

PLCC Series

ET-5050-BB1W-D Datasheet

High power PLCC is a surface mount, compact, high brightness LED that is built for various illumination needs. A single Cool White high power PLCC can deliver typical luminous flux of 85 lm while driving at 350mA suitable for any kind of lighting sources, including general illumination, flashlights, streetlights, spotlights, residential lighting, tube light source, freezer lighting, industrial and commercial lightings. The small physical dimension can free customers from any constrains or limitations in these fields of applications. Furthermore, the reflow-solderable nature of high power PLCC provides an easy path towards the optimum thermal management to achieve a promising reliability.

Features:

- High luminous Intensity and high efficiency
- Based on Blue/Green: InGaN, Red: AlGaInP technology
- Wide viewing angle: 120°
- Excellent performance and visibility
- Suitable for all SMT assembly methods
- IR reflow process compatible
- Environmental friendly; RoHS compliance

Typical Applications

- Signal and Symbol Luminaire
- Indoor and Outdoor Displays
- Backlighting (illuminated advertising, general lighting)
- Interior Automotive Lighting

Table of Contents

Product Nomenclature	
· LED Package Dimension and Polarity	4
· Absolute Maximum Ratings	5
· Electro-Optical Characteristic	
· Luminous Flux Characteristic	6
· Color Temperature or Dominant/Peak Wavelength Characteristic	
· Color Rendering Index Characteristics	6
• V _F Rank	
· Luminous Intensity Rank	7
• Color Bin	8
• Characteristic Curves	9
PLCC Color Spectrum	11
•Thermal Resistance	11
Reliability Test Items	12
Reflow Profile	13
Product Packing Information	15
Precaution for Use	17

Product Nomenclature

The following table describes the available color, power, and lens type. For more flux and forward voltage information, please consult the Bin Group document.

Table 1. PLCC 5050 series Nomenclature

$$\frac{E T - 5050}{x_1} \frac{W - B B}{x_2} \frac{1 W}{x_3} - \frac{D}{x_4} \frac{1}{x_5} \frac{W}{x_6} - \frac{D}{x_7}$$

X1 LED Item	X2 Package Type	X3 Emitting Color	X4 Chip Quantity	X5∼X6 Serial No.
Code Type	Code Type	Code Type	Code Type	
ET Edison TopLED	5050 5.0x5.0mm	W Cool White	B 1W	

F	X7 Feature		X8 Serial No.
Code	Туре	Code	Туре
W	White surface	D	Slug without polarity

LED Package Dimension and Polarity

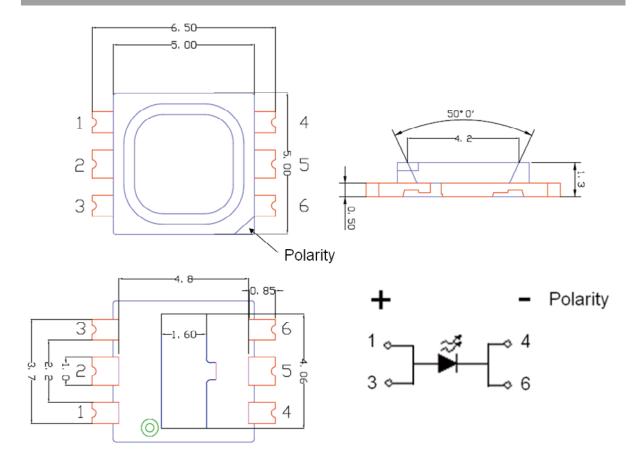


Figure 1. PLCC 5050 series Dimension, circuit diagram

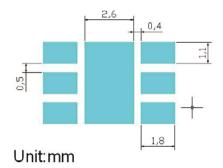


Figure 2. PLCC 5050 series recommended soldering pad

Notes

- 1. All dimensions are measured in mm.
- 2. Tolerance : ± 0.20 mm

Absolute Maximum Ratings

The following table describe absolute maximum ratings of PLCC 5050 series.

Table 2. Absolute maximum ratings for PLCC 5050 series

Parameter	Rating	Units	Symbol	
Forward Current	350	mA	I _F	
Pulse Forward Current	1000	mA	l _{pulse}	
Reverse Voltage	5	V	V_R	
LED Junction Temperature	125	°C	T,	
Operating Temperature	-30 ~ +85	°C		
Storage Temperature	-40 ~ +120	°C		
ESD Sensitivity	2,000	V	V_{B}	
Soldering Temperature		Reflow Soldering : 255~260°C/10~30sec Manual Soldering : 350°C/3sec		

Notes:

Electro-Optical Characteristic

The following table describes luminous intensity of PLCC 5050 series.

Table 3 . Electro-optical characteristic

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	V_{F}	I _F =350mA/die	2.8	-	3.8	V
Reverse Current	I_R	$V_R=5V$	-	-	10	μΑ
Viewing Angle	201/2*	I _F =350mA/die	-	120	-	deg.

Notes:

 $2\theta 1/2$ is the off-axis angle where the luminous intensity is half of the axial luminous intensity.

^{1.} The values are based on 1-die performance.

^{2.*} IFP condition: pulse width \leq 0.1msec and duty \leq 1/10.

Luminous Flux Characteristic

The following table describes luminous intensity of PLCC 5050 series.

Table 4. PLCC Luminous Flux characteristic

Power Consumption	Part Name	Color		$V_{\scriptscriptstyle F}$		Unit
1 ower consumption	rarervanie	Coloi	Min.	Тур.	Max.	Offic
1W	ET-5050W-BB1W-D	Cool White		85		lm

Notes:

Forward Voltage is measured with an accuracy of $\pm 0.1V$

Color Temperature or Dominant/Peak Wavelength Characteristic

The following table describes forward voltage of PLCC 5050 series

Table 5. PLCC color temperature or dominant/peak wavelength characteristic

Power Consumption	Part Name	Color	ССТ	/Wavelen	gth	Unit
rower consumption	rarervanie	Coloi	Min.	Тур.	Max.	Offic
1W	ET-5050W-BB1W-D	Cool White	5,000		10,000	К

Color Rendering Index Characteristics at T_J=25°C:

Table 6 . Color Rendering Index Characteristics at $T_J\!\!=\!\!25^{\circ}\!C$ for High Power PLCC series

Part Name	Color	CRI
rait Name	Coloi	Тур.
ET-5050W-BB1W-D	Cool White	68

Notes:

CRI is measured with an accuracy of ± 5

V_F Rank

Table 7. PLCC forward voltage rank for Cool white, Neutral white& Warm white

	١	/ _F	
V01	2.8-3.1	V04	3.7-4.0
V02	3.1-3.4	V05	4.0-4.3
V03	3.4-3.7	V06	4.3-4.6

Notes:

^{*} Forward voltage measurement allowance is \pm 0.1V.

Luminous Intensity Rank

Table 8 . Luminous intensity rank

Group	Min.	Max.
G	3.7	4.8
н	4.8	6.3
J	6.3	8.2
К	8.2	10.6
L	10.6	13.8
M	13.8	17.9
N	17.9	23.3
Р	23.3	30.3
Q	30.3	39.4
R	39.4	51.2
S1	51.2	58.8
S2	58.8	66.5
T1	66.5	70
T2	70	80
T3	80	86.5
U1	86.5	90
U2	90	100
U3	100	112.5
V	112.5	146.2
W	146.2	190
X	190	247.1
Υ	247.1	321.2
Z	321.2	417.5

Notes:

Luminous Intensity Measurement Allowance is \pm 10%.

Color Bin

Table 9. Color Bin V0-Y4

	0.3434	0.3320			0.3294	0.3202
V0	0.3425	0.3208		W1	0.3295	0.3105
VU	0.3295	0.3105		~~ :	0.3196	0.3013
	0.3294	0.3200			0.3186	0.3102
	0.3292	0.3313			0.3292	0.3313
V1	0.3444	0.3442		W2	0.3294	0.3202
٧.	0.3434	0.3320		VVZ	0.3186	0.3102
	0.3294	0.3200			0.3175	0.3204
	0.3292	0.3313			0.3290	0.3451
\D	0.3290	0.3451	W3	0.3292	0.3313	
V2	0.3458	0.3592		0.3175	0.3204	
	0.3444	0.3442			0.3160	0.3332
	0.3290	0.3451			0.3290	0.3451
V 3	0.3288	0.3569		W4	0.3160	0.3332
VJ	0.3469	0.3717		VV4	0.3148	0.3444
	0.3458	0.3592			0.3288	0.3569
	0.3288	0.3569			0.3148	0.3444
V4	0.3286	0.3690		W5	0.3136	0.3550
V4	0.3481	0.3856		443	0.3286	0.3690
	0.3469	0.3717			0.3288	0.3569

	0.3076	0.3108
X1	0.3174	0.3204
	0.3196	0.3013
	0.3112	0.2932
	0.3076	0.3108
X2	0.3052	0.3224
	0.3160	0.3332
	0.3175	0.3204
	0.3052	0.3224
Х3	0.3031	0.3327
Λ3	0.3148	0.3444
	0.3160	0.3332
	0.3031	0.3327
X4	0.3011	0.3422
	0.3136	0.3550
	0.3148	0.3444

Y1	0.3040	0.2850
	0.2990	0.3010
11	0.3076	0.3108
	0.3112	0.2932
	0.2990	0.3010
Y2	0.2920	0.3210
12	0.3031	0.3327
	0.3076	0.3108
	0.3040	0.2850
Y 3	0.2899	0.2703
	0.2830	0.2838
	0.2990	0.3010
Y4	0.2990	0.3010
	0.2830	0.2838
	0.2742	0.3007
	0.2920	0.3210

Notes:

Color coordinates measurement allowance is $\pm\,0.01$

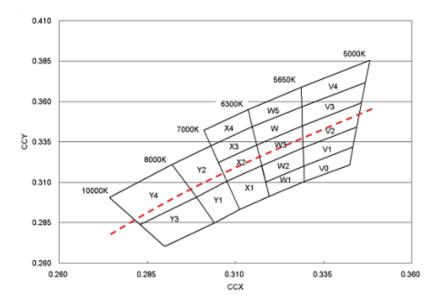


Figure 3. PLCC Chromaticity diagram

Characteristic Curves

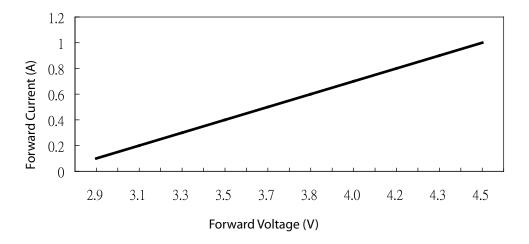


Figure 4. Forward current & forward voltage for 1W PLCC

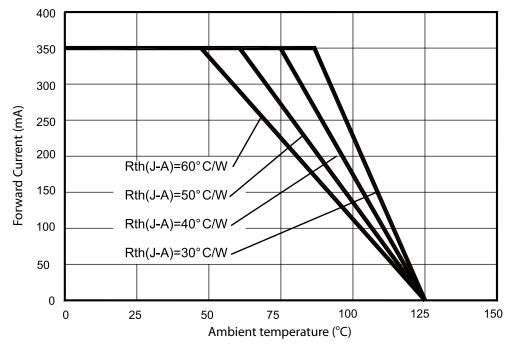


Figure 5. Operating current & ambient temperature for 1W PLCC

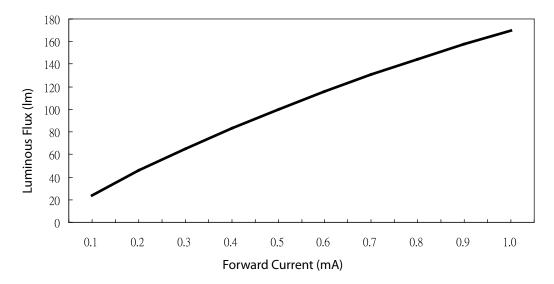


Figure 6. Forward current & relative luminous at Ta=25°C for 1W PLCC

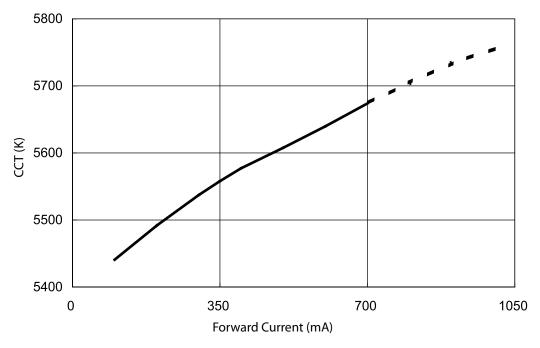


Figure 7. Forward current & CCT at $Ta = 25^{\circ}C$ for PLCC cool white

PLCC Color Spectrum

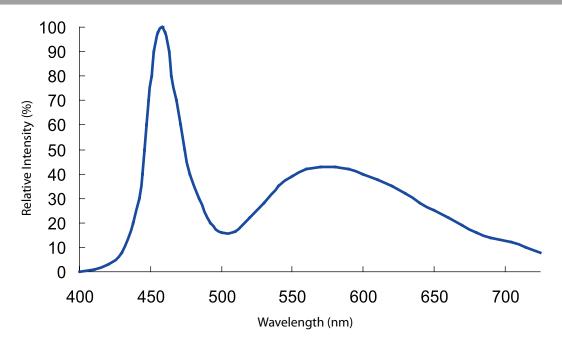


Figure 8. Color Spectrum for Cool White at a typical CCT. Dotted curve represents the standard eye response, Ta=25°C

Thermal Resistance

Table 10. Thermal Resistance

Thermal Resistance from Junction to Thermal Pad	Units
10	°C/W

Reliability Test Items

The following table describes operating life, mechanical, and environmental tests performed on PLCC 5050 series.

Table 11. Test Items

Stress Tes	Stress Conditions	Stress Duration	Failure Criteria
IR reflow	Peak temp.=255~260°C 10sec (Pre treatment 60°C/60%RH,168hrs)	3 times	No catastrophic
Room Temperature Operating Life	25 °C, I _F =DC max ^[1]	1000 hours	Note 2
High Temperature High Humidity Operating Life	85 °C / 85%RH, I _F = 150mA	1000 hours	Note 2
High Temperature Operating Life	85 °C, I _F =150mA	1000 hours	Note 2
Low Temperature Operating Life	-40 °C, I _F =DC max ^[1]	1000 hours	Note 2
High Temperature Storage Life	150 °C	1000 hours	Note 2
Low Temperature Storage Life	-40 °C	1000 hours	Note 2
Non-Operating Thermal Shock	-40°C / 125°C, 20 min dwell ≤10 sec transfer	300 cycles	No catastrophic

Notes:

1. DC max is defined to be 350mA for 1W PLCC.

2. Failure Criteria:

 V_F shifts >= 10%- Electrical failures:

- Light Output Degradation: Percentage level shift >= 50% at 1,000hrs or 500cycle - Visual failures: Broken or damaged package on lens or substrate

3. The IR reflow test can pass through JEDEC level 2a criterion.

Reflow Profile

The following reflow profile is from IPC/JEDEC J-STD-020D which provided here for reference.

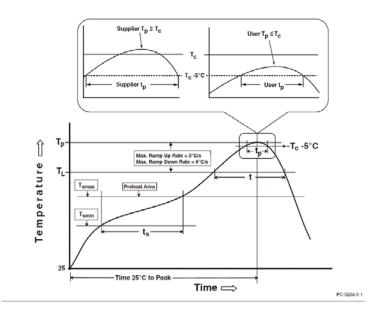


Figure 9. Reflow Profiles

Table 12. Table of Classification Reflow Profiles

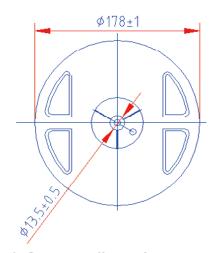
Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	100°C 150°C 60-120 seconds	150 °C 200 °C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3 °C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak package body temperature (Tp)*	230 °C ~235°C *	255 °C ~260 °C *
Classification temperature (Tc)	235°C	260 °C
Time (tp)** within 5 °C of the specified classification temperature (Tc)	20** seconds	30** seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.	6°C/second max.
Time 25°C to peak temperature	6 minutes max.	8 minutes max.

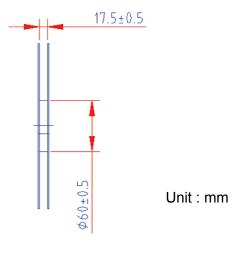
^{*} Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

1. Soldering conditions

- Reflow soldering should not be done more than twice.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.
- Repair should not be done after the LEDs have been soldered. When repair is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will be damaged by repairing or not.
- The encapsulated material of the LEDs is silicone. Therefore precautions should be taken to avoid the strong pressure on the encapsulated part.


2. Cleaning


• It is recommended to use isopropyl alcohol as a solvent to clean the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not.

Product Packaging Information

• Taping Reel

1. Common dimensions.

Item	Specification	Tol. (+/-)
W	16.00	± 0.30
Е	1.75	± 0.10
F	7.50	± 0.10
D0	1.50	± 0.10
D1	1.50	± 0.10
P0	4.00	± 0.10
P1	8.00	± 0.10
P2	2.00	± 0.10
P0 x10	40.00	± 0.20

2. Pocket & other dimensions.

Item	Specification	Tol. (+/-)
t	0.30	± 0.05
A0	5.30	± 0.10
B0	7.50	± 0.10
K0	1.60	± 0.10

3. Drawing. (Conform to EIA-481 standard)

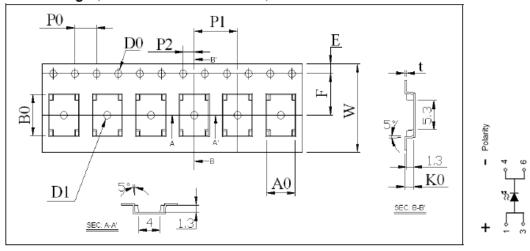


Figure 10. Taping reel dimensions

Packaging

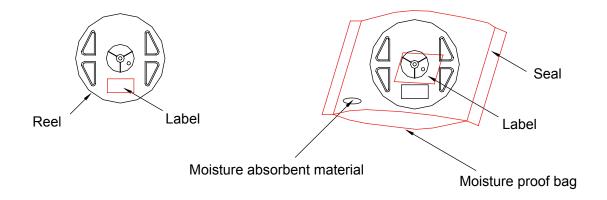


Figure 11. Taping reel dimensions

Package Label

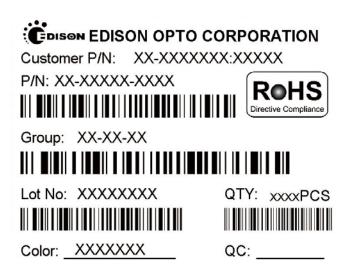


Figure 12. Package label

Table 13. Package dimensions and quantity

Item	Quantity	Total	Dimensions(mm)
Reel	1,000pcs	1,000pcs	Diameter=178
Вох	3 reels	3,000pcs	240*235*67mm
Carton	5 boxes	15,000pcs	353*254*256mm

Precaution for Use

Storage

1.1 Before opening the package

The LEDs should be kept at <40°C & <90%RH. The LEDs should be used within a year. When storing the LEDs, moisture proof package with absorbent material (silica gel) is recommended.

1.2 After opening the package

The LEDs should be kept at <=30°C & <=60%RH. The LEDs should be soldered within 4 weeks after opening the moisture proof package.

If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with moisture proof package within absorbent material (silica gel). It is also recommended to return the unused LEDs to the original moisture proof package and to seal the moisture proof package again.

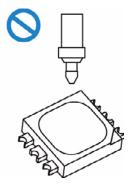
If the moisture absorbent material (silica gel) vapors or expires the expiration date, baking treatment should be performed by using the following conditions: 60°C for 20 hours.

The LEDs electrode and leadframe comprise a silver plated copper alloy. The silver surface may be affected by environments. Please avoid conditions which may cause the LEDs being corroded or discolored. The corrosion or discoloration might lower solderability or affect optical characteristics.

Please avoid rapid transition in ambient temperature, especially in high humidity environments where condensation can occur.

Static electricity

The products are sensitive to static electricity and highly taken care when handling them.


Static electricity or surge voltage will damage the LEDs. It is recommended to wear an antielectrostatic wristband or an anti-electrostatic glove when handling the LEDs.

All devices, equipments and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.

Pick and Place

Recommended conditions: Outer nozzle>ψ2.4 mm

*Avoid direct contact to the encapsulant with picking up nozzle. Failure to comply might result in pick and place processes or damage to encapsulant. In the worst cases, catastrophic failure of the LEDs due to wire deformation and/or breakage.

Notes:

All the information published is considered to be reliable. However, EDISON OPTO does not assume any liability arising out of the application or use of any product described

EDISON OPTO reserves the right to make changes at any time without notice to any products in order to improve reliability, function or design.

EDISON OPTO products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of EDISON OPTO.