

Inductive Cell Balancer IC with Balancing Current Up to 2A

DESCRIPTION

ETA3006 is an inductive cell balancer. Unlike conventional passive balancing technique, ETA3006 utilizes a control scheme with an inductor to shuffle currents between two cells until the cells are balanced. Due to the switching nature, the heat and power dissipation generated in conventional linear balance technique are greatly reduced. The balance time is also significantly reduced due to higher balancing current not being limited by package thermal dissipation.

ETA3006 consumes only 2µA ultra-low current from batteries in standby mode, extending the battery shelf time. The final balanced voltages of both cells are also highly accurate which enhances the performance and lifetime for the batteries connected in series. ETA3006 can also be used in multiple cells stacking with even number of cells. ETA3006 includes protection features similar to precondition in battery charging, that is when one cell's voltage is grossly lower than the other, the balancing current is reduced to a safe level until the lower voltage cell is charged up.

ETA3006 is available in ESOP-8 package.

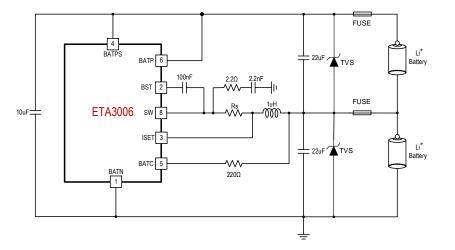
FEATURES

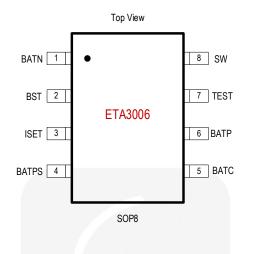
- Inductive, switching control scheme
- Up to 90% charger transfer efficiency
- Accurate balanced voltages down to 10mV
- Auto detect unbalance and auto balance
- Low sleeping supply current, 2µA
- Programmable balancing current up to 2A
- Precondition balancing current
- Battery over voltage protection
- Support small size inductor
- Pb Free, RoHS and REACH Compliant
- Halogen Free and "Green" Device

APPLICATIONS

- Multi-cells System
- Battery Pack
- Portable Equipment and Instrumentation
- Battery Backup Systems
 - E-Cigarette

TYPICAL APPLICATION




Figure 1: Typical Application Circuit

ORDERING INFORMATION

		TOP	
PART No.	PACKAGE	MARK	Pcs/Reel
ETA3006S8A	SOP8	ETA3006 YWWXL	4000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

SW, ISET Voltage to BATN0.3V to 20V
BST to SW Voltage0.3V to 6V
BATC to BATN Voltage0.3V to 20V
BATP to BATN Voltage0.3V to 20V
SW, BATC, BATP to BATN currentInternally limited
Operating Temperature Range40°C to 85°C
Storage Temperature Range55°C to 150°C
Thermal Resistance θ_{JC} θ_{JA}
SOP890°C/W
Lead Temperature (Soldering,10sec)260°C
ESD CDM (Charged Device Mode)1KV

ELECTRICAL CHARACTERISTICS

 $(T_A=25 \circ C, L = 1\mu H, CBATP-BATN=10\mu F, CBATP-BATC=22\mu F, CBATC-BATN=22\mu F, if not specified)$

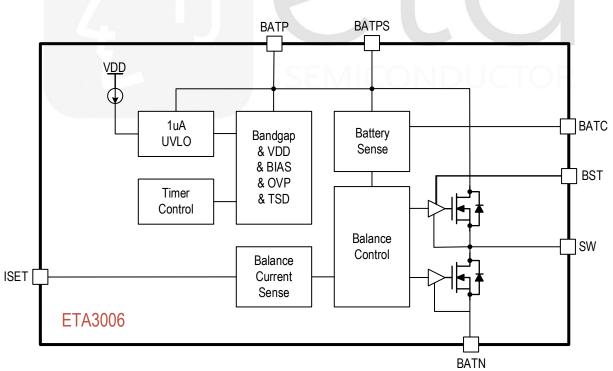
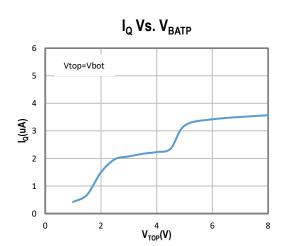
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	SE	MICONDU	JC	10	λK	
	Quiescent current	Vbatp=8V,	2			
SUPPLY	Quescent current	VBATP-VBATC=VBATC-VBATN		2		μA
ISUPPLY	Operating supply current	V _{BATP} =8V, in balancing	900			
	Operating supply current	mode, No Switching				μA
VBATP	VBATP operating voltage	VBATP-VBATC	2.8		5	V
VBATC	VBATC operating voltage	VBATC-VBATN	2.8		5	V
UVLO	Under lock-out voltage threshold	VBATP Rising		3.75		V
UVLO_HYS	UVLD hysteresis			200		mV
DETECTION						-
т	Detection interval timer	Part sleeps during	2			S
TSLEEP	Detection interval timer	T _{SLEEP}			3	
		Unbalance status is				
Tallow	Unbalance detection	accepted after TALLOW	3.85		mS	
	acknowledgment timer	when enter CHECK				
		state.				
Тснеск	Maximum unbalance checking time	IC get back to		7.68		mS

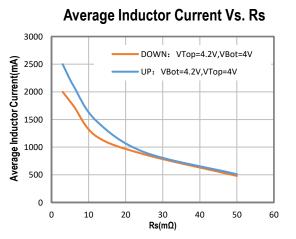
ETA3006

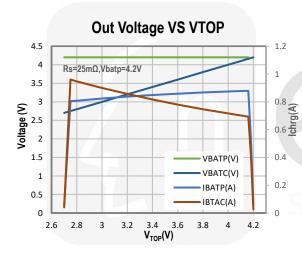
				1
		sleeping mode if don't		
		detect unbalance		
		after TCHECK		
		Maximum switching		
TDONE	Finishing Timer	skip before enter	62	mS
		sleep mode		
		Balancing only work if		
N/		OVP>VBATP>UVLO	50	
VKICK	Unbalance detection threshold	and V_{KICK} Detected	50	mV
		between 2 cells		
		Error voltage between		
Verror	Balancing Accuracy	2 cells after balancing	-10 10	mV
	<u> </u>	finish		
BALANCE CONT	ROLLER		I	
FREQ	Switching Frequency	PWM Clock	500	kHz
AVERAGE	Average Inductor current Regulation	Rs = 50mΩ	1	Α
P	High side switch on Resistance	I _{AVERAGE} =2A	40	mΩ
Rds_on	Low side switch on Resistance IAVERAGE =2A		40	mΩ
BATTERY PROTE	ECTION			
	Top Cell over voltage protection	V Dising	5	V
TOP_OVP	threshold	V(BATP-BATC) Rising	5	V
TOP_OVP_HYST	TOP_OVP hysteresis	V(BATP-BATC) Falling	350	mV
	Bottom Cell over voltage protection		E	V
BOT_OVP	threshold	V(BATC-BATN) Rising	5	
BOT_OVP_HYST	BATC_OVP hysteresis	V(BATC-BATN) Falling	350	mV
TOP_PRECOND	Top battery precondition threshold	V(BATP-BATC) Rising	2.8	V
TOP_PREC_HYST	TOP_PRECOND hysteresis	V(BATP-BATC) Falling	150	mV
DOT DDEGOND	Bottom battery precondition	N. Distant		
BOT_PRECOND	threshold	$V_{(BATC-BATN)}$ Rising	2.8	V
BOT_PREC_HYST	BOT_PRECOND hysteresis	V(BATC-BATN) Falling	150	mV
BALANCE PROT	ECTION		·	
		$R_{Sense} = 25m\Omega;$		
TOP_ILIM	Top cell drive current limit	DOWN direction:	4.5	А
		V(BATP-BATC)> V(BATC-BATN)		
		R _{Sense} = 25mΩ;		
BOT_ILIM	Lower cell drive current limit	UP direction:	4.5	А
_		V(BATP-BATC) < V(BATC-BATN)		
THERMAL SHUT	DOWN		1	1
TSD	Thermal shutdown		160	°C
TSD_HYST	TSD Hysteresis		10	°C
—	•			

PIN DESCRIPTION

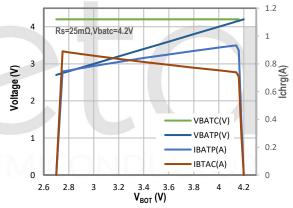
PIN#	NAME	DESCRIPTION					
1	BATN	Negative terminal sense voltage input and common Ground pin.					
2	BST	Bootstrap pin. Connect a 100nF capacitor from BST to SW.					
3	ISET	Balancing current setting pin. Connect a resistor from SW to an inductor to program the balancing current. Under an extremely high noise environment, a 1nF capacitor between ISET pin and SW pin can improve the ISET voltage stability, so a capacitor position reservation here is recommended.					
4	BATPS	Sense voltage input for top cell. Connect a 10μ F capacitor between BATPS and BATN.					
5	BATC	Sense voltage input for bottom cell. Connect a 22µF capacitor between BATC and BATN.					
6	BATP	Power input from top cell. Connect a 22μ F capacitor between BATP and BATC.					
7	TEST	Factory Use Only. Float this Pin.					
8	SW	Switching node. Connected to an inductor.					

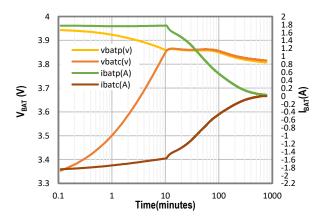




Figure 2: Functional Block Diagram



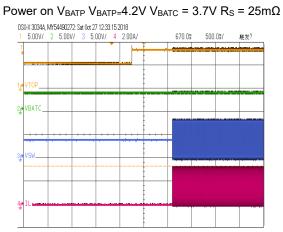
TYPICAL PERFORMANCE CHARACTERISTICS


(TA=25°C, unless otherwise specified)



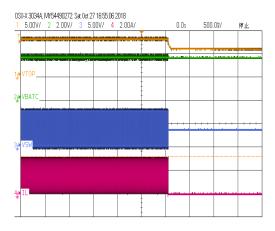
Out Voltage VS VBOT

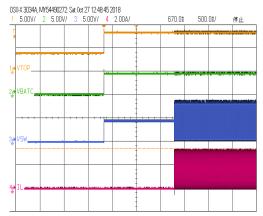
Balancing without Charger

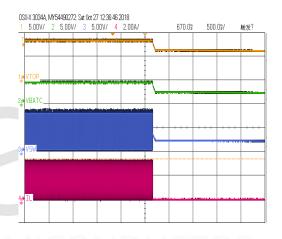


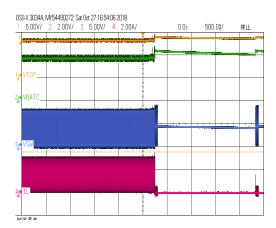
TYPICAL PERFORMANCE CHARACTERISTICS Cont'd

(TA=25°C, unless otherwise specified)

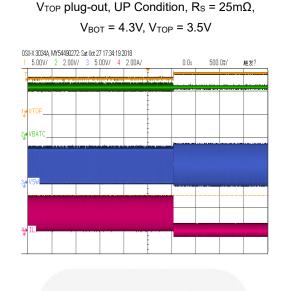

ETA3006

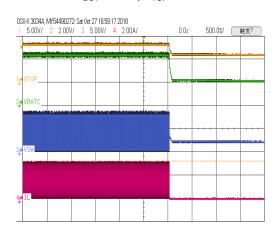

Power Off V_{BATP} V_{BATP}=4.2V V_{BATC} = 3.7V Rs = $25m\Omega$


 V_{TOP} plug-out, DOWN Condition, $R_s = 25m\Omega$, $V_{TOP} = 4.3V$, $V_{BOT} = 3.5V$


Power on V_{BATC} $V_{BATP}{=}3.7V$ V_{BATC} = 4.2V R_S = $25m\Omega$

Power on V_{BATC} V_{BATP=}3.7V V_{BATC} = 4.2V Rs = $25m\Omega$





TYPICAL PERFORMANCE CHARACTERISTICS Cont'd

(TA= 25° C, unless otherwise specified)

 V_{BOT} plug-out, UP Condition, $R_S = 50m\Omega$, $V_{BOT} = 4.3V$, $V_{TOP} = 3.5V$

FEATURE DESCRIPTION

The ETA3006 is a battery cell balancer with lossless inductive architecture based on ETA's proprietary technology. The technology is developed by ETA Solutions and any copy without ETA's agreement will be forbidden.

During operation, ETA3006 detects the difference between 2 cells then start balancing if the difference exceeds V_{KICK} . Once detected V_{KICK} , ETA3006 will discharge the higher voltage cell, store that discharging energy in the inductor then charge that energy to the lower voltage cell. ETA3006 keeps balancing until there is no difference between 2 cells.

ETA3006 technology allows balancing in either charge or discharge phases of the battery with minimized loss. Without unbalanced condition, ETA3006 operates in sleep mode with low supply current. This is an advantage to extend battery pack life time.

STATE MACHINE

The ETA3006 provides a completed state machine that controls whole operation intelligently. With this state machine, ETA3006 is equipped with self-protection from any accident during balancing. It also keeps the part stay asleep as much as possible until unbalance detected.

ETA3006 always starts from CHECK state when battery is plugged in.

Any fault always forces ETA3006 back to SLEEP State where ETA3006 burns only 2µA (typically) from BATP.

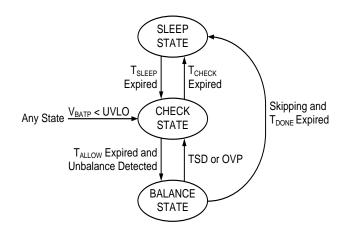
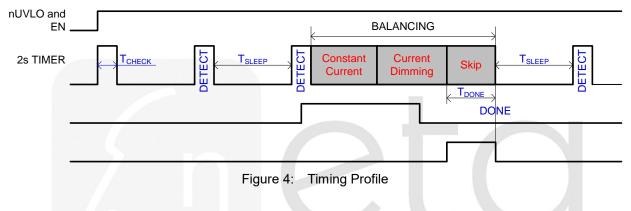



Figure 3: State Machine Diagram

The ETA3006 timing diagram for state machine is shown in following figure.

UNBALANCE DETECTION

When state is in CHECK State, ETA3006 detects V_{KICK} difference between 2 cells to enter BALANCE State. If the top cell voltage is higher, balancing will be "DOWN", meaning discharge the top cell to charge to bottom cell. And if the bottom cell voltage is higher, balancing will be "UP", meaning discharge the bottom cell to charge to top cell.

BALANCING PROFILE

ETA3006 balancing always starts with "Constant Current Regulation" phase since it is always with high voltage difference. Constant current is set by R_{ISET}.

When the detected difference at IC pin is almost zero, but due to battery equivalent series resistance, real difference is not zero, then current is not immediately zero but reduced slowly depend on battery capacitance. This condition is called "Current Dimming" phase.

When two cell voltages are equal, balancing current becomes almost zero, when this persists for a time period of T_{DONE} , the balancing finishes one cycle, and ETA3006 goes back to

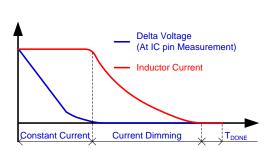


Figure 5: Balancing Profile

SLEEP State.

PROTECTION

ETA3006 provides full protection to batteries that extend the life time of the batteries:

- Short and Low Voltage Protection: When either of the cell voltage below V_{PRECOND}, maximum balancing current will be re-defined to 10% of the level set by ISET pin resistor.
- Open and Over Voltage Protection: When either of the cell voltage is greater than V_{OVP}, ETA3006 will stop balancing, and go back to SLEEPING. Part will wake up after T_{SLEEP}.
- Thermal Shutdown: When part gets hotter than 160°C, ETA3006 will stop balancing, and go back to SLEEPING. Part will wake up after T_{SLEEP}.
- > Current Limit Protection: Maximum of the peak of inductor current is allowed to 5.5A.

APPLICATION INFORMATION

BALANCING CURRENT SETTING

Balancing current is defined as the average inductance current. Average inductance current is regulated following ISET resistor configuration.

AVERAGE	R	RECOMMENDED COMPONENT					
	ISET RESSITOR	INDUCTOR	BATTERY CAPACITOR				
500mA	100mΩ						
625mA	80mΩ						
800mA	62.5mΩ	SEMIC					
1000mA	50mΩ	4	CBATP-BATN=10µF				
1250mA	40mΩ	1µH	CBATP-BATC=22µF				
1515mA	33mΩ		CBATC-BATN=22µF				
1667mA	30mΩ						
2000mA	25mΩ						

RESTRICTED CONDITIONS

ETA3006 does not allow following restricted conditions:

- Short SW to ISET
- > Exceed the absolute maximum rating of each IC pin

MULTI-CELLS BALANCING SOLUTION

It is also possible to use several ETA3006 ICs in application to balance multi-cell series battery, such as shown in the Figure 6 (n cells).

Each ETA3006 manages balancing of 2 neighbor cells. Each ETA3006 operates independently.

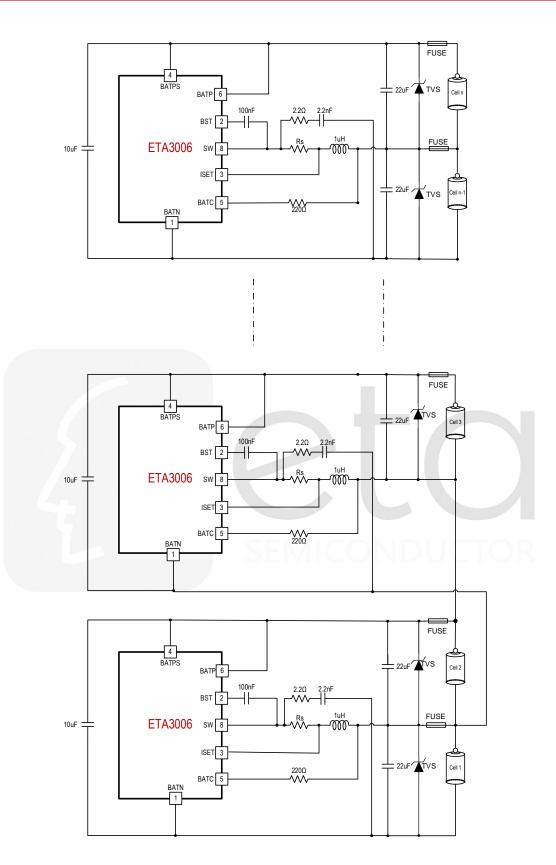


Figure 6: Multi-Cells Balancing Solution

PCB DESIGN GUIDELINE

In an UP case that bottom cell voltage is greater than top cell voltage, bottom cell becomes input and top cell becomes output of the switching regulation. In a DOWN case that top cell voltage is greater than bottom cell voltage, top cell becomes input and bottom cell becomes output. These mean parallel battery capacitors are always output capacitor or input capacitor for regulator. So please require to locate as close as possible to IC pins to minimize series resistance.

Please try to get the order of battery pins are BATP – BATC – BATN to make an easy battery connection.

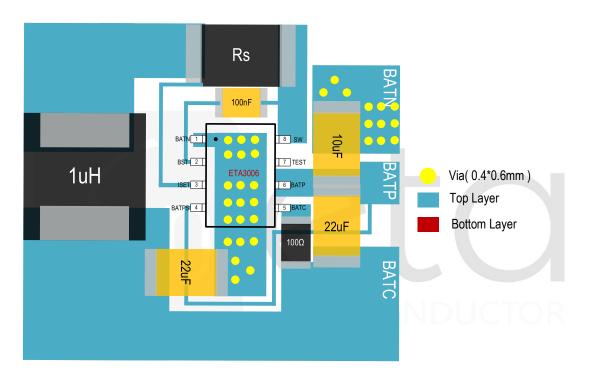
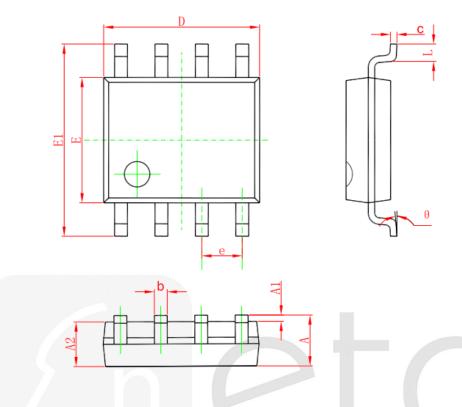
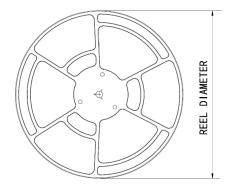
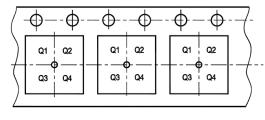



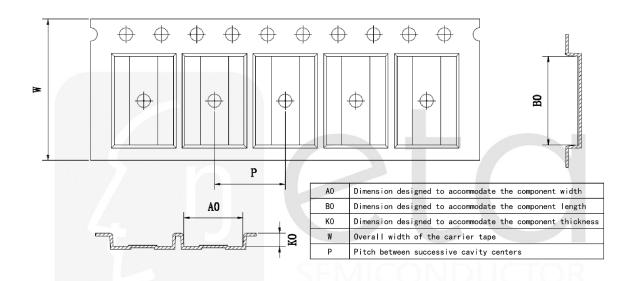
Figure 7: PCB Layout Guideline

PACKAGE OUTLINE


Package: SOP8



Cumb a l	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Nax	Min	Max	
A	1. 350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1. 350	1.550	0.053	0. 061	
b	0. 330	0.510	0.013	0. 020	
С	0.170	0. 250	0.006	0.010	
D	4. 700	5.100	0. 185	0. 200	
E	3.800	4.000	0. 150	0. 157	
E1	5.800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 05	O (BSC)	
L	0. 400	1.270	0.016	0. 050	
θ	0°	8°	0°	8°	



TAPE AND REEL INFORMATION

DIRECTION OF FEED

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P (mm)	W (mm)	Pin1 Quadrant
ETA3006S8A	SOP8	8	4000	330	12.7	6.6	5.4	2.05	8	12	Q1