1.5A Fixed Voltage LDO Linear Regulator

General Description

The EMP8110 is a CMOS low-dropout linear regulator that operates in the input voltage range from +2.5V to +6.5V and delivers 1.5A output current.

The EMP8110 features include short-circuit protection and thermal shutdown protection. The EMP8110 series devices are available in both of SOT-223 and TO-252 packages.

Applications

- Active SCSI Terminators
- High Efficiency Linear Regulators
- Monitor Microprocessors
- Low Voltage Micro-Controllers
- Post Regulator for Switching Power

Features

- Operating Voltage Range : +2.5V to +6.5V
- Output Voltages : +1.2V to +4.5V (0.1V Step)
- Maximum Output Current : 1.5A
- Dropout Voltage : 570mV @ 1.5A(Vout=1.8V)
- Low Current Consumption : 65µA (Typ.)
- ±2% Output Voltage Accuracy
- Low ESR Capacitor Compatible
- High Ripple Rejection : 60 dB (Vout=1.8V)
- Fold back short circuit protection
- Thermal Overload Shutdown Protection
- SOT-223 and TO-252 Packages
- RoHS Compliant and 100% Lead (Pb)-Free and Green (Halogen Free with Commercial Standard)

Typical Application

Connection Diagrams

Order Information

	XX	Output voltage		
	VE#3	SOT-223 Package (Package Code)		
		# : Pin fuction type		
NRR RoHS & Halogen free package				
		Commercial Grade Temperature		
		Rating: -40 to 85°C		
		Package in Tape & Reel		

EMP8110-XXTB#3NRR

- XX Output voltage
- TB#3 TO-252 Package (Package Code) # : Pin fuction type
- NRR RoHS & Halogen free package Commercial Grade Temperature Rating: -40 to 85°C Package in Tape & Reel

Order, Marking & Packing Information

Package	Vout	Product ID.	Marking	Packing
SOT-223	1.2-4.5V	EMP8110-XXVEJ3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 2.5kpcs
SOT-223	1.2-4.5V	EMP8110-XXVEG3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 2.5kpcs
SOT-223	1.2-4.5V	EMP8110-XXVEX3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 2.5kpcs

Order, Marking & Packing Information (cont.)

Package	Vout	Product ID.	Marking	Packing
TO-252	1.2-4.5V	EMP8110-XXTBJ3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 3kpcs
TO-252	1.2-4.5V	EMP8110-XXTBG3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 3kpcs
TO-252	1.2-4.5V	EMP8110-XXTBX3NRR	ESMT EMP8110 Tracking Code	Tape & Reel 3kpcs

Note.

XX: Output voltage, example

12: 1.2V output

1C: 1.25V output

25: 2.5V output

Pin Functions

Namo	SOT-223/TO-252		-252	Function
Name	J	G	X	FUICTION
IN	3	1	3	Supply Voltage Input. Require a minimum input capacitor of close to 10µF to ensure stability and sufficient decupling from the ground pin.
GND	1	2	2	Ground Pin.
OUT	2	3	1	Output Voltage.

Functional Block Diagram

FIG.1. Functional Block Diagram of EMP8110

EMP8110

Absolute Maximum Ratings (Notes 1, 2)

-			
IN	-0.3V to 7V	Junction Temperature (TJ)	155°C
OUT	-0.3V to 5.0V	Lead Temperature (Soldering, 10 sec.)	260°C
Power Dissipation	(Note 8)	ESD Rating	
Storage Temperature Range	-55°C to 150°C	Human Body Model	2KV
Operating Ratings (Note 1, 2)			
Supply Voltage	2.5V to 6.5V	Thermal Resistance (θ_{JA} , Note 3))	
Operating Temperature Range	-40°C to 85°C	SOT-223 (package code VEG3 and VEX3)	110°C/W
		SOT-223 (package code VEJ3)	290°C/W
		TO-252 (package code TBG3 and TBX3)	80°C/W
		TO-252 (package code TBJ3)	170°C/W

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $V_{IN} = V_{OUT} + 1V$, $C_{IN} = C_{OUT} = 10\mu$ F, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
VIN	Input Voltage		2.5		6.5	V
Vout	Output Accuracy	VIN=VOUT+1V, IOUT=10mA	-2%	Vout	+2%	V
I _{MAX}	Output Current		1.5			А
Ilimit	Current Limit			1.8		А
		I _{OUT} = 1000mA, 2.5V <v<sub>OUT≦4.5V</v<sub>		270		mV
		I _{OUT} = 1000mA, 1.5 <v<sub>OUT≦2.5V</v<sub>		330	600	mV
VDROP	Dropout Voltage	I _{OUT} = 1000mA, 1.4 <v<sub>OUT≦1.5V</v<sub>		380	800	mV
		l _{our} = 1000mA, 1.3 <v<sub>our≦1.4V</v<sub>		450	900	mV
		I _{OUT} = 1000mA, 1.2 <v<sub>OUT≦1.3V</v<sub>		500	1000	mV
	Line Regulation	Vout≦2V, 2.5V≦Vin≦3 V, lout=30mA	-0.15	0.1	0.15	%/V
ΔVLINE		$V_{OUT}+1V \leq V_{in} \leq V_{out}+2, I_{OUT}=30mA$	-0.1	0.02	0.1	%/V
ΔV_{LOAD}	Load Regulation	$V_{IN} = V_{OUT} + 1V, \ 1mA \leq I_{OUT} \leq 1500mA$		0.02	0.05	%/mA
	Ground Pin Current	$I_{LOAD}=0mA$, $V_{IN} = V_{OUT}+1.0V$		65		μA
lq		I _{LOAD} =1000mA, V _{IN} = V _{OUT} +1.0V		90		μA
		I _{LOAD} =1500mA, V _{IN} = V _{OUT} +1.0V		115		μA
Isc	Fold back Short Circuit Current			250		mA
PSRR	Ripple Rejection	Iout=100mA @1kHz, Vout=1.8V		60		dB
T _{SD}	Thermal Shutdown Temperature			160		°C
Тнуѕ	Thermal Shutdown Hysteresis			30		°C

- Note 1: Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
- Note 2: All voltages are with respect to the potential at the ground pin.
- Note 3: θ_{JA} is measured in the natural convection at $T_A=25^{\circ}C$ on a high effective thermal conductivity test board (2 layers, 2SOP).
- Note 4: Condition does not apply to input voltages below 2.2V since this is the minimum input operating voltage.
- Note 5: Dropout voltage is measured by reducing V_{IN} until V_{OUT} drops 100mV from its nominal value at V_{IN} - V_{OUT} = 1V. Dropout voltage does not apply to the regulator versions with V_{OUT} less than 2.2V.
- Note 6: Turn-off time is time measured between the enable input just decreasing below V_{IL} and the output voltage just decreasing to 10% of its nominal value.
- Note 7: Maximum Power dissipation for the device is calculated using the following equations:

$$P_{D} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

Where $T_J(MAX)$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. E.g. for the SOT-223 package $\theta_{JA} = 110^{\circ}C/W$, $T_J(MAX) = 150^{\circ}C$ and using $T_A = 25^{\circ}C$, the maximum power dissipation is found to be 1.136W. The derating factor (-1/ θ_{JA}) = -9.09mW/°C, thus below 25°C the power dissipation figure can be increased by 9.09mW per degree, and similarity decreased by this factor for temperatures above 25°C.

Note 8: Typical Values represent the most likely parametric norm

Typical Performance Characteristics

Unless otherwise specified, V_{IN} = $V_{OUT\,(NOM)}$ + 1V, V_{EN} = $V_{IN},\,C_{IN}$ = C_{OUT} = 10 μ F, T_A = 25 ^{o}C

Typical Performance Characteristics (cont.)

Unless otherwise specified, $V_{IN} = V_{OUT (NOM)} + 1V$, $V_{EN} = V_{IN}$, $C_{IN} = C_{OUT} = 10 \mu F$, $T_A = 25^{\circ}C$

Application Information

Detail Description

The EMP8110 is a CMOS low-dropout linear regulator. The device provides fixed output voltages for output current up to 1.5A.

The band-gap reference voltage is connected to the error amplifier, which compares this reference with the feedback voltage and amplifies the voltage difference. If the feedback voltage is lower than the reference voltage, the pass-transistor gate is pulled lower, which allows more current to pass to the output pin and increases the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled up to decrease the output voltage.

The output voltage is fed back through an internal resistive divider connected to OUT pin. Additional blocks include an output current limiter, thermal sensor, and shutdown logic.

Internal P-channel Pass Transistor

The EMP8110 features a P-channel MOSFET pass transistor. Unlike similar designs using PNP pass transistors, P-channel MOSFETs require no base drive, which reduces quiescent current. PNP-based regulators also waste considerable current in dropout when the pass transistor saturates, and use high base-drive currents under large loads. The EMP8110 does not suffer from these problems and consumes only 65µA (Typ.) of current consumption under heavy loads as well as in dropout conditions.

Output Voltage Selection

For voltage type of EMP8110, the output voltage is preset at an internally trimmed voltage. The first two digits of part number suffix identify the output voltage (see Ordering Information). For example, the EMP8110-33 has a preset 3.3V output voltage.

Dropout Voltage

A regulator's minimum input-output voltage differential, or dropout voltage, determines the lowest usable supply voltage. In battery-powered systems, this will determine the useful end-of-life battery voltage. The EMP8110 use a P-channel MOSFET pass transistor, its dropout voltage is a function of drain-to-source on-resistance RDS(ON) multiplied by the load current.

$$V_{DROPOUT} = V_{IN} - V_{OUT} = R_{DS(ON)} \times I_{OUT}$$

Current Limit

The EMP8110 also includes a fold back current limiter. It monitors and controls the pass transistor's gate voltage, estimates the output current, and limits the output current within 1.8A (Typ.).

Thermal Overload Protection

Thermal overload protection limits total power dissipation in the EMP8110. When the junction temperature exceeds $T_J = +160^{\circ}$ C, a thermal sensor turns off the pass transistor, allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the junction temperature cools down by 30°C, resulting in a pulsed output during continuous thermal overload conditions.

Thermal overload protection is designed to protect the EMP8110 in the event of fault conditions. For continuous operation, the absolute maximum operating junction temperature rating of $T_J = +125^{\circ}$ C should not be exceeded.

Operating Region and Power Dissipation

Maximum power dissipation of the EMP8110 depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The power dissipation across the devices is $P = I_{OUT} \times (V_{IN}-V_{OUT})$. The resulting maximum power dissipation is:

$$P_{MAX} = \frac{\left(T_{J} - T_{A}\right)}{\theta_{JC} + \theta_{CA}} = \frac{\left(T_{J} - T_{A}\right)}{\theta_{JA}}$$

Where (T_J-T_A) is the temperature difference between the EMP8110 die junction and the surrounding air, θ_{JC} is the thermal resistance of the package chosen, and θ_{CA} is the thermal resistance through the printed circuit board, copper traces and other materials to the surrounding air. For better heat-sinking, the copper area should be equally shared between the IN, OUT, and GND pins.

Application Circuit

a) Application circuit for adjustment $V_{\mbox{\scriptsize OUT}}$

Output Voltage Setting

The output voltage V_{OUT} is set using a resistive divider from the output to GND (ADJ) pin. The regulated voltage is V_{REF} between V_{OUT} and GND (ADJ) pin. Thus the output voltage is:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R2}{R1}\right) + I_{ADJ} \times R2$$

R2 recommended value is $1k\Omega$, Table 1 lists recommended values of R1 and R2 for most used output voltage.

Vout	Output Version	V _{REF}	I _{ADJ}	R1	R2
3.3V	1.25V	1.25V	65uA	0.63 kΩ	1 kΩ
2.8V	1.25V	1.25V	65uA	0.84 kΩ	1 kΩ
2.5∨	1.25V	1.25V	65uA	1.05 kΩ	1 kΩ
1.8V	1.25V	1.25V	65uA	2.58 kΩ	1 kΩ
1.5∨	1.25V	1.25V	65uA	6.76 kΩ	1 kΩ
3.3V	1.8V	1.8V	65uA	1.25 kΩ	1 kΩ
2.5∨	1.8V	1.8V	65uA	2.83 kΩ	1 kΩ

Table 1. Recommended Resistance Values

Note.

The load regulation performance degradation can be expected during ADJ application if R2 value too large adopted.

Package Outline Drawing SOT-223

TOP VIEW

DETAIL A

Crumb al	Dimension in mm		
Symbol	Min.	Max.	
А		1.80	
A1	0.02	0.10	
b	0.60	0.80	
b1	2.90	3.10	
С	0.23	0.35	
D	6.30	6.80	
Е	3.30	3.70	
E1	6.70	7.30	
е	2.30	BSC	
L	0.90		

Ā

Package Outline Drawing TO-252

Symbols	Millimeters	Inches
SAUDOI2	Min	Max
A	2.19	2.38
A1	0.89	1.27
A2	0	0.13
b	0.51	0.89
С	0.46	0.58
D	5.97	6.22
Е	6.35	6.73
E1	5.21	5.46
e	2.28 BSC	0.090 BSC
e1	3.96	5.18
F	0.46	0.58
L	1.4	1.78
L1	2.67 (REF.)	0.105 (REF.)
L2	0.64	1.02
L3	1.52	2.03
L4	0.51 BSC	0.020 BSC
Н	9.4	10.4
θ	0°	8°

Old order, Marking & Packing Information

Package	Vout	Product ID.	Marking	Packing
SOT-223	1.2-4.5V	EMP8110-XXVEJ3NRR	EMP EMP8110 Tracking Code	Tape & Reel 2.5kpcs
SOT-223	1.2-4.5V	EMP8110-XXVEG3NRR	EMP EMP8110 Tracking Code	Tape & Reel 2.5kpcs
SOT-223	1.2-4.5V	EMP8110-XXVEX3NRR	EMP EMP8110 Tracking Code	Tape & Reel 2.5kpcs
TO-252	1.2-4.5V	EMP8110-XXTBJ3NRR	EMP EMP8110 Tracking Code	Tape & Reel 3kpcs
TO-252	1.2-4.5∨	EMP8110-XXTBG3NRR	EMP EMP8110 Tracking Code	Tape & Reel 3kpcs
TO-252	1.2-4.5V	EMP8110-XXTBX3NRR	EMP EMP8110 Tracking Code	Tape & Reel 3kpcs

Revision History

Revision	Date	Description
0.1	2013.07.01	Initial version.
0.2	2013.11.13	 Added ADJ application circuit. Removed EMP logo and update marking information.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.