Low cost, 3 Step Dimming Control, Linear AC LED Driver

General Description

The EMD2183 is a non-isolated linear LED driver for general purpose LED lighting applications. It is capable of driving LEDs in multiple series connections. With larger output power, the EMD2183 could also drive external power MOS to conduct larger current.

Using wall switch, the EMD2183 provide a simple dimming control without others device or controller. Build-in e-dimming function that drives 3 types difference current level to product 100/50/10% brightness.

The EMD2183 is based on a patented architecture that allows minimal external components to greatly enhance the lighting system reliability and drastically reduce system cost. Due to its non-switching behavior, the system is never an EMI issue.

Features

- Non-isolated, Linear Application.
- AC 110V/220V or DC 20V~100V Adaption.
- High Power Factor.
- Low EMI.
- Adjustable LED Current.
- Power compensation.
- Dimming Function.
 - 3 Step Dimming with wall switch.
- Over Temperature Protection (OTP).
- Over Voltage Protection (OVP).
- UVLO.

Applications

- E27/E14/E12/G9 Compatible Lamp.
- LED Strings.
- General Illumination.

Fig. 1 Typical application with 3 Step dimming

Typical Application

Connection Diagram

Order Information

EMD21	EMD2183-XXSG08NRR			
XX	Input voltage			
	00: 100 ~ 240VAC			
SG08	E-SOP-8L Package			
NRR	RoHS & Halogen free package			
	Rating: -40 to 85°C			
	Package in Tape & Reel			

Order, Marking & Packing Information

Package	Vout	Product ID	Marking	Packing
E-SOP-8L	Adjustable	EMD2183-00SG08NRR	ESMT EMD2183 Tracking code	Tape & Reel 3Kpcs

Function Block

Pin Functions

E-SOP-8L Pin #	Pin Name	Function
1	GND	Ground Pin.
2	LV	Internal power Pin. Power for internal circuit which is regulated by an internal power regulator. Connect capacitor directly to stable the internal power. Don't use this power pin to supply others device.
3	GATE	GATE Pin. Connects an external power MOS to drive larger current. Maximum output load is 1000pF
4	PCR	PCR Pin. Connects a resistor between PCR pin and GND to set the power compensation ratio.
5	RS	RS Pin . Connects a resistor between RS pin and GND to set the LED current.
6	VDD	VDD Pin. Internal power of 3 Step Dimming logic sub-block. Don't use this power pin to supply others device.
7	DS	DS Pin. Drain terminal of internal power MOS. Connects to the cathode of HV LEDs.
8	VIN	Power Supply Input Pin. Sustains the peak voltage of 240VAC power which is rectified by a bridge rectified. Un-rectified power is NOT allowed to connect with this terminal.

Absolute Maximum Ratings

Daviaga are auk	looked to fellume	if the averation of	ahava ahar	معريبة منابدهم معرفهم بالمع	" . !
Devices are sub	lected to tailure.	II INEV SIAV	anove anso	JILLIE MAXIMUM	rannos
DO11003 010 300		in the y stury			ratings

-			
VIN	<500V	Operating Temperature Range	–25°C to 125°C
DS	<500V	Storage Temperature	-65°C to 150°C
GATE	<10V	Junction Temperature	150°C
LV	<5.8V(Note 1)	Lead Temperature (Soldering, 10 sec)	260°C
PCR, RS, VDD	<lv< td=""><td></td><td></td></lv<>		
ESD Susceptibility	HBM 2kV		
	MM 200V		

Note 1: Zener diode that built in EMD2183, Don't connect extra power source to LV pin.

Thermal data

Package	Thermal resistance	Parameter	Value
	heta JA (Note 2)	Junction-to-ambient	50°C/W
E-SOP-8L	E-SOP-8L $ heta$ JT (Note 3)	Junction-to-top surface of	39°C/W
		package	
	heta JC (Note 4)	Junction-to-case	10°C/W

Note 1: T_J is a function of the ambient temperature T_A and power dissipation P_D ($T_J = T_A + (P_D) * \theta_{JA}$)).

Note 2: θ_{JA} is simulated in the natural convection at $T_A=25^{\circ}$ C on a highly effective thermal conductivity (thermal land area completed with >3x3cm² area) board (2 layers , 2S0P) according to the JEDEC 51-7 thermal measurement standard.

Note 3: θ_{JT} represents the heat resistance between the chip junction and the top surface of package.

Note 4: θ_{JC} represents the heat resistance between the chip junction and the center of the exposed pad on the underside of the package.

Electrical Characteristics

 T_A = 25°C. V_{IN} = 110VAC unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIN	Input Voltage Range	VDS = 15V	90		260	Vac
I _{IN}	IC Supply Current	AC:260Vrms>V _{IN} > 35Vrms , C _{LV} =1uF DC: 300V>V _{IN} >50V	1	2.1	3	mA
VOVP	Over Voltage Protect		380	400		V
V _{LV}	LV Voltage Range	VIN = 40V~260V	4.5	5.6	5.8	V
N/	Rising		4.5	5	5.5	V
v _{uvlo} Falling			3.5	4	4.5	V
V _{LV-DD}	VLV-VDD Threshold Voltage			0.5	0.8	V
DS_leak	DS Pin Leakage	$V_{GATE} = 0V$, $V_{IN} = 50V \sim 300V$, $V_{DS} = 10V$			10	υA
PCR_leak	PCR Pin Leakage	$V_{PCR} = V_{LV}$			1	υA
V _{PCR}	PCR Voltage range		0.3		1	V
VGATE	Gate Pin voltage			7.8	8.5	V
V _{RS}	RS Pin Voltage Range	V _{IN} = 97V(DC),V _{PCR} = 0.483V(DC),V _{DS} =15V, I _{RS} = 10mA , For 110v system.	0.426	0.474	0.521	V

Elite Semiconductor Memory Technology Inc.

EMD2183

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{RS}	RS Pin Voltage Range	V _{IN} = 197V(DC),V _{PCR} = 0.980V(DC),V _{DS} =15V, I _{RS} = 10mA, for 220v system	0.234	0.276	0.317	V
OTD	Over Temperature Protection		127.5	150	172.5	°C
OIP	hysteresis		42.5	50	57.5	°C

Typical Performance Characteristics

VIN=110VAC, VLED=128V, TA=25°C, unless otherwise specified

Applications

Detailed Description

The EMD2183 is a low cost non-isolated linear LED driver for general purpose LED lighting applications. In simple low power application as Fig.3, EMD2183 only need 5 external components that provide one channel LED sinking current with power compensation. Gate pin drives output switching MOS for high power lighting application.

The EMD2183 can be adjusted LED current with RS pin which meets difference power application.

Capacitor Selection

For best performance, low ESR X5R or X7R ceramic capacitor are recommended.

The capacitor on LV pin (CLV) is for stabilizing the internal power. The CLV value of a least 10uF is recommended to minimize start-up current. The C1 value of a least 1uF is recommended fixing e-dimming power which is between VDD and GND. A ceramic capacitor placed as close as possible to the LV/VDD and GND pin of the IC is recommended.

Power Compensation

The EMD2183 detects Vin through low-pass filter, RPCR1, RPCR2 and CPCR. The compensates for the LED current based on the voltage of Vin. The LED current, set by RS, is seen as EMD2183 supplied by 110Vac. If Vin dropped (increased) to 90 (130) Vac, the LED current is increased (decreased) to compensate LED power.

RS & PCR Selection

The LED current can be set by the RS pin, connecting with external resistors to GND. The value of the external resistor of RS should not be left floating.

For difference LED numbers of LED segments application. User can adjust RPCR2 to adjust power compensation ratio. This feature can broaden LED's application range. The PCR pin operation voltage range is from 0.3V~1.4V. With typical application, the recommended typical RPCR1 resistor value is $1M\sim 2M\Omega$, the value of RPCR2 is recommended $5K\sim 10K\Omega$.

Table 1 lists the recommended component value for typical application.

	lable I						
Input power	LED Total Vf	RS	RPCR1	RPCR2	RPCR3	CPCR1	CLV
3.5W/ AC110V	120V	10Ω	2ΜΩ	10K	10K	luF	4.7uF
4W/ AC220V	240V	10Ω	2ΜΩ	10K	10K	luF	4.7uF

3 Step Dimming Control

For dimming control, the EMD2183 supports a simple dimming control with-out others controller, Reference Fig.1. And, there are three states, state0 to state2 as showed in Fig.4. The maximum current of LED is set by RS and PCR at state0 or initial state. The wall switch drives e-dimming block going to next state phase. At state1 the LED current is 50% of maximum current, state2 is 10%,. The SW switches again or SW off-time longer than MCU reset time, EMD2183 sets at initial state.

Protection Circuit

To improve the lighting system reliability, some protection circuits are designed in to protect both EMD2183 and LEDs from damage under the following unexpected conditions.

- OVP (Over Voltage Protection):

The EMD2183 will be shut down if Vin is over 400V(typ.). The EMD2183 will remain in shut down mode until Vin drops below 40V(typ.).

Applications (cont.)

- OTP (Over Temperature Protection):

The EMD2183 will be shut down if the ambient temperature is over 150°C(typ.).. The EMD2183 will remain in shut down mode until the ambient temperature drops below 100°C(typ.)..

- UVLO:

The EMD2183 will be shut down when the internal supply voltage is lower than 4V(typ.). The EMD2183 will remain in shut down mode until the internal supply voltage is increased higher than 5V(typ.).

Application Circuit

Fig. 4 E-dimming control sequence

EMD2183

Package Outline Drawing

E-SOP-8 (150 mil)

Crumb al	Dimension in mm			
Symbol	Min	Max		
А	1.35	1.75		
A1	0.00	0.25		
b	0.33	0.51		
С	0.17	0.25		
D	4.80	5.00		
Е	3.81	4.00		
E1	5.79	6.20		
е	1.27	BSC		
L	0.41	1.27		

Exposed pad

	Dimensio	on in mm
	Min	Max
D2	2.84	3.10
E2	2.06	2.31

Revision History

Revision	Date	Description
1.0	2016.02.18	Original version
1.1	2016.04.18	Modify: 1. Application circuit: add RPCR3 2. Update Table1

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.