ER-OLED010-1 Series # **OLED Display Datasheet** # EastRising Technology Co., Limited #### Attention: - A. Some specifications of IC are not listed in this datasheet. Please refer to the IC datasheet for more details. - B. The related documents for interfacing, demo code, ic datasheet are all available, please download from www.buydisplay.com. - C. Please pay more attention to "Quality Control" in this Datasheet. We assume you already agree with these criterions when you place an order with us. No more recommendations. | REV | DESCRIPTION | RELEASE DATE | |-----|---------------------|--------------| | 1.0 | Preliminary Release | Jan-23-2011 | | | | | | | | | URL: www.buydisplay.com Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 ### **ORDERING INFORMATION** #### Order Number | Part Number(Order Number) | Description | |---------------------------|--| | ER-OLED010-1W | 1"OLED Display Module in White Color with Soldering Type FPC | | ER-DBO010-1 | 8051 Microcontroller Development Board&Kit for ER-OLED010-1W | | ER-OLED010A1-1W | 1"OLED Display Module in White Color with Connector Type FPC | | ER-DBO010A1-1 | 8051 Microcontroller Development Board&Kit for ER-OLED010A1-1W | #### Image ↑ ER-OLED010-1W ↑ ER-OLED010A1-1W ### **Contents** | Re | evision Historyi | | |------------|---|---| | Cc | ontentsii | | | 1. | Basic Specifications1~6 | | | | 1.1 Display Specifications | | | | 1.2 Mechanical Specifications | | | | 1.3 Active Area / Memory Mapping & Pixel Construction | | | | 1.4.1 MechanicalDrawing | | | | 1.4.2 MechanicalDrawing | • | | | 1.5 Pin Definition | | | | 1.6 Block Diagram | | | | 1.6.1 V _{CC} Supplied Externally5 | | | | 1.6.2 V _{CC} Generated by Internal DC/DC Circuit | | | 2 . | Absolute Maximum Ratings7 | | | 3. | Optics & Electrical Characteristics 8~13 | | | | 3.1 Optics Characteristics | | | | 3.2 DC Characteristics | | | | 3.3 AC Characteristics | | | | 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics | | | | 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics | | | | 3.3.3 Serial Interface Timing Characteristics (4-wire SPI) | | | | 3.3.4 Serial Interface Timing Characteristics (3-wire SPI) | | | | 3.3.5 PC Interface Timing Characteristics | | | 4. | Functional Specification14~18 | | | | 4.1 Commands | | | | 4.2 Power down and Power up Sequence | | | | 4.2.1 Power up Sequence | | | | 4.2.2 Power down Sequence 14 | | | | 4.3 Reset Circuit | | | | 4.4 Actual Application Example | | | | 4.4.1 V _{CC} Supplied Externally | | | _ | 4.4.2 V _{CC} Generated by Internal DC/DC Circuit | | | 5. | Reliability | | | | 5.1 Contents of Reliability Tests | | | | 5.2 Failure Check Standard | | | 6 | Ouality Control | | ### 1. Basic Specifications URL: www.buydisplay.com #### 1.1 Display Specifications Display Mode: Passive Matrix Drive Duty: 1/32 Duty #### 1.2 Mechanical Specifications 1) Outline Drawing: According to the annexed outline drawing 2) Number of Pixels: 128×32 3) Panel Size: $29.80 \times 14.50 \times 1.30 \text{ (mm)}$ 4) Active Area: 25.58 × 6.38 (mm) 5) Pixel Pitch: 0.20 × 0.20 (mm) 6) Pixel Size: 0.18 × 0.18 (mm) 7) Weight: 1.12 (g) #### 1.3 Active Area / Memory Mapping & Pixel Construction #### 1.4.1 Mechanical Drawing buydisplay.com #### 1.4.2 Mechanical Drawing buydisplay.com #### 1.5 Pin Definition URL: www.buydisplay.com | Pin Number | Symbol | 1/0 | Function | | | | | | |---|---|---|--|--|--|--|--|--| | Power Suppl | у | | | | | | | | | 9 | VDD | P Power Supply for Logic This is a voltage supply pin. It must be connected to external source. | | | | | | | | 8 | VSS | Р | Ground of Logic Circuit This is a ground pin. It acts as a reference connected to external ground. | for the logic pins. It must be | | | | | | 28 | VCC | Р | Power Supply for OEL Panel This is the most positive voltage supply pin of the should be connected between this pin and V _{ss} v must be connected to external source when the | when the converter is used. It | | | | | | 29 | VLSS | Р | Ground of Analog Circuit This is an analog ground pin. It should be connected. | ected to V _{SS} externally. | | | | | | Driver | | | | | | | | | | 26 | Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and V_{ss} . Set the current at 12.5 μ A maximum. | | | | | | | | | 27 | VCOMH | 0 | Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and V_{ss}. | | | | | | | DC/DC Conve | erter | | | | | | | | | Power Supply for DC/DC Converter Circuit This is the power supply pin for the internal buffer of the DC/DC voltage converter lit must be connected to external source when the converter is used. It should be connected to V _{DD} when the converter is not used. Positive Terminal of the Flying Inverting Capacitor Negative Terminal of the Flying Boost Capacitor The charge pump capacitors are required between the terminals. They must be floated when the converter is not used. | | | | | | | | | | Interface | | | | | | | | | | 10
11
12 | BS0
BS1
BS2 | I | BS0 BS1 I2C 0 1 | ee the following table: BS2 0 0 0 1 1 | | | | | | 14 | RES# | I | 8-bit 80XX Parallel 0 1 Power Reset for Controller and Driver This pin is reset signal input. When the pin is executed. | · · | | | | | | 13 | CS# | I | Chip Select This pin is the chip select input. The chip is enable when CS# is pulled low. | oled for MCU communication only | | | | | | 15 | D/C# | I | Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams. When the pin is pulled high and serial interface mode is selected, the data at SDIN is treated as data. When it is pulled low, the data at SDIN will be transferred to the command register. In I²C mode, this pin acts as SAO for slave address | | | | | | | 17 | E/RD# | I | Read/Write Enable or Read This pin is MCU interface input. When microprocessor, this pin will be used as the Enable is initiated when this pin is pulled high and the CS When connecting to an 80XX-microprocessor, the | selection. Read/Write Enable or Read This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and CS# is | | | | | Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 3 # OLED Display Datasheet ER-OLED010-1 Series #### 1.5 Pin Definition (Continued) | Pin Number | Pin Number Symbol I/ | | Function | | | |---|----------------------|-----|--|--|--| | Interface (Co | ontinued) | | | | | | Read/Write Select or Write This pin is MCU interface input. When interfacing to a 68 microprocessor, this pin will be used as Read/Write (R/W#) selection in this pin to "High" for read mode and pull it to "Low" for write mode. When 80XX interface mode is selected, this pin will be the Write (WF Data write operation is initiated when this pin is pulled low and the CS# low. | | | | | | | 18~25 D0~D7 | | I/O | Host Data Input/Output Bus These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. When I ² C mode is selected, D2 & D1 should be tired together and serve as SDA _{out} & SDA _{in} in application and D0 is the serial clock input SCL. | | | | Reserve | | | | | | | 7 N.C | | - | Reserved Pin The N.C. pin between function pins are reserved for compatible and flexi design. | | | | 1, 30 | N.C. (GND) | - | Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground as the ESD protection circuit. | | | # CONFIDENTIAL Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 #### 1.6 Block Diagram #### 1.6.1 V_{CC} Supplied Externally URL: www.buydisplay.com C4, C5: 4.7µF / 16V, X7R $390k\Omega$, R1 = (Voltage at IREF - VSS) / IREF R1: 1.6.2 V_{CC} Generated by Internal DC/DC Circuit MCU Interface Selection: BS0, BS1 and BS2 Pins connected to MCU interface: CS#, RES#, D/C#, R/W#, E/RD#, and D0~D7 C1, C2: 1µF C3: 2.2µF C4: 4.7µF 16V X7R C5, C6: 1µF / 16V X5R R1: $390k\Omega$, R1 = (Voltage at IREF - VSS) / IREF ### OLED Display Datasheet ER-OLED010-1 Series #### 2. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Notes | |----------------------------|-----------------|--------|-----|------|-------| | Supply Voltage for Logic | V_{DD} | -0.3 | 4 | V | 1, 2 | | Supply Voltage for Display | V_{CC} | 0 | 11 | V | 1, 2 | | Supply Voltage for DC/DC | V_{DDB} | -0.3 | 5 | V | 1, 2 | | Operating Temperature | T _{OP} | -40 | 70 | °C | | | Storage Temperature | T_{STG} | -40 | 80 | °C | | | Life Time (100 cd/m²) | | 10,000 | - | hour | 3 | - Note 1: All the above voltages are on the basis of " $V_{SS} = 0V$ ". - Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. - Note 3: $V_{CC} = 7.25V$, $T_a = 25^{\circ}C$, 50% Checkerboard. Software configuration follows Section 4.4 Initialization. End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. buydisplay.com #### 3. Optics & Electrical Characteristics #### 3.1 Optics Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|-----------------|-------------|--------------|--------------|--------------|-------------------| | Brightness | L _{br} | Note 4 | 80 | 100 | - | cd/m ² | | C.I.E. (White) | (x)
(y) | C.I.E. 1931 | 0.25
0.27 | 0.29
0.31 | 0.33
0.35 | | | Dark Room Contrast | CR | | - | >10,000:1 | - | | | Viewing Angle | | | - | Free | - | degree | ^{*} Optical measurement taken at $V_{DD}=2.8V,\ V_{CC}=7.25V.$ Software configuration follows Section 4.4 Initialization. #### 3.2 DC Characteristics URL: www.buydisplay.com | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--|-------------------------|------------------------------------|---------------------|------|---------------------|------| | Supply Voltage for Logic | V_{DD} | | 1.65 | 2.8 | 3.3 | V | | Supply Voltage for Display (Supplied Externally) | V _{CC} | Note 4
(Internal DC/DC Disable) | 7.0 | 7.25 | 7.5 | V | | Supply Voltage for DC/DC | V _{DDB} | Internal DCXDC Enable | 3.5 | - | 4.2 | V | | Supply Voltage for Display
(Generated by Internal DC/DC) | Vcc | Note 4
(Internal DC/DC Enable) | X.O | - | 7.5 | V | | High Level Input | V _{IH} | $I_{OUT} = 100 \mu A, 3.3 MHz$ | $0.8 \times V_{DD}$ | - | V_{DD} | V | | Low Level Input | V_{IL} | $I_{OUT} = 100\mu A, 3.3MHz$ | 0 | - | $0.2 \times V_{DD}$ | V | | High Level Output | V_{OH} | $I_{OUT} = 100 \mu A, 3.3 MHz$ | $0.9 \times V_{DD}$ | - | V_{DD} | V | | Low Level Output | V_{OL} | $I_{OUT} = 100 \mu A, 3.3 MHz$ | 0 | - | $0.1 \times V_{DD}$ | V | | Operating Current for V _{DD} | I _{DD} | | - | 180 | 300 | μΑ | | | | Note 5 | - | 3.3 | 4.1 | mA | | Operating Current for V _{CC}
(V _{CC} Supplied Externally) | I_{CC} | Note 6 | - | 5.1 | 6.4 | mA | | (Vice Supplied Externally) | | Note 7 | - | 9.8 | 12.3 | mA | | | | Note 5 | - | 10.0 | 12.5 | mA | | Operating Current for V_{DDB} (V_{CC} Generated by Internal DC/DC) | I _{DDB} | Note 6 | - | 15.5 | 19.4 | mA | | (Tell Contract by Michigal Boy Bo) | | Note 7 | - | 26.6 | 33.3 | mA | | Sleep Mode Current for V _{DD} | I _{DD, SLEEP} | | - | 1 | 5 | μA | | Sleep Mode Current for V _{CC} | I _{CC, SLEEP} | | - | 2 | 10 | μΑ | Note 4: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request. Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 Note 5: $V_{DD} = 2.8V$, $V_{CC} = 7.25V$, 30% Display Area Turn on. Note 6: $V_{DD} = 2.8V$, $V_{CC} = 7.25V$, 50% Display Area Turn on. Note 7: $V_{DD} = 2.8V$, $V_{CC} = 7.25V$, 100% Display Area Turn on. ^{*} Software configuration follows Section 4.4 Initialization. #### 3.3 AC Characteristics URL: www.buydisplay.com 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |--------------------------------------|---------------------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 300 | - | ns | | t _{AS} | Address Setup Time | 0 | - | ns | | t _{AH} | Address Hold Time | 0 | - | ns | | t _{DSW} | Write Data Setup Time | 40 | - | ns | | t _{DHW} | Write Data Hold Time | 7 | - | ns | | t _{DHR} | Read Data Hold Time | 20 | - | ns | | t _{OH} | Output Disable Time | - | 70 | ns | | t _{ACC} | Access Time | _ | 140 | ns | | DW | Chip Select Low Pulse Width (Read) | 120 | | 20 | | PW _{CSL} | Chip Select Low Pulse width (Write) | 60 | - | ns | | DW | Chip Select High Pulse Width (Read) | 60 | | | | PW _{CSH} | Chip Select High Pulse Width (Write) | 60 | _ | ns | | L _R | Rise Time | - | 40 | ns | | t _F | Fall Time | - | 40 | ns | | * (V _{DD} - V _{SS} | 1.65V to 3.3V, T _a = 25°C) | | | | 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |--------------------|--------------------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 300 | - | ns | | t _{AS} | Address Setup Time | 10 | - | ns | | t _{AH} | Address Hold Time | 0 | - | ns | | t _{DSW} | Write Data Setup Time | 40 | - | ns | | t _{DHW} | Write Data Hold Time | 7 | - | ns | | t _{DHR} | Read Data Hold Time | 20 | - | ns | | t _{OH} | Output Disable Time | - | 70 | ns | | t _{ACC} | Access Time | - | 140 | ns | | t _{PWLR} | Read Low Time | 120 | - | ns | | t _{PWLW} | Write Low Time | 60 | - | ns | | t _{PWHR} | Read High Time | 60 | - | ns | | t _{PWHW} | Write High Time | 60 | - | ns | | t _{CS} | Chip Select Setup Time | 0 | - | ns | | tcsh | Chip Select Hold Time to Read Signal | 0 | | ns | | t _{CSF} | Chip Select Hold Time | 20 | | ns | | t _R | Rise Time | - | 40 | ns | | t _F | Fall Time | - | 40 | ns | ^{* (} V_{DD} - V_{SS} = 1.65V to 3.3V, T_a = 25°C) # OLED Display Datasheet ER-OLED010-1 Series ### 3.3.3 Serial Interface Timing Characteristics: (4-wire SPI) | Symbol | Description | Min | Max | Unit | |--------------------|------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 100 | - | ns | | t _{AS} | Address Setup Time | 15 | - | ns | | t _{AH} | Address Hold Time | 15 | - | ns | | t _{CSS} | Chip Select Setup Time | 20 | _ | ns | | t _{CSH} | Chip Select Hold Time | 10 | - | ns | | t _{DSW} | Write Data Setup Time | 15 | _ | ns | | t _{DHW} | Write Data Hold Time | 15 | - | ns | | t _{CLKL} | Clock Low Time | 20 | - | ns | | t _{CLKH} | Clock High Time | 20 | _ | ns | | t _R | Rise Time | _ | 40 | ns | | t _F | Fall Time | _ | 40 | ns | ^{*} $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_a = 25^{\circ}C)$ # OLED Display Datasheet ER-OLED010-1 Series #### 3.3.4 Serial Interface Timing Characteristics: (3-wire SPI) | Symbol | Description | Min | Max | Unit | |--------------------|------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 100 | - | ns | | t _{CSS} | Chip Select Setup Time | 20 | - | ns | | t _{CSH} | Chip Select Hold Time | 10 | - | ns | | t _{DSW} | Write Data Setup Time | 15 | - | ns | | t_{DHW} | Write Data Hold Time | 15 | - | ns | | t _{CLKL} | Clock Low Time | 20 | - | ns | | t _{CLKH} | Clock High Time | 20 | _ | ns | | t _R | Rise Time | - | 40 | ns | | t _F | Fall Time | - | 40 | ns | ^{*} $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_a = 25^{\circ}C)$ # OLED Display Datasheet ER-OLED010-1 Series ### 3.3.5 I²C Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |---------------------|---|-----|-----|------| | t _{cycle} | Clock Cycle Time | 2.5 | - | μs | | t _{HSTART} | Start Condition Hold Time | 0.6 | - | μs | | + | Data Hold Time (for "SDA _{OUT} " Pin) | | | nc | | t _{HD} | Data Hold Time (for "SDA _{IN} " Pin) | 300 | - | ns | | t _{SD} | Data Setup Time | 100 | - | ns | | t _{SSTART} | Start Condition Setup Time (Only relevant for a repeated Start condition) | 0.6 | - | μs | | t _{SSTOP} | Stop Condition Setup Time | 0.6 | - | μs | | t_R | Rise Time for Data and Clock Pin | | 300 | ns | | t _F | Fall Time for Data and Clock Pin | | 300 | ns | | t _{IDLE} | Idle Time before a New Transmission can Start | 1.3 | - | μs | ^{*} $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_a = 25^{\circ}C)$ #### 4. Functional Spe #### 4.1 Commands Refer to the Technical Manual for the SSD1306 #### 4.2 Power down and Power up Sequence To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation. #### 4.2.1 Power up Sequence: - 1. Power up V_{DD} / V_{DDB} - 2. Send Display off command - 3. Initialization - 4. Clear Screen - 5. Power up V_{CC} - 6. Delay 100ms (When V_{CC} is stable) - 7. Send Display on command Display off #### Note 8: - 1) Since an ESD protection circuit is connected between V_{DD} and V_{CC} inside the driver IC, V_{CC} becomes lower than V_{DD} whenever V_{DD} is ON and V_{CC} is OFF. - 2) V_{CC} / V_{DDB} should be kept float (disable) when it is OFF. - 3) Power Pins (V_{DD}, V_{CC}, V_{DDB}) can never be pulled to ground under any circumstance. - 4) V_{DD} should not be power down before V_{CC} / V_{DDB} power down. #### 4.3 Reset Circuit When RES# input is low, the chip is initialized with the following status: - 1. Display is OFF - 2. 128×64 Display Mode - 3. Normal segment and display data column and row address mapping (SEGO mapped to column address 00h and COM0 mapped to row address 00h) - 4. Shift register data clear in serial interface - 5. Display start line is set at display RAM address 0 - 6. Column address counter is set at 0 - 7. Normal scan direction of the COM outputs - 8. Contrast control register is set at 7Fh - 9. Normal display mode (Equivalent to A4h command) #### 4.4 Actual Application Example Command usage and explanation of an actual example #### 4.4.1 V_{CC} Supplied Externally #### <Power up Sequence> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. #### <Power down Sequence> # OLED Display Datasheet ER-OLED010-1 Series #### <Entering Sleep Mode> #### <Exiting Sleep Mode> ### 4.4.2 V_{CC} Generated by Internal DC/DC Circuit <Power up Sequence> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. #### <Power down Sequence> #### <Entering Sleep Mode> #### <Exiting Sleep Mode> #### 5. Reliability #### 5.1 Contents of Reliability Tests | Item | Conditions | Criteria | | |-------------------------------------|--|-----------------|--| | High Temperature Operation | 70°C, 120 hrs | | | | Low Temperature Operation | -40°C, 120 hrs | | | | High Temperature Storage | 80°C, 120 hrs | The operational | | | Low Temperature Storage | -40°C, 120 hrs | functions work. | | | High Temperature/Humidity Operation | 60°C, 90% RH, 120 hrs | | | | Thermal Shock | -40°C ⇔ 80°C, 24 cycles
60 mins dwell | | | ^{*} The samples used for the above tests do not include polarizer. #### 5.2 Failure Check Standard URL: www.buydisplay.com After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23 ± 5 °C; 55 ± 15 % RH. Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 19 ^{*} No moisture condensation is observed during tests. # 6. QUALITY CONTROL URL: www.buydisplay.com ### 6.1 EastRising Environment Required Customer's test & measurement are required to be conducted under the following conditions: Temperature: $23\pm5^{\circ}$ C Humidity: $55\pm15\%$ RH Fluorescent Lamp: 30W Distance between the Panel & Lamp: ≥50cm Distance between the Panel & Eyes of the Inspector: ≥30cm Finger glove (or finger cover) must be worn by the inspector. Inspection table of jig must be anti-electrostatic. #### 6.2 EastRising OLED Display Criteria & Acceptable Quality Level | Partition | AQL | Definition | |-----------|------|---| | Major | 0.65 | Defects in Pattern Check (Display On) | | Minor | 1.0 | Defects in Cosmetic Check (Display Off) | #### 6.2.1 EastRising Cosmetic Check (Display Off) in Non-Active Area | Check Item | Classification | Criteria | |------------------------------------|----------------|--| | Check Item Panel General Chipping | Classification | Criteria X>6mm (Along with Edge) Y>1mm (Perpendicular to edge) | | | | Y 11a | Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 20 # OLED Display Datasheet ER-OLED010-1 Series **3** , **3** ### 6.2.2 EastRising Cosmetic Check (Display Off)in Non-Active Area (Continued) | Check Item | Classification | Criteria | |--|----------------|---------------------------------------| | Panel Crack | Minor | Any crack is not allowable | | Copper Exposed
(Even Pin or Film) | Minor | Not Allowable by Naked Eye Inspection | | Film or Trace Damage | Minor | O. W | | Termial Lead Prober Mark | Acceptable | | | Glue or Contamination on Pin | Minor | | | Ink marking on Back Side of Panel
(Exclude on Film) | Acceptable | Ignore for Any | Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 6.2.3 EastRising Cosmetic Check (Display Off) in Active Area EastRising recommends to execute in clear environment (class 10k) if actual in necessary. | Check Item | Classification | Criteria | |---|----------------|---| | Any Dirt & Scratch on Polarizer's Protective Film | Acceptable | Ignore for not Affect the Polarizer | | Scratches,Fiber,Line-Shape Defect
(On Polarizer) | Minor | $\begin{array}{ccc} W \leqslant 0.1 & \text{Ignore} \\ W > 0.1 & \\ L \leqslant 2 & \text{n} \leqslant 1 \\ L > 2 & \text{n} = 0 \end{array}$ | | Dirt, Black Spot, Foreign Material
(On Polarizer) | Minor | $Φ \le 0.1$ Ignore $0.1 < Φ \le 0.25$ $n \le 1$ $0.25 < Φ$ $n = 0$ | | Dent,Bubbles,White Spot (Any Transparent Spot on Polarizer) | Minor | Φ≤0.5 Ignore if no Influence on Display 0.5<Φ n=0 | | Fingerpint ,Flow Mark
(On Polarizer) | Minor | Not Allowable | ^{*} Protective film should not be tear off when cosmetic check. ^{*} Definition of W & L &Φ(Unit:mm): Φ=(a+b)/2 buydisplay.com URL: www.buydisplay.com 6.2.4 EastRising Pattern Check (Display On) in Active Area | Check Item | Classification | Criteria | |---------------|----------------|----------| | No Display | Major | | | Missing Line | Major | | | Pixel Short | Major | | | Darker Pixel | Major | | | Wrong Display | Major | | | Un-uniform | Major | | #### 7.PRECAUTIONS for USING - 7.1 Handling Precautions - 1) Since the EastRiisng OLED display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position. - 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance. - 3) If pressure is applied to the display surface or its neighborhood of the EastRising OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections. - 4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module. - 5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape. - * Scotch Mending Tape No. 810 or an equivalent Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer: - * Water - * Ketone - * Aromatic Solvents - 6) Hold EastRising OLED display module very carefully when placing OLED display module into the system housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases. - 7) Do not apply stress to the driver IC and the surrounding molded sections. - 8) Do not disassemble nor modify the OLED display module. - 9) Do not apply input signals while the logic power is off. - 10) Pay sufficient attention to the working environments when handing EastRising OLED display modules to prevent occurrence of element breakage accidents by static electricity. - * Be sure to make human body grounding when handling OLED display modules. - * Be sure to ground tools to use or assembly such as soldering irons. - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments. URL: www.buydisplay.com Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 24 - * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film. - 11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the EastRising OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5). - 12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above. #### 7.2 Storage Precautions - 1) When storing EastRising OLED display modules, put them in static electricity preventive bags avoiding exposure neither to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from EastRising.) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them. - 2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above. #### 7.3 Designing Precautions - 1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen. - 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible. - 3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A) - 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices. - 5) As for EMI, take necessary measures on the equipment side basically. - 6) When fastening the OLED display module, fasten the external plastic housing section. URL: www.buydisplay.com Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 25 - 7) If power supply to the EastRising OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module. - 7.4 Precautions when disposing of the EastRising OLED display modules - 1) Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations. #### 7.5 Other Precautions - 1) When an OLED display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur. Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module. - 2) To protect OLED display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OLED display modules. - * Pins and electrodes - * Pattern layouts such as the FPC - 3) With this OLED display module, the OLED driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OLED driver is exposed to light, malfunctioning may occur. - * Design the product and installation method so that the OLED driver may be shielded from light in actual usage. - * Design the product and installation method so that the OLED driver may be shielded from light during the inspection processes. - 4) Although this OLED display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design. - 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise. That's the end of the datasheet. URL: www.buydisplay.com Document Name: ER-OLED010-1 Series Datasheet-Rev1.0 26