



# Small Package, High Performance, Asynchronies Boost for WLED Driver

# DESCRIPTION

The EUP2586 is a high frequency, asynchronous boost converter designed for driving white LED arrays. With integrated 0.19 $\Omega$  power switch and 2A current limit, the EUP2586 provides enough driving capability for 7"~10" LCD backlighting(13 strings of 3 or 4 LEDs each). The device uses current mode, fixed frequency architecture to regulate the LED current, which is measured through an external current sense resistor. Its low 200mV feedback voltage reduces power loss and improves efficiency.

With the built-in over-voltage protection function (OVP), the SW pin monitors the output voltage and turn off the device if an over-voltage condition is present due to an open circuit condition. Other features include soft start, over-current limiting, thermal protection and under-voltage lockout.

The EUP2586 is available in the tiny TSOT23-5 package to provide the best solution for PCB space saving and total BOM cost.

# FEATURES

- 2.6V to 5.5V Input Range
- Internal 0.19 $\Omega$ , 18V MOSFET Switch
- High Efficiency Up to 93%
- Lower Surface Temperature at ILED=180mA
- 1MHz Switching Frequency
- 2A Current Limit
- Open LED Overvoltage Protection
- Internal Soft-Start
- PWM and DC Dimming Control
- Available in TSOT23-5 Package
- RoHS Compliant and 100% Lead (Pb)-Free Halogen-Free

### **APPLICATIONS**

- 7'' to 10'' LCD Panels
- MID Backlighting
- Netbook Backlighting
- Portable Media Players
- GPS Navigation Systems

# **Typical Application Circuit**

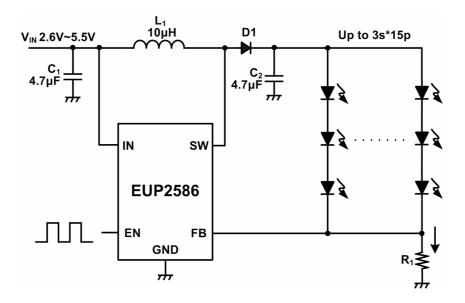
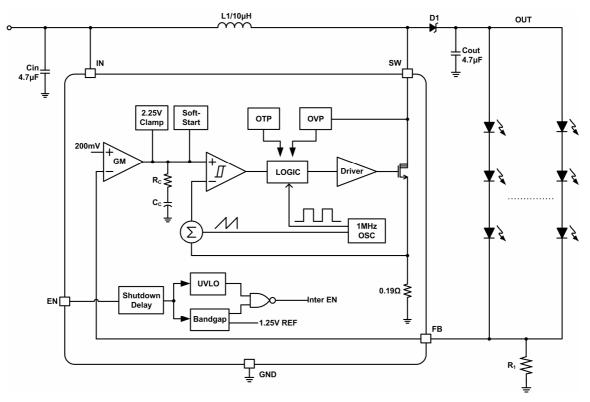




Figure 1. EUP2586 PWM Dimming Application for White LED Driver





# **Block Diagram**



## Figure 2. Block Diagram

# **Pin Configurations**

| Package Type | Pin Configurations                                                                                                            |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| TSOT23-5     | $ \begin{array}{c cccc} FB & GND & SW \\ \hline & & & \\ 3 & 2 & 1 \\ & & & \\ 4 & 5 \\ \hline & & & \\ EN & IN \end{array} $ |  |  |

# **Pin Description**

| PIN | <b>TSOT23-5</b> | DESCRIPTION                                                                                                                                                     |
|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | SW              | Switch Pin. This is the drain of the internal power switch. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.                         |
| 2   | GND             | Common Ground. Connect the pin to ground plane.                                                                                                                 |
| 3   | FB              | Feedback Pin. Reference voltage is 200mV. Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula:<br>RFB=200mV/ILED |
| 4   | EN              | Chip Enable Pin. Connect it to 1.4V or higher voltage to enable device, 0.3V or less voltage to disable device.                                                 |
| 5   | IN              | Input Supply Voltage.                                                                                                                                           |



# **Ordering Information**

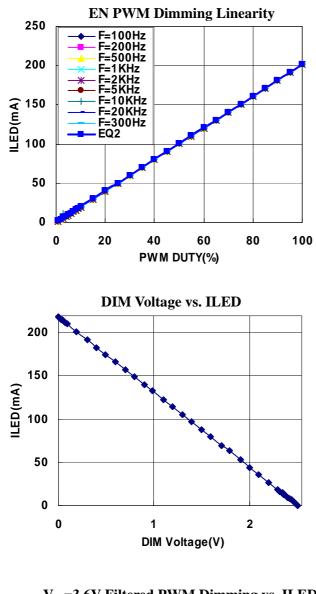
| Order Number     | Package Type         | Marking                                                 | <b>Operating Temperature Range</b> |
|------------------|----------------------|---------------------------------------------------------|------------------------------------|
| EUP2586OIR1      | TSOT23-5             | xxxxx<br>Ad00                                           | -40 °C to +85°C                    |
| EUP2586 [] [] [] | Packing<br>R: Tape & | e, Halogen Free<br>Reel<br>emperature range<br>Standard |                                    |

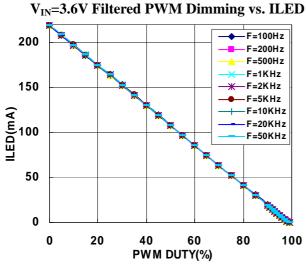


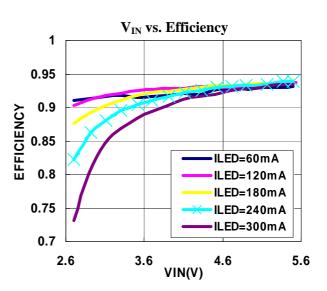


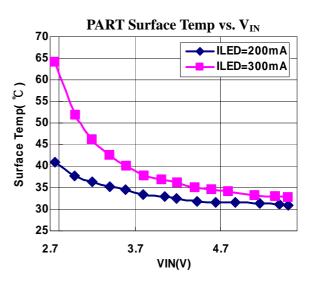
# **Absolute Maximum Ratings (1)**

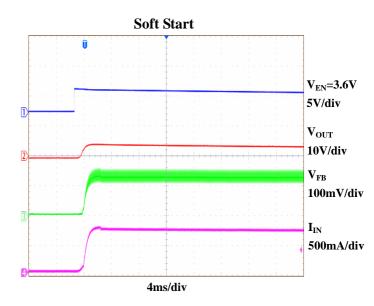
| Absolute Ma | Annum Kaungs (1)                             |                 |
|-------------|----------------------------------------------|-----------------|
|             | IN, EN, FB to GND                            | -0.3V to 6V     |
|             | SW to GND                                    | -0.3V to 18V    |
| -           | Power dissipation, $P_D @ T_A = 25^{\circ}C$ |                 |
|             | TSOT23-5                                     | 0.5W            |
| -           | Package Thermal Resistance                   |                 |
|             | TSOT23-5,θ <sub>JA</sub>                     | 200°C/W         |
| -           | Maximum Junction Temperature                 | 125°C           |
| -           | Lead Temperature (Soldering, 10sec.)         | 260°C           |
| -           | Storage Temperature Range                    | -65°C to +150°C |
| Operating C | onditions (2)                                |                 |
| •           | Operating Temperature Range                  | -40°C to +85°C  |
| •           | Supply Voltage , V <sub>IN</sub>             | 2.6V to 5.5V    |


*Note (1): Stress beyond those listed under "Absolute Maximum Ratings" may damage the device. Note (2): The device is not guaranteed to function outside the recommended operating conditions.* 


# **Electrical Characteristics**

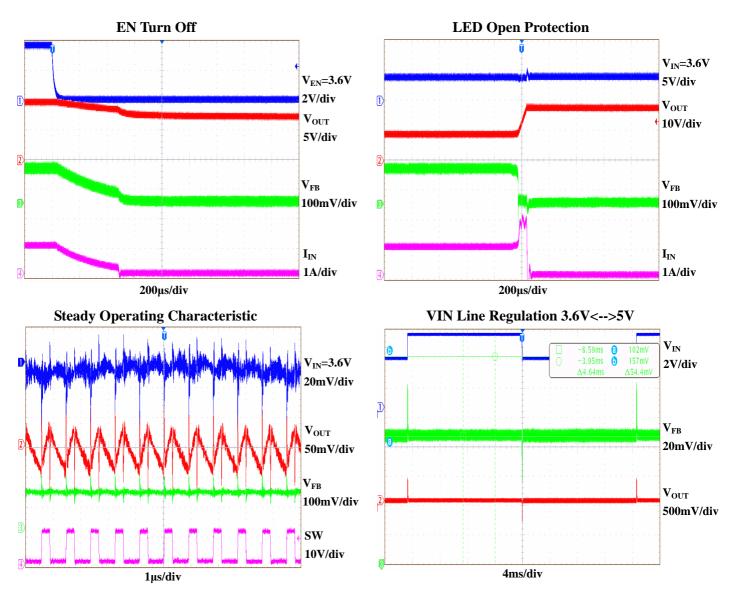

 $(V_{IN}=3.6V, V_{OUT}=12V, C_{OUT}=2.2\mu F, C_{IN}=4.7\mu F, L1=10\mu H, T_A = -40^{\circ}C \text{ to}+85^{\circ}C.$  Unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ )


| Growhal          | Parameter                  | Conditions                    | EUP2586 |      |      | TI.4 |
|------------------|----------------------------|-------------------------------|---------|------|------|------|
| Symbol           |                            |                               | Min.    | Тур. | Max. | Unit |
| UVLO             | Under Voltage Lockout      | Rising                        |         | 2.4  | 2.6  | V    |
| UVLU             | Maximum Output Voltage     | No Switching                  |         |      | 18   | V    |
| Icc1             | Supply Current             | Vcc=5.5V,Continuous Switching |         | 1.0  | 1.5  | mA   |
| Icc2             | Quiescent Current          | Vcc=5.5V,FB=1.3V,No Switching |         | 400  | 600  | μΑ   |
| Icc3             | Shutdown Current           | Vcc=5.5V,VEN<0.4V             |         | 0.1  | 1    | μΑ   |
| Oscillator       |                            |                               |         |      |      | ·    |
| Fosc             | Operation Frequency        |                               | 0.8     | 1    | 1.3  | MHz  |
| Dmax             | Maximum Duty Cycle         |                               |         | 90   |      | %    |
| Reference V      | oltage                     |                               | -       |      |      |      |
| V <sub>FB</sub>  | Feedback Voltage           |                               | 190     | 200  | 210  | mV   |
| MOSFET           |                            |                               |         |      |      |      |
| Rds(on)          | On resistance of MOSFET    |                               |         | 0.19 |      | Ω    |
| ILX              | Current Limit              |                               | 1.7     | 2.0  | 2.4  | Α    |
| Control and      | Protection                 |                               |         |      |      |      |
| V <sub>EN1</sub> | Shutdown Voltage           |                               | 0.4     | 0.7  |      | V    |
| V <sub>EN2</sub> | Enable Voltage             |                               |         | 0.7  | 1.4  | V    |
| R <sub>EN</sub>  | EN Pin Pull Low Resistance |                               |         | 1    |      | MΩ   |
| OVP              | OVP Threshold              |                               |         | 18   |      | V    |


## Typical Operating Characteristics (V<sub>IN</sub>=3.6V, L=10μH, C<sub>IN</sub>=4.7μF, C<sub>OUT</sub>=2.2μF, R<sub>FB</sub>=1.0Ω, I<sub>LED</sub>=195mA)














# Typical Operating Characteristics (continued) ( $V_{IN}$ =3.6V, L=10µH, C<sub>IN</sub>=4.7µF, C<sub>OUT</sub>=2.2µF, R<sub>FB</sub>=1.0Ω, I<sub>LED</sub>=195mA)







## **Application Information**

#### **LED Current Control**

The EUP2586 regulates the LED current by setting the Current sense resistor (R1) connecting to feedback and ground. The internal feedback reference voltage is 200mV. The LED current can be set from following equation easily.



In order to have an accurate LED current, precision resistors are preferred (1% is recommended).

Table1 shows a selection of resistors for a given current:

| ILED(mA) | $R1(\Omega)$ |
|----------|--------------|
| 60       | 3.3          |
| 120      | 1.67         |
| 180      | 1.11         |
| 240      | 0.833        |
| 300      | 0.667        |

#### **Dimming Control**

#### a. Using a PWM Signal to EN Pin

For controlling the LED brightness, the EUP2586 can perform the dimming control by applying a PWM signal to EN pin, and the PWM signal frequency range is from 100Hz to 100 KHz. The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly.

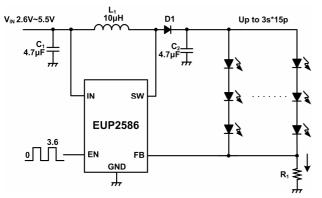



Figure 3. Direct PWM Dimming Control

#### b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in figure 3.According to the Superposition Theorem, as the DC voltage increase, the voltage contributed to VFB increases and the voltage drop on R1 decreases, i.e. the LED current decrease. For example, if the VDC range is from 0V to 2.5V, the selection of resistors in figure 4 sets dimming control of all of the LED current from 218mA to  $0mA(R1=1\Omega, R2=4.7K\Omega, R4=54K\Omega)$ .

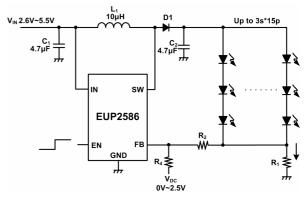



Figure 4. DC Voltage Dimming Control

In figure 4 application,  $ILED_{MAX}$  and  $ILED_{MIN}$  setting equation shown as follow:

ILED<sub>MAX</sub> (mA) = 
$$\frac{200 \times (R_2 + R_4)}{R_4 \times R_1} + \frac{200}{R_4}$$
  
ILED<sub>MIN</sub> (A)  $\approx \frac{0.2 - \frac{R_2}{R_2 + R_4} \times V_{DCMAX}}{R_1}$ 

### c. Using a Filtered PWM Signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown in the Figure 6. In this circuit, the output ripple depends on the frequency of PWM signal. For output voltage ripple (<100mV), smaller the recommended frequency of 2.5V PWM signal should be above 2 kHz. To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. According to the application circuit of figure 5, total output current is from 218mA to 0mA by adjusting the PWM duty cycle from 0% to 100% ( $R1=1\Omega$ , R2=4.7KΩ, R3=27KΩ, R4=27KΩ, C3=1µF).

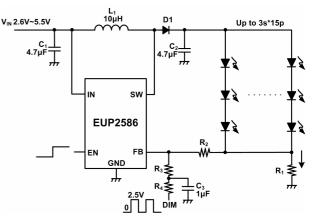



Figure 5. Filtered PWM Dimming Control





#### **Open Load Shutdown**

In the event of an "Open LED" fault condition, the EUP2586 will continue to boost the output voltage with maximum power until the output voltage reaches approximately 18V. Once the output exceeds this level, the device will cease operation until the EN pin is cycled off and on.

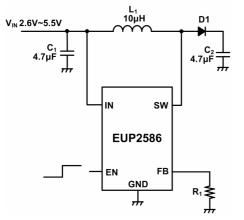



Figure 6. EUP2586 Open Protection Test Circuit

#### **Thermal Shutdown**

Thermal overload protection circuitry has been included to prevent the device from operation at unsafe junction temperatures above  $150^{\circ}$ C. In the event of a thermal overload condition the device will automatically shutdown and wait till the junction temperatures cools to  $130^{\circ}$ C before normal operation is resumed.

#### **Capacitors Selection**

A 4.7 $\mu$ F to 10 $\mu$ F ceramic input capacitor (Cin) and a 1.0 $\mu$ F to 10 $\mu$ F ceramic output capacitor (Cout) are sufficient for most applications. During Direct PWM Dimming control, a larger output capacitor will significantly reduce audio noise induced by output capacitor, and a smaller will enlarge the audio noise, a 4.7 $\mu$ F Cout is recommended. Under normal condition, a 4.7 $\mu$ F input capacitor is sufficient. For applications with higher output power, a larger input capacitor of 10 $\mu$ F may be appropriate. X5R and X7R capacitor types are ideal due to their stability across temperature range.

#### **Inductor Selection**

The recommended value of inductor for most applications is  $4.7\mu$ H to  $47\mu$ H. Small size and better efficiency are the major concerns for portable device, such as EUP2586 used for mobile phone. The inductor should have low core loss at 1MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.

#### **Schottky Diode Selection**

The current rating of the Schottky diode must exceed the peak current flowing through it. The Schottky diode performance is rated in terms of its forward voltage at a given current. In order to achieve the best efficiency, this forward voltage should be as low as possible. The response time is also critical since the driver is operating at 1MHz.

#### **Board Layout**

Careful PC board layout is required due to fast switching. All components must be placed as close to the device as possible. Keep the path between the inductor L1, diode D1, and output capacitor Cout extremely short for minimal noise and ringing. The feedback components such as the sense resistor RFB must be kept close to the FB pin to prevent noise injection on the FB pin trace. The ground return of Cin and Cout should be tied close to the GND pin. See the EUP2586 demo board layout for reference.

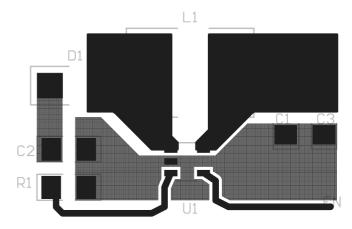
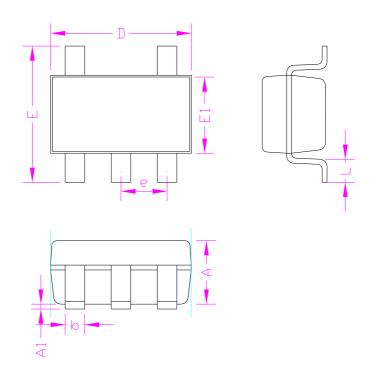




Figure 7. EUP2586 Demo Board



# **Packaging Information**





| SYMBOLS | MILLIMETERS |      | INCHES |       |  |
|---------|-------------|------|--------|-------|--|
|         | MIN.        | MAX. | MIN.   | MAX.  |  |
| А       | -           | 1.00 | -      | 0.039 |  |
| A1      | 0.00        | 0.15 | 0.000  | 0.006 |  |
| D       | 2.90        |      | 0.114  |       |  |
| E1      | 1.60        |      | 0.063  |       |  |
| Е       | 2.60        | 3.00 | 0.102  | 0.118 |  |
| L       | 0.30        | 0.60 | 0.012  | 0.024 |  |
| b       | 0.30        | 0.50 | 0.012  | 0.020 |  |
| е       | 0.95        |      | 0.037  |       |  |

