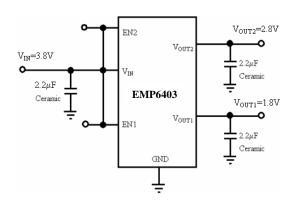
Dual, High-PSRR, Low-Noise, Low-Dropout, 300mA CMOS Linear Regulator


General Description

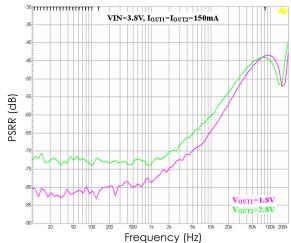
The EMP6403 series is a family of dual-channel CMOS linear regulators featuring ultra-high power supply rejection ratio (PSRR), low output voltage noise, low dropout voltage, low quiescent current and fast transient response. It guarantees delivery of 300mA output current per regulator, and supports preset output voltages ranging from 1.2V to 3.3V with 0.1V increment (except for 1.85V and 2.85V).

The EMP6403 is well suited for portable battery-powered application which requires high efficiency, low noise and small board space. With 150mV low dropout voltage at 300mA output current, EMP6403 sustains high PSRR at very low input voltage which is common in battery-powered application. The EMP6403 also features $120\mu V_{RMS}$ low output voltage noise without the presence of a noise bypass capacitor, which fits the application where noise and board space are both concerned.

Each regulator in the EMP6403 can be turned off independently, further prolonging the battery life. Internally build-in thermal protection and over-current protection provide additional safety for the end use. The EMP6403 is available in miniature 6-pin SOT-23-6 packages.

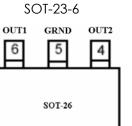
■ Typical Application Diagram

Features


- Miniature SOT-23-6 packages
- 300mA guaranteed output current
- 72dB typical PSRR at 1kHz (60dB typical at 10KHz)
- 120µV_{RMS} output voltage noise (10Hz to 100kHz)
- 150mV typical dropout at 300mA
- 150µA typical quiescent current
- Less than 1µA typical shutdown mode
- Auto-discharge during chip disable
- Fast line and load transient response
- 30µs typical turn-on time
- 2.5V to 5.5V input range
- Stable with small ceramic output capacitors
- Over temperature and over current protection
- ±2% output voltage tolerance

Applications

- Wireless handsets
- PCMCIA cards
- DSP core power
- Hand-held instruments
- Battery-powered systems
- Portable information appliances


Typical Performance Characteristics

PSRR vs. Frequency

CONNECTION DIAGRAM

ORDER INFORMATION

EMP6403-XXVC06GRR
XX Output voltage
VC06 SOT-23-6 Package
GRR RoHS & Halogen free
Rating: -40 to 85°C
Package in Tape & Reel

Pin Functions

2

3

Name	SOT-23-6	Function	
	1	Enable Input of Regulator 1. Set regulator 1	
		into the disable mode by pulling the EN1 pin	
EN1		low. To keep regulator 1 on during normal	
EINI		operation, connect the EN1 pin to VIN. The	
		EN1 pin must not exceed VIN under all	
		operating conditions.	
	2	Supply Voltage Input. Require a minimum	
VIN		input capacitor of close to 1µF to ensure	
VIIV		stability and sufficient decoupling from the	
		ground pin.	
		Enable Input of Regulator 2. Set regulator 2	
		into the disable mode by pulling the EN2 pir	
EN2	3	low. To keep regulator 2 on during normal	
LIVZ	3	operation, connect the EN2 pin to VIN. The	
		EN2 pin must not exceed VIN under all	
		operating conditions.	
OUT2	4	Output Voltage Feedback of Regulator 2	
GRND	5	Ground Pin.	
OUT1	6	Output Voltage Feedback of Regulator 1	

Order, Mark & Packing Information

Package	No. of PIN	EN1	EN2	Marking	Vout1	Vout2	Product ID	Packing	
						3.0	3.0	EMP6403-00VC06GRR	3K units Tape & Reel
					1.8	3.0	EMP6403-01VC06GRR	3K units Tape & Reel	
				OUT1 GRND OUT2 6 5 4	1.8	2.8	EMP6403-02VC06GRR	3K units Tape & Reel	
			2.5 3.3 EMP6403-03\		6403	EMP6403-03VC06GRR	3K units Tape & Reel		
SOT-23-6	6	Υ	Υ	Tracking Code PIN1 DOT 1 2 3 EN1 VIN EN2	2.8	3.3	EMP6403-04VC06GRR	3K units Tape & Reel	
					PIN1 DOT 1 2 3	1.8	3.3	EMP6403-05VC06GRR	3K units Tape & Reel
					2.85	2.85	EMP6403-06VC06GRR	3K units Tape & Reel	
					1.5	2.8	EMP6403-07VC06GRR	3K units Tape & Reel	
					1.2	2.8	EMP6403-11VC06GRR	3K units Tape & Reel	
SOT-23-6	6	Y	Y	LABJE X: Week Code	3.0	3.0	EMP6403-00VC06GRR	3K units Tape & Reel	

Absolute Maximum Ratings (Notes 1, 2)

VIN, V_{OUT1} , V_{OUT2} , V_{EN1} , V_{EN2} -0.3V to 6.5V Thermal Resistance (θ_{JA})

Power Dissipation (Note 3) 6-pin SOT-23-6 250°C/W Storage Temperature Range -65°C to160°C 6-pin FBP-6 (Note 3)

Junction Temperature (TJ) 150°C

Lead Temperature (10 sec.) 260°C Operating Ratings (Note 1, 2)

ESD Rating Temperature Range -40°C to 85°C

HBM (Note 5) 2kV Supply Voltage 2.5V to 5.5V

MM 200V

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $V_{IN} = V_{OUT} + 1V$ (Note 6), $V_{EN1} = V_{EN2} = VIN$, $C_{IN} = C_{OUT} = 2.2\mu F$, $T_J = 25^{\circ}C$. **Boldface** limits apply for the operating temperature extremes: -40°C and 85°C.

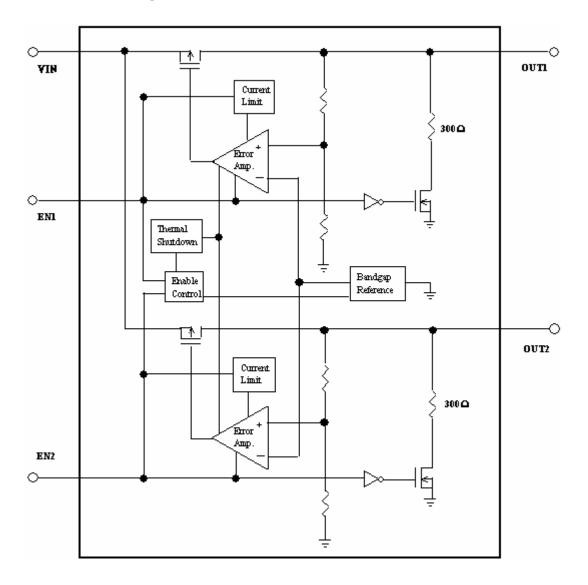
Symbol	Parameter	Conditions	Min	Typ (Note 7)	Max	Units	
VIN	Input Voltage		2.5		5.5	V	
		I _{OUT} = 30mA	-2		+2	% of	
ΔV_{OTL}	Output Voltage Tolerance	$V_{IN} = V_{OUT (NOM)} + 1V$, (Note 6)	-3		+3	V _{OUT} (NOM)	
I _{OUT}	Maximum Output Current	Average DC Current Rating	300			mA	
I _{LIMIT}	Output Current Limit			600		mA	
	Supply Current	$I_{OUT1} = I_{OUT2} = 0mA$		150			
la	Supply Current	$I_{OUT1} = I_{OUT2} = 300 \text{mA}$		250		μA	
	Shutdown Supply Current	EN1 = EN2 = GND		0.001			
	Dramaut Valtara	I _{OUT} = 30mA		15			
V_{DO}	Dropout Voltage (Note 4), (Note 6)	I _{OUT} = 100mA		50		mV	
	(Note 4), (Note 6)	I _{OUT} = 300mA		150			
	Power-supply rejection ratio	f = 1kHz		72			
	VIN=4.0V, V _{OUT} =3.0V	f = 10kHz		60		- dD	
PSRR	I _{OUT} =150mA	f = 100kHz		43			
PSKK	Power-supply rejection ratio	f = 1kHz		70		dB	
	VIN=3.3V, V _{OUT} =3.0V	f = 10kHz		57			
	I _{OUT} =30mA	f = 100kHz		42			
A.V.	Line Regulation	$I_{OUT} = 30 \text{mA}, (V_{OUT} + 1 \text{V}) \le V_{IN} \le 5.5 \text{V}, (Note 6)$	-0.1	0.01	0.1	%/V	
ΔV_{OUT}	La sud Da sudadia s	1mA ≤ I _{OUT} ≤ 100mA		6		>/	
Load R	Load Regulation	1mA ≤ I _{OUT} ≤ 300mA		20		mV	
e _n	Output Voltage Noise	V_{OUT} =2.8V, I_{OUT} = 30mA, 10Hz \leq f \leq 100kHz (Note 8)		120		μV _{RMS}	
.,	For adula has set Thomas had a	V_{IH} , $(V_{OUT} + 0.5V) \le V_{IN} \le 5.5V$ (Note 6)	1.2				
V _{EN} [Enable Input Threshold	V_{IL} , $(V_{OUT} + 0.5V) \le V_{IN} \le 5.5V$ (Note 6)			0.4	V	

Publication Date: Jan. 2010 Revision: 5.1 4/12

	Thermal Shutdown		170	
T_{SD}	Temperature		170	$^{\circ}\mathbb{C}$
	Thermal Shutdown Hysteresis		30	
Ton	Turn-On Time	Vout at 95% of Final Value	30	μs
Toff	Turn-Off Time	lout=0mA (Note 9)	2.4	ms

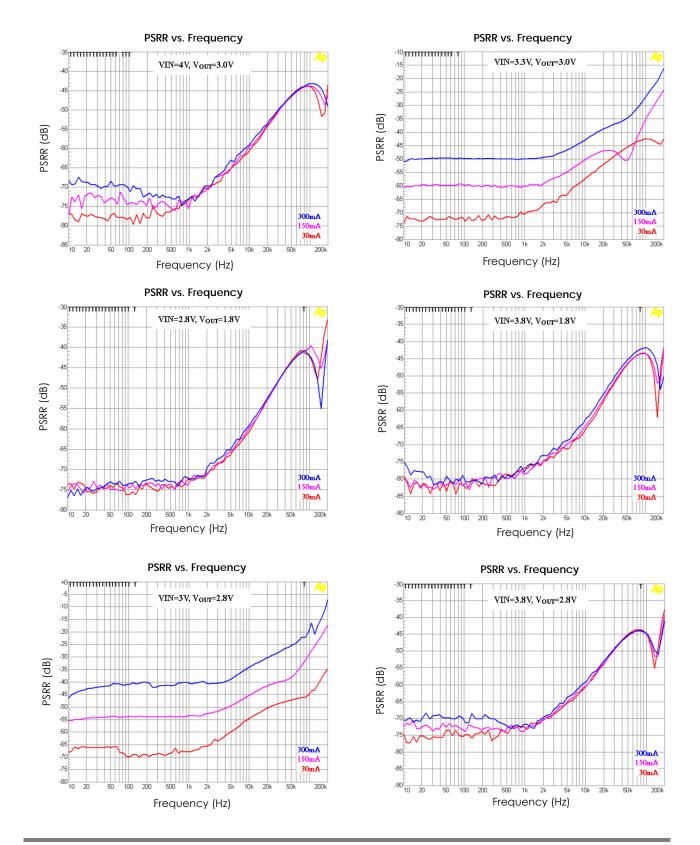
- **Note 1:** Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications are not applicable when the device is operated outside of its rated operating conditions.
- Note 2: All voltages are defined and measured with respect to the potential at the ground pin.
- Note 3: Maximum Power dissipation for the device is calculated using the following equations:

$$P_D = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$

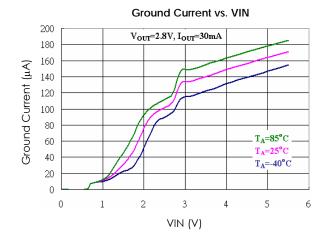

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. E.g. for the SOT-23-6 package $\theta_{JA} = 250^{\circ}\text{C/W}$, $T_{J(MAX)} = 150^{\circ}\text{C}$ and using $T_A = 25^{\circ}\text{C}$, the maximum power dissipation is found to be 500mW. The derating factor (-1/ θ_{JA}) = -4mW/°C, thus below 25°C the power dissipation figure can be increased by 4mW per degree, and similarity decreased by this factor for temperatures above 25°C. The value of the θ_{JA} for the FBP-6 package is specifically dependent on the PCB trace area, trace material, and the number of layers and thermal vias.

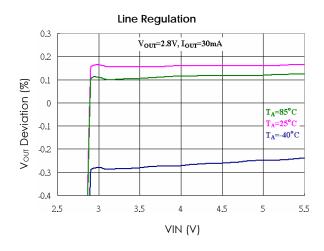
- Note 4: Dropout voltage is measured by reducing V_{IN} until V_{OUT} drops 100mV from its nominal value at V_{IN} - V_{OUT} =1V. Dropout voltage does not apply to the regulator versions with V_{OUT} less than 2.5V.
- Note 5: Human body model: $1.5k\Omega$ in series with 100pF.
- Note 6: Condition does not apply to input voltages below 2.5V since this is the minimum input operating voltage.
- Note 7: Typical Values represent the most likely parametric norm.
- Note 8: For different output voltage, the noise can be approximately calculated using the following formula:

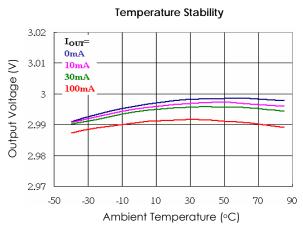
$$Noise = V_{OUT} \times 42 \,(\mu V_{RMS})$$

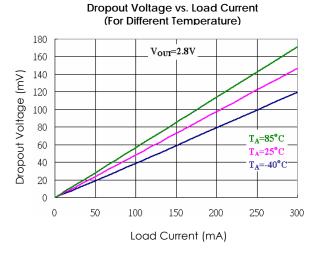

Note 9: Turn-off time is time measured between the enable input just decreasing below V_{IL} and the output voltage just decreasing to 10% of its nominal value.

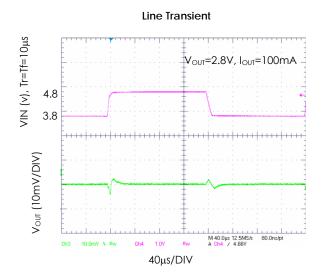
Functional Block Diagram

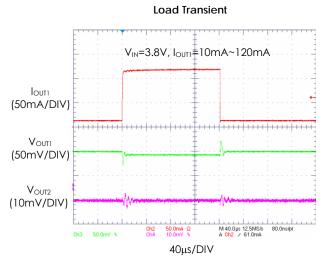

Typical Performance Characteristics

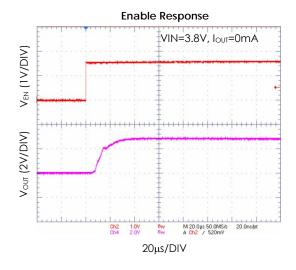

Unless otherwise specified, VIN = $V_{OUT (NOM)}$ + 1V, C_{IN} = C_{OUT} = 2.2 μ F, T_A = 25°C, V_{EN1} = V_{EN2} = VIN.

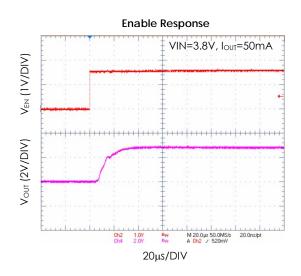


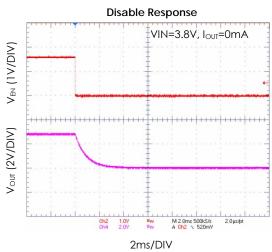

Typical Performance Characteristics

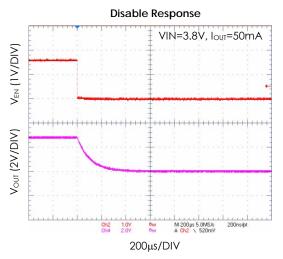

Unless otherwise specified, VIN = $V_{OUT\ (NOM)}$ + 1V, C_{IN} = C_{OUT} = 2.2 μ F, T_A = 25°C, V_{EN1} = V_{EN2} = VIN. (Continued)



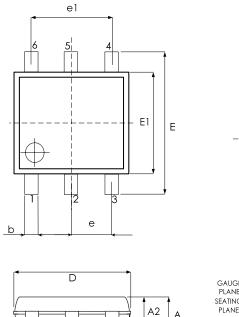


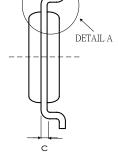


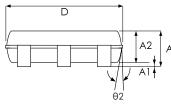


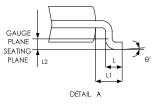

Typical Performance Characteristics

Unless otherwise specified, VIN = V_{OUT (NOM)} + 1V, C_{IN} = C_{OUT} = 2.2µF, T_A = 25°C, V_{EN1} = V_{EN2} = VIN. (Continued)









Physical Dimensions SOT-23-6

SYMBPLS	MIN.	NOM.	MAX.		
Α			1.45		
A1	1		0.15		
A2	0.90	1.15	1.30		
b	0.30	_	0.50		
С	0.08		0.22		
D		2.90 BSC.			
Е	2.80 BSC.				
E1	1.60 BSC.				
е	0.95 BSC				
el	1.90 BSC				
L	0.30	0.45	0.60		
L1	0.60 REF				
L2	0.25 REF				
θ°	0	4	8		
⊝2°	5	10	15		

UNIT: MM

Revision History

Revision	Date	Description
5.0	2009.03.24	EMP transferred from version 4.2
5.1	2010.01.13	order information/GRR definition (page 2)

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Jan. 2010 Revision: 5.1 12/12