6A HV Asynchronous 500kHz Boost Converter

General Description

The EMH7090 is a monolithic asynchronous boost DC-DC converter. Its PWM circuitry with built-in 6A $60m\Omega$ power MOSFET make this regulator highly power efficient.

The EMH7090 has wide input voltage range from 2.9V~12V to support applications with single-cell or two-cell lithium batteries. The device could have 6A switching current capacity to provide an output voltage up to 14V.

The EMH7090 uses current mode PWM control topology to regulate the output voltage. That works into power saving mode to get better efficiency for battery in light load condition. In heavy load condition, the EMH7090 works into PWM operating mode.

The EMH7090 non-inverting input of error amplifier connects to 0.6V precision reference voltage and internal soft-start function can reduce the inrush current. In addition, overvoltage protection, cycle by cycle over current protection, and thermal shutdown protection are designed into this chip.

The EMH7090 is available in E-SOP-8L package and provides space-saving PCB for the application fields.

Features

- Input Voltage Range 2.9V~12V
- Adjustable Output Voltage Range 5V~14V
- Internal Fixed PWM frequency: 500kHz
- Precision Feedback Reference Voltage: 0.6V
- Internal 60mΩ, 6A, 16V Power MOSFET
- Internal Soft-start
- Over Temperature Protection
- Over Voltage Protection
- Cycle by Cycle Over Current Protection
- Package: E-SOP-8L

Applications

- Chargers
- LCD Displays
- LED Application
- Bluetooth Speaker
- Power Bank
- Handheld or Portable Devices

Typical Application

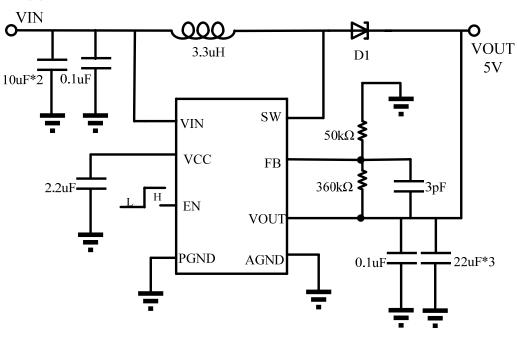
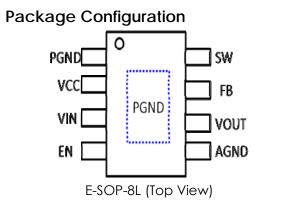



Fig. 1 EMH7090 application circuit

EMH7090	
00	Adjustable Output
SG08 NRR	E-SOP-8L Package RoHS & Halogen free package
INKK	Commercial Grade Temperature
	Rating: -40 to 85°C
	Package in Tape & Reel

Order, Mark & Packing information

Package	Vout(V)	Product ID	Marking	Packing
E-SOP-8L	Adjustable	EMH7090-00SG08NRR	ESMT EMH7090 Tracking Code	Tape & Reel 3K units

Elite Semiconductor Memory Technology Inc.

Functional Block Diagram

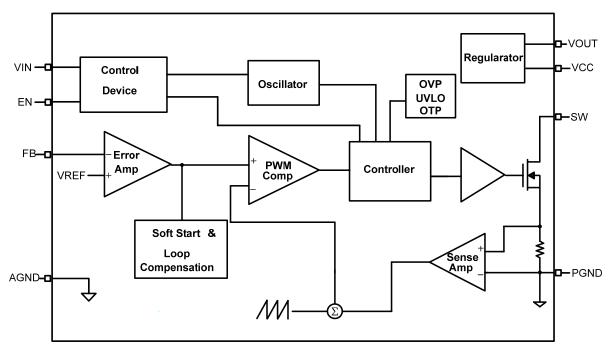


Fig. 2

Pin Functions	
----------------------	--

Pin Name	E-SOP-8L	Function		
PGND	1	Power Ground Pin. Connect exposed pad to GND plane for optimal thermal performance.		
vcc	2	Dutput of the internal regulator . A ceramic capacitor of more than 2.2uF requirement between this bin and GND.		
VIN	3	Supply Voltage. Must be closely decoupled to GND pin with 10uF*2 or greater ceramic capacitor.		
EN	4	Enable Pin. High: Enable; Low: Disable.		
AGND	5	Analog Ground Pin. Signal ground of the IC.		
VOUT	6	Input of the internal regulator. Boost converter output for internal regulator.		
FB	7	Feedback Pin. Receives the feedback voltage from an external resistive divider across the output.		
SW	8	Switch Out. Must be connected an Inductor from VIN pin to SW pin.		
PGND	9	Power Ground Pin/Thermal Pad. This pin must be connected to ground. The thermal pad with large thermal land area on the PCB will be helpful chip power dissipation.		

Absolute Maximum Ratings

Devices are subjected to fail if they stay above absolute maximum ratings.

Supply Voltage (VIN, VOUT) 0.3V to 16V	Operating Temperature Range40°C to 85°C
EN, FB, Vcc Voltages 0.3V to 6V	Junction Temperature (Note 1) 150°C
SW Voltage0.3V to (16V + 0.3V)	Storage Temperature Range – 65°C to 150°C
Lead Temperature (Soldering, 10 sec) 260°C	ESD Susceptiblity HBM 2KV
	MM 200V

Recommended Operating Conditions

Input Voltage (VIN)	+2.9V to +12V
Output Voltage (VOUT)	+5V to +14V

Junction Operating Temperature --- -40°C to 125°C

Thermal data

Package	Thermal resistance	Parameter	Value
	heta JA (Note 2)	Junction-ambient	50°C/W
E-SOP-8L	θ JC (top) (Note 3)	Junction-case (top)	39°C/W
	heta JC(bottom) (Note 4)	Junction-case (bottom)	10°C/W

Note 1: T_J is a function of the ambient temperature T_A and power dissipation P_D (T_J = T_A + ($P_D * \theta J_A$)).

Note 2: θ_{JA} is simulated in the natural convection at $T_A=25^{\circ}$ C on a highly effective thermal conductivity (thermal land area completed with >3x3cm² area) board (2 layers , 2S0P) according to the JEDEC 51-7 thermal measurement standard.

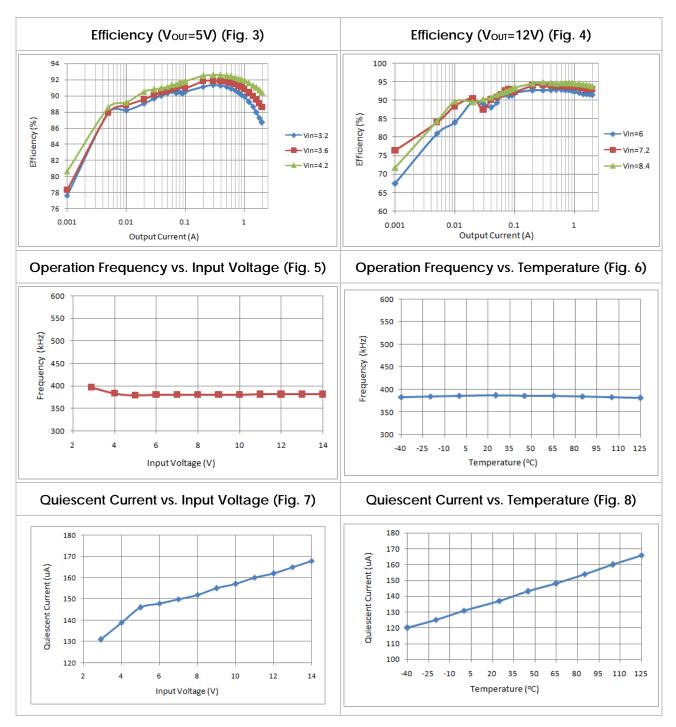
Note 3: $\theta_{JC(top)}$ represents the heat resistance between the chip junction and the top surface of package.

Note 4: $\theta_{\text{JC(bottom)}}$ represents the heat resistance between the chip junction and the center of the exposed pad on the underside of the package.

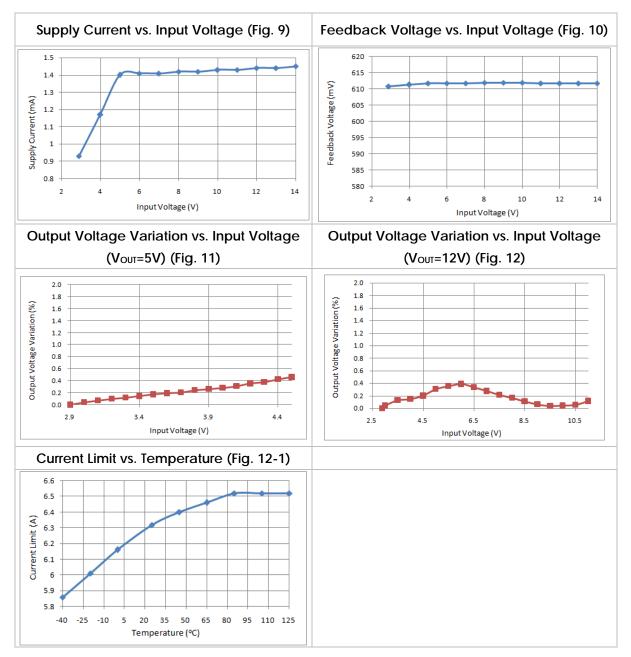
Electrical Characteristics

VIN=3.6V, T_A=+ 25° C, unless otherwise specified.

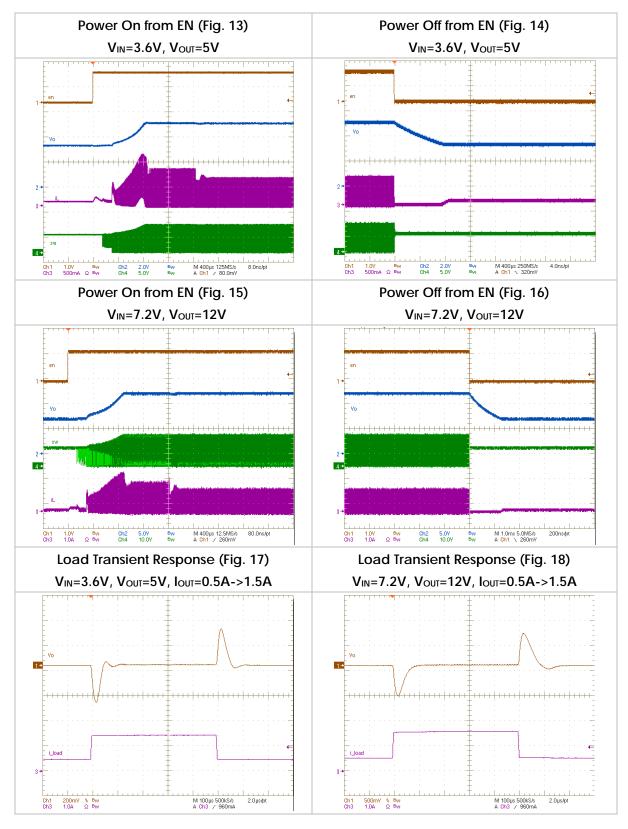
Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{FB}	Feedback Voltage	$2.9V\!\leq\!V_{IN}\!\leq\!12V$		0.6		V
R _{DS(ON)}	Switch on Resistance	V _{IN} =3.6V, V _{OUT} =5V		60		mΩ
lsw	Switch Leakage	V _{IN} =6V, V _{OUT} =6V, V _{EN} =1.2V, V _{SW} =15V			5	μA
I _{IIM}	Current Limit	V _{IN} =6V, V _{OUT} =6V, V _{EN} =1.2V		6		А
VIN_UVLO	VIN UVLO Threshold	V _{IN} rising		2.7		V
	VIN UVLO Threshold	V _{IN} falling		2.5		V
	VCC Regulation	V _{IN} =8V, V _{OUT} =8V, V _{EN} =1.2V		5		V
Fosc	Oscillation Frequency	V _{FB} =0.4V		500		kHz
D _{max}	Max Duty cycle			90		%
	Shutdown Supply Current	V _{EN} =0		5		μΑ
	Quiescent Supply Current (No Switching)	V _{EN} =1.2V,V _{FB} =1V		150		υA



Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Quiescent Supply Current (Switching)	V _{EN} =1.2V,V _{FB} =0.4V		1.5		mA
T_{SD}	Thermal Shutdown			160		°C
	Thermal Shutdown Hysteresis			30		°C
	EN Input Low Voltage				0.4	V
	EN Input High Voltage		1.2			V
	EN Pull down resistor			800		kΩ

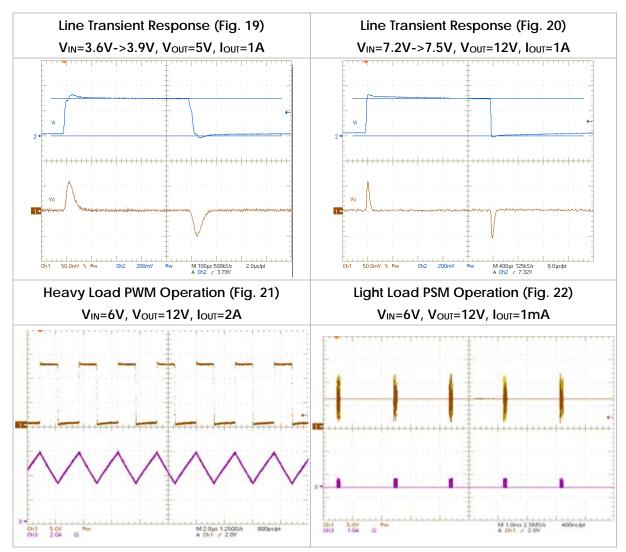

Typical Performance Characteristics

VIN=3.6V, VOUT=5.0V, TA=25°C, L=3.3uH, CIN=10uF*2, COUT=22uF*3, unless otherwise specified


Typical Performance Characteristics (cont.)

VIN=3.6V, VOUT=5.0V, TA=25°C, L=3.3uH, CIN=10uF*2, COUT=22uF*3, unless otherwise specified

Typical Performance Characteristics (cont.)


VIN=3.6V, VOUT=5.0V, TA=25°C, L=3.3uH, CIN=10uF*2, COUT=22uF*3, unless otherwise specified

Elite Semiconductor Memory Technology Inc.

Typical Performance Characteristics (cont.)

 $V_{IN}=3.6V,\,V_{OUT}=5.0V,\,T_{A}=25^{\circ}C,\,L=3.3uH,\,C_{IN}=10uF^{*}2,\,C_{OUT}=22uF^{*}3,\,unless\,otherwise\,specified$

Function Description

Detailed Description

The EMH7090 is a current mode boost converter. The constant switching frequency is 500kHz and operates with pulse width modulation (PWM). Build-in 16V/6A MOSFET provides a high output voltage. The control loop architecture is peak current mode control; therefore slope compensation circuit is added to the current signal to allow stable operation for duty cycles larger than 50%.

Soft Start

Soft start circuitry is integrated into EMH7090 to avoid inrush current during power on. After the IC is enabled, the output of error amplifier is clamped by the internal soft-start function, which causes PWM pulse width increasing slowly and thus reducing input surge current.

Over Temperature Protection

EMH7090 will turn off the power MOSFET automatically when the internal junction temperature is over 160°C. The power MOSFET wake up when the junction temperature drops 30°C under the OTP threshold temperature.

Over Voltage Protection

The EMH7090 has output over-voltage protections. The thresholds output OVP circuit minimum 118% x VOUT, respectively. Once the output voltage is higher than the threshold, the NMOS driver is turned off. When the output voltage drops lower than the threshold, the NMOS will be turned on again.

Over current Protection

The EMH7090 cycle-by-cycle limits the peak inductor current to protect NMOS driver. The NMOS driver will turn off when switching current reaches OCP level.

Application Information

Inductor Selection

Inductance value is decided based on different condition. 2.2uH or 3.3uH inductor value is recommended for general application circuit. There are three important inductor specifications, DC resistance, saturation current and core loss. Low DC resistance has better power efficiency.

Capacitor Selection

The output capacitor is required to maintain the DC voltage. Low ESR capacitors are preferred to reduce the output voltage ripple. Ceramic capacitor of X5R and X7R are recommended, which have low equivalent series resistance (ESR) and wider operation temperature range

Diode Selection

Schottky diodes with fast recovery times and low forward voltages are recommended. Ensure the diode average and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the output voltage.

Output Voltage Setting

The output voltage of EMH7090 can be adjusted by a resistive divider according to the following formula:

$$V_{OUT} = V_{REF} * \left(1 + \frac{R_1}{R_2}\right) = 0.6 * \left(1 + \frac{R_1}{R_2}\right)$$

The resistive divider senses the fraction of the output voltage as shown in Fig.23 Using large feedback resistor can increase efficiency, but too large value affects the device's output accuracy because of leakage current going into device's FB pin. The recommended value for R2 is therefore in the range of 10~50K Ω .

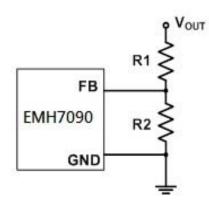
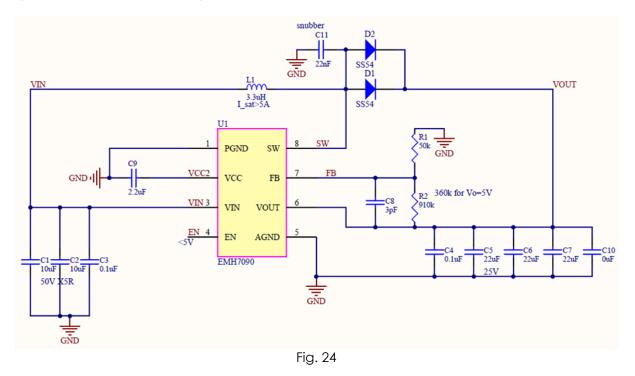



Fig. 23 Setting the Output Voltage

Applications

Typical Schematic for PCB layout

PCB Layout Guidelines

When laying out the printed circuit board, the following checklist should be used to optimize the performance of EMH7090.

- 1. The power traces, consisting of the GND trace, the SW trace and the V_{CC} trace should be kept short, direct and wide.
- 2. SW \sim L and D switching node, wide and short trace to reduce EMI.
- 3. Place C_{IN} near VCC pin as closely as possible to maintain input voltage steady and filter out the pulsing input current.
- 4. The resistive divider R1 and R2 must be connected to FB pin directly as closely as possible.
- 5. FB is a sensitive node. Please keep it away from switching node, SW
- 6. The GND of the IC, C_{IN} and C_{OUT} should be connected close together directly to a ground plane.

Typical Schematic for PCB layout (cont.)

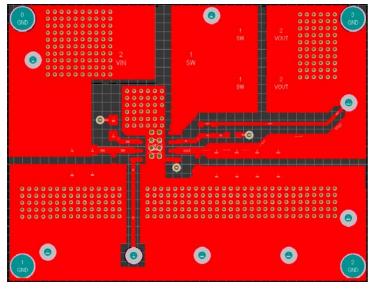


Fig. 25 Top Layer of PCB layout

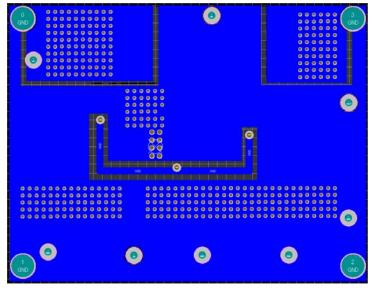
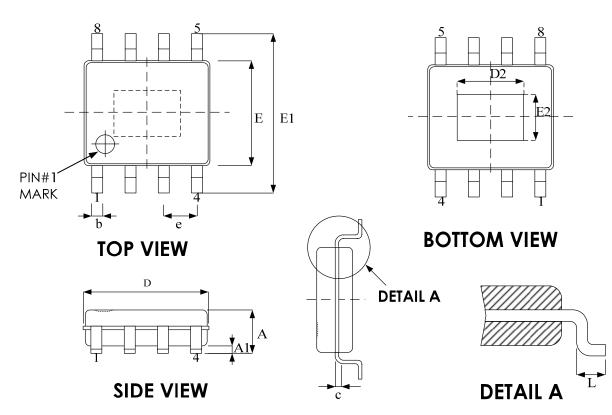



Fig. 26 Bottom Layer of PCB layout

Preliminary

Package Outline Drawing E-SOP-8L (150 mil)

Cruce h ol	Dimension in mm		
Symbol	Min	Max	
А	1.35	1.75	
A1	0.00	0.25	
b	0.33	0.51	
С	0.17	0.25	
D	4.80	5.00	
Е	3.81	4.00	
E1	5.79	6.20	
е	1.27 BSC		
L	0.41	1.27	

Exposed pad	

	Dimension in mm		
	Min Max		
D2	1.93	2.39	
E2	1.93	2.39	

Revision History

Revision	Date	Description
0.1	2016.11.09	Initial version.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.