

1MHz 2A, Synchronous Step-Down Regulator

General Description

EML3320 is a high efficiency step down DC/DC converter. It features an extremely low quiescent current, which is suitable for reducing standby power consumption, especially for portable applications.

The device can accept input voltage from 2.6V to 5.5V and deliver up to 2A output current. High 1MHz switching frequency allows the use of small surface mount inductors and capacitors to reduce overall PCB board space. Furthermore, the built-in synchronous switch improves efficiency and eliminates external Schottky diode. EML3320 uses different modulation modes for various loading conditions: (1) Pulse Width Modulation (PWM) for low output voltage ripple and fixed frequency noise, (2) Pulse Frequency Modulation (PSM) for improving light load efficiency. In addition EML3320 also build in short circuit and over voltage protection.

The adjustable version of this device is available in both of SOT-23-5L and SOT-23-6L packages.

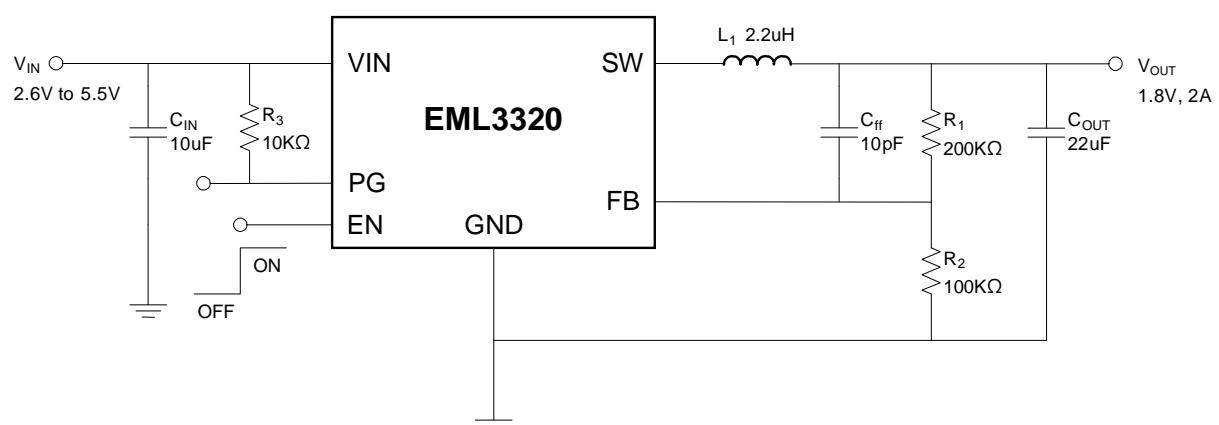
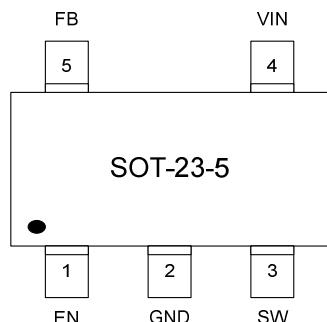
Features

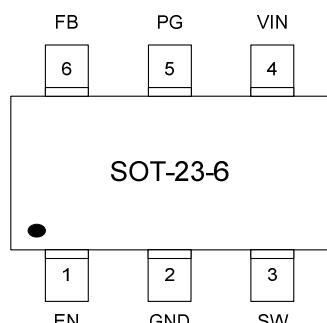
- Achieve 95% efficiency
- Input voltage : 2.6V to 5.5V
- Output current up to 2A
- Reference voltage: 0.6V
- Quiescent current 45 μ A
- Internal switching frequency: 1MHz
- No Schottky diode needed
- Low dropout operation: 100% duty cycle
- Shutdown current < 1 μ A
- Excellent line and load transient response
- Over-temperature protection
- Over Voltage protection
- Hiccup mode Short circuit protection

Applications

- Blue-Tooth devices
- Cellular and Smart Phones
- LCD TV Power Supply
- Wireless networking
- Portable applications

Typical Application


Fig.1 Typical Application Circuit

Package Configuration

EML3320-00VN05NRR
 00 Adjustable
 VN05 SOT-23-5L Package
 NRR RoHS & Halogen free package
 Commercial Grade Temperature
 Rating: -40 to 85°C
 Package in Tape & Reel

SOT-23-5L

EML3320-00VN06NRR
 00 Adjustable
 VN06 SOT-23-6L Package
 NRR RoHS & Halogen free package
 Commercial Grade Temperature
 Rating: -40 to 85°C
 Package in Tape & Reel

SOT-23-6L

Order, Mark & Packing information

Package	Vout(V)	Product ID	Marking	Packing
SOT-23-5	adjustable	EML3320-00VN05NRR		Tape & Reel 3K units
SOT-23-6	adjustable	EML3320-00VN06NRR		Tape & Reel 3K units

Pin Functions

Pin Name	SOT-23-6L	SOT-23-5L	Function
EN	1	1	Enable Pin. Minimum 1.5V to enable the device. Maximum 0.4V to shut down the device.
GND	2	2	Ground Pin.
SW	3	3	Switch Pin. Must be connected to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.
VIN	4	4	Power Input Pin. Must be closely decoupled to GND pin with a $4.7\mu\text{F}$ or greater ceramic capacitor.
PG	5	None	Power Good Indicator. The output of this pin is an open-drain. If the output is within 90% of regulation, it's low otherwise.
FB	6	5	Feedback Pin. Receives the feedback voltage from an external resistive divider across the output.

Functional Block Diagram

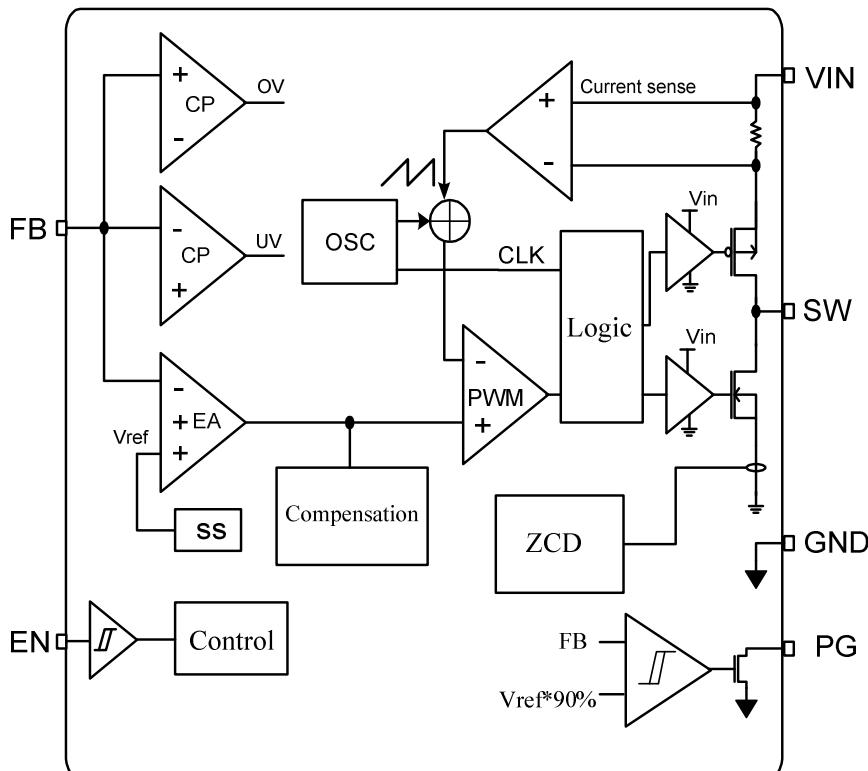


Fig.2 Function Block Diagram of EML3320

Absolute Maximum Ratings

- Devices are subjected to fail if they stay above absolute maximum ratings.

Input Voltage	-0.3V to 6V	Operating Temperature Range	-40°C to 85°C
EN, FB, PG Voltages	-0.3V to V_{IN}	Junction Temperature (Notes 1, 3)	150°C
SW Voltage	-0.3V to $(V_{IN} + 0.3V)$	Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	260°C	ESD Susceptibility HBM	2kV
		MM	200V

Recommended Operating Conditions

Input Voltage (V_{IN})	+2.6V to +5.5V	Junction Operating Temperature	-40°C to 125°C
----------------------------	----------------	--------------------------------	----------------

Thermal data

Package	Thermal resistance	Parameter	Value
SOT-23-5L/SOT-23-6L	θ_{JA} (Note 4)	Junction-ambient	134.5°C/W
	θ_{JC} (Note 5)	Junction-case	81°C/W

Electrical Characteristics

$V_{IN}=3.6V$, $T_A=+25^\circ C$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IN}	Input Voltage Range		2.6		5.5	V
I_{VFB}	Feedback Current				± 100	nA
V_{FB}	Regulated Feedback Voltage		0.588	0.600	0.612	V
I_{PK}	Peak Inductor Current			3		A
I_Q	Quiescent Current	$V_{FB} = 0.65V$		45		μA
I_{SD}	Shutdown Current	$V_{EN=0V}$		0.1		μA
f_{OSC}	Oscillator Frequency	$V_{FB} = 0.6V$		1		MHz
R_{ON}	$R_{DS(ON)}$ of PMOS	$I_{SW} = 100mA$		90		$m\Omega$
	$R_{DS(ON)}$ of NMOS	$I_{SW} = -100mA$		60		$m\Omega$
V_{UVLO}	VIN UVLO Threshold			2.2	2.4	V
	VIN UVLO Hysteresis			150		mV
D	Maximum Duty cycle		100			%
V_{SCP}	Short circuit protection Threshold	V_{FB}		0.2		V
I_{LSW}	SW Leakage	$V_{EN} = 0V$, $V_{SW} = 0V$ or $5V$, $V_{IN} = 5V$		± 1		μA

Electrical Characteristics (Cont.)

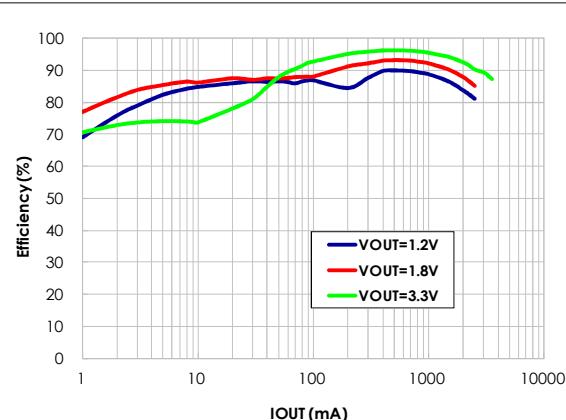
$V_{IN}=3.6V$, $T_A=+25^\circ C$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{EN}	Enable Threshold		1.5			V
	Shutdown Threshold				0.4	V
I_{EN}	EN Leakage Current				± 1	μA
T_{SD}	Thermal Shutdown			160		$^\circ C$
	Thermal Shutdown Hysteresis			30		$^\circ C$
T_{SS}	Soft start time			1.0		mS
PG	PG Pin Threshold raising			0.54		V
	PG Pin Threshold falling			0.5		V
	PG Open Drain impedance				100	Ω

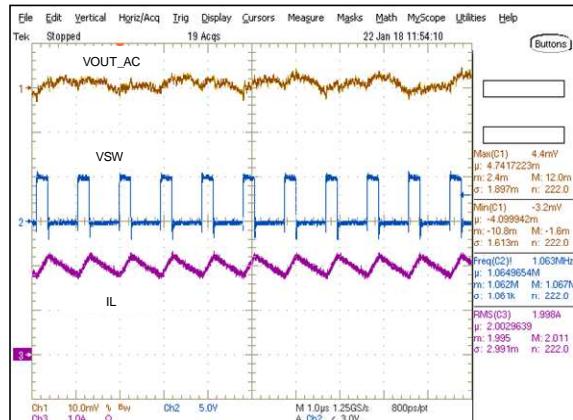
Note 1 : T_J is a function of the ambient temperature T_A and power dissipation P_D ($T_J = T_A + (P_D) * (134.5^\circ C/W)$).

Note 2 : Dynamic quiescent current is higher due to the gate charge being delivered at the switching frequency.

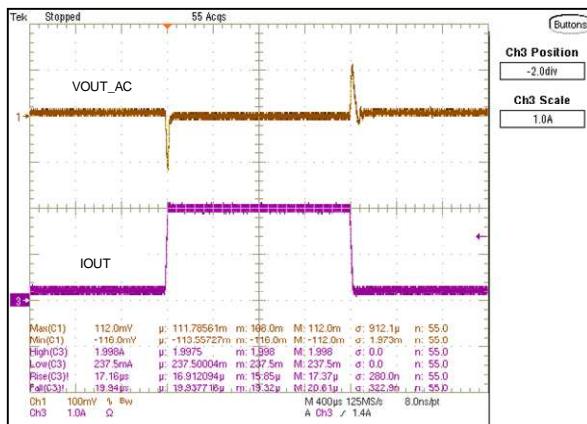
Note 3 : This IC has a built-in over-temperature protection to avoid damage from overloaded conditions.

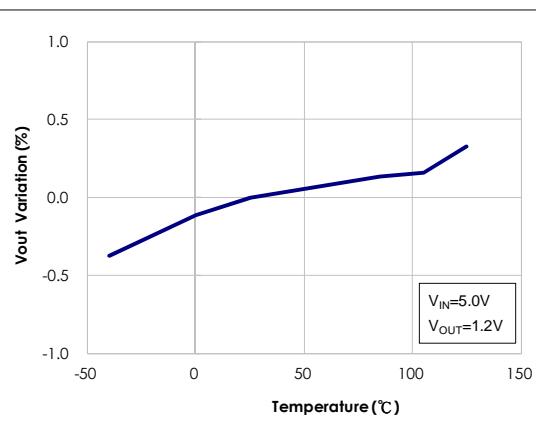

Note 4 : θ_{JA} is measured in the natural convection at $T_A=25^\circ C$ on a highly effective thermal conductivity test board(2 layers , 2SOP) according to the JEDEC 51-7 thermal measurement standard.

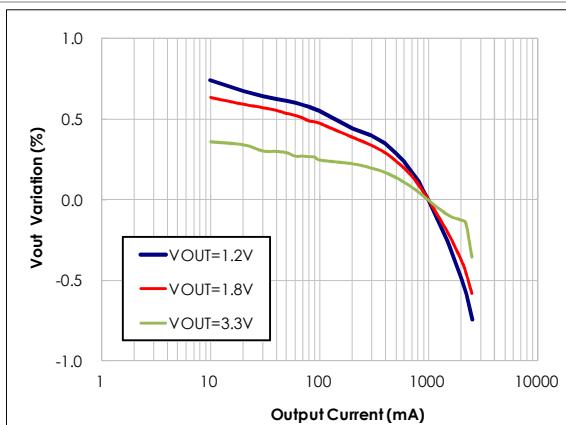
Note 5 : θ_{JC} represents the heat resistance between the chip and the package top case.

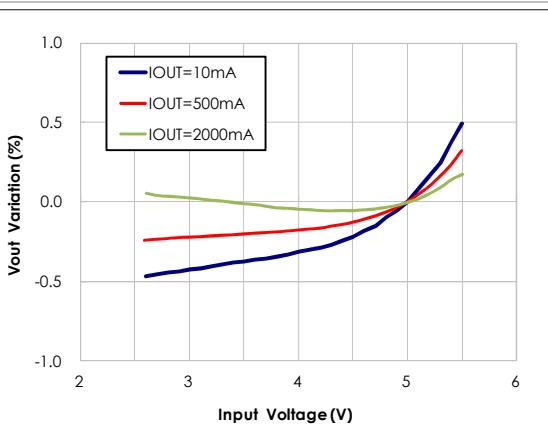

Typical Performance Characteristics

$V_{IN}=5.0V$, $T_A=+25^{\circ}C$, unless otherwise specified.

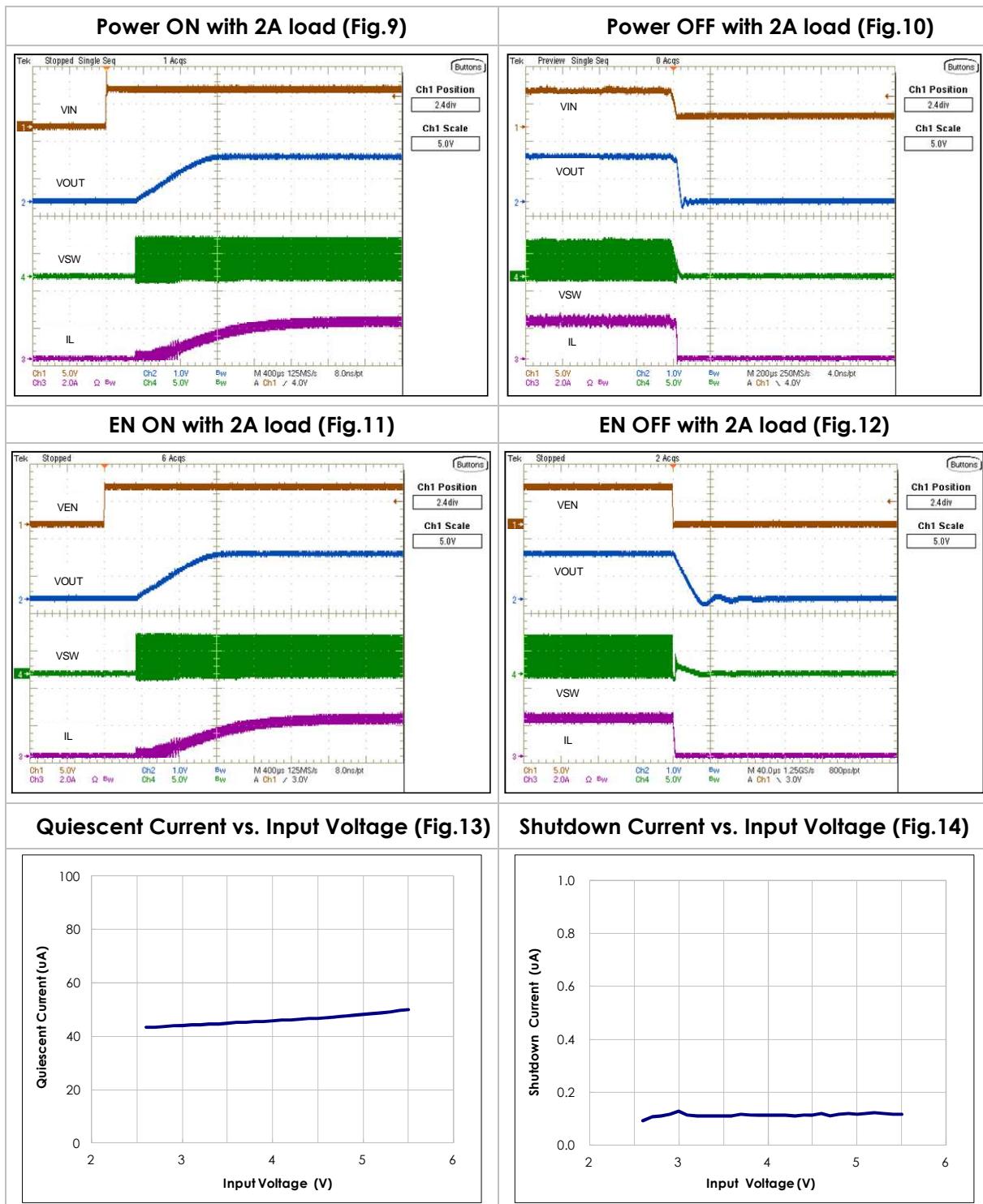

Efficiency vs. Output Current($V_{IN}=5V$) (Fig.3)


Output Ripple Voltage (Fig.4)


Load Transient($200mA \rightarrow 2A \rightarrow 200mA$) (Fig.5)


V_{out} Variation vs. Temperature (Fig.6)

Load Regulation($V_{IN}=5V$) (Fig.7)



Line Regulation($V_{out}=1.2V$) (Fig.8)

Typical Performance Characteristics (Cont.)

$V_{IN}=5.0V$, $T_A=+25^{\circ}C$, unless otherwise specified.

Applications Information

Inductor Selection

Inductor ripple current and core saturation current are the two main factors that decide the Inductor value. A low DCR inductor is preferred.

C_{IN} and C_{OUT} Selection

A low ESR input capacitor can prevent large voltage transients at V_{IN} . The RMS current of input capacitor is required larger than I_{RMS} calculated by:

$$I_{RMS} \geq I_{OMAX} \frac{\sqrt{V_{OUT}(V_{IN} - V_{OUT})}}{V_{IN}} \quad \dots \dots \dots \text{Eq. 1}$$

ESR is an important parameter to select C_{OUT} , which can be seen in the following output ripple V_{OUT} equation:

$$\Delta V_{OUT} \approx \Delta I_L \left(\frac{1}{ESR + \frac{8 \cdot f \cdot C_{OUT}}{}} \right) \quad \dots \dots \dots \text{Eq. 2}$$

Cheaper and smaller ceramic capacitors with higher capacitance values are now commercially available. These ceramic capacitors have low ripple currents, high voltage ratings and low ESR which make them suitable for switching regulator applications. It is feasible to optimize very low output ripples by C_{OUT} since C_{OUT} does not affect the internal control loop stability. X5R or X7R types are recommended since they have the best temperature and voltage characteristics of all ceramics capacitors.

Output Voltage (EML3320 adjustable)

In the adjustable version, the output voltage can be determined by:

$$V_{OUT} = 0.6V \left(1 + \frac{R_1}{R_2} \right) \quad \dots \dots \dots \text{Eq. 3}$$

Some recommended value for common output voltage is listed below Table.1 :

Table.1- Recommended Component Selection

$V_{OUT}(V)$	$R_1(K\Omega)$	$R_2(K\Omega)$	$C_{OUT}(\mu F)$	$C_{FF}(\mu F)$	$L(\mu H)$
1.2	100	100	22x2	22	1.5
1.8	200	100	22	10	2.2
3.3	450	100	22	5	2.2

Thermal Considerations

Although the thermal shutdown circuit is designed in EML3320 to protect the device from thermal damage, the total power dissipation that EML3320 can sustain depends on the thermal capability of the package. The formula to ensure the safe operation is shown in note 1 on page 5.

To avoid the EML3320 from exceeding the maximum junction temperature, the user should perform some thermal analysis during PCB design.

Guidelines for PCB Layout

To ensure proper operation of the EML3320, please note the following PCB layout guidelines:

1. The GND, SW and the V_{IN} trace should be kept short, direct and wide.
2. V_{FB} pin must be connected directly to the feedback resistors. Resistive divider R_2/R_1 must be connected parallel to the output capacitor C_{OUT} .
3. The Input capacitor C_{IN} must be connected to the pin V_{IN} as close as possible.
4. Keep SW node away from the sensitive V_{FB} node since this node has high frequency and voltage swing.
5. Keep the (-) plates of C_{IN} and C_{OUT} as close as possible.

Applications

■ Typical schematic for PCB layout

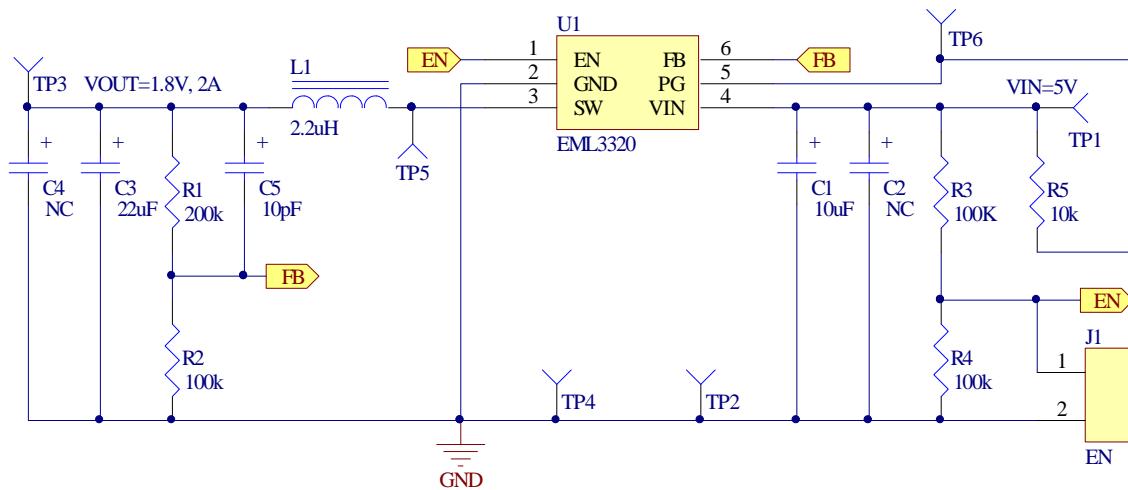
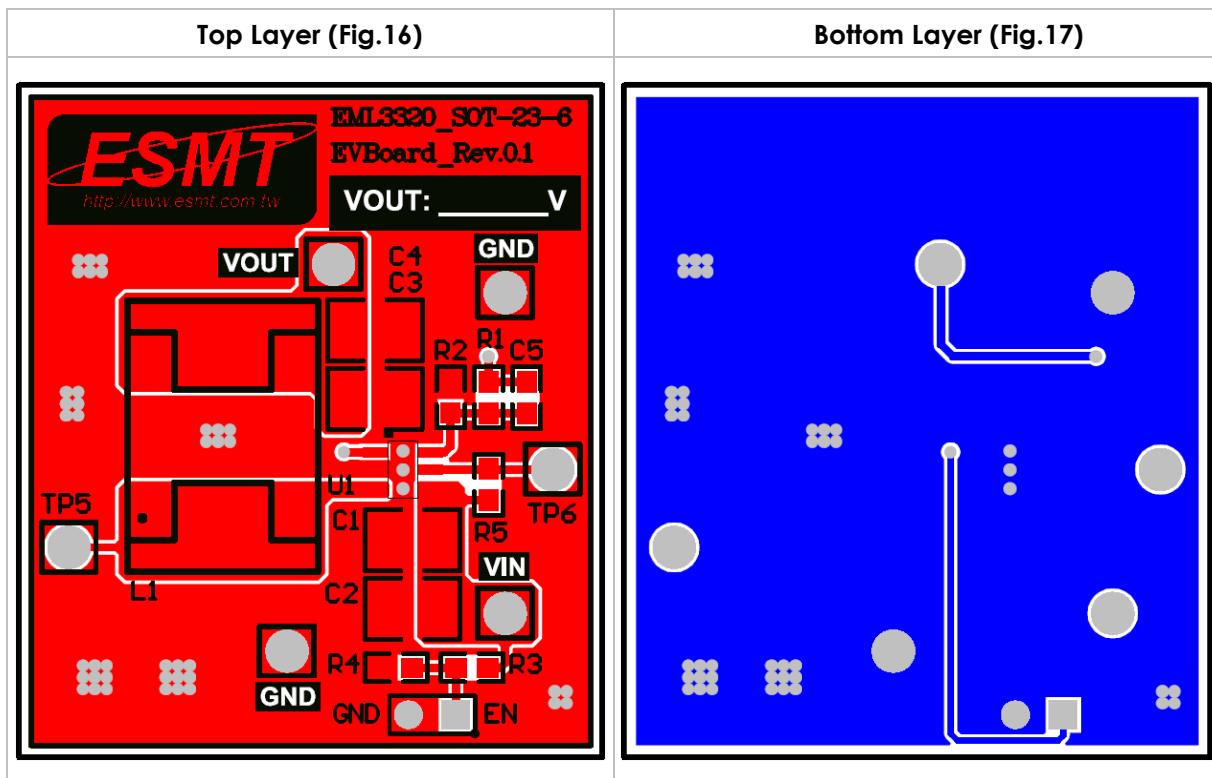
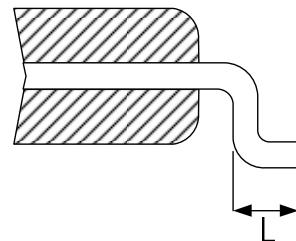
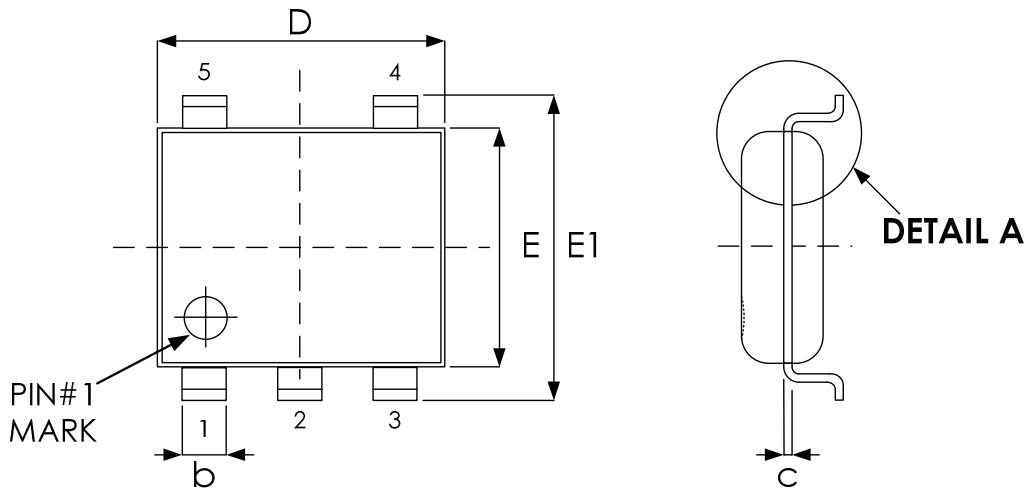
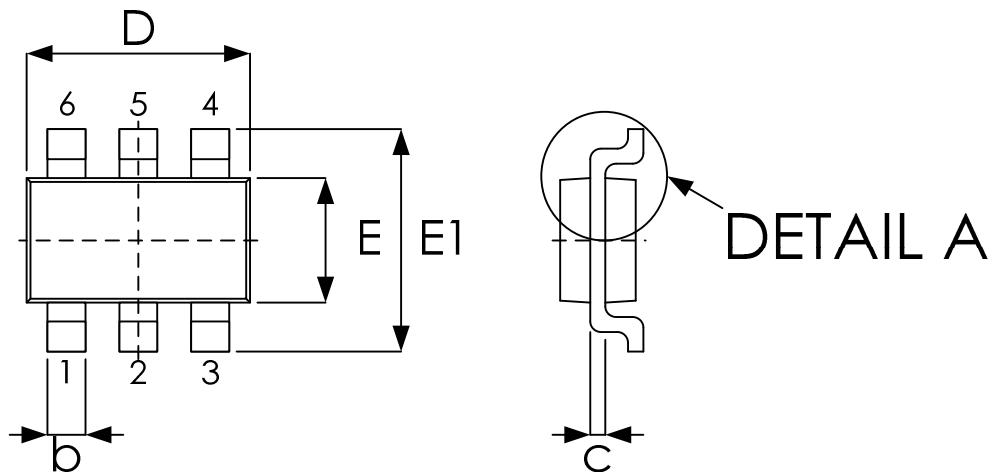
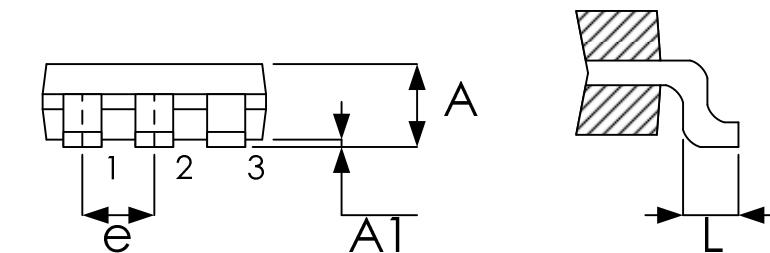





Fig.15 Typical Schematic of EML3320


■ PCB layout


**Package Outline Drawing
SOT-23-5L**

Symbol	Dimension in mm	
	Min.	Max.
A	0.90	1.45
A1	0.00	0.15
b	0.30	0.50
c	0.08	0.25
D	2.70	3.10
E	1.40	1.80
E1	2.60	3.00
e	0.95 BSC	
L	0.30	0.60

Package Outline Drawing
SOT-23-6L

TOP VIEW

SIDE VIEW

DETAIL A

Symbol	Dimension in mm	
	Min.	Max.
A	0.90	1.45
A1	0.00	0.15
b	0.30	0.50
c	0.08	0.25
D	2.70	3.10
E	1.40	1.80
E1	2.60	3.00
e	0.95 BSC	
L	0.30	0.60

Revision History

Revision	Date	Description
0.1	2018.03.26	Preliminary version.
0.2	2018.07.20	1. Modify Fig.1 typical application circuit input voltage. 2. Modify peak inductor current TYP value to 3A 3. Update efficiency plot
0.3	2018.08.27	Add VOUT=3.3V efficiency plot
1.0	2019.05.27	Delete Preliminary
1.1	2019.10.23	Modified Recommended Component Selection table COUT to 22uF for 3.3V_VOUT applied.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express , implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.