

2W Stereo Audio Power Amplifier with Shutdown Mode

General Description

The EMA1201 is a stereo bridged audio power amplifier capable of delivering 1.2W of continuous average power into a 8Ω load or 1.7W into 4Ω with less than 1% THD when powered by a 5V power supply. It does not require output coupling capacitors or bootstrap capacitors, and is ideal for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The EMA1201 features a low-power consumption shutdown mode, and an internal thermal shutdown protection mechanism. Advanced pop & click circuitry is built in to eliminate noises that would otherwise occur during turn-on and turn-off transitions. The EMA1201 is unity-gain stable and can be configured by external gain-setting resistors.

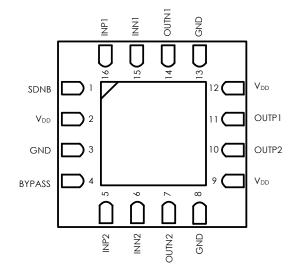
EMP products are Pb-free and RoHS compliant.

- BTL mode Po at THD+N=1%, f=1kHz, V_{DD} =5V 1.7 W (typ) into 4Ω 1.2 W (typ) into 8Ω
- BTL mode Po at THD+N=10%, f=1kHz, V_{DD} =5V 2 W (typ) into 4Ω 1.5 W (typ) into 8Ω
- · Shutdown current 0.1µA (typ)

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits required
- · Unity-gain stable
- TQFN
- · External gain configuration capability

Applications


- · Portable Computers
- · Desktop computers

Key Specifications

Connection Diagram

TQFN Package

Order information

EMA1201-50HB16GRR/NRR

50 5.0V Operation HB16 TQFN-16 Package

(EB16)

GRR RoHS (Pb Free)

Rating: -40 to 85°C Package in Tape & Reel

NRR RoHS & Halogen free (By Request)

Rating: -40 to 85°C

Package in Tape & Reel

Order, Mark & Packing Information

Package	Product ID	Marking	Packing
TQFN-16	EMA1201-50HB16GRR	SEMP CONTROL OF STAND ST	5K units Tape & Reel

Typical Application

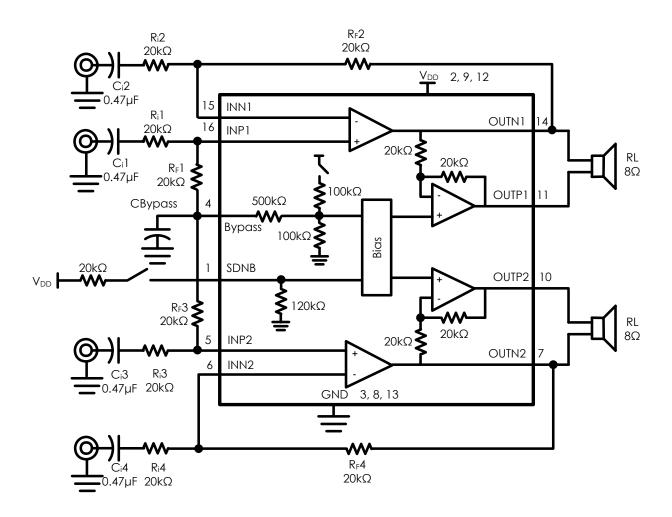


FIGURE 2. Typical Audio Amplifier Application Circuit with differential input

Absolute Maximum Ratings

Supply Voltage Storage Temperature Input Voltage Power Dissipation ESD Susceptibility

Junction Temperature

6.0V -65°C to +150°C -0.3V to VDD +0.3V Internally Limited HBM 2kV MM 200V

150°C

Thermal Resistance θ_{JA} (TQFN)

190°C/W

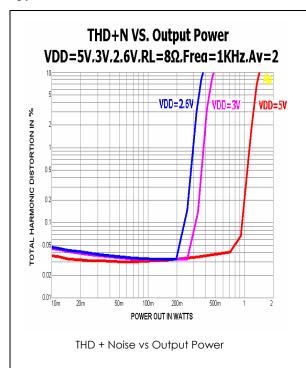
Operating Ratings

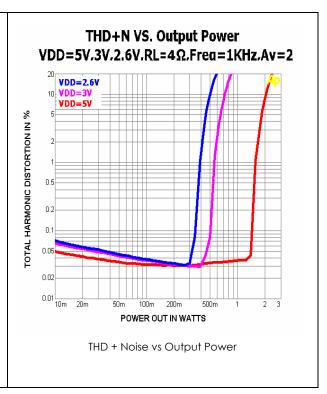
Temperature Range -40°C Supply Voltage 2.5V

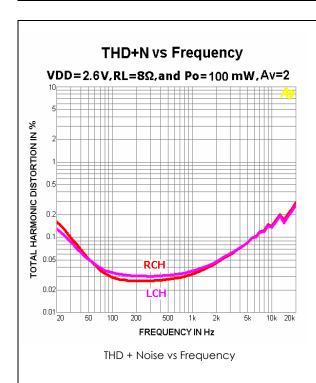
-40°C \leq TA \leq 85°C 2.5V \leq VDD \leq 5.5V

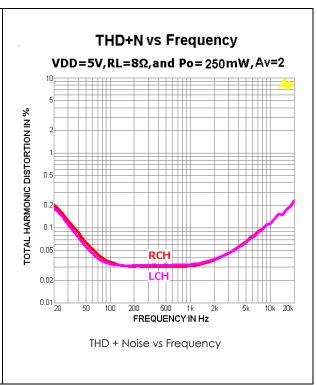
Electrical Characteristics

The following specifications apply for $V_{DD} = 5V$ and $R_L = 8\Omega$ unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

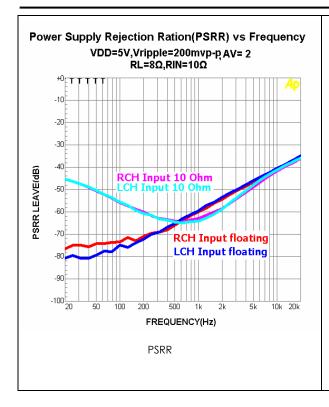

	- 1117		Conditions			Units
Symbol	Parameter	Conditions	Min	Typical	Limit	(Limits)
I _{DD}	Quiescent Power Supply Current	V _{IN} = 0V, Io = 0A		3.5	8.0	mA
I _{SD}	Shutdown Current	$V_{SDNB} = GND$		0.1	1.0	μΑ
Vos	Output Offset Voltage	$V_{IN} = 0V$		5.0	50	mV
Ро	Output Power	$THD + N = 1 \%, f = 1 kHz$ $R_L = 4 \Omega$ $R_L = 8 \Omega$ $THD + N = 10 \%, f = 1 kHz$ $R_L = 4 \Omega$ $R_L = 8 \Omega$		1.7 1.2 2.0 1.5		W
THD+N	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, \text{ AV=2, P}_0 = 0.25 \text{W}$ $R_L = 8 \Omega$	-			%
PSRR	Power Supply Rejection Ratio	V_{RIPPLE} =200mV, sine p-p at 217Hz, input 10 Ω to GND		60	55	dB

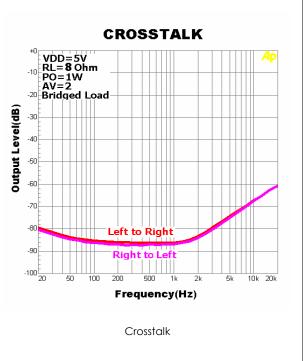

The following specifications apply for V_{DD} = 2.6V and R_L = 8 Ω unless otherwise specified. Limits apply for T_A = 25 $^{\circ}$ C.

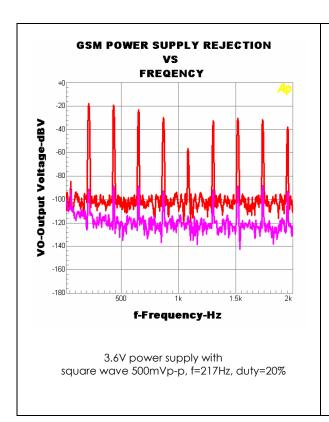

			Conditions			Units
Symbol	Parameter	Conditions	Min	Typical	Limit	(Limits)
I _{DD}	Quiescent Power Supply Current	V _{IN} = 0V, Io = 0A		2.5	5.0	mA
I _{SD}	Shutdown Current	$V_{SDNB} = GND$		0.1	1.0	μΑ
V_{OS}	Output Offset Voltage	$V_{IN} = 0V$		5.0	50	mV
Ро	Output Power	$THD + N = 1 \%, f = 1 \text{ kHz}$ $R_L = 4 \Omega$ $R_L = 8 \Omega$ $THD + N = 10 \%, f = 1 \text{ kHz}$ $R_L = 4 \Omega$ $R_L = 8 \Omega$		0.4 0.3 0.5 0.38		W
THD+N	Total Harmonic Distortion + Noise	$f = 1 \text{kHz}, \text{ AV=2, P}_{\odot} = 0.1 \text{W}$ $R_L = 8 \Omega$	0.03			%
PSRR	Power Supply Rejection Ratio	V_{RIPPLE} =200mV, sine p-p at 217Hz, input 10 Ω to GND		60	55	dB

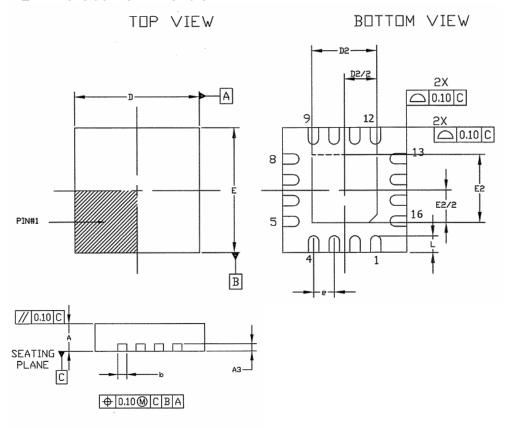


Typical Performance Characteristics









TQFN-16 Outline Dimension

SIDE VIEW

S	COMMON						
M B C	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
Ľ	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.70	0.75	0.80 🗸	0.027	0.029	0.031	
А3	0.195	0.203	0.211	0.0077	0.008	0.0083	
b	0.18	0.23	0.30	0.007	0.009	0.012	
D	2.95	3.0 <	3.05	0.116	0.118	0.120	
Ε	2.95	3.0 <	3.05	0.116	0.118	0.120	
е	0.50 BSC			C	.020 BS		
L	0.35	0.40	0.45	0.014	0.016	0.018	

Ş		D2/E2			D2/E2		
M B		DIMENSIONS MILLIMETER			DIMENSIONS INCH		
D L		MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
PTION	1	1.50/1.50	1.625/1.625	1.75/1.75	0.059/0.059	0.064/0.064	0.069/0.069

Revision History

Revision	Date	Description
4.0	2009.06.05	EMP transferred from version 3.0

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Mar. 2009 Revision: 4.0 9/9