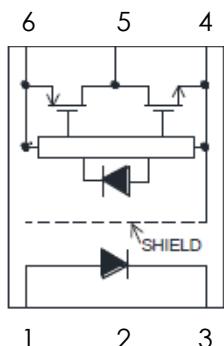


0.8A Gate Drive Photocoupler

Product Description

The EMD2A681 series Photo coupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an LED optically coupled to an integrated circuit with a power output stage.

The 0.8A peak output current is capable of directly driving most MOSFETs. For MOSFETs with higher ratings, the EMD2A681 series can be used to drive a discrete power stage which drives the MOSFET gate.


The Photo coupler operational parameters are guaranteed over the temperature range from -40°C ~ +110°C.

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- 0.8 A maximum peak output current
- Rail-to-rail output voltage
- 120 ns maximum propagation delay
- Under Voltage Lock Out protection (UVLO) with hysteresis
- Wide operating range: 10 to 30 Volts (VCC)
- Guaranteed performance over temperature -40°C ~ +110°C.

Applications

- Isolated IGBT/ MOSFET gate drive
- Industrial inverters
- AC Servos and DC brushless motor drivers
- Switching power supply
- Induction cook-top

Connection Diagram**Order Information**

EMD2A681-00S###NFR1	
00	Internal control Code
S###	SK06: LSOP-6 Package 7mm clearance SL06: LSOP-6 Package 8mm clearance
N	RoHS & Halogen free package
F	-40 to 110°C temperature rating
R1	Packing in Tape & Reel

Order, Mark & Packing Information

Package	Product ID	Mark	Packing
LSOP-6	EMD2A681-00SK06NFR1 EMD2A681-00SL06NFR1	<p>E : ESMT YY : Date code (Year) WW : Date code (Week) 681 : Part Number H : Internal Tracking Code</p>	Tape & Reel 3Kpcs

Truth Table

LED	V _{CC} -V _{SS} (Turn-ON)	V _{CC} -V _{SS} (Turn-OFF)	V _O
OFF	0V to 30V	30V to 0V	Low
ON	0V to 6.9V	5.9V to 0V	Low
ON	6.9V to 8.7V	7.5V to 5.9V	Transition
ON	8.7V to 30V	30V to 7.5V	High

Note 1: A 0.1 μ F bypass capacitor must be connected between V_{CC} and V_{SS}.

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{STG}	-55	125	°C
Operating Temperature	T _{OPR}	-40	110	°C
Output IC Junction Temperature	T _J	-	125	°C
Total Output Supply Voltage	(V _{CC} - V _{SS})	0	35	V
Average Forward Input Current	I _F	-	20	mA
Reverse Input Voltage	V _R	-	5	V
"High" Peak Output Current (Note3)	I _{OH} (PEAK)	-	0.8	A
"Low" Peak Output Current (Note3)	I _{OL} (PEAK)	-	0.8	A
Output Voltage	V _O (PEAK)	-0.5	V _{CC}	V
Power Dissipation	P _I	-	45	mW
Output IC Power Dissipation	P _O	-	250	mW
Lead Solder Temperature	T _{SOL}	-	260	°C

Note 2: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note 3: Exponential waveform. Pulse width \leq 10 μ s, f \leq 15 kHz

Recommended Operation Condition

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	110	°C
Supply Voltage	V _{CC}	10	30	V
Input Current (ON)	I _{F(ON)}	6	16	mA
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V

Electrical Characteristics

All Typical values at $T_A = 25^\circ\text{C}$ and $V_{CC} - V_{SS} = 30\text{ V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Input Characteristics						
Input Forward Voltage	VF	1.6	2.0	2.4	V	IF=10mA
Input Forward Voltage Temperature Coefficient	$\Delta VF / \Delta T$	-	-1.237	-	mV/°C	IF=10mA
Input Reverse Voltage	BVR	5	-	-	V	IR = 10μA
Input Threshold Current (Low to High)	IFLH	-	1.0	5	mA	$V_O > 5\text{ V}$, $I_O = 0\text{ A}$
Input Threshold Voltage (High to Low)	VFHL	0.8	-	-	V	$V_{CC} = 30\text{ V}$, $V_O < 5\text{ V}$
Input Capacitance	CIN	-	60	-	pF	$VF = 0\text{V}$, $f = 1\text{ MHz}$
Output Characteristics						
High Level Supply Current	ICCH	-	2	3	mA	$I_F = 10\text{ mA}$, $V_{CC} = 30\text{ V}$, $V_O = \text{Open}$
Low Level Supply Current	ICCL	-	2.6	3.5	mA	$I_F = 0\text{ mA}$, $V_{CC} = 30\text{ V}$, $V_O = \text{Open}$
High level output current (Note 4)	IOH	-	-	-0.8	A	$I_F = 10\text{ mA}$, $V_{CC} = 30\text{ V}$ $V_O = V_{CC} - 6\text{ V}$
Low level output current (Note 4)	IOL	0.8	-	-	A	$I_F = 0\text{ mA}$, $V_{CC} = 30\text{ V}$ $V_O = V_{SS} + 6\text{ V}$
High level output voltage (Note 5, 6)	VOH	$V_{CC} - 1.0\text{ V}$	$V_{CC} - 0.4\text{ V}$	-	V	$I_F = 10\text{ mA}$, $I_O = -100\text{ mA}$
Low level output voltage	VOL	-	0.25	1	V	$I_F = 0\text{ mA}$, $I_O = 100\text{ mA}$
UVLO Threshold	VUVLO+	6.9	7.9	8.7	V	$V_O > 5\text{ V}$, $I_F = 10\text{ mA}$
	VUVLO-	5.9	6.8	7.5	V	$V_O < 5\text{ V}$, $I_F = 10\text{ mA}$

Note 4: Maximum pulse width = 10 μs.

Note 5: In this test VOH is measured with a dc load current. When driving capacitive loads, VOH will approach VCC as IOH approaches zero amps.

Note 6: Maximum pulse width = 1 ms.

Switching Specification

All Typical values at TA = 25°C and V_{CC} – V_{SS} = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Propagation Delay Time toHigh Output Level	t_{PLH}	-	55	120	ns	$R_g = 47\Omega$, $C_g = 3\text{ nF}$, $f = 10\text{kHz}$, Duty Cycle = 50% $IF = 10\text{mA}$, $VCC = 30\text{V}$
Propagation Delay Time toLow Output Level	t_{PHL}	-	60	120		
Pulse Width Distortion	PWD	-	5	80		
Propagation Delay Difference Between Any Two Parts	PDD ($t_{PHL} - t_{PLH}$)	-100	-	+100		
Output Rise Time (10 to 90%)	t_r	-	6	-		
Output Fall Time (90 to 10%)	t_f	-	5	-		
Common mode transient immunity at high level output (Note 7, 8)	$ CM_H $	10		-	kV/ μ s	IF= 7 to 16mA $VCC=30\text{V}$, $TA= 25\text{ }^{\circ}\text{C}$, $VCM=1\text{kV}$
Common mode transient immunity at low level output (Note 7, 9)	$ CM_L $	10		-	kV/ μ s	IF=0mA $VCC=30\text{V}$, $TA= 25\text{ }^{\circ}\text{C}$, $VCM=1\text{kV}$

Note 7: Pin 2 needs to be connected to LED common.

Note 8: Common mode transient immunity in the high state is the maximum tolerable $dVCM/dt$ of the common mode pulse, VCM, to assure that the output will remain in the high state (meaning $VO > 10.0V$).

Note 9: Common mode transient immunity in a low state is the maximum tolerable $dVCM/dt$ of the common mode pulse, VCM, to assure that the output will remain in a low state (meaning $VO < 1.0V$).

Isolation characteristic

All Typical values at $T_A = 25^\circ\text{C}$ and $V_{CC} - V_{SS} = 30\text{ V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Parameter	Symbol	Device	Min.	Typ.	Max.	Unit	Test Condition
Withstand Insulation Test Voltage (Note 10, 11)	V _{ISO}	EMD2A681-SK	5000	-	-	V	RH ≤ 40%-60%, t = 1min, T _A = 25 °C
		EMD2A681-SL					
Input-Output Resistance (Note 10)	R _{I-O}	-	-	10 ¹²	-	Ω	V _{I-O} = 500V DC

Note 10: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

Note 11: According to UL1577, each photo coupler is tested by applying an insulation test voltage 6000VRMS for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge.

Typical Performance Curves & Test Circuits

Fig.1 High output rail voltage vs. Temperature

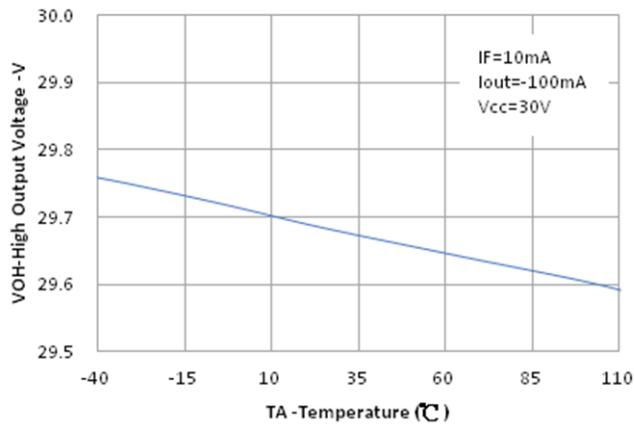


Fig.2 VOH vs. Temperature

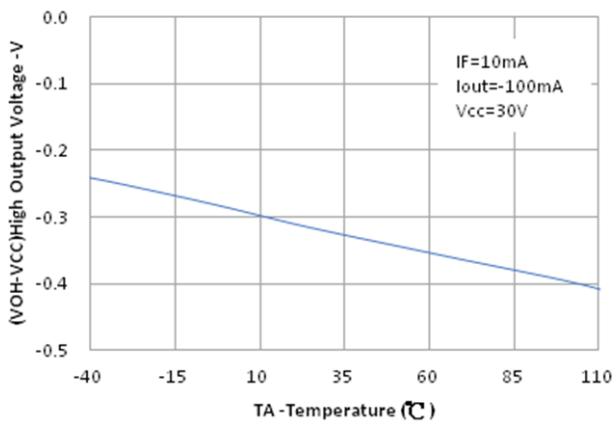


Fig.3 VOL vs. Temperature

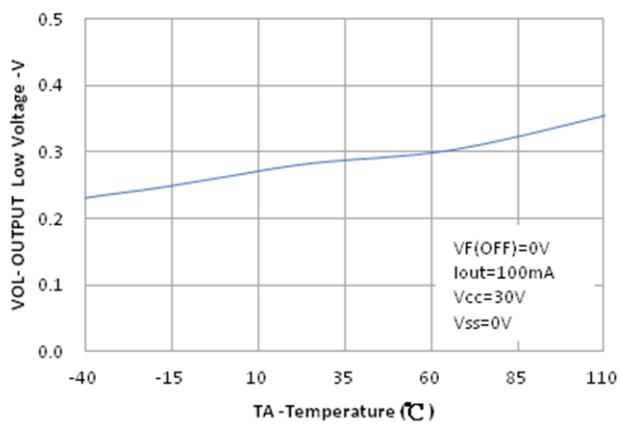


Fig.4 ICC vs. Temperature

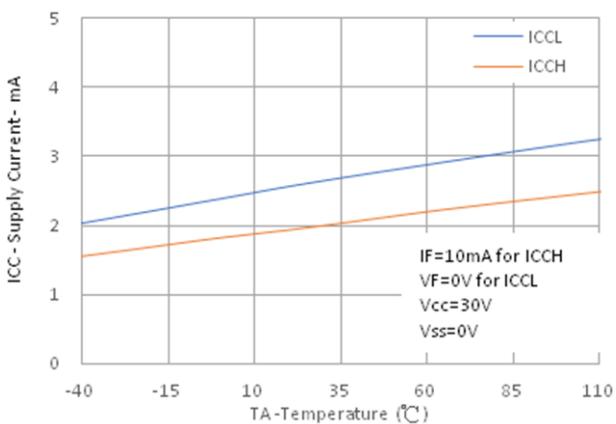


Fig.5 ICC vs. Vcc

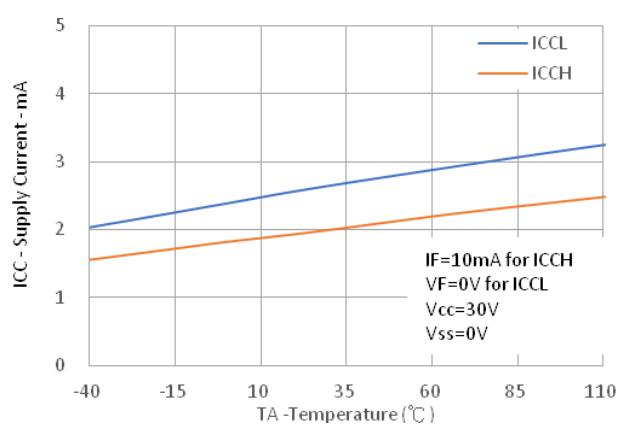
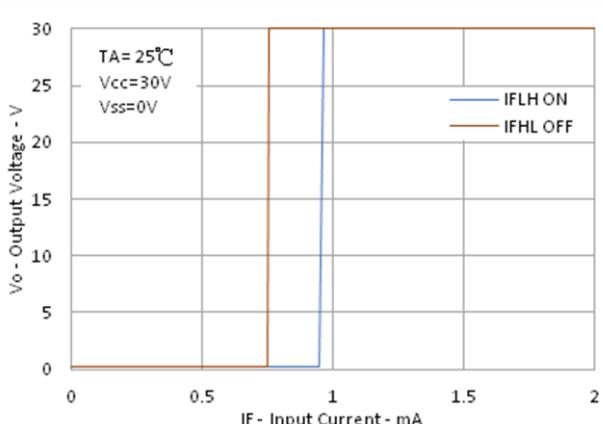
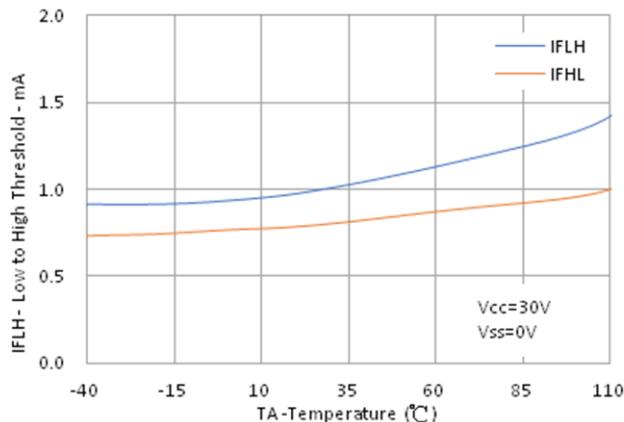
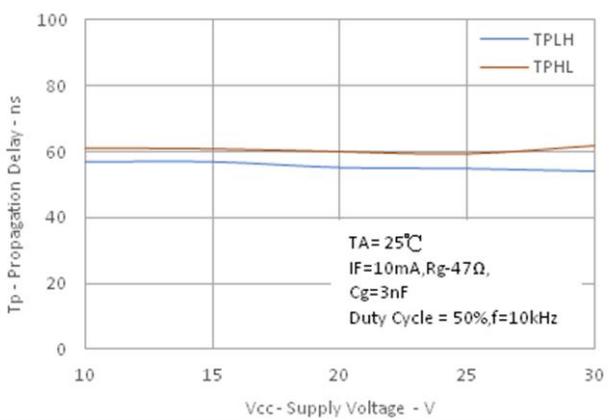
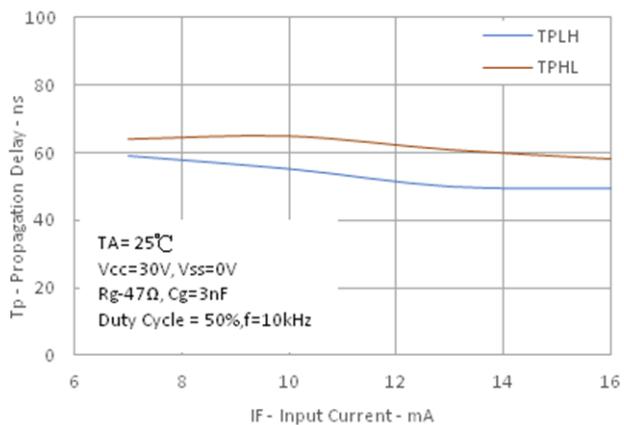
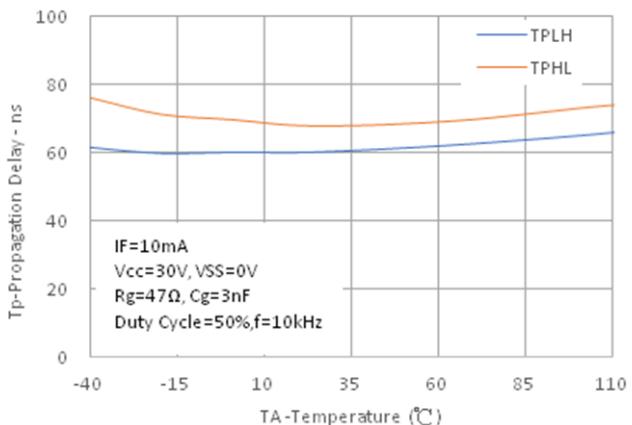
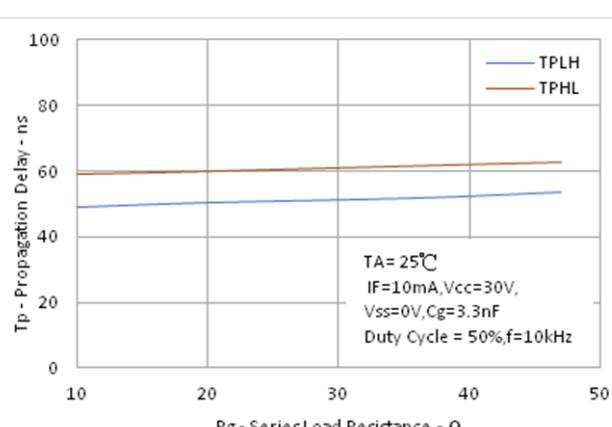
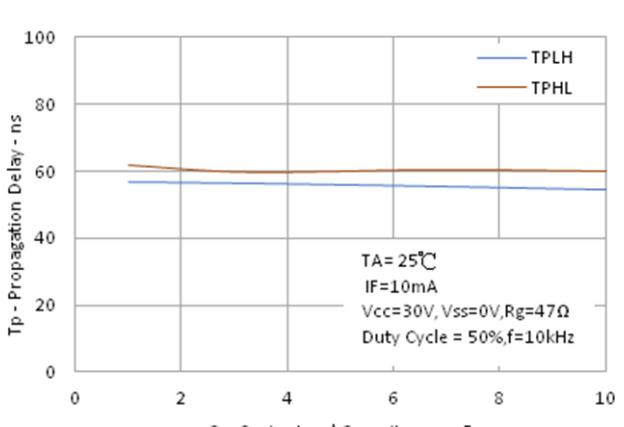
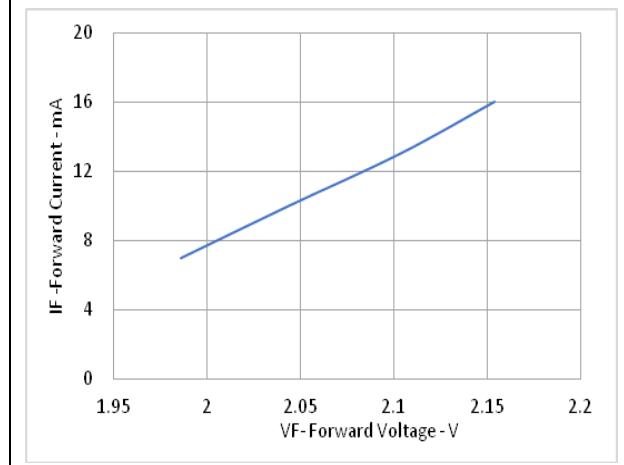










Fig.6 IFLH vs. Hysteresis

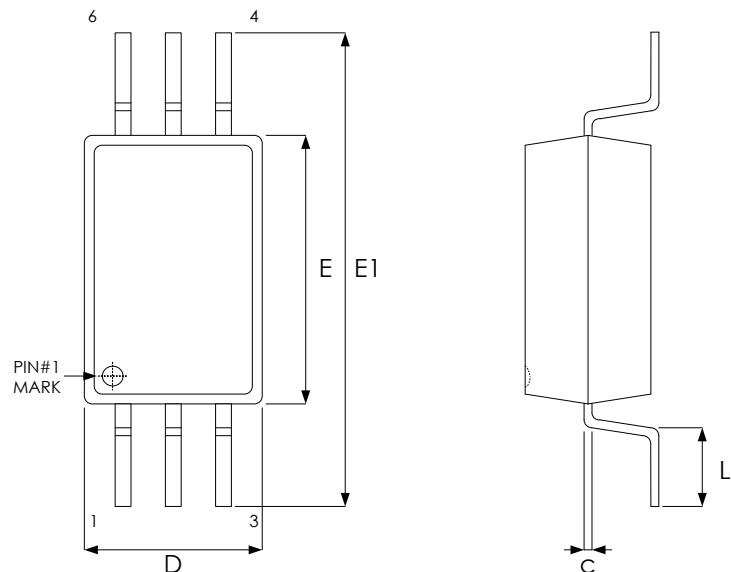
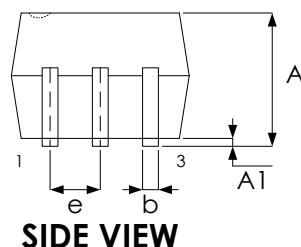


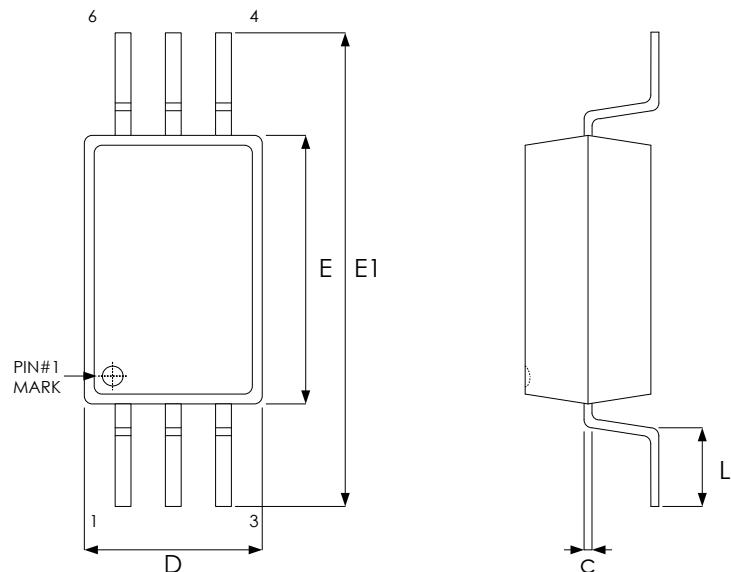
Fig.7 IFH vs. Temperature**Fig.8 Propagation Delays vs. Vcc****Fig.9 Propagation Delays vs. If****Fig.10 Propagation Delays vs. Temperature****Fig.11 Propagation Delays vs. Rg****Fig.12 Propagation Delays vs. Cg**

Fig.13 Input Current vs. Forward Voltage

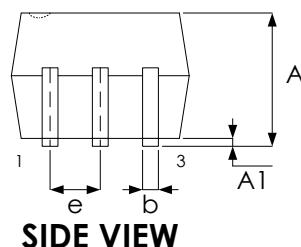


**Package Outline Drawing
L-SOP 6L (277mil, 7mm clearance)**

TOP VIEW


SIDE VIEW

SIDE VIEW


Symbol	Dimension in mm	
	Min.	Max.
A	1.70	2.30
A1	0.10	0.30
b	0.30	0.50
c	0.20	0.30
D	4.20	4.80
E	6.50	7.10
E1	9.40	10.00
e	1.27 BSC	
L	0.70	1.20

**Package Outline Drawing
L-SOP 6L (277mil, 8mm clearance)**

TOP VIEW

SIDE VIEW

SIDE VIEW

Symbol	Dimension in mm	
	Min.	Max.
A	1.70	2.30
A1	0.10	0.30
b	0.30	0.50
c	0.20	0.30
D	4.20	4.80
E	6.51	7.11
E1	11.20	11.80
e	1.27 BSC	
L	0.50	1.00

Revision History

Revision	Date	Description
0.1	2024.02.27	Initial version
1.0	2024.06.05	Remove "preliminary" to V1.0

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.