

EN332S/T Dual-Channel SDI Rx on EX-SDI

Version 1.93 Apr. 2020

Document Revision History

Version	Date	Description	Modified by
1.0	16.07.08.	Initial release	DR Lee
1.1	16.08.03.	Overall revised	MS Kim
1.2	16.08.09.	Pin map changed	MS Kim
1.3	16.08.11.	Added CDM	NR Kim
1.4	16.09.23.	IRQ_* removed, GPO* added, Power consumption added	MS Kim
1.5	17.01.25	Support EX-SDI 4K - 1.485Gbps bandwidth added	HJ Kang
1.6	17.03.20	The channel coding of 4M changed	MS Kim
1.7	17.05.10	EX-SDI 4K Power consumption added	HJ Kang
1.8	17.05.17	Reg. schematic modify	DR Lee
1.9	17.07.12	SDI Output Level added	MS Kim
1.91	17.10.27	POD amended (Center Ground Pad)	MS Kim
1.92	17.10.31	ESD level added	MS Kim
1.93	20.04.22	Ambient Temperature changed	MS Kim

Document Description

This document describes the features and registers of EN332S/T

IMPORTANT NOTICE

Eyenix Company Limited (Eyenix) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Eyenix's terms and conditions of sale supplied at the time of order acknowledgment.

Eyenix assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Eyenix components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Eyenix does not warrant or represent that any license, either express or implied, is granted under any Eyenix patent right, copyright, mask work right, or other Eyenix intellectual property right relating to any combination, machine, or process in which Eyenix products or services are used. Information published by Eyenix regarding third-party products or services does not constitute a license from Eyenix to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Eyenix under the patents or other intellectual property of Eyenix. Reproduction of Eyenix information in Eyenix data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Eyenix is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Eyenix products are not authorized for use in safety-critical applications (such as life support) where a failure of the Eyenix product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Eyenix products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Eyenix. Further, Buyers must fully indemnify Eyenix and its representatives against any damages arising out of the use of Eyenix products in such safety-critical applications.

Eyenix products are neither designed nor intended for use in military/aerospace applications or environments unless the Eyenix products are specifically designated by Eyenix as military-grade or "enhanced plastic."

Eyenix products are neither designed nor intended for use in automotive applications or environments unless the specific Eyenix products are designated by Eyenix as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, Eyenix will not be responsible for any failure to meet such requirements.

© Eyenix Co., Ltd.

All rights reserved. No part of this document may be reproduced in any form without written permission from Eyenix Co., Ltd. Eyenix Co., Ltd reserves the right to change in its products or product specification to improve function or design at any time, without notice.

Evenix Office

C-1004, 16, Deogyeong-daero 1556beon-gil, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16690 Korea

Tel : +82-31-204-7333~4 Fax : +82-31-204-7330

URL: http://www.eyenix.com

Contents

1.	General Description & Features	5
	1.1. General Description	5
	1.2. Features	5
2.	Pin Diagram	6
3.	I/O Information	7
4.	Block Diagram	9
5.	Electrical Characteristics.	
	5.1. Absolute Maximum Ratings	1
	5.2. Recommended Operating Conditions	1
	5.3. Static characteristics	1
	5.4. DC Electrical Characteristics1	2
	5.5. AC Electrical Characteristics1	
	5.5.1. Input characteristics	
6.	Power on sequence	
7.	Power consumption	
8.	Clock Structure	17
9.	Functional Overview	18
	9.1. SDI Input	8
	9.2. EX-SDI	8
	9.3. Virtual wire for UCC (Upstream Communication Channel)	9
	9.4. Signal detector	
	9.5. Channel coding	0
	9.6. Word alignment	0
	9.7. Video format detector	.1
	9.8. CRC detector and Counting	.1
	9.9. Ancillary data detector (STREAM ID)	1
	9.10. Pattern generator	2
	9.11. Video output formatting2	2
10.	Application schematic	23
	10.1. EN332S schematic	3
	10.2. EN332T schematic	4
11.	Package dimension	26

1. General Description & Features

1.1. General Description

The EN332S/T device is a dual channel SDI receiver targeted for long reach performance with EX-SDI technology.

The EX-SDI is a visually lossless codec for Long Reach Solution, reducing transmission bandwidth carried on existing cable such as coax cable and UTP cable.

Especially the EX-SDI V2.0 technology allows transmission distance to achieve 500m or more on RG59 cable with 135Mbps SDI-based encoding.

In addition to increasing the distance, the EX-SDI TDM supports multiplexing (or de-multiplexing) multi-channel up to eight channels over a single of coax cable at 1.485Gbps bandwidth.

For cost effectiveness, it highly integrates cable equalizers, de-serializers, audio de-embedder, and UCC-modulator dissipating low power consumption. It also features various output such as Frame-interleaving, Byte-interleaving and multiplexed format for H/W efficiency.

1.2. Features

Functions

- Supports EX-SDI V1.0/2.0 and EX-TDM
 - EX-SDI V2.0 135Mbps bandwidth
 - EX-SDI V1.0 270Mbps bandwidth
 - EX-SDI 3G 270Mbps bandwidth
 - EX-SDI 4K 1.485Gbps bandwidth
 - EX-TDM 1.485Gbps bandwidth
 - HD-SDI, 3G-SDI
- Supports multi formats
 - 720p 24/25/30/50/60
 - 1080p 24/25/30/50/60
 - 1080i 50/60, 1536p 20
 - 1/1.001 Fractional FPS
- Supports 16-bit(non-multiplexed) or 8bit(multiplexed) input mode (EN332T only)
- Supports only 8-bit(multiplexed) output mode
- Supports HDcctv1.0, SMPTE 292
- One SDI Tx loop-through among 2channel input SDI
- EX-SDI Decoder for long reach
 - 500m over RG59 at EX-SDI V2.0
 - 300m over 3C-2V at EX-SDI V2.0
- STREAM ID extracting (HDcctv 1.0)
- CRC, Line no. correction
- Auto detection of HD-SDI and EX-SDI
- Auto Image format detection
- Support Frame-Interleaving or Byte-Interleaving
- Audio/Video Pattern generator
- Audio de-embedder
- UCC modulator from 0.5MHz~10MHz
- Virtual wire for UCC, UART generator
- I2S interface for external DAC
- I2C Host interface

Power Management

- 1.8V or 3.3V I/O
- 1.2V Core Power

Operating Frequency

• Max. 148.5MHz

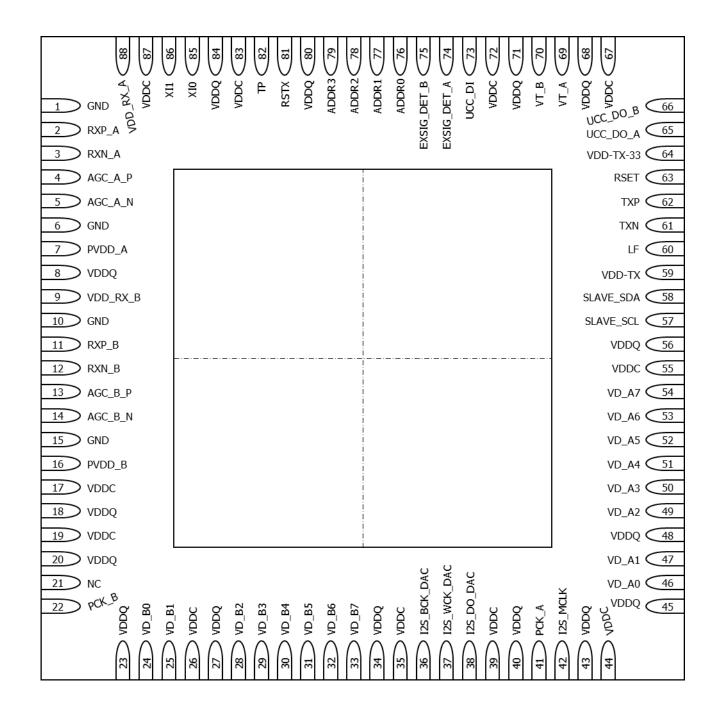
Operating Ambient Temperature

• -20°C ~ +70°C

Power consumption

- TBD mW (HD-SDI mode)
- TBD mW (EX-SDI mode)

Package


• 88LGA 10mm x 10mm

2. Pin Diagram

[Top view]

3. I/O Information

No.	Name	I/O	Category	Description
81	RSTX	I		Global Reset (Active Low)
85	XI0	I	6.1	System clock (27MHz)
86	XI1	I	System	Audio source clock (24.576MHz)
82	TP	I		Test pin (Pull down)
76	GPO0 / ADDR0	IO		Slave I2C device ID / General Purpose Output (PIN strapped with I2C Slave
77	GPO1 / ADDR1	IO	Davidas ID	address, See '11. I2C Interface')
78	ADDR2	IO	Device ID	Slave I2C device ID (PIN strapped with I2C Slave address, See '11. I2C
79	ADDR3	IO		Interface')
57	SLAVE_SCL	IO	Cl. TOC	I2C data for host interface
58	SLAVE_SDA	IO	Slave I2C	I2C clock for host interface(pull-up)
2	RXP_A	Α		SDI Rx PHY differential (-) input
3	RXN_A	Α	RX SDI	SDI Rx PHY differential (+) input
4	AGC_A_P	Α	Port A	Automatic positive gain control of SDI Rx
5	AGC_A_N	Α		Automatic negative gain control of SDI Rx
11	RXP_B	Α		SDI Rx PHY differential (-) input
12	RXN_B	Α	RX SDI	SDI Rx PHY differential (+) input
13	AGC_B_P	Α	Port B	Automatic positive gain control of SDI Rx
14	AGC_B_N	Α		Automatic negative gain control of SDI Rx
61	SDIN	Α		SDI differential (-) output
62	SDIP	Α		SDI differential (+) output
60	LF	Α	TX SDI	Loop filter
63	RSET	Α		HD-SDI output amplitude. 750Ω resistor needs to be located between RSET pin and VDD_TX_33 on a board.
41	PCK_A	0		Clock of video data
46	VD_A0	IO		Input/output video data bit0
47	VD_A1	IO		Input/output video data bit1
49	VD_A2	IO		Input/output video data bit2
50	VD_A3	IO	Video Data Port A	Input/output video data bit3
51	VD_A4	IO		Input/output video data bit4
52	VD_A5	IO		Input/output video data bit5
53	VD_A6	IO		Input/output video data bit6
54	VD_A7	IO		Input/output video data bit7
22	PCK_B	IO		Clock of video data
24	VD_B0	IO		Input/output video data bit0
25	VD_B1	IO	Video Data	Input/output video data bit1
28	VD_B2	IO	Port B	Input/output video data bit2
29	VD_B3	IO		Input/output video data bit3
30	VD_B4	IO		Input/output video data bit4

31	VD_B5	IO		Input/output video data bit5
32	VD_B6	IO		Input/output video data bit6
33	VD_B7	IO		Input/output video data bit7
73	UCC_DI	I		Upstream modulation
65	UCC_DO_A	0	UCC	Upstream modulation output of video A
66	UCC_DO_B	0		Upstream modulation output of video B
69	VT_A	IO	V6 1 - 1 M6 -	Source input channel A of virtual wire for UCC
70	VT_B	IO	Virtual Wire	Source input channel B of virtual wire for UCC
74	EXSIG_DET_A	I	External	Signal detection of external EQ A
75	EXSIG_DET_B	I	Signal detect	Signal detection of external EQ B
42	I2S_MCLK	0		Serial audio master clock
37	I2S_WCK_DAC	IO	Audio	Serial audio DAC word clock
36	I2S_BCK_DAC	IO	Interface	Serial audio DAC bit clock
38	I2S_DO_DAC	0		Serial audio DAC data output
59	VDD_TX	Р	TV CDI	Digital power of SDI Tx
64	VDD_TX_33	Р	TX SDI	Analog 3.3V power of SDI Tx
-	VDDC	Р	Core Power	17, 19, 26, 35, 39, 44, 55, 67, 72, 83, 87
-	VDDQ	Р	IO Power	8, 18, 20, 23, 27, 34, 40, 43, 45, 48, 56, 68, 71, 80, 84
21	N.C.	-	N.C	
89	GND	Р	Ground	Exposure Pad

4. Block Diagram

The EN332S/T consists of Analog SerDes part and Digital part. Analog parts have adaptive equalizers, clock data recovery and PLL. Digital parts have descrambler, TRS searcher, word align, ANC extraction and EX-SDI decoder. Especially video formatter can make two type interleaving output, Frame-interleaving and Byte-interleaving, for low-end backend device.

For special function, UCC modulator is integrated for making adjustable frequency-modulation applicable to an external UCC filter circuit. .

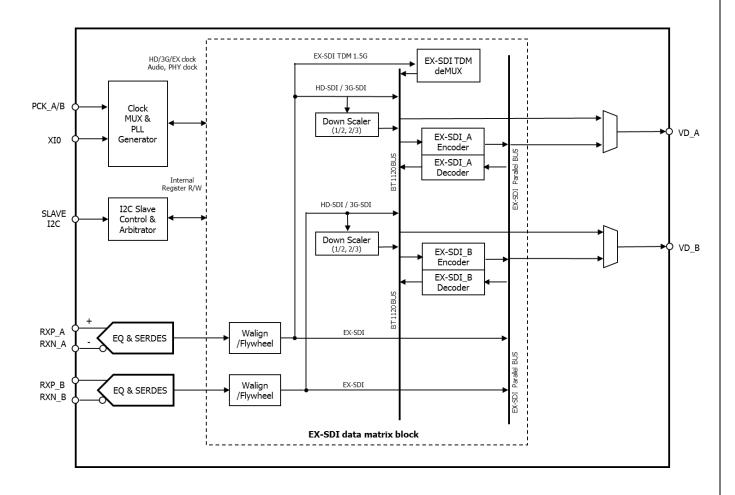


Figure 4-1. EN332S block diagram

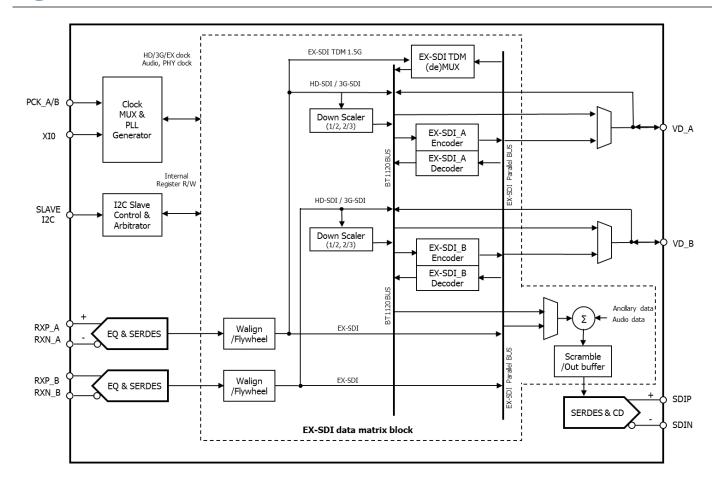


Figure 4-2. EN332T block diagram

5. Electrical Characteristics

5.1. Absolute Maximum Ratings

(I/O Power: 1.8V, 3.3V Wide Range)

Symbol	Parameter	Rati	Unit	
VDDC	DC Core Voltage	1.08	1.32	V
VINI	DC Input Voltage(1.8V)	1.65	1.95	V
VIN	DC Input Voltage(3.3V)	3.0	3.6	V
VOUT	DC Output Voltage(1.8V)	1.65	1.95	V
V001	DC Output Voltage(3.3V)	3.0	3.6	V
latch	Latch-up Current	±10	00	mA
TSTG	Storage Temperature	-40 ~	125	°C

5.2. Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
VDDC	DC Core Voltage	1.2 ± 0.12	V
VINI	DC Input Voltage(1.8V)	1.8 ± 0.18	V
VIN	DC Input Voltage(3.3V)	3.3 ± 0.33	V
VOUT	DC Output Voltage(1.8V)	1.8 ± 0.18	V
VO01	DC Output Voltage(3.3V)	3.3 ± 0.33	V
TOPR	Operating Temperature	-20 to 70	°C
TSTG	Storage Temperature	-40 to 125	°C

5.3. Static characteristics

		Unit		
	Pin	Target	Ref.	Offic
Human Body Model	All	±2,000 ↑		
Charged Device Model	All	±500 ↑		V

5.4.DC Electrical Characteristics

It	em	Pins	Symbol	Conditions	Min.	Тур.	Max.	Unit
		VDD_RX_A/B	AV_{DD2}		-9%	1.2	+9%	V
	Analog	VDD_TX	AV _{DD3}		-9%	1.2	+9%	V
	Analog	VDD_TX_33	AV _{DD4}		-9%	3.3	+9%	V
		PVDD_A/B	AV _{DD5}		-9%	1.2	+9%	V
	Digital	VDDQ	DV_{DD0}		-9%	1.8, 3.3	+9%	V
	Digital	VDDC	DV_DC		-9%	1.2	+9%	V
			V _{IH2}		0.7 DV _{DD0}		4	٧
Digital inp	out voltage		V _{IL2}		-0.3		0.3 DV _{DD0}	V
	output		V _{OH2}		DV _{DD1} -0.2			٧
vol	tage		V _{OL2}				0.2	V
Serial inp (Con	ut Voltage nmon)	RXP_A/B, RXN_A/B	V _{CMI}			1.2		٧
Serial out	out Voltage	SDIP, SDIN	V _{SDO}	RSET= 750Ω with 75Ω load (HD-SDI)	-10%	8001)	+10%	mVp-p

Notes:

1. The voltage level, 800mV may vary depending on specific PCB design, components and the related registers.

5.5.AC Electrical Characteristics

5.5.1. Input characteristics

5.5.1.1. Main reference clock

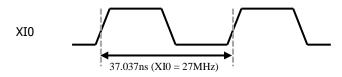


Figure 5-1. XIO clock timing diagram

5.5.1.2. Video output characteristics

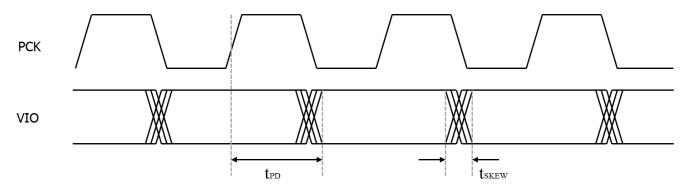


Figure 5-2. Parallel data output timing diagram

Interface	Compleal	Definition	M:	IN.	MA	Unit	
Interrace	Symbol	Definition	VD_A	VD_B	VD_A	VD_B	Unit
HD 30p SDR	t pd	PCLK to Data	3.99	3.98	5.02	5.03	ns
8bit@148.5MHz	tskew	Skew	0.05	0.08	0.13	0.19	ns
HD 60p DDR	t pd	PCLK to Data	0.57	0.67	1.42	1.72	ns
8bit@148.5MHz	tskew	Skew	0.04	0.07	0.07	0.18	ns
HD 30p TDM(2CH) DDR	t pd	PCLK to Data	2.42	-	2.19	-	ns
8bit@148.5MHz	tskew	Skew	0.07	-	0.12	-	ns
4K SDR mode	t PD	PCLK to Data	2.	42	0.07		ns
16bit@297MHz	tskew	Skew	0.	.11 0.16		ns	
4K DDR mode	t PD	PCLK to Data	0.65 1.99		99	ns	
16bit@148.5MHz	tskew	Skew	0.	09	0.	11	ns

5.5.1.3. Audio output characteristics

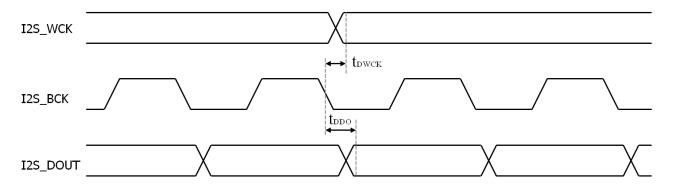


Figure 5-3. Audio I2S timing diagram

Symbol	Definition	min	max	Unit
tdwck	I2S_WCK delay			ns
tddo	I2S_DOUT delay			ns

6. Power on sequence

The recommended EN332S/T power-up reset timing is summarized in the following figure and table.

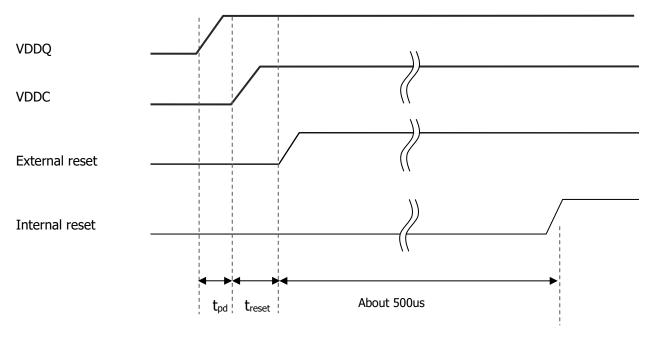


Figure 6-1. Reset sequence timing diagram

Pin strap-ins (GPO0/ ADDR0, GPO1/ ADDR1, ADDR2, ADDR3) are latched during power-up or reset.

After all powers are stable, the EN332S/T's slave address is configured from Pin strap-ins during reset sequence.

It is recommended to keep these pins not connected to any pins except pull-up (or pull-down) to avoid pin-collision, which can result in I2C errors.

Timing Parameter	Description	Min	Тур	Max	unit
t _{pd}	From VDDQ to VDDC	10	-	-	us
t _{reset}	From stable power to reset	1	-	-	us

7. Power consumption

		VDDQ (mA)	VDDC (mA)	VDD-RX (mA)	PVDD (mA)	VDD-TX (mA)	VDD-TX-33 (mA)			
	VD Output Mode (bit)	3.3V	1.2V	1.2V	1.2V	1.2V 1.2V 3.3V	3.3V	Total (mW)		
HD-SDI	8	150	70	40 15				661.62		
HD-3D1	8 TDM	130	70		15			595.62		
EX-SDI	8	150	82		13	13		10	1.4	676.02
1.0/2.0	8 TDM	130	82			10	1.4	610.02		
EX-SDI 3G/ EX-SDI 4M	8	180	110			20			820.62	
EX-SDI 4K	16	180	150	45	20			868.62		

8. Clock Structure

Clock Name	Max. Freq.	Description
XI0	27MHz	Global clock input
XI1	24.576MHz	Audio source clock
PCKO_x	148.5MHz	VIDEO clock
SLAVE_SCL	100kHz	Slave I2C clock input
MASTER_SCL	100kHz	Slave I2C clock input
I2S_BCK_DAC	3MHz	Audio I2S BCK(I/O)
I2S_WCK_DAC	48kHz	Audio I2S WCK(I/O)

9. Functional Overview

9.1.SDI Input

The EN332/T is a quad SDI receiver. It integrated four cable equalizers, CDR, De-serializer, Audio extraction and UCC modulators.

The four equalizers reconstruct attenuated SDI signal, whose frequency presents from 135Mbps and 2.98Gbps. It also features strong DC restoration to overcome stress patterns such as pathological pattern designated in RP 178, which has a poor ratio of 'ones' to 'zeros'.

This is compliant to SMPTE292, SMPTE259 and HDcctv.

9.2. **EX-SDI**

Generally achievable distance is in inverse proportion to transmission rate. With RG59 cable, transmission distance is approximately 330m in 270Mbps, 160m in 1.485Gbps and 100m in 2.98Gbps.

EX-SDI V1.0 supports only 270Mbps-transmission with 20% image compression. This makes HD-SDI (1.485Gbsp data rate) go over 300m and go over low-end cable.

Moreover, since EX-SDI V2.0 supports not only 270Mbps but also 135Mbps, transmission distance is much longer than V1.0. The expected reach is over 500m with RG59 cable. Furthermore it's helpful to reduce difficulties to use low-end cable such UTP and 3C-2V.

EX-SDI is a visually lossless codec based on JPEG standard. It's processing is simple as shown below figure.

It is composed of compress codec, domain conversion and codec rate controller.

Codec controller controls compression rate while studying optimal point of buffer. Optimal point is where total amount of compressed data is as much as empty buffer size by outputting data in buffer.

Therefore image quality relies on this controller. The PSNR is normally 40dB and more in normal source.

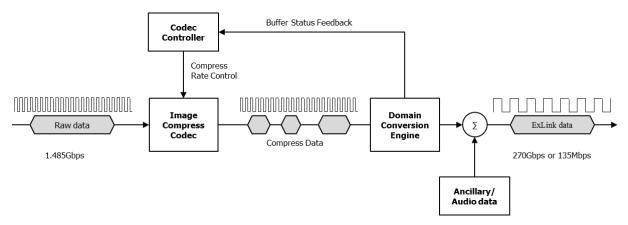


Figure 9-1. EX-SDI compress sequence

9.3. Virtual wire for UCC (Upstream Communication Channel)

UCC is a function to control a camera in DVR side over Coax cable remotely.

The EN332S/T has a UCC modulator inside, which can modulate commonly used control signals (UART, Pelco...) with $0.5 \text{MHz} \sim 10 \text{MHz}$ carrier frequency. With an associated UCC filter, modulated data can go upstream to the camera over coax cable while video data is going downstream from the camera.

In addition, it has UART generator in itself. It can make maximum 16byte serial UART data and outputting it to UCC modulator module.

(Please see UCC guide document for more details)

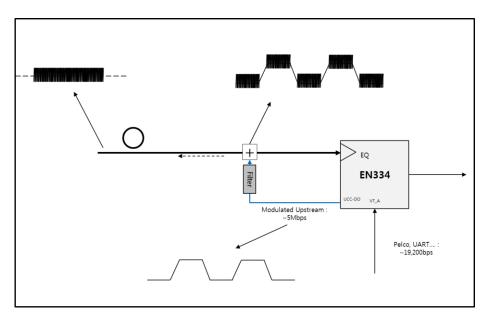


Figure 9-2. UCC transmit operation

9.4. Signal detector

The Signal Detector indicates the status of Serial Input Data, which is the combination of internal CDR status and SDI decoder.

After power on, it comes down to "zero", a low signal, which turns into "one", when SDI stream comes in and SDI decoder is activated. It also can be "zero" when signal is gone or stuck to either zero or one without transitions. In addition to internal SD (signal detector), an external equalizer's SD, called as CD or SD in 15# pin, is read through I2C of EN332S/T if it is connected to EXSIG_DET_* pin.

(Please see 4.Video Format Identification in application note for more details)

9.5. Channel coding

The SDI standard defines scrambled NRZ as a channel coding. Scrambling signal makes it statistically likely to have a low DC content for easier handling and have a greater number of transitions for easier clock recovery without any bit redundancy (Polynomial $G1(X) = X^9 + X^4 + 1$, G2(X) = X + 1).

In order to convert available signal from SDI to parallel data, NRZI-to-NRZ and descrambling processing must be applied before main processing.

The traditional scrambling method used in SDI has a few advantages like no redundancy and polarity-free. Although under normal condition the scrambled data has high transition with an even ratio of ones to zeros, some scrambled status meets too challenging conditions for the receiver to reconstruct SDI signal.

For more reliable communication, EX-SDI 2.0 adopted 8B/10B instead of the scrambled NRZ, even though it has 2 bit redundancy. This helps to achieve DC-balance to reduce the risk of data miss-acquisition in CDR of a receiver side.

Mode	Data rate (bps)	Signal Encoding	Polarity free
HD-SDI	1.485G	Scrambled NRZ	0
3G-SDI	2.98G	Scrambled NRZ	0
EX-SDI V1.0	270M	Scrambled NRZ	0
EX-SDI V2.0	135M	8b/10b ¹⁾	X
EX-SDI 3G/4M	270M	8b/10b ¹⁾	X
EX-SDI 4K	1.485G	Scrambled NRZ	0
EX-SDI TDM	1.485G	8b/10b NRZ	0

Note¹⁾: EN332S/T is input polarity-switchable, but it's controlled manually.

Table 9-1. Signal encoding and Polarity

9.6. Word alignment

The SDI stream has seven different types of packet with theirs specific identification code as listed in Table 9-1. After de-serializing and de-scrambling, the data flow into word alignment module to be aligned according to their origin. The word alignment module consist of both SMPTE compliant aligner and EX-SDI aligner.

The SMPTE aligner try to extract and detect TRS ID defined in SMPTE, and EX-SDI aligner is detecting its own TRS code embedded in data stream.

These complexity and the number of the mode make the external MCU take long time to detect input mode, which can be optimized according to the number of the activated mode.

9.7. Video format detector

The EN332S/T supports various video formats as well as the defined in SMPTE.

The video detector module identifies the format of the incoming video data, and extracts information as listed below.

- Total horizontal pixel in a line
- Total vertical line in a frame
- Interlace or Progress
- Frame rate (1 or 1000/1001)
- EX-SDI and HD-SDI

The above information is updated to the resisters to be accessed by MCU.

9.8. CRC detector and Counting

The CRC is an error-detecting code used in a digital network. The HD-SDI uses line-based CRC calculated every line, and EX-SDI has the packet-based CRC calculated every EX-SDI packet. Each packet has a different length and size according to the compressed quantity.

The EN332S/T extracts CRC value from the specific position (i.e. every EAV in HD-SDI, every end of packet in EX-SDI), while it re-generates a new CRC value from incoming data. When the extracted one and the re-generated one is the same, CRC counter keep the previous counter, otherwise when they are different, the counter increases.

The CRC is commonly used to check channel integrity to make sure of error free.

In instance, 10⁻¹² BER (Bit Error Rate) is mandatory required for some certification in HDcctv alliance. It means that CRC error must not happen for about 15 minutes in HD-SDI. (About 7 minutes in 3G-SDI)

9.9. Ancillary data detector (STREAM ID)

In HD-SDI, The EN332S/T can extract ancillary datum, carried on the downstream SDI, up to 16(16 x 10bit), whose position is changed by adjusting vertical and horizontal position in Y (Luma) stream. (Generally the position is Line 8 to ensure that the Ancillary data is inserted after the switch line (Line 7))

In EX-SDI, the ancillary position is not adjustable, since the ancillary data is embedded to the specific position between the EX-SDI packets.

After extracting, 16 word registers are updated automatically every frame. The registers should be referred according to the result of input mode detector since the EX-SDI and HD-SDI have independent registers. (Please see the application note for more details)

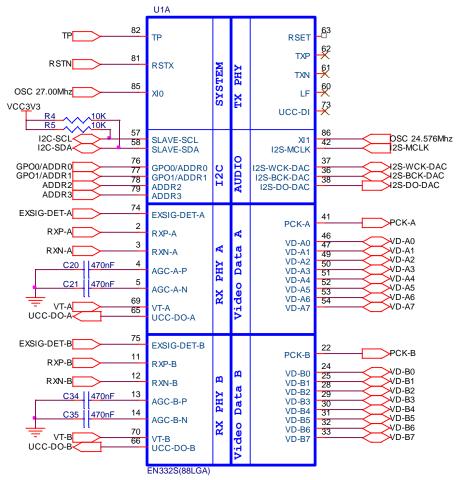
9.10. Pattern generator

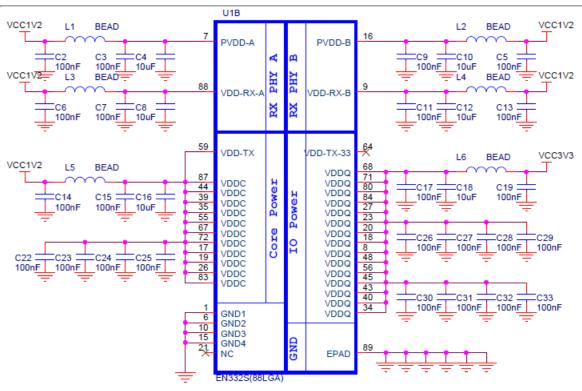
The EN332S/T has a flexible video pattern generator that makes up to 4096x2160 format as well as HD format with the associated data clock and TRS. The pattern types can be configured by control registers belonging to each channel.

In addition to video, the frequency and amplitude - adjustable Sine wave can be generated for audio test pattern replacing SDI embedded audio.

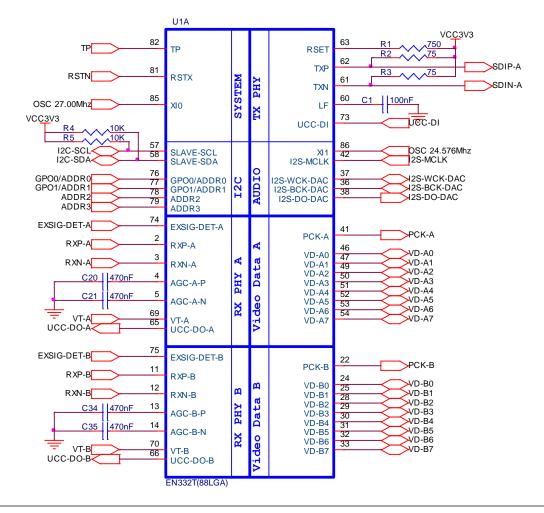
9.11. Video output formatting

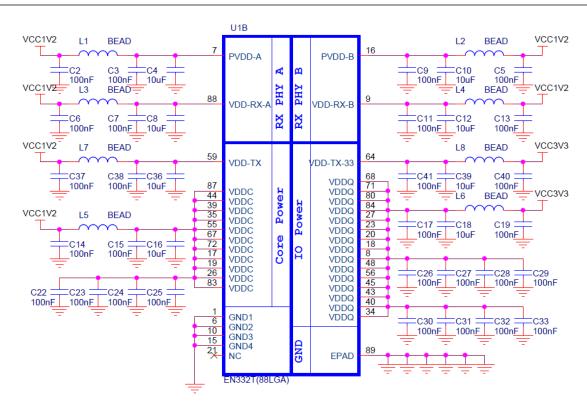
The EN332S/T supports various video output interface as well as standard BT.1120 outputs.


VO interface	Source format	PCK speed (MHz)	Data Rate (Mbps)
Four 8-bit interfaces	720 60p, 1080 30p	148.5	148.5
Four 6-bit interfaces	1080 60p, 1440p(4M)	148.5(DDR)	297
Two 16-bit interfaces	2160 25p/30p (4K)	148.5(DDR), 297(SDR)	297
Two TDM 8-bit interfaces	720 60p, 1080 30p	148.5(DDR)	297

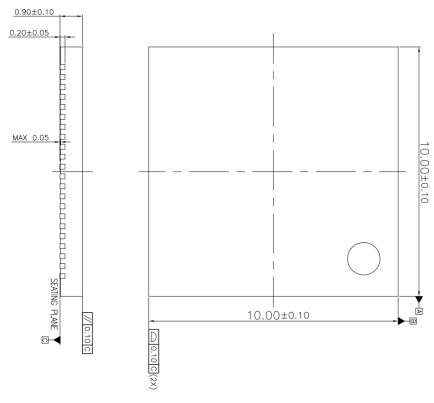


10. Application schematic


10.1. EN332S schematic



10.2. EN332T schematic





11. Package dimension

NOTE:

1. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION.