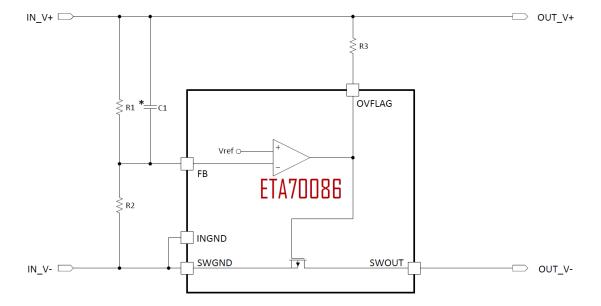
ETA70086

75V Over-Voltage-Protector with 80mohm On Resistance

DESCRIPTION

ETA70086 is a low side Over-Voltage-Protection (OVP) IC with only 80mohm switch resistance. It employs a low side protection topology which ensure a very low on resistance together with a high protection voltage.

ETA70086 is consist of a voltage comparator, a switch driver and an 80mohm power NMOS.


ETA70086 is available in DFN2x2-6 package.

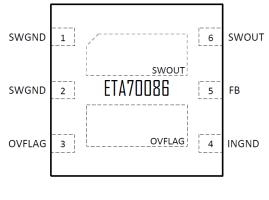
FEATURES

- Over voltage protection up to 75V
- 80mohm switch resistance
- Protection voltage adjustable
- Switch on speed adjustable

APPLICATIONS

- Tablet, MID
- Smart Phone
- Car camera
- Power bank

* R1 can be replaced by a Zener Diode


ORDERING INFORMATION	PART No.	PACKAGE	TOP MARK	Pcs/Reel
	ETA70086D2G	DFN2x2-6	Dt <u>YW</u>	3000

TYPICAL APPLICATION

www.etasolution.com

PIN CONFIGURATION

DFN2x2-6

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

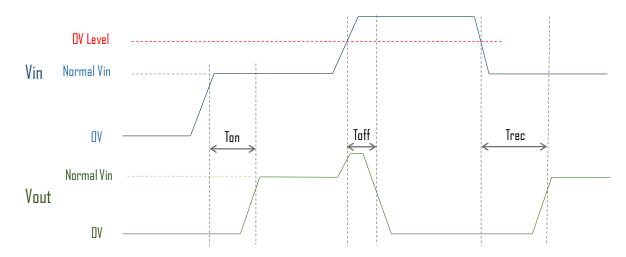
FB Pin	–0.3V to 0.7V, internally clamped			
OVFLAG Pin			12V	
SWOUT Pin			75V	
Operating Temperature R	40°C to 85°			
Storage Temperature Rai	1ge	55°(C to 150°C	
Thermal Resistance	ar A	$\boldsymbol{\theta}$ JA		
DFN2x2-6	45	165	°C /W	
Lead Temperature (Solde		260°C		
ESD HBM (Human Body Mo	ode)		2KV	
ESD MM (Machine Mode)			200V	

DFN2x2-6 PIN #	NAME	DESCRIPTION
1, 2	SWGND	The power ground
3	OVFLAG	Connecting a resistor to VIN, turns low when protection triggered
4	INGND	The analog ground
5	FB	Reference voltage pin for setting DVP trigger voltage
6	SWOUT	The output terminal

DC ELECTRICAL CHACRACTERISTICS

($V_{IN} = 5V$, unless otherwise specified. Typical values are at TA = $25^{\circ}C$.)

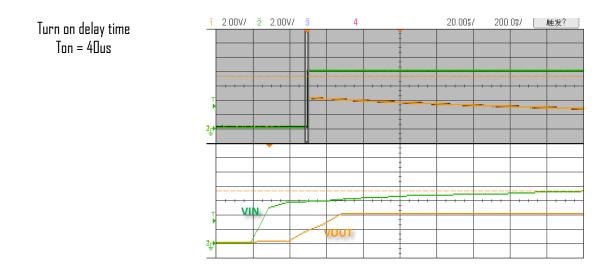
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
FB voltage (Vfb)	R1 =9.1K, R2=820ohm	0.45 0.5		0.55	V
	0V level = (R1+R2)/R2 * Vfb	U.4J	U.J	U.JJ	V
Switch Rdson	Vin=5V, I=1A		80	90	mΩ
Switch Current	Vin=5V, Current from SWOUT to SWGND			3	Α
SWOUT Leakage	Vswout = 75V, under OV protection condition		0.1	1	mA



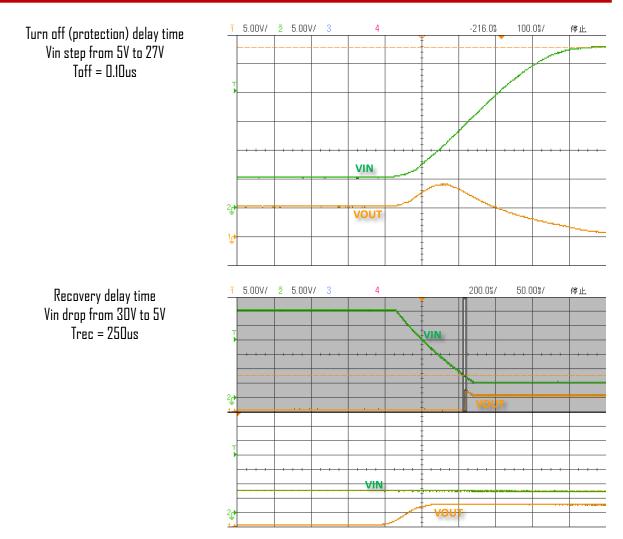
AC ELECTRICAL CHACRACTERISTICS

(V_{IN} = 5V, unless otherwise specified. Typical values are at TA = 25oC.)

It is very crucial for an over-voltage-protection IC to turn off the switch as soon as possible after detecting a input voltage surge that trigger the protection level. C1 is to adjust the dection and protection speed and R3 is to set the turn on speed of the protection switch.

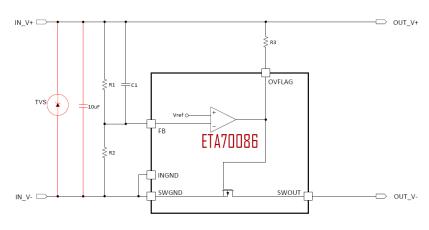

Turn on delay time (Ton), protection delay time (Toff) and output recovery time after voltage drop within Over-Voltage (DV) level (Trec) are defined as followings.

Ton : the time from 90% Vin at VIN termianl to 90% Vin at VOUT terminal


Toff: the time from OV level triggered at VIN terminal to voltage drop to 80% Vin at VOUT terminal Trec: the time from voltage drop back to OV level at VIN terminal to voltage rise back to 90% Vin at VOUT terminal

By choosing R1=9.1K, R2=680ohm, we can set the over-voltage level at 7.2V. R3 is normally chosen to be 100K. And C1 is InF for a good OVP transient response. And followings are the response characteristics.

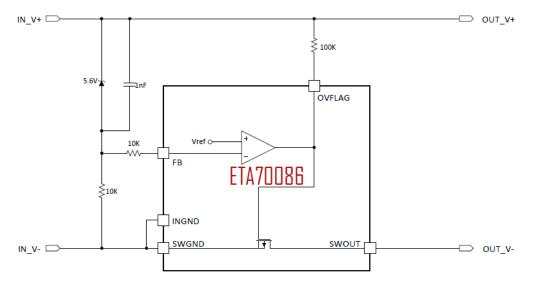
ETA70086



APPLICATION INFORMATION

Typical circuit for cellphone/tablet application

ETA70086 is ideal for input surge voltage protection, especially for cellphone and tablet application which is required to pass a 300-500V voltage surge test. With ETA70086's high voltage protection ability, one can use a normal low cost TVS and a 10uF to keep input surge voltage within 75V.

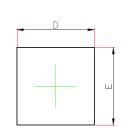

The circuit on the left shows the details

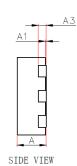
Application with OVP level defined by Zener Diode

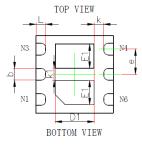
When a low and accurate DVP level is needed, for instance, 6.1V DVP for some input voltage sensitive system, a small and cheap zener diode is suggested to replace the RI in the typical application circuit.

The OVP level then becomes the Vzener + Vfb, and if a 5.6V zener diode is used, then the OVP level is 5.6V+0.5V=6.1V. Such OVP level will have a very good temperature coefficient.

A typical and proven circuit with such zener diode is shown below, and suggested for any system with an OVP slightly above 6V.


www.etasolution.com


ETA70086



PACKAGE OUTLINE

Package: DFN2x2-6

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	MIN.	MAX.	MIN.	MAX.	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008REF.		
D	1.900	2.100	0.075	0.083	
E	1.900	2.100	0.075	0.083	
D1	0.900	1.100	0.035	0.043	
E1	0.520	0.720	0.020	0.028	
b	0.250	0.350	0.010	0.014	
e	0.650TYP.		0.026TYP.		
k	0.200MIN.		0.008MIN.		
k1	0.320REF		0.013REF.		
L	0.200	0.300	0.008	0.012	