High power transient voltage suppressor µQFN package Top view #### **Features** - Low clamping voltage - Peak pulse power: 4800 W (8/20 µs) - Stand-off voltage 15 V - Unidirectional diode - Low leakage current: 0.2 µA at 25 °C - Complies with IEC 61000-4-2 level 4 - ±30 kV (air discharge) - ±30 kV (contact discharge) ### **Applications** Where transient overvoltage protection in ESD sensitive equipment is required, such - Smartphones, mobile phones, tablets, portable multimedia - USB V_{BUS} protection - Power supply protection - **Battery protection** | Pin | Name | Description | |---------|------------------|-------------------------| | 1 | V _{BUS} | V _{BUS} pin | | 2, 3, 4 | NC | Non
connected
pin | | 5, 6 | GND | Ground pin | | TAB | GND | Ground pin | ## **Description** The ESDA17P100-1U2M is a unidirectional single line TVS diode designed to protect the power line against EOS and ESD transients. The device is ideal for applications where high power TVS and board space saving is required. | Product status link | | |---------------------|--| | ESDA17P100-1U2M | | # ESDA17P100-1U2M_Characteristics Table 1. Absolute maximum ratings (T_{amb} = 25 °C) | Symbol | Parameter | Value | Unit | | |------------------|--------------------------------------|-------------------|--------------|----| | | | IEC 61000-4-2: | | | | V_{PP} | Peak pulse voltage | Contact discharge | >30 | kV | | | | Air discharge | >30 | | | P _{PP} | Peak pulse power | 8/20µs | 4800 | W | | I _{PP} | Peak pulse current | 8/20µs | 160 | Α | | T _{stg} | Storage junction temperature range | | -55 to + 150 | °C | | T _{op} | Operating junction temperature range | | -55 to + 150 | °C | Figure 1. Electrical characteristics (definitions) Table 2. Electrical characteristics (T_{amb} = 25 °C) | Symbol | Test condition | Min. | Тур. | Max. | Unit | |------------------|---|------|------|------|------| | V _{BR} | I _R = 1 mA | 15.7 | 16.5 | 17.7 | V | | V _{RM} | | | | 15 | V | | I _{RM} | V _{RM} = 12 V | | | 100 | nA | | I _{RM} | V _{RM} = 15 V | | | 200 | nA | | R _d | 8/20 μs | | 0.07 | | Ω | | V _{CL} | I _{PP} = 100 A, 8/20 μs | | 24 | 26 | V | | V _{CL} | I _{PP} = 160 A, 8/20 μs | | 28 | 30 | V | | C _{BUS} | V _{BUS} = 0 V, f = 1 MHz, V _{OSC} = 30 mV | | 1200 | | pF | DS11998 - Rev 2 page 2/11 ### 1.1 Characteristics (curves) Figure 3. Peak pulse power versus exponential pulse duration (T_j = 25 °C, typical value) PPP(W) 10000 1000 1000 1000 1000 1000 1000 Figure 4. Peak pulse current versus clamping voltage (max. value) I_{PP}(A) 100 I_{T initial} = 25 °C 10 1 V_{CL} (V) 16 18 20 22 24 26 28 30 DS11998 - Rev 2 page 3/11 # 2 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. ### 2.1 μQFN package information Figure 8. µQFN package outline DS11998 - Rev 2 page 4/11 Table 3. µQFN package mechanical data | | Dimensions | | | | | | |------|------------|-------------|------|--------|--------|--------| | Ref. | | Millimeters | | | Inches | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | 0.51 | 0.55 | 0.60 | 0.0201 | 0.0217 | 0.0236 | | A1 | 0.00 | 0.02 | 0.05 | 0.0000 | 0.0008 | 0.0020 | | А3 | | 0.15 | | | | | | b | 0.15 | 0.20 | 0.25 | 0.0059 | 0.0079 | 0.0098 | | D | 1.70 | 1.80 | 1.90 | 0.0669 | 0.0709 | 0.0748 | | E | 1.90 | 2.0 | 2.10 | 0.0748 | 0.0787 | 0.0827 | | e1 | | 0.4 | | | 0.0157 | | | e2 | | 0.80 | | | 0.0315 | | | D2 | 0.30 | 0.45 | 0.55 | 0.0118 | 0.0177 | 0.0217 | | E2 | 0.69 | 0.84 | 0.94 | 0.0272 | 0.0331 | 0.0370 | | e3 | | 0.95 | | | 0.0374 | | | k | | 0.28 | | | 0.0110 | | | L | 0.20 | 0.30 | 0.40 | 0.0079 | 0.0118 | 0.0157 | | N | | 6.00 | | | | | Figure 9. μQFN footprint DS11998 - Rev 2 page 5/11 Figure 10. Marking layout Pin1 D Figure 11. Package orientation in reel Figure 12. Tape outline Table 4. Tape and reel mechanical data | | Dimensions | | | | | |------|-------------|------|------|--|--| | Ref. | Millimeters | | | | | | | Min. | Тур. | Max. | | | | A0 | 1.95 | 2.00 | 2.05 | | | | В0 | 2.25 | 2.30 | 2.35 | | | | D0 | 1.40 | 1.50 | 1.60 | | | | F | 3.45 | 3.50 | 3.55 | | | | К0 | 0.70 | 0.75 | 0.80 | | | | P0 | 3.90 | 4.00 | 4.10 | | | | P1 | 3.90 | 4.00 | 4.10 | | | | P2 | 1.95 | 2.00 | 2.05 | | | | W | 7.90 | 8.00 | 8.30 | | | DS11998 - Rev 2 page 6/11 ### 3 Recommendation on PCB assembly ### 3.1 Stencil opening design - General recommendation on stencil opening design - a. Stencil opening dimensions: L (Length), W (Width), T (Thickness). - 2. General design rule - a. Stencil thickness (T) = 75 \sim 125 μ m - b. Aspect ratio = $$\frac{W}{T} \ge 1.5 \tag{1}$$ c. Aspect area = $$\frac{L \times W}{2T(L+W)} \ge 0.66\tag{2}$$ - 3. Reference design - a. Stencil opening thickness: 100 µm - b. Stencil opening for leads: Opening to footprint ratio is 90%. Figure 13. Stencil opening dimensions Figure 14. Recommended stencil window position #### 3.2 Solder paste - 1. Use halide-free flux, qualification ROL0 according to ANSI/J-STD-004. - 2. "No clean" solder paste is recommended. - 3. Offers a high tack force to resist component movement during PCB movement. - 4. Solder paste with fine particles: powder particle size is 20-45 μm . DS11998 - Rev 2 page 7/11 #### 3.3 Placement - 1. Manual positioning is not recommended. - It is recommended to use the lead recognition capabilities of the placement system, not the outline centering - 3. Standard tolerance of ±0.05 mm is recommended. - 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages. - 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool. - 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick, and place and reflow soldering by using optimized tools. #### 3.4 PCB design preference - 1. To control the solder paste amount, the closed via is recommended instead of open vias. - 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away. ### 3.5 Reflow profile Figure 15. ST ECOPACK® recommended soldering reflow profile for PCB mounting Note: Minimize air convection currents in the reflow oven to avoid component movement. DS11998 - Rev 2 page 8/11 # 4 ESDA17P100-1U2M_Ordering information Figure 16. Ordering information scheme **Table 5. Ordering information** | Order code | Marking ⁽¹⁾ | Package | Weight | Base qty. | Delivery mode | |-----------------|------------------------|---------|--------|-----------|---------------| | ESDA17P100-1U2M | D | μQFN | 6 mg | 5000 | Tape and reel | 1. The marking can be rotated by multiples of 90° to differentiate assembly location DS11998 - Rev 2 page 9/11 ### **Revision history** Table 6. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 14-Mar-2017 | 1 | Initial release. | | 07-Feb-2023 | 2 | Updated package view, Figure 8 and Table 3. | DS11998 - Rev 2 page 10/11 #### **IMPORTANT NOTICE - READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2023 STMicroelectronics – All rights reserved DS11998 - Rev 2 page 11/11