

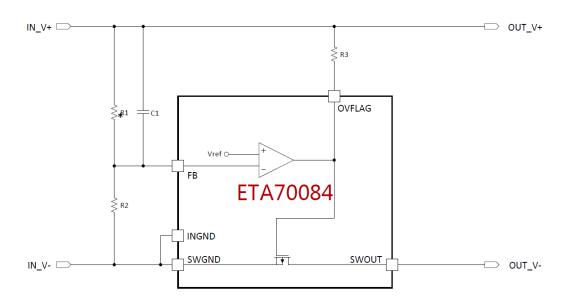
50V Over-Voltage-Protector with 43mohm On Resistance

DESCRIPTION

ETA70084 is a 50V low side Over-Voltage-Protection (OVP) IC with only 43mohm switch resistance. It employs a low side protection topology which ensure a very low on resistance together with a high protection voltage.

ETA70084 is consist of a voltage comparator, a switch driver and a 43mohm power NMOS.

ETA70084 is available in DFN2x2-6 package.

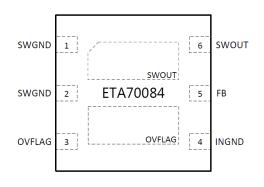

FFATURES

- Over voltage protection up to 50V
- 43mohm switch resistance
- Protection voltage adjustable
- Switch on speed adjustable

APPLICATIONS

- Tablet, MID
- Smart Phone
- Car camera
- Power bank

TYPICAL APPLICATION



^{*} R1 can be replaced by a Zener Diode

ORDERING INFORMATION	PART No.	PACKAGE	TOP MARK	Pcs/Reel
	ETA70084D2G	DFN2x2-6	De <u>YW</u>	3000

PIN CONFIGURATION

DFN2x2-6

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

FB Pin	-0.3V to 0.7V	, internall	y clamped
OVFLAG Pin			12V
SWOUT Pin			50V
Operating Temperature Ran	1ge	4	0°C to 85°
Storage Temperature Rang	e	55	°C to 150°C
Thermal Resistance	θ JC	Ө Л	A
DFN2x2-6	45	165	ºC /W
Lead Temperature (Solderi	ng, 10ssec)		260°C
ESD HBM (Human Body Mod	e)		2KV
ESD MM (Machine Mode)			200V

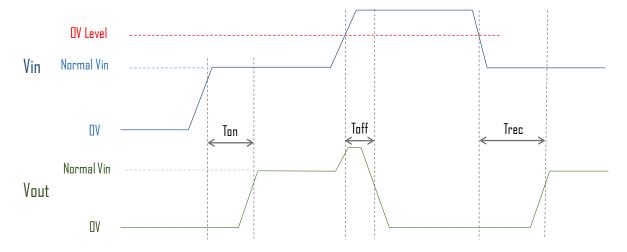
PIN DESCRIPTION

DFN2x2-6 PIN #	NAME	DESCRIPTION
1, 2	SWGND	The power ground
3	OVFLAG	Connecting a resistor to VIN, turns low when protection triggered
4	INGND	The analog ground
5	FB	Reference voltage pin for setting OVP trigger voltage
6	TUOWZ	The output terminal

DC ELECTRICAL CHACRACTERISTICS

(V_{IN} = 5V, unless otherwise specified. Typical values are at TA = 25° C.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
FB voltage (Vfb)	R1 =9.1K, R2=820ahm	0.45 0.5		0.55	V
	OV level = (R1+R2)/R2 * Vfb	U. 4 J	L.U	U.JJ	V
Switch Rdson	Vin=5V		43	50	mΩ
Switch Current	Vin=5V, Current from SWOUT to SWGND			3.5	A
SWOUT Leakage	Vswout = 50V, under 0V protection condition		0.1	1	mA

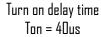


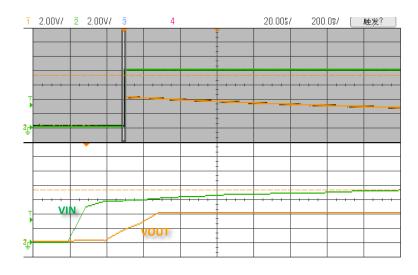
AC ELECTRICAL CHACRACTERISTICS

 $(V_{IN} = 5V$, unless otherwise specified. Typical values are at TA = 25oC.)

It is very crucial for an over-voltage-protection IC to turn off the switch as soon as possible after detecting a input voltage surge that trigger the protection level. CI is to adjust the dection and protection speed and R3 is to set the turn on speed of the protection switch.

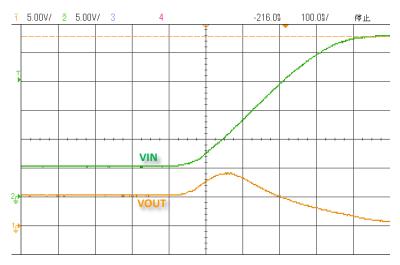
Turn on delay time (Ton), protection delay time (Toff) and output recovery time after voltage drop within Over-Voltage (DV) level (Trec) are defined as followings.




Ton : the time from 90% Vin at VIN termianl to 90% Vin at VOUT terminal

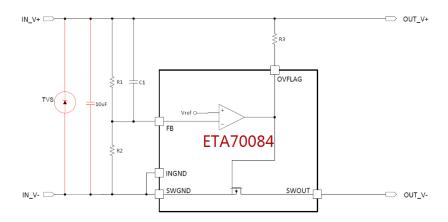
Toff: the time from OV level triggered at VIN terminal to voltage drop to 80% Vin at VOUT terminal

Trec: the time from voltage drop back to OV level at VIN terminal to voltage rise back to 90% Vin at VOUT terminal


By choosing R1=9.1K, R2=680ohm, we can set the over-voltage level at 7.2V. R3 is normally chosen to be 100K. And C1 is InF for a good OVP transient response. And followings are the response characteristics.

Turn off (protection) delay time Vin step from 5V to 27V Toff = 0.10us

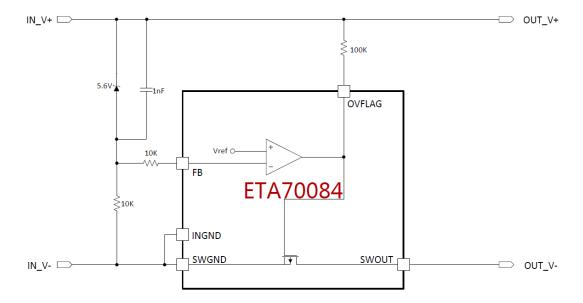
Recovery delay time Vin drop from 30V to 5V Trec = 250us



APPLICATION INFORMATION

Typical circuit for cellphone/tablet application

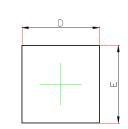
ETA70084 is ideal for input surge voltage protection, especially for cellphone and tablet application which is required to pass a 300-500V voltage surge test. With ETA70084's high voltage protection ability, one can use a normal low cost TVS and a 10uF to keep input surge voltage within 50V.

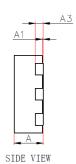

The circuit on the left shows the details

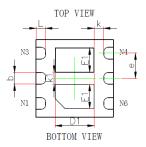
Application with OVP level defined by Zener Diode

When a low and accurate OVP level is needed, for instance, G.IV OVP for some input voltage sensitive system, a small and cheap zener diode is suggested to replace the R1 in the typical application circuit.

The OVP level then becomes the Vzener + Vfb, and if a 5.6V zener diode is used, then the OVP level is 5.6V+0.5V=6.IV. Such OVP level will have a very good temperature coefficient.


A typical and proven circuit with such zener diode is shown below, and suggested for any system with an OVP slightly above 6V.





PACKAGE OUTLINE

Package: DFN2x2-6

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	MIN.	MAX.	MIN.	MAX.	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008	0.008REF.	
D	1.900	2.100	0.075	0.083	
E	1.900	2.100	0.075	0.083	
D1	0.900	1.100	0.035	0.043	
E1	0.520	0.720	0.020	0.028	
b	0.250	0.350	0.010	0.014	
е	0.650TYP.		0.026TYP.		
k	0.200MIN.		0.008 MI N.		
k1	0.320REF		0.013REF.		
L	0.200	0.300	0.008	0.012	