be determined by reading the Bit CMPOUT
- CMPIF the comparator interrupt flag, can only be cleared by software

6.7.5 Wake-up from Sleep Mode

- If enabled, the comparator remains active and the interrupt remains functional, even in Sleep mode.
- If a mismatch occurs, the interrupt will wake up the device from Sleep mode.
- The power consumption should be taken into consideration for the benefit of energy conservation.
- If the function is unemployed during Sleep mode, turn off the comparator before entering into sleep mode.

6.8 Oscillator

6.8.1 Oscillator Modes

The EM78P211/2N can be operated in six different oscillator modes, such as High Crystal oscillator mode (HXT 1, 2), Low Crystal oscillator mode (LXT 1, 2), External RC oscillator mode (ERC), and RC oscillator mode with Internal RC oscillator (IRC). Select one of such modes by programming the OSC2, OCS1, and OSC0 in the Code Option register.

The Oscillator modes defined by OSC2, OCS1, and OSC0 are described below.

Oscillator Modes	OSC2	OSC1	OSC0
ERC ¹ (External RC oscillator mode); P52/OSCO act as P52	0	0	0
ERC ¹ (External RC oscillator mode); P52/OSCO act as OSCO	0	0	1
IRC ² (Internal RC oscillator mode); P52/OSCO act as P52	0	1	0
IRC ² (Internal RC oscillator mode); P52/OSCO act as OSCO	0	1	1
LXT1 ³ (Frequency range of XT mode is 1MHz~100kHz)	1	0	0
HXT1 ³ (Frequency range of XT mode is 16MHz~6MHz)	1	0	1
LXT2 ³ (Frequency range of XT mode is 32kHz)	1	1	0
HXT2 ³ (Frequency range of XT mode is 6MHz~1MHz) (default)	1	1	1

¹ In ERC mode, OSCI is used as oscillator pin. OSCO/P52 is defined by code option Word 0 Bit 6 ~ Bit 4.

The maximum operating frequency limit of the crystal/resonator at different VDDs, are as follows:

Conditions	VDD	Max. Freq. (MHz)
	2.1	4
Two clocks	3.0	8
	4.5	16

6.8.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The EM78P211/2N can be driven by an external clock signal through the OSCO pin as illustrated below.

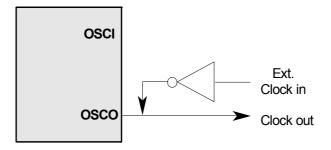


Fig. 6-12 External Clock Input Circuit

² In IRC mode, P53 is normal I/O pin. OSCO/P52 is defined by code option Word 0 Bit 6 ~ Bit 4.

³ In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation. Fig. 6-17 below depicts such circuit. The same applies to the HXT 1, 2 modes and the LXT 1, 2 modes.

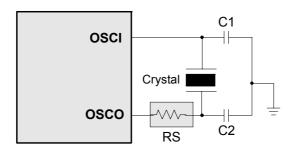


Fig. 6-13 Crystal/Resonator Circuit

The following table provides the recommended values for C1 and C2. Since each resonator has its own attribute, user should refer to the resonator specifications for appropriate values of C1 and C2. RS, a serial resistor, may be required for AT strip cut crystal or low frequency mode. Fig 6-13-1 is PCB layout suggestion. When the system works in Crystal mode (16MHz), a $10K\Omega$ is connected between OSCI and OSCO.

Capacitor selection guide for crystal oscillator or ceramic resonators:

Oscillator Type	Frequency Mode	Frequency	C1(pF)	C2(pF)
		100kHz	67pF	67pF
	LXT	200kHz	30pF	30pF
	(100K~1MHz)	455kHz	30pF	30pF
Ceramic Resonators		1MHz	30pF	30pF
	HXT	1.0 MHz	30pF	30pF
	HX1 (1M∼6MHz)	2.0 MHz	30pF	30pF
	(1111 0111112)	4.0 MHz	30pF	30pF
	LXT2 (32.768kHz)	32.768kHz	20pF	20pF
		100kHz	67pF	67pF
	LXT1 (100K~1MHz)	200kHz	30pF	30pF
		455kHz	30pF	30pF
		1MHz	30pF	30pF
		455kHz	30pF	30pF
Crystal Oscillator	LIVTO	1.0 MHz	30pF	30pF
Orystal Oscillator	HXT2 (1~6MHz)	2.0 MHz	30pF	30pF
	(1 0111112)	4.0 MHz	30pF	30pF
		6.0 MHz	30pF	30pF
		6.0 MHz	30pF	30pF
	HXT1	8.0 MHz	30pF	30pF
	(6~16MHz)	12.0 MHz	30pF	30pF
		16.0 MHz	15pF	15pF

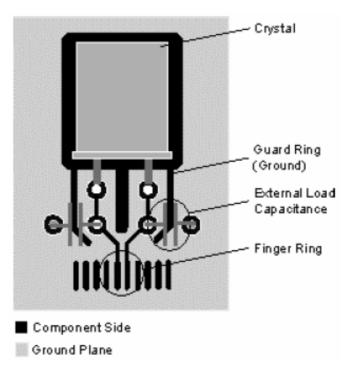


Fig. 6-13-1 Parallel Mode Crystal/Resonator Circuit Diagram

6.8.3 External RC Oscillator Mode

For some applications that do not require precise timing calculation, the RC oscillator (Fig. 6-18 right) could offer a cost-effective oscillator configuration.

Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variations.

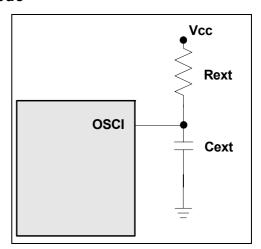


Fig. 6-14 External RC Oscillator Mode Circuit

In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF, and the value of Rext should not be greater than $1M\Omega$. If the frequency cannot be kept within this range, the frequency can be easily affected by noise, humidity, and leakage.

The smaller the Rext in the RC oscillator, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 K Ω , the oscillator will become unstable because the NMOS cannot discharge the capacitance current correctly.

Based on the above reasons, it must be kept in mind that all the supply voltage, the operation temperature, the components of the RC oscillator, the package types, and the PCB is layout, have certain effect on the system frequency.

The RC Oscillator frequer	ncies:
---------------------------	--------

Cext	Rext	Average Fosc 5V,25°C	Average Fosc 3V,25°C
	3.3k	3.5 MHz	3.2 MHz
20 pF	5.1k	2.5 MHz	2.3 MHz
20 με	10k	1.30 MHz	1.25 MHz
	100k	140 kHz	140 kHz
	3.3k	1.27 MHz	1.21 MHz
100 pF	5.1k	850 kHz	820 kHz
100 pi	10k	450 kHz	450 kHz
	100k	48 kHz	50 kHz
	3.3k	560 kHz	540 kHz
300 pF	5.1k	370 kHz	360 kHz
300 με	10k	196 kHz	192 kHz
	100k	20 kHz	20 kHZ

Note: 1: Measured based on DIP packages.

2: The values are for design reference only.

 3 : The frequency drift is \pm 30%

6.8.4 Internal RC Oscillator Mode

The EM78P211/2N offers a versatile internal RC mode with default frequency value of 4MHz. Internal RC oscillator mode has other frequencies (1MHz, 16MHz, and 455kHz) that can be set by Code Option (Word 1), RCM1, and RCM0. The Table below describes the EM78P211/2N internal RC drift with the variations on voltage, temperature, and process.

Internal	Drift Rate							
RC Frequency	Temperature (-40°C~+85°C)	Voltage (2.1V~5.5V)	Process	Total				
4MHz	±5%	±5%	±4%	±14%				
16MHz	±5%	±5%	±4%	±14%				
1MHz	±5%	±5%	±4%	±14%				
455kHz	±5%	±5%	±4%	±14%				

Theoretical values are for reference only. Actual values may vary depending on actual process.

6.9 Power-on Considerations

Any microcontroller is not warranted to start operating properly before the power supply stabilizes to a steady state. EM78P211/2N has a built-in Power-on Voltage Detector (POVD) with detection level range of 1.7V to 1.9V. The circuitry eliminates the extra external reset circuit. It will work well if Vdd rises quickly enough (50 ms or less). However, under critical applications, extra devices are still required to assist in solving power-on problems.

6.9.1 External Power-on Reset Circuit

The circuit shown in the following figure implements an external RC to produce a reset pulse. The pulse width (time constant) should be kept long enough to allow Vdd to reach the minimum operating voltage. This circuit is used when the power supply has a slow power rise time. Since

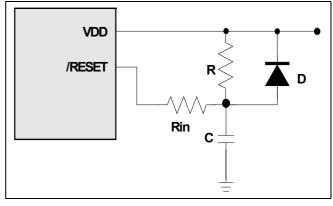


Fig. 6-15 External Power on Reset Circuit

the current leakage from the /RESET pin is about $\pm 5\mu A$, it is recommended that R should not be greater than 40 K. This way, the voltage at Pin /Reset is held below 0.2V. The diode (D) functions as a short circuit at power-down. The "C" capacitor is discharged rapidly and fully. Rin, the current-limited resistor, prevents high current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.

6.9.2 Residual Voltage Protection

When the battery is replaced, device power Vdd is removed but residual voltage remains. The residual voltage may trip below Vdd minimum, but not to zero. This condition may cause a poor power-on reset. Fig. 6-16 and Fig. 6-17 show how to create a protection circuit against residual voltage.

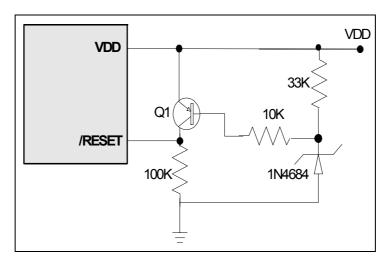


Fig. 6-16 Residual Voltage Protection Circuit 1

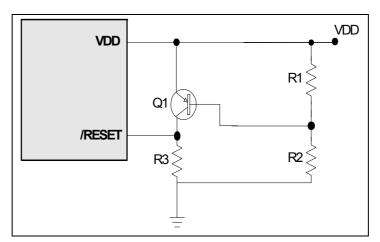


Fig. 6-17 Residual Voltage Protection Circuit 2

6.10 Low Voltage Reset

The low voltage reset (LVR) is designed for unstable power situation, such as external power noise interference or in EMS test condition.

When LVR is enabled, system supply voltage (Vdd) drops below Vdd reset level (VRESET) and remains 10us, the system reset will occur and the system will keep on reset status. The system will remain at reset status until Vdd voltage rises above Vdd release level. Refer Fig. 6-18.

LVR property is set at Code Option Word 0, Bits 10, 9. Detailed operation mode is as follows:

Word 0												
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TYPE1	TYPE0	LVR1	LVR0	CLKS	ENWDTB	OSC2	OSC1	OSC0	-	PR2	PR1	PR0

Bits 10~9 (LVR1 ~ LVR0): Low Voltage Reset enable bits. If Vdd has crossover at Vdd reset level as Vdd changes, the system will be reset.

LVR1, LVR0	VDD Reset Level	VDD Release Level
11	NA (Power-on	Reset) (default)
10	2.5V	2.7V
01	3.0V	3.2V
00	4.0V	4.2V

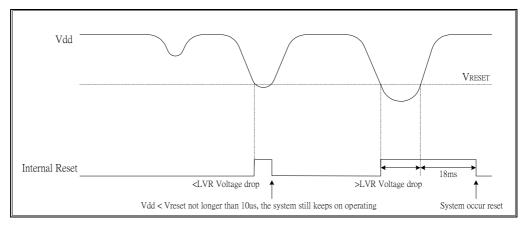


Fig. 6-18 LVR Waveform Situation

6.11 Code Option

EM78P211/2N has two Code Option Words and one Customer ID word that are not a part of the normal program memory.

Word 0	Word 1	Word 2
Bit 12 ~ Bit 0	Bit 12 ~ Bit 0	Bit 12 ~ Bit 0

6.11.1 Code Option Register (Word 0)

Word 0												
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TYPE1	TYPE0	LVR1	LVR0	CLKS	ENWDTB	OSC2	OSC1	OSC0	-	PR2	PR1	PR0

Bits 12 ~ 11 (Type 1, Type 0): Type selection for EM78P211N or EM78P212N

Type 1, Type 0	MCU type				
00	Not used				
01	EM78P211N (20 pins)				
10	EM78P212N (24 pins)				
11	Not used				

NOTE

LVR1 and LVR0 are at Bank 3-R7, when using ICE.

Bits 10 ~ 9 (LVR1 ~ LVR0): Low Voltage Reset control bits

LVR1, LVR0	VDD Reset Level	VDD Release Level
11	NA (Power-on	Reset) (default)
10	2.5V	2.7V
01	3.0V	3.2V
00	4.0V	4.2V

Bit 8 (CLKS): Instruction time period option bit

0 = two oscillator time periods

1 = four oscillator time periods (Default)

Refer to Section 6.14 for Instruction Set

Bit 7 (ENWDTB): Watchdog timer enable bit

0 = Enable

1 = Disable (default)

Bits 6, 5 & 4 (OSC2, OSC1 & OSC0): Oscillator Mode Selection bits

Oscillator Modes	OSC2	OSC1	OSC0
ERC ¹ (External RC oscillator mode); P52/OSCO act as P52	0	0	0
ERC ¹ (External RC oscillator mode); P52/OSCO act as OSCO	0	0	1
IRC ² (Internal RC oscillator mode); P52/OSCO act as P52	0	1	0
IRC ² (Internal RC oscillator mode); P52/OSCO act as OSCO	0	1	1
LXT1 ³ (Frequency range of XT mode is 1MHz~100kHz)	1	0	0
HXT1 ³ (Frequency range of XT mode is 16MHz~6MHz)	1	0	1
LXT2 ³ (Frequency range of XT mode is 32kHz)	1	1	0
HXT2 ³ (Frequency range of XT mode is 6MHz~1MHz) (default)	1	1	1

 $^{^{1}}$ In ERC mode, OSCI is used as oscillator pin. OSCO/P52 is defined by code option Word 0 Bit 6 \sim Bit 4.

 $^{^{2}}$ In IRC mode, P53 is normal I/O pin. OSCO/P52 is defined by code option Word 0 Bit 6 \sim Bit 4.

³ In LXT1, LXT2, HXT1 and HXT2 modes; OSCI and OSCO are used as oscillator pins. These pins cannot and should not be defined as normal I/O pins.

Bit 3: Not used (Reserved). This bit is set to 0 all the time

Bits 2 ~ 0 (PR2 ~ PR0): Protect Bits

PR2 ~ PR0 are protect bits. Each protect status is as follows:

PR2	PR1	PR0	Protect
0	0	0	Enable
1	1	1	Disable (Default)

6.11.2 Code Option Register (Word 1)

	Word 1											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	RESE TENB	RC OUT	NRHL	NRE	ı	СЗ	C2	C1	C0	RCM1	RCM0

Bits 12: Not used (reserved), fixed to "1" all the time.

Bits 11: Not used (reserved), fixed to "0" all the time.

Bit 10 (RESETENB): P81/RESET pin select bit

0 = P81 set to /RESET pin

1 = P81 is general purpose input pin or open drain for output port (**Default**)

Bit 9 (RCOUT): System clock output enable bit in IRC or ERC mode

0 = OSCO pin is open drain

1 = OSCO output instruction clock (Default)

Bit 8 (NRHL): Noise rejection high/low pulse define bit. INT pin has a falling edge trigger.

0 = Pulses equal to 8/fc is regarded as signal

1 = Pulses equal to 32/fc is regarded as signal (Default)

NOTE

NRHL and NRE are at Bank 3-R7, when using ICE.

Bit 7 (NRE): Noise rejection enable

0 = disable noise rejection

1 = enable noise rejection (default). However in Low Crystal oscillator (LXT2) mode, the noise rejection circuit is always disabled.

NOTE

The noise rejection function is turned off in LXT2 and sleep mode.

Bit 6: Not used (Reserved). This bit is set to "1" all the time.

NOTE

C3, C2, C1, C0, RCM1 and RCM0 are at Bank 3-R6, when using ICE.

Bits 5~2 (C3~C0): Internal RC mode Calibration bits. These bits must always be set to "1" only (auto calibration)

Bit 1 & Bit 0 (RCM1 & RCM0): RC mode selection bits

RCM 1	RCM 0	Frequency (MHz)
1	1	4 (Default)
1	0	16
0	1	1
0	0	455kHz

6.11.3 Customer ID Register (Word 2)

	Word 2											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	NRM	-	-	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Bit 12: Not used (reserved), fixed to "0" all the time

Bit 11 (NRM):

- **0** = Noise reject Mode 2. For multi-time circuit use, such as key scan and LED output.
- 1 = Noise reject Mode 1. For General input or output use. (**Default**)

Bits 10~9: Not used (reserved), fixed to "1" all the time

Bits 8 ~ 0 : Customer's ID code

6.12 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator time periods). Note the program counter is changed by instructions "MOV R2,A," "ADD R2,A," or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.). In this case, these instructions only need one instruction cycles

In addition, the instruction set has the following features:

- 1. Every bit of any register can be set, cleared, or tested directly.
- 2. The I/O registers can be regarded as general registers. That is, the same instruction can operate on I/O registers.

Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.

Binary Instruction	HEX	Mnemonic	Operation	Status Affected
0 0000 0000 0000	0000	NOP	No Operation	None
0 0000 0000 0001	0001	DAA	Decimal Adjust A	С
0 0000 0000 0010	0002	CONTW	$A \rightarrow CONT$	None
0 0000 0000 0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	T, P
0 0000 0000 0100	0004	WDTC	$0 \rightarrow WDT$	T, P
0 0000 0001 0000	0010	ENI	Enable Interrupt	None
0 0000 0001 0001	0011	DISI	Disable Interrupt	None
0 0000 0001 0010	0012	RET	$[Top\;of\;Stack]\toPC$	None
0 0000 0001 0011	0013	RETI	$[Top\ of\ Stack] \mathop{\rightarrow} PC, Enable\ Interrupt$	None
0 0000 0001 0100	0014	CONTR	$CONT \to A$	None
0 0000 01rr rrrr	00rr	MOV R,A	$A \rightarrow R$	None
0 0000 1000 0000	0800	CLRA	$0 \rightarrow A$	Z
0 0000 11rr rrrr	00rr	CLR R	$0 \rightarrow R$	Z
0 0001 00rr rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z, C, DC
0 0001 01rr rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z, C, DC
0 0001 10rr rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z
0 0001 11rr rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z

Binary Instruction	HEX	Mnemonic	Operation	Status Affected
0 0010 00rr rrrr	02rr	OR A,R	$A \vee VR \to A$	Z
0 0010 01rr rrrr	02rr	OR R,A	$A \vee VR \to R$	Z
0 0010 10rr rrrr	02rr	AND A,R	$A \& R \rightarrow A$	Z
0 0010 11rr rrrr	02rr	AND R,A	$A \& R \rightarrow R$	Z
0 0011 00rr rrrr	03rr	XOR A,R	$A \oplus R \to A$	Z
0 0011 01rr rrrr	03rr	XOR R,A	$A \oplus R \to R$	Z
0 0011 10rr rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z, C, DC
0 0011 11rr rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z, C, DC
0 0100 00rr rrrr	04rr	MOV A,R	$R \rightarrow A$	Z
0 0100 01rr rrrr	04rr	MOV R,R	$R \rightarrow R$	Z
0 0100 10rr rrrr	04rr	COMA R	$/R \rightarrow A$	Z
0 0100 11rr rrrr	04rr	COM R	$/R \rightarrow R$	Z
0 0101 00rr rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z
0 0101 01rr rrrr	05rr	INC R	$R+1 \rightarrow R$	Z
0 0101 10rr rrrr	05rr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
0 0101 11rr rrrr	05rr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
0 0110 00rr rrrr	06rr	RRCA R	$R(n) \rightarrow A(n\text{-}1), R(0) \rightarrow C, C \rightarrow A(7)$	С
0 0110 01rr rrrr	06rr	RRC R	$R(n) \rightarrow R(n\text{-}1), R(0) \rightarrow C, C \rightarrow R(7)$	С
0 0110 10rr rrrr	06rr	RLCA R	$R(n) \rightarrow A(n+1), R(7) \rightarrow C, C \rightarrow A(0)$	С
0 0110 11rr rrrr	06rr	RLC R	$R(n) \rightarrow R(n+1), R(7) \rightarrow C, C \rightarrow R(0)$	С
0 0111 00rr rrrr	07rr	SWAPA R	$R(0\text{-}3) \rightarrow A(4\text{-}7), R(4\text{-}7) \rightarrow A(0\text{-}3)$	None
0 0111 01rr rrrr	07rr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
0 0111 10rr rrrr	07rr	JZA R	$R+1 \rightarrow A$, skip if zero	None
0 0111 11rr rrrr	07rr	JZ R	$R+1 \rightarrow R$, skip if zero	None
0 100b bbrr rrrr	0xxx	BC R,b	$0 \to R(b)$	None ¹
0 101b bbrr rrrr	0xxx	BS R,b	$1 \rightarrow R(b)$	None ²
0 110b bbrr rrrr	0xxx	JBC R,b	if R(b)=0, skip	None
0 111b bbrr rrrr	0xxx	JBS R,b	if R(b)=1, skip	None
1 00kk kkkk kkkk	1kkk	CALL k	PC+1 \rightarrow SP, (lower 10 bits of k) \rightarrow PC	None
1 01kk kkkk kkkk	1kkk	JMP k	(lower 10 bits of k) \rightarrow PC	None

Binary Instruction	HEX	Mnemonic	Operation	Status Affected
1 1000 kkkk kkkk	18kk	MOV A,k	$k \rightarrow A$	None
1 1001 kkkk kkkk	19kk	OR A,k	$A\vee k\to A$	Z
1 1010 kkkk kkkk	1Akk	AND A,k	$A \& k \rightarrow A$	Z
1 1011 kkkk kkkk	1Bkk	XOR A,k	$A \oplus k \to A$	Z
1 1100 kkkk kkkk	1Ckk	RETL k	$k \to A, [\text{Top of Stack}] \to PC$	None
1 1101 kkkk kkkk	1Dkk	SUB A,k	$k\text{-}A \to A$	Z, C, DC
1 1110 1001 kkkk	1E9k	BANK k	$k \rightarrow R1(1:0)$	None
1 1110 1010 kkkk k kkkk kkkk kkkk	1EAk	LCALL k	Next instruction: k kkkk kkkk kkkk; $PC+1 \rightarrow [SP], k \rightarrow PC$	None
1 1110 1011 kkkk k kkkk kkkk kkkk	1EBk	LJMP k	Next instruction: k kkkk kkkk kkkk; $k \rightarrow PC$	None
1 1111 kkkk kkkk	1Fkk	ADD A,k	$k+A \rightarrow A$	Z, C, DC

Note: ¹ This instruction is not recommended for RF operation

Absolute Maximum Ratings

Items	Rating				
Temperature under bias	-40°C	to	85°C		
Storage temperature	-65°C	to	150°C		
Input voltage	Vss-0.3V	to	Vdd+0.5V		
Output voltage	Vss-0.3V	to	Vdd+0.5V		
Working Voltage	2.3V	to	5.5V		
Working Frequency	DC	to	16MHz		

² This instruction cannot operate under RF.

8 DC Electrical Characteristics

Ta= 25 $^{\circ}$ C, VDD= 5.0V, VSS= 0V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
FXT	Crystal: VDD to 5V	Two cycle with two clocks	DC	-	16	MHz
FXI	ERC: VDD to 5V	R: 5.1KΩ, C: 100 pF	F±30%	850	F±30%	kHz
VIHRC	Input High Threshold Voltage (Schmitt Trigger)	OSCI in RC mode	=	3.75	-	V
VILRC	Input Low Threshold Voltage (Schmitt Trigger)	OSCI in RC mode	_	1.25	-	V
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1.0	0	1.0	μА
VIH1	Input High Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	-	3.75	_	٧
VIL1	Input Low Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	_	1.5	_	V
VIHT1	Input High Threshold Voltage (Schmitt Trigger)	/RESET	_	1.9	_	V
VILT1	Input Low Threshold Voltage (Schmitt Trigger)	/RESET	_	1.2	_	V
VIHT2	Input High Threshold Voltage (Schmitt Trigger)	TCC, INT	-	3.75	_	V
VILT2	Input Low Threshold Voltage (Schmitt Trigger)	TCC, INT	_	1.25	_	V
VIHX1	Clock Input High Voltage	OSCI in crystal mode	_	3.75	_	V
VILX1	Clock Input Low Voltage	OSCI in crystal mode	-	1.25	_	V
IOH1	Output High Voltage (Ports 5, 6, 7, 8)	VOH = 0.9VDD	_	-9	_	mA
IOH2	Output High Voltage (Ports 6)	VOH = 0.7VDD	_	-27	_	mA
IOL1	Output Low Voltage (Ports 5, 6, 7, 8)	VOL = 0.1VDD	_	16.8	_	mA
IOL2	Output Low Voltage (Ports 5, 6)	VOL = 0.3VDD	_	67.2	_	mA
IPH	Pull-high current (Ports 50~53, 64~67)	Pull-high active, input pin at VSS	50	-	90	μА
IPL	Pull-low current (Ports 60~67)	Pull-low active, input pin at Vdd	20	_	60	μΑ
ISB1	Power down current	All input and I/O pins at VDD, Output pin floating, WDT disabled, LVR disabled	_	2	_	μΑ
ISB2	Power down current	All input and I/O pins at VDD, Output pin floating, WDT enabled, LVR Disable	_	10	_	μΑ
ISB3	Power down current	All input and I/O pins at VDD, Output pin floating, WDT disabled LVR enabled		4.0	_	μΑ

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ICC1	Operating supply current at two clocks (VDD=3V)	/RESET= 'High', Fosc=32kHz (Crystal type, CLKS="0"), Output pin floating, WDT disabled, LVR disabled	_	15	20	μΑ
ICC2	Operating supply current at two clocks (VDD=3V)	/RESET= 'High', Fosc=32kHz (Crystal type, CLKS="0"), Output pin floating, WDT enabled, LVR disabled	-	15	25	μΑ
ICC3	Operating supply current at two clocks (VDD=5V)	/RESET= 'High', Fosc=4MHz (Crystal type, CLKS="0"), Output pin floating, WDT enabled, LVR disabled	-	1.5	1.7	mA
ICC4	Operating supply current at two clocks (VDD=5V)	/RESET= 'High', Fosc=10MHz (Crystal type, CLKS="0"), Output pin floating, WDT enabled, LVR disabled	-	2.8	3.0	mA

Internal RC Electrical Characteristics (Ta=25°C, VDD=5 V, VSS=0V)

Internal RC	Drift Rate						
Internal NO	Temperature	Voltage	Min.	Тур.	Max.		
4MHz	25°C	5 V	3.84MHZ	4MHz	4.16MHz		
16MHz	25°C	5 V	15.36MHz	16MHz	16.64MHz		
1MHz	25°C	5 V	0.96MHz	1MHz	1.04MHz		
455kHz	25°C	5 V	436.8kHz	455kHz	473.2kHz		

Internal RC Electrical Characteristics (Ta=-40 ~85°C, VDD=2.1~5.5 V, VSS=0V)

Internal RC	Drift Rate					
internal Ro	Temperature	Voltage	Min.	Тур.	Max.	
4MHz	-40~85°C	2.1~5.5 V	3.44MHz	4MHz	4.56MHz	
16MHz	-40~85°C	2.1~5.5 V	13.76MHz	16MHz	18.24MHz	
1MHz	-40~85°C	2.1~5.5 V	0.86MHz	1MHz	1.14MHz	
455kHz	-40~85°C	2.1~5.5 V	391.3kHz	455kHz	518.7kHz	

8.1 Comparator (OP) Characteristic

Vdd = 5.0V, Vss=0V, Ta=25 °C

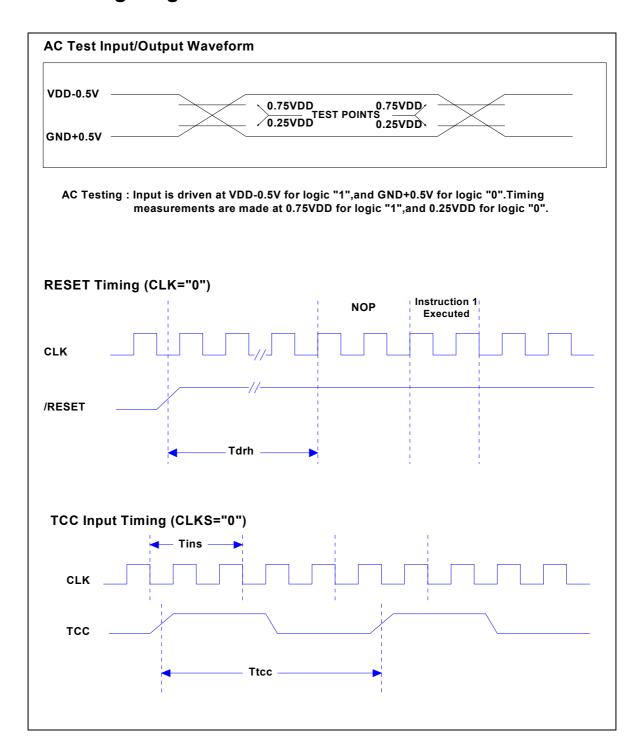
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VOS	Input offset voltage	RL = 5.1K (Note ¹)	_	ı	10	mV
Vcm	Input common-mode voltages range	(Note ²)	GND	I	VDD-1	V
IOS	Input offset current	ı	_	I	50	nA
IBS	Input bias current	ı	_	25	250	nA
ICO	Comparator Supply current	_	_	300	_	μΑ
TRS	Response time	VREF=1.4V,VRL = 5V, RL = 5.1k, CL=15p, (Note ³)	0.5	1.3	3.5	μs
TLRS	Large signal response time	VRL = 5V, RL = 5.1k	-	300	1	ns
IOL	Output sink current	Vi(-) =1V, Vi(+) =0V, Vo = GND+0.5V	_	12	_	mA
VSAT	Saturation voltage	$Vi(-) = 1V$, $Vi(+) = 0V$, $IOL \le 4mA$	-	0.2	0.4	V
VS	Operating range	-	2.5	ı	5.5	V

Note: ¹. The output voltage is in the unit gain circuitry and over the full input common-mode range.

9 AC Electrical Characteristic

Ta=25 °C, VDD=5V±5%, VSS=0V

Symbol	Parameter	Conditions	Min	Туре	Max	Unit
Dclk	Input CLK duty cycle	_	45	50	55	%
Tins	Instruction cycle time	Crystal type	100	-	DC	ns
11115	(CLKS="0")	RC type	500	ı	DC	ns
Ttcc	TCC input time period	_	(Tins+20) × N*	ı	_	ns
Tdrh	Device reset hold time	Ta = 25°C	11.3	16.2	21.6	ms
Trst	/RESET pulse width	Ta = 25°C	2000	ı	_	ns
Twdt	Watchdog timer duration	Ta = 25°C	11.3	16.2	21.6	ms
Tset	Input pin setup time	_	_	0		ns
Thold	Input pin hold time	=	15	20	25	ns
Tdelay	Output pin delay time	Cload=20pF	45	50	55	ns
Tdrc	ERC delay time	Ta = 25°C	1	3	5	ns


Note: * N = selected prescaler ratio

The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VDD-1.

^{3.} The response time specified is a 100mV input step with 5mV overdrive.

10 Timing Diagrams

APPENDIX

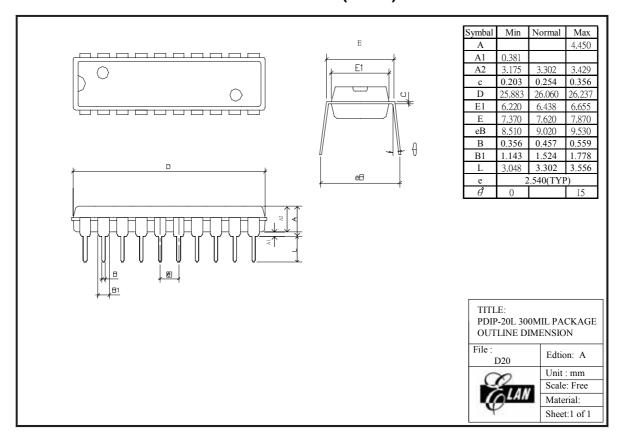
A Package Type

OTP MCU	Package Type	Pin Count	Package Size
EM78P211NPS/NPJ	DIP	20 pin	300mil
EM78P211NMS/NPJ	SOP	20 pin	300mil
EM78P211NAMS/NAMJ	SSOP	20 pin	209mil
EM78P212NKS/NKJ	Skinny DIP	24 pin	300mil
EM78P212NMS/NMJ	SOP	24 pin	300mil
EM78P212NAMS/NAMJ	SSOP	24 pin	209mil

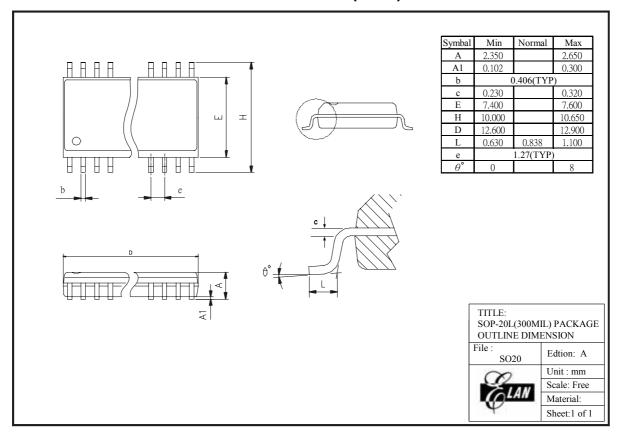
Green products do not contain hazardous substances.

The third edition of Sony SS-00259 standard.

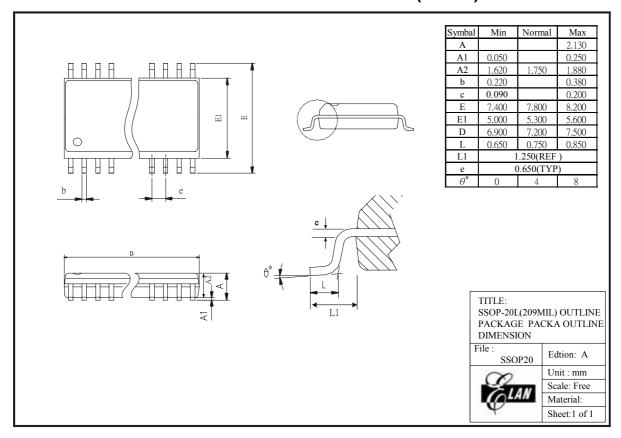
Pb contents should be less 100ppm


Pb contents comply with Sony specs.

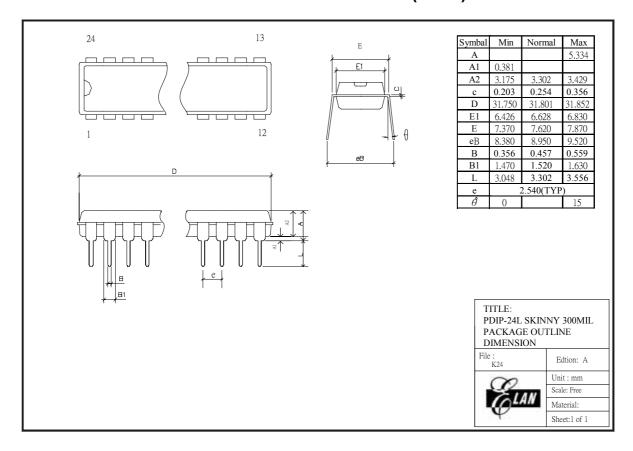
Part No.	EM78P211/212/NxS/xJ/
Electroplate type	Pure Tin
Ingredient (%)	Sn: 100%
Melting point (°C)	232°C
Electrical resistivity (μΩ-cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%


B Packaging Configurations

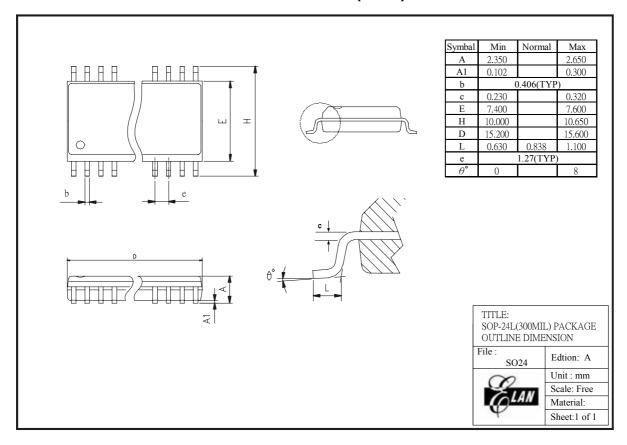
B.1 20-Lead Plastic Dual in line (PDIP) - 300 mil



B.2 20-Lead Plastic Small Outline (SOP) - 300 mil



B.3 20-Lead Plastic Shrink Small Outline (SSOP) — 209 mil



B.4 24-Lead Shrink Plastic Dual in Line (SDIP) — 300mil

B.5 24-Lead Plastic Small Outline (SOP) — 300 mil

B.6 24-Lead Plastic Shrink Small Outline (SSOP) — 209 mil

C Quality Assurance and Reliability

Test Category	Test Conditions	Remarks	
Solderability	Solder temperature=245±5°C, for 5 seconds up to the stopper using a rosin-type flux		
	Step 1: TCT, 65°C (15 mins)~150°C (15 mins), 10 cycles		
	Step 2: Bake at 125°C, TD (endurance)=24 hrs		
	Step 3: Soak at 30°C/60% , D (endurance)=192 hrs		
Pre-condition	Step 4: IR flow 3 cycles (Pkg thickness: 2.5mm or Pkg volume: 350mm ³ 225±5°C) (Pkg thickness: 2.5mm or Pkg volume: 350mm ³ 240±5°C)	For SMD IC (such as SOP, QFP, SOJ, etc)	
Temperature cycle test	-65°C (15 mins) ~ 150°C (15 mins), 200 cycles		
Pressure cooker test	TA =121°C, RH=100%, pressure=2 atm, TD (endurance)= 96 hrs		
High temperature / High humidity test	TA=85°C, RH=85% , TD (endurance)=168, 500 hrs		
High-temperature storage life	TA=150°C, TD (endurance)=500, 1000 hrs		
High-temperature operating life	TA=125°C, VCC=Max. operating voltage, TD (endurance) =168, 500, 1000 hrs		
Latch-up	TA=25°C, VCC=Max. operating voltage, 150mA/20V		
ESD (HBM)	TA=25°C, ± 3KV	IP_ND,OP_ND,IO_ND IP_NS,OP_NS,IO_NS	
ESD (MM)	TA=25°C, ± 300V	IP_PD,OP_PD,IO_PD, IP_PS,OP_PS,IO_PS, VDD-VSS(+),VDD_VS S (-)mode	

C.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.

