

EX1629

48-CHANNEL STRAIN GAGE

INSTRUMENT

USER’S MANUAL

P/N: 82-0109-000

Rev June 7th, 2016

VTI Instruments Corp.

2031 Main Street

Irvine, CA 92614-6509

(949) 955-1894

VTI Instruments Corp.

2 EX1629 Preface

TABLE OF CONTENTS

INTRODUCTION

Certification .. 10
Warranty ... 10
Limitation of Warranty ... 10
Restricted Rights Legend .. 10

DECLARATION OF CONFORMITY ... 11
GENERAL SAFETY INSTRUCTIONS ... 12

Terms and Symbols .. 12
Warnings ... 12

SUPPORT RESOURCES ... 14

SECTION 1 .. 15

INTRODUCTION ... 15
Overview .. 15
Features ... 15

A Complete High-Density Solution .. 15
Data Integrity... 15
Excitation Source .. 16
Programmable Bridge Configurations ... 16
Self-calibration .. 16
Confidence Measurement System ... 16
Shunt Calibration ... 16
Wideband Output .. 16
Multiple Gain Ranges .. 16
Sampling Rate ... 17
Digital Filtering ... 17
Triggering .. 17
Input Connector ... 17
TEDS Transducer Support .. 17
LXI Trigger Bus .. 17
LXI Limit Events .. 17

EX1629 Specifications ... 18
Explanation of Specifications ... 23

Sampling Rate ... 23
Bridge Excitation ... 23
Bridge Completion .. 23
Shunt Calibration ... 24
Quarter-Bridge Strain Measurement ... 24
Quarter-Bridge Strain Measurement/Full-Bridge Strain Measurement ... 24
Wideband Outputs ... 25
Confidence Measurements .. 25

Maximizing Measurement Performance ... 25
Utilize self-calibration ... 25
Utilize excitation measurement ... 26
Utilize proper strain gage wiring techniques ... 26
Compensate for lead wire desensitization error... 26
Allow for thermal stabilization of the bridge .. 27

SECTION 2 .. 29

PREPARATION FOR USE ... 29
Overview .. 29
Unpacking/Inspection ... 29
Installation Location ... 29
Connecting/Disconnecting AC Line Power .. 30

www.vtiinstruments.com

EX1629 Preface 3

Connecting/Disconnecting DC Line Power .. 30
Warm-Up Time... 30
Software Installation ... 31

LInC-U Installation ... 31
Input Connections / Wiring .. 31
Bridge Configurations .. 32
Voltage Measurement Configurations .. 35
Wideband Output Configuration .. 37
Driver Installation ... 38
Network Configuration ... 38
Network Troubleshooting ... 39

Restore the EX1629’s Default Network Settings .. 39
Determine PCs Network Settings .. 39
Set the EX1629 to Auto IP .. 41
Set the EX1629 to Static IP ... 42
Restore the Host PCs Network Settings .. 42
Using Multiple Network Cards ... 42

Preventive Maintenance.. 44

SECTION 3 .. 47

BASIC OPERATION .. 47
Introduction .. 47
Engineering Unit (EU) Conversion .. 47

Quarter-Bridge 350, Quarter-Bridge 120, Quarter-Bridge User .. 47
Half-Bridge Bending ... 48
Half-Bridge Poisson .. 49
Full-Bridge Bending .. 49
Full-Bridge Poisson ... 50
Full-Bridge Bending Poisson .. 50
Voltage .. 51
Ratiometric .. 51
Linear .. 51
Nonstandard .. 51

Completion Resistor ... 52
Input Multiplexer .. 52
Completion Resistor/Input Multiplexer Default Settings ... 53
Gage Factor / Poisson Ratio ... 53
Measurement Range / Gain .. 54
Excitation Source .. 54
Excitation Source Measurement ... 55
Unstrained Voltage Measurement .. 55
Scan List Configuration .. 56
Sampling Rate... 56
Units ... 57
Tare ... 57
Digital Filter ... 57
Triggering ... 58
Data Format .. 58
Shunt Calibration .. 58
Self-Calibration .. 59
Locking ... 60
Confidence Scan List Configuration ... 60
Configuration Storage ... 61
Wideband Output .. 61
Digital I/O ... 63
LXI Trigger Bus ... 64
TEDS Transducer Support .. 64
Reset Button ... 66

VTI Instruments Corp.

4 EX1629 Preface

SECTION 4 .. 67

TRIGGERING ... 67
Overview .. 67
Acquisition Data and FIFO ... 68
Confidence Measurement System .. 69
ADC Clock and Synchronization ... 69
LXI Limit Events .. 69
Synchronizing Multiple Instruments .. 70

SECTION 5 .. 71

WEB PAGE OPERATION ... 71
Introduction .. 71
Opening the Web Page ... 71
General Web Page Operation ... 72
Password ... 73
VTI Instruments Logo .. 73
EX1629 Strain Gage Measurement Unit .. 73
Reset ... 73
Reboot... 73
Network Configuration ... 73
Time Configuration .. 75
Upgrade .. 76

SECTION 6 .. 77

PROGRAMMING ... 77
Introduction .. 77
Default Settings .. 77
Opening an Instrument Session .. 79
Closing an Instrument Session .. 79
Configuring the Acquisition Channels ... 79

Setting Bridge Limits .. 81
Setting LXI Event Limits .. 81
Lead Wire Compensation .. 82

Configure Trigger and ADC Clock .. 82
ADC Sample Clock ... 82
ADC Synchronization ... 83
Trigger Source ... 84
Arm Source ... 84
Standalone (Single Instrument) Example Configuration ... 84
Multiple Instruments (Master/Slave) Example Configuration .. 85

Retrieving Data (Read FIFO and Streaming Data) ... 89
Read FIFO ... 89
Asynchronous Streaming Data .. 91
Calibration Data .. 95

Starting/Stopping Acquisition .. 96

SECTION 7 .. 97

FUNCTION CALLS ... 97
Introduction .. 97
Function Return Value .. 97
Function Tree .. 97

Initialize ... 97
Limit Checking .. 97
Configuration Calls ... 97
Lock Function Calls .. 98
Digital Input/Output Calls ... 98
LXI Trigger Bus Calls ... 98
Scanlist Calls ... 98

www.vtiinstruments.com

EX1629 Preface 5

Trigger System Calls ... 98
Filter Configuration Calls .. 99
Excitation Voltage Calls .. 99
EU Conversion Calls ... 99
Shunt Configuration Calls ... 100
TEDS Calls .. 100
Data Retrieval Calls .. 100
Data Retrieval Calls - Advanced ... 100
Self-Calibration Calls .. 100
Internal Calibration Source Calls .. 100
Utility Function Calls .. 100
Lead Wire Calls ... 101
Calibration File Query ... 101
Close .. 101

Alphabetical Function Set ... 102
Sample Function Definition .. 106
EX1629 Function Set .. 107

vtex1629_abort .. 107
vtex1629_allow_all_channels ... 108
vtex1629_break_lock .. 109
vtex1629_check_lock .. 110
vtex1629_clear_stored_config .. 111
vtex1629_close .. 112
vtex1629_compare_digests ... 113
vtex1629_dio_clear_event ... 114
vtex1629_dio_clear_events_all ... 115
vtex1629_disable_logging ... 116
vtex1629_disable_streaming_data .. 117
vtex1629_enable_logging ... 118
vtex1629_enable_streaming_data ... 119
vtex1629_enable_streaming_dataEx ... 121
vtex1629_erase_teds_data ... 122
vtex1629_error_message ... 123
vtex1629_error_query ... 124
vtex1629_findinstr .. 125
vtex1629_get_arm_count .. 126
vtex1629_get_arm_delay .. 127
vtex1629_get_arm_source ... 128
vtex1629_get_bridge_limit ... 130
vtex1629_get_bridge_limit_enabled ... 132
vtex1629_get_cal_coefficients .. 133
vtex1629_get_cal_file ... 136
vtex1629_get_cal_file_size ... 138
vtex1629_get_cal_source .. 139
vtex1629_get_completion_resistor .. 140
vtex1629_get_conf_scanlist .. 141
vtex1629_get_confidence_limit .. 142
vtex1629_get_confidence_reporting_mode .. 144
vtex1629_get_current_config_digest .. 145
vtex1629_get_dio_bank0_direction .. 146
vtex1629_get_dio_bank0_pullup .. 147
vtex1629_get_dio_bank1_direction .. 148
vtex1629_get_dio_bank1_pullup .. 149
vtex1629_get_dio_config_events .. 150
vtex1629_get_dio_input .. 151
vtex1629_get_dio_output .. 152
vtex1629_get_dsp_version .. 153

VTI Instruments Corp.

6 EX1629 Preface

vtex1629_get_EU_conversion .. 154
vtex1629_get_euconv_dynamic_excitation_enabled .. 155
vtex1629_get_euconv_excitation .. 156
vtex1629_get_excitation ... 157
vtex1629_get_excitation_enabled ... 158
vtex1629_get_fifo_count ... 159
vtex1629_get_gain .. 160
vtex1629_get_gauge_factor .. 161
vtex1629_get_half_bridge_lead_wire_desensitization .. 162
vtex1629_get_IIR_filter_configuration ... 163
vtex1629_get_input_multiplexer ... 165
vtex1629_get_instrument_serial_number ... 166
vtex1629_get_lead_wire_resistance .. 167
vtex1629_get_linearscaling_configuration ... 168
vtex1629_get_lxi_limit_event_enabled .. 169
vtex1629_get_lxi_limit_event_latch ... 170
vtex1629_get_lxibus_configuration .. 171
vtex1629_get_lxibus_input ... 173
vtex1629_get_lxibus_output ... 174
vtex1629_get_pattern_arm_configuration ... 175
vtex1629_get_pattern_trig_configuration ... 177
vtex1629_get_poisson_ratio .. 179
vtex1629_get_sample_clock_source ... 180
vtex1629_get_sample_count ... 181
vtex1629_get_sample_frequency .. 182
vtex1629_get_scanlist ... 183
vtex1629_get_selfcal_status .. 184
vtex1629_get_settling_time .. 185
vtex1629_get_shunt_enabled .. 186
vtex1629_get_shunt_source .. 187
vtex1629_get_shunt_value .. 188
vtex1629_get_stored_config_digest .. 189
vtex1629_get_strain_units ... 190
vtex1629_get_synch_source ... 191
vtex1629_get_tare ... 192
vtex1629_get_teds_data .. 193
vtex1629_get_trigger_count .. 194
vtex1629_get_trigger_delay .. 195
vtex1629_get_trigger_source .. 196
vtex1629_get_trigger_timer .. 197
vtex1629_get_unstrained_voltage ... 198
vtex1629_identify_sensor ... 199
vtex1629_init ... 200
vtex1629_load_stored_config ... 201
vtex1629_lock ... 202
vtex1629_measure_confidence ... 203
vtex1629_measure_excitation_voltage ... 205
vtex1629_measure_lead_wire_resistance ... 207
vtex1629_measure_unstrained_voltage... 209
vtex1629_read_fifo ... 210
vtex1629_read_fifoEx ... 212
vtex1629_read_teds_MLAN ... 214
vtex1629_read_teds_URN .. 215
vtex1629_reset .. 216
vtex1629_reset_fifo ... 217
vtex1629_reset_tare .. 218
vtex1629_reset_trigger_arm .. 219

www.vtiinstruments.com

EX1629 Preface 7

vtex1629_revision_query .. 220
vtex1629_self_cal_clear .. 221
vtex1629_self_cal_clear_stored .. 222
vtex1629_self_cal_get_status .. 223
vtex1629_self_cal_init .. 224
vtex1629_self_cal_is_running ... 226
vtex1629_self_cal_is_stored ... 227
vtex1629_self_cal_load ... 228
vtex1629_self_cal_store .. 229
vtex1629_self_test ... 230
vtex1629_self_test_get_status ... 231
vtex1629_self_test_init ... 232
vtex1629_send_dio_pulse ... 233
vtex1629_send_lxibus_pulse ... 234
vtex1629_set_arm_count ... 235
vtex1629_set_arm_delay ... 236
vtex1629_set_arm_source ... 237
vtex1629_set_bridge_limit .. 238
vtex1629_set_bridge_limit_enabled .. 240
vtex1629_set_cal_out .. 241
vtex1629_set_cal_source ... 242
vtex1629_set_completion_resistor .. 243
vtex1629_set_conf_scanlist ... 244
vtex1629_set_confidence_limit ... 245
vtex1629_set_confidence_reporting_mode ... 247
vtex1629_set_dio_bank0_direction ... 248
vtex1629_set_dio_bank0_pullup ... 249
vtex1629_set_dio_bank1_direction ... 250
vtex1629_set_dio_bank1_pullup ... 251
vtex1629_set_dio_config_events .. 252
vtex1629_set_dio_output .. 254
vtex1629_set_EU_conversion ... 255
vtex1629_set_euconv_dynamic_excitation_enabled .. 256
vtex1629_set_euconv_excitation .. 257
vtex1629_set_excitation .. 258
vtex1629_set_excitation_enabled.. 259
vtex1629_set_gain ... 260
vtex1629_set_gauge_factor ... 261
vtex1629_set_half_bridge_lead_wire_desensitization .. 262
vtex1629_set_IIR_filter_configuration ... 263
vtex1629_set_input_multiplexer ... 265
vtex1629_set_lead_wire_resistance .. 266
vtex1629_set_linearscaling_configuration .. 267
vtex1629_set_lxi_limit_event_enabled ... 268
vtex1629_set_lxi_limit_event_latch .. 269
vtex1629_set_lxibus_configuration .. 270
vtex1629_set_lxibus_output .. 272
vtex1629_set_pattern_arm_configuration ... 273
vtex1629_set_pattern_trig_configuration .. 275
vtex1629_set_poisson_ratio .. 277
vtex1629_set_sample_clock_source ... 278
vtex1629_set_sample_count ... 279
vtex1629_set_sample_frequency .. 280
vtex1629_set_scanlist .. 281
vtex1629_set_shunt_enabled ... 282
vtex1629_set_shunt_source ... 283
vtex1629_set_shunt_value .. 285

VTI Instruments Corp.

8 EX1629 Preface

vtex1629_set_strain_units ... 286
vtex1629_set_synch_source .. 287
vtex1629_set_tare .. 289
vtex1629_set_teds_data... 290
vtex1629_set_trigger_count .. 291
vtex1629_set_trigger_delay .. 292
vtex1629_set_trigger_source ... 293
vtex1629_set_trigger_source_timer .. 294
vtex1629_set_trigger_timer ... 295
vtex1629_set_unstrained_voltage ... 296
vtex1629_soft_arm .. 297
vtex1629_soft_synch ... 298
vtex1629_soft_trig .. 299
vtex1629_store_current_config ... 300
vtex1629_trig_init ... 301
vtex1629_unlock ... 302
vtex1629_write_teds_MLAN .. 303
vtex1629_zero_cal .. 304

Error Messages ... 305

APPENDIX A ... 313

MULTI-INSTRUMENT OPERATION ... 313
Introduction .. 313

Distributing Sample Clock and Synchronization Signals .. 313
Triggering .. 316

APPENDIX B ... 317

EX1629 FILTERING .. 317
Introduction .. 317

Analog Anti-Aliasing Filter ... 317
Digital Filters .. 318

CIC Filter .. 319
DSP Filters .. 319
Group Delay .. 320

Transformations .. 321
The Bilinear Transform ... 321
The Matched Z-transform ... 322

APPENDIX C ... 323

MICROLAN (MLAN) PRIMER .. 323
Introduction .. 323
Programming MLAN ... 324
DS2430 Commands .. 327

WRITE_SCRATCHPAD_2430 .. 327
READ_SCRATCHPAD_2430 .. 329
COPY_SCRATCHPAD_2430 .. 330
READ_MEMORY_2430 .. 331
WRITE_AND_COPY_SCRATCHPAD_2430 ... 332

DS2431 Commands .. 333
WRITE_SCRATCHPAD_2431 .. 333
READ_SCRATCHPAD_2431 .. 335
COPY_SCRATCHPAD_2431 .. 336
READ_MEMORY_2431 .. 337
WRITE_AND_COPY_SCRATCHPAD_2431 ... 338

www.vtiinstruments.com

EX1629 Preface 9

Additional Notes ... 340
Checksums .. 340
Sending & Receiving .. 340
Printing Packets ... 341
CRC Checking... 342
Version Information .. 342

APPENDIX D ... 343

ONBOARD MEMORY ... 343
Onboard Memory and Clearing Procedure ... 343

INDEX ... 345

VTI Instruments Corp.

10 EX1629 Preface

CERTIFICATION

VTI Instruments Corp. (VTI) certifies that this product met its published specifications at the time of shipment from

the factory. VTI further certifies that its calibration measurements are traceable to the United States National

Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that

organization’s calibration facility, and to the calibration facilities of other International Standards Organization

members.

WARRANTY

The product referred to herein is warranted against defects in material and workmanship for a period of one year

from the receipt date of the product at customer’s facility. The sole and exclusive remedy for breach of any warranty

concerning these goods shall be repair or replacement of defective parts, or a refund of the purchase price, to be

determined at the option of VTI.

For warranty service or repair, this product must be returned to a VTI Instruments authorized service center. The

product shall be shipped prepaid to VTI and VTI shall prepay all returns of the product to the buyer. However, the

buyer shall pay all shipping charges, duties, and taxes for products returned to VTI from another country.

VTI warrants that its software and firmware designated by VTI for use with a product will execute its programming

when properly installed on that product. VTI does not however warrant that the operation of the product, or

software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The warranty shall not apply to defects resulting from improper or inadequate maintenance by the buyer, buyer-

supplied products or interfacing, unauthorized modification or misuse, operation outside the environmental

specifications for the product, or improper site preparation or maintenance.

VTI Instruments Corp. shall not be liable for injury to property other than the goods themselves. Other than the

limited warranty stated above, VTI Instruments Corp. makes no other warranties, express or implied, with respect to

the quality of product beyond the description of the goods on the face of the contract. VTI specifically disclaims the

implied warranties of merchantability and fitness for a particular purpose.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the

Rights in Technical Data and Computer Software clause in DFARS 252.227-7013.

VTI Instruments Corp.

2031 Main Street

Irvine, CA 92614-6509 U.S.A.

www.vtiinstruments.com

EX1629 Preface 11

D E C L A R A T I O N O F C O N F O R M I T Y
Declaration of Conformity According to EN ISO/IEC 17050-1:2004

MANUFACTURER’S NAME VTI Instruments Corporation

MANUFACTURER’S ADDRESS 2031 Main Street

 Irvine, California 92614-6509

PRODUCT NAME 48-Channel Strain Gage Instrument

MODEL NUMBER(S) EX1629

PRODUCT OPTIONS All

PRODUCT CONFIGURATIONS All

VTI Instruments declares that the aforementioned product conforms to the requirements of the

Low Voltage directive (European Council directive 2014/35/EU, dated 22 July 1993) and the

Electromagnetic Compatibility directive (European Council directive 2014/30/EU; generally

referred to as the EMC directive). In substantiation, the products were tested and/or evaluated to

the standards shown below:

SAFETY EN61010-1:2010

EMC EN61326-1:2013

 EN55011 Class A Group 1

 EN61000-4-2

 EN61000-4-3

 EN61000-4-4

 EN61000-4-5

 EN61000-4-6

 EN61000-4-8

 EN61000-4-11

 CISPR 22

June 2016

 Steve Mauga, QA Manager

VTI Instruments Corp.

12 EX1629 Preface

GENERAL SAFETY INSTRUCTIONS

Review the following safety precautions to avoid bodily injury and/or damage to the product.

These precautions must be observed during all phases of operation or service of this product.

Failure to comply with these precautions, or with specific warnings elsewhere in this manual,

violates safety standards of design, manufacture, and intended use of the product.

Service should only be performed by qualified personnel.

TERMS AND SYMBOLS

These terms may appear in this manual:

WARNING Indicates that a procedure or condition may cause bodily injury or death.

CAUTION Indicates that a procedure or condition could possibly cause damage to

equipment or loss of data.

These symbols may appear on the product or in the manual:

ATTENTION - Important safety instructions

Indicates hazardous voltage.

Frame or chassis ground

Indicates that the product was manufactured after August 13, 2005. This mark is

placed in accordance with EN 50419, Marking of electrical and electronic

equipment in accordance with Article 11(2) of Directive 2002/96/EC (WEEE).

End-of-life product can be returned to VTI by obtaining an RMA number. Fees

for take-back and recycling will apply if not prohibited by national law.

WARNINGS

Follow these precautions to avoid injury or damage to the product:

Use Proper Power Cord The power cable provided with this instruments meets the required

regulatory and statutory safety standards as indicated by this

product’s declaration of conformity. VTI recommends that the

power cord provided be used with the instrument that it is provided

with. If a different power cord is must to be used, however, it is the

responsibility of the user to select a power cord that meets any and

all regulatory and statutory requirements for their industry and

country.

Use Proper Power Source To avoid electrical overload, electric shock, or fire hazard, do not

use a power source that applies other than the specified voltage.

www.vtiinstruments.com

EX1629 Preface 13

Use Proper Fuse To avoid fire hazard, only use the type and rating fuse specified for

this product.

Avoid Electric Shock To avoid electric shock or fire hazard, do not operate this product

with the covers removed. Do not connect or disconnect any cable,

probes, test leads, etc. while they are connected to a voltage source.

Remove all power and unplug unit before performing any service.

Service should only be performed by qualified personnel.

Ground the Product This product is grounded through the grounding conductor of the

power cord. To avoid electric shock, the grounding conductor must

be connected to earth ground.

Operating Conditions To avoid injury, electric shock or fire hazard:

 - Do not operate in wet or damp conditions.

 - Do not operate in an explosive atmosphere.

 - Operate or store only in specified temperature range.

 - Provide proper clearance for product ventilation to prevent

overheating.

 - DO NOT operate if any damage to this product is suspected.

Product should be inspected or serviced only by qualified

personnel.

Improper Use The operator of this instrument is advised that if the equipment is

used in a manner not specified in this manual, the protection

provided by the equipment may be impaired.

Conformity is checked by inspection.

VTI Instruments Corp.

14 EX1629 Preface

SUPPORT RESOURCES

Support resources for this product are available on the Internet and at VTI Instruments customer

support centers.

VTI Instruments Corp.

World Headquarters

VTI Instruments Corp.

2031 Main Street

Irvine, CA 92614-6509

Phone: (949) 955-1894

Fax: (949) 955-3041

VTI Instruments

Cleveland Instrument Division

5425 Warner Road

Suite 13

Valley View, OH 44125

Phone: (216) 447-8950

Fax: (216) 447-8951

AMETEK Instruments Pvt. Ltd. India

4th Floor, Block A,

Divyashree NR Enclave,

EPIP Industrial Area,

Whitefield,

Bangalore – 560066 INDIA

Phone: +91 80 6782 3200

Fax: +91 80 6782 3232

Technical Support

Phone: (949) 955-1894

Fax: (949) 955-3041

E-mail: support@vtiinstruments.com

Visit http://www.vtiinstruments.com for worldwide support sites and service plan information.

www.vtiinstruments.com

EX1629 Introduction 15

 SECTION 1

INTRODUCTION

OVERVIEW

The EX1629 is a 48-channel high-performance strain gage measurement instrument. Its

combination of measurement performance and integrity, configuration flexibility, package density,

and network connectivity make it the most powerful, yet easy-to-use, instrument of its kind. The

EX1629 is a complete, self-contained strain measurement system that communicates over

Ethernet. Unlike other data acquisition offerings in its class, the EX1629 offers a tightly integrated

solution that frees the user from the complexity of marrying terminal blocks, signal conditioning

cards, digitizer, excitation source, and chassis together.

FEATURES

A Complete High-Density Solution

The EX1629 provides 48 channels of strain conditioning, bridge completion, and excitation in a

single 19-inch rack-mount enclosure. Its density and integration simplify the task of assembling a

test station. Most applications require only the simple connection of power, Ethernet

communication, and input connections. Moreover, test consistency and reliability is greatly

increased because its base configuration requires no accessory modules or other equipment to be

connected or cabled together.

The design of the EX1629 provides full configuration flexibility, with all bridge completion and

excitation source configurations set programmatically. There is no need to manually reconfigure

hardware to make measurement changes.

The EX1629 can operate independently or, for large data acquisition applications, multiple

instruments can be synchronized via an external trigger bus. This design allows for numerous units

to be controlled by a single host computer by utilizing a programmable master-slave relationship.

Data Integrity

The design of the EX1629 placed paramount importance on maintaining data integrity under all

measurement conditions. Each input channel is an independent measurement system, with discrete

signal conditioning circuitry, excitation source, and 24-bit ADC. There is no sharing of source and

measurement circuitry or sampling bandwidth among input channels. This makes each channel’s

performance completely insensitive to the state of all other channels, whether they are in normal

operation, shorted, or overloaded.

Each channel is individually protected against shorts to ground, across the gage, or to another

gage, as well as overvoltage. Trifilar input transformers provide superior high-frequency common

mode noise rejection. Finally, an analog filter provides anti-alias protection for dynamic

applications.

VTI Instruments Corp.

16 EX1629 Introduction

Excitation Source

The EX1629 features bridge excitation, programmable and regulated on a per channel basis. The

positive and negative excitation voltages are independently programmed from 0 V to +8 V and

0 V to -8 V, respectively, with current capability of 50 mA per channel. This programming

independence provides the flexibility of balanced or imbalanced excitation. Finally, remote sense

lines on each input connector can be employed for improved half-bridge and full-bridge

performance.

Programmable Bridge Configurations

Complete bridge configuration support is selectable under program control on a per channel basis.

Options include full, half, quarter120, quarter350, and quarterUser bridges. Moreover, a high

impedance voltage mode provides direct voltage measurements up to ±15 V.

Self-calibration

In order to deliver high measurement accuracy over a wide ambient operating temperature range,

the EX1629 provides the ability to perform an instrument self-calibration. During self-calibration,

the input signal conditioning paths are disconnected from the input jacks and connected instead to

a calibration bus that is driven by an internal calibration source. Through measurement of the

conditioning paths at multiple calibration source points, software compensation for circuitry drift

since the last full calibration is conducted. This provides a significant accuracy improvement

without the burden of connecting external equipment. Moreover, the self-calibration process

completes quickly and does not require removal of the actual input connections, making it

convenient to run often.

Confidence Measurement System

In addition to the main bridge measurement path, the EX1629 provides a unique, secondary

measurement system that operates in parallel. This “confidence” measurement system provides the

key bridge parameters of excitation voltage, excitation current, and common mode voltage and can

provide verification of the integrity of the bridge and cable connections. Because the confidence

system employs its own ADC, it has no effect on the sampling characteristics of the main bridge

input.

Shunt Calibration

The traditional shunt calibration process is supported to ensure correct bridge performance. Each

input channel provides a unique, precision 55 kΩ resistor that can be programmatically connected

locally for quarter-bridge shunting or remotely for full- or half-bridge shunting. Moreover, an

external resistor may be connected into each of three front panel connectors, one for each group of

16 input channels. Similarly, this front panel resistor may be programmatically connected locally

or remotely.

Wideband Output

Each channel of the EX1629 has a high-performance analog wideband buffered output that can be

connected to a high-speed digitizer for measuring structural vibration levels. The wideband

outputs are accessible on the rear panel of the instrument via three 44-pin D-Sub connectors.

Multiple Gain Ranges

Each channel is independently programmable with a signal conditioning gain of 1, 10, or 100.

This provides application flexibility to make high resolution strain measurements as well as direct

voltage measurements.

www.vtiinstruments.com

EX1629 Introduction 17

Sampling Rate

The EX1629 can be configured for a sampling rate from 1 Sa/s to 10000 Sa/s in 30 discrete

settings, regardless of the number of channels included in the scan list. This permits the tailoring

of the data load to the dynamic requirements of the test application. If the number of channels are

limited, however, a sample rate of 25000 Sa/s may be achieved.

Digital Filtering

Each input provides a programmable digital filter with selectable type, order, and cut-off

frequency. This provides the flexibility to customize the measurement response to the dynamic

and noise rejection requirements of the application.

Triggering

The EX1629 supports a full function trigger model with a separate arm source and trigger source

event structure. Trigger and arm source events can be independently programmed from a variety

of sources including Immediate, Timer, Digital I/O, and the Trigger Bus.

Input Connector

The EX1629 features a standard RJ-45 telecom connector for each input channel. Not only are

these connectors reliable, but low-cost construction of custom length cables is also readily

available. Reconfiguration or replacement of strain gage connections is as easy as connecting a

telephone.

TEDS Transducer Support

The EX1629 provides support to read TEDS-equipped sensors to allow direct input of bridge

configuration parameters and input configuration management.

LXI Trigger Bus

The EX1629 features an LXI (LAN eXtensions for Instrumentation) compatible 8-channel trigger

bus on the rear panel of the instrument. This differential-pair LVDS (Low-Voltage Differential

Signal) bus consists of two identical ports connected in parallel. The primary use of the trigger bus

is the transmission of high-speed signals for multiple-unit triggering and synchronization.

LXI Limit Events

LXI Limit Events allow the EX1629 to send triggers to other instruments when an over-limit

condition is detected for bridge measurements. Each of the eight LXI Trigger Bus lines can have a

minimum and/or maximum limit defined for any and all of the 48 bridge measurement channels.

When an over-limit condition occurs, the trigger line is driven high. Because the limit comparison

is performed after filtering, the group delay of the chosen filter also delays trigger assertion. When

all filters are disabled and at a sample rate of 1 kSa/s, the typical delay is 14 ms.

Limit events also allow the user to latch their trigger signal. When latching is enabled, the trigger

line is driven high when the first over-limit condition occurs and remains high until the instrument

is reset or until the next measurement sequence is initiated. When latching is disabled, the state of

the trigger line is decided once per scan. When all chosen limit conditions are satisfied, the line is

driven low. Whenever any limits are exceeded, the line is driven high.

VTI Instruments Corp.

18 EX1629 Introduction

EX1629 SPECIFICATIONS

GENERAL SPECIFICATIONS

CHANNELS

 48 differential inputs

FUNCTIONS (STRAIN)

 Quarter 120 Ω, Quarter 350 Ω, Quarter User-Defined,

Half-Bending, Half-Poisson,

Full-Bending, Full-Poisson, Full-Bending Poisson

FUNCTIONS (NON-STRAIN)

 Voltage, Ratiometric, Linear

SAMPLING RATE

For All Channels

For 16 Channels

30 settings from 1 Sa/s to 10000 Sa/s per channel

Up to 25000 Sa/s (see Explanation of Specifications for limitations.)

A/D CONVERSION

 24-bit ΔΣ converter per channel

GAINS

 1, 10, or 100, software selectable

NETWORK CONNECTION

 10/100 Base-T Ethernet

INPUT CONNECTOR

 RJ-45

BRIDGE EXCITATION

REGULATION

 Independent high-side and low-side control on a per channel basis

HIGH-SIDE RANGE

 0 to +8 V

LOW-SIDE RANGE

 0 to -8 V

RESOLUTION

 14-bit (500 µV)

SENSE

 Local or remote

CURRENT OUTPUT

 50 mA per channel, short circuit limited to 60 mA

SET POINT ACCURACY

 (0.04% + 2 mV) typical, (0.07% + 10 mV) maximum, for │VEXC│> 20 mV

STABILITY

 (20 ppm/C + 20 V/C) typical, (30 ppm/C + 60 V/C) maximum

RESPONSE TIME

Suddenly changed load < 20 µs to stabilize within 1% of setting

BRIDGE COMPLETION

RESISTOR VALUE

 120 Ω, 350 Ω, and user-specified, software selectable

User value available as factory option.

RESISTOR STABILITY

 5 ppm/C

INPUT CONNECTOR LEAD RESISTANCE

 30 mΩ minimum, 60 mΩ maximum, matched to <5 mΩ within each channel

BACK-HALF RESISTORS

 10 kΩ/10 kΩ, 0.1%, 2 ppm/C

www.vtiinstruments.com

EX1629 Introduction 19

SHUNT CALIBRATION

INTERNAL RESISTOR

 55 kΩ (0.1%, 25 ppm/°C) per channel standard (0.05%, 5 ppm/°C optional)

EXTERNAL RESISTOR

 Front panel connection shared among 16 channels

Connection resistance: 16 Ω typical

RESISTOR CONNECTION

 Software selectable: local (across completion resistor) or remote

QUARTER-BRIDGE STRAIN MEASUREMENTS

Excitation Gain Range1 Gain Accy2 Offset Accy2,3 Gain TC4 Offset TC4

10 V 100 +30927 µε/-29126 µε ±0.12% ±25 µε ±50 ppm/ºC ±4 µε/ºC

5 V 100 +63829 µε/-56603 µε ±0.12% ±25 µε ±50 ppm/ºC ±4 µε/ºC

Note 1: Nominal for balanced bridge

Note 2: Conditions:

 GF = 2.0, Rcomp = 350 Ω, balanced excitation
 <30 days, ±5 ºC from last self-calibration

 15 ºC to 35 ºC, 1 year from full calibration

 Assumes the excitation voltage is measured and used in the conversion. Valid for 30 days, ±5 ºC.
 Includes the stability effects of the excitation source.

 60 minute warm-up

 Exclusive of lead wire desensitization errors
 Exclusive of gage errors

 Exclusive of noise

Note 3: <30 days, ±5 ºC from unstrained voltage measurement.
Note 4: Only applies outside of self-calibration window

FULL-BRIDGE STRAIN MEASUREMENTS

Excitation Gain Range1 Gain Accy2 Offset Accy2,3 Gain TC4 Offset TC4

5 V 100 ±15000 µε ±0.05% ±1.5 µε ±50 ppm/ºC ±0.2 µε/ºC

2.5 V 100 ±30000 µε ±0.06% ±3 µε ±60 ppm/ºC ±0.4 µε/ºC

Note 1: Nominal for balanced bridge

Note 2: Conditions:

 GF = 2.0, balanced excitation, remote sense
 <30 days, ±5 ºC from last self-calibration

 15 ºC to 35 ºC, 1 year from full calibration

 Assumes the excitation voltage is measured and used in the conversion. Valid for 30 days, ±5 ºC.
 Includes the stability effects of the excitation source.

 60 minute warm-up

 Exclusive of gage errors
 Exclusive of noise

Note 3: <30 days, ±5 ºC from unstrained voltage measurement.
Note 4: Only applies outside of self-calibration window

CONFIDENCE MEASUREMENTS

TOTAL EXCITATION VOLTAGE

 ±(0.012% + 500 µV)

±EXCITATION VOLTAGE

 ±(0.012% + 2.5 mV)

±EXCITATION CURRENT

 ±(0.1% + 50 µA)

COMMON MODE VOLTAGE

 ±(0.1% + 2.5 mV)

SAMPLING RATE

 Approximately 500 Sa/s

VTI Instruments Corp.

20 EX1629 Introduction

VOLTAGE MEASUREMENTS

Gain Range Gain Accy1 Offset Accy1 Gain TC2 Offset TC2

100 ±150 mV ±0.025% ±15 V ±30 ppm/ºC ±2 µV/ºC

10 ±1.5 V ±0.025% ±100 µV ±30 ppm/ºC ±12.5 µV/ºC

1 ±15 V ±0.025% ±700 µV ±30 ppm/ºC ±125 µV/ºC

Note 1: Conditions:

 <30 days, ±5 ºC from last self-calibration

 15 ºC to 35 ºC, 1 year from full calibration
 60 minute warm-up

 Exclusive of noise

Note 2: Only applies outside of self-calibration window.

INPUT CHARACTERISTICS

INPUT IMPEDANCE (DC)

 10 GΩ

INPUT BIAS CURRENT

 10 nA maximum

INPUT PROTECTION (POWER ON)

+ Excitation line -185 V to +15 V

- Excitation line +18 V to -15 V

+ Excitation SENSE line ±25 V

- Excitation SENSE line ±25 V

+ SENSE line ±29 V

- SENSE line ±29 V

+ RCAL line ±18 V

- RCAL line ±18 V

INPUT PROTECTION (POWER OFF)

+ Excitation Line ±0.7 V

- Excitation Line ±0.7 V

+ Excitation SENSE line -185 V to +15 V with unit on

- Excitation SENSE line +18 V to -15 V with unit on

+ SENSE line ±12 V

- SENSE line ±12 V

+ RCAL line ±0.7 V

- RCAL line ±0.7 V

COMMON MODE INPUT RANGE

 ±15 V

CMRR (DC TO 60 Hz)

 120 dB typical, 110 dB minimum (Gain = 100)

FILTERING

ANALOG ANTI-ALIAS LPF

 60 kHz 1-pole per channel

DIGITAL FIR FILTERING

Passband ripple

 fs ≥ 3125 Hz

 fs < 3125 Hz

Alias rejection

Achieves desired sampling frequency by decimation from 50000 Sa/s.

±0.01 dB

±0.001 dB

100 dB

DIGITAL IIR FILTERING

Configuration options per channel Type (Bessel, Butterworth, None)

Cut-off frequency (0.001 Hz to 4005 Hz)

Transform (Bilinear or Matched Z)

Order (1-10)

www.vtiinstruments.com

EX1629 Introduction 21

WIDEBAND OUTPUTS

CHANNELS

 1 per input channel

CONNECTORS

 (3) 44-pin male D-sub

MAXIMUM OUTPUT VOLTAGE

 ±15 V

OUTPUT IMPEDANCE

 150 Ω

Gain Gain Accy Offset Accy (RTI) Bandwidth (-3 dB)

100 ±0.15% ±150 µV > 100 kHz

10 ±0.15% ±500 µV > 150 kHz

1 ±0.15% ±5 mV > 150 kHz

DIGITAL I/O

CHANNELS

 16

CONNECTOR

 (1) 44-pin female D-sub

ELECTRICAL

VINPUT -0.5 V to 5.5 V

VIH 2 V minimum

VIL 0.8 V maximum

VOH (IOH = -5.2 mA) 2.5 V minimum

VOL (IOL = 48 mA) 0.5 V maximum

TRIGGER BUS

CHANNELS

 8

CONNECTORS

 (2) Micro DB-25

ELECTRICAL

Logic type M-LVDS Type 1

VIT+ 50 mV maximum

VIT- -50 mV minimum

VOS 1 V typical

POWER REQUIREMENTS

LINE VOLTAGE

 90 – 250 V ac (50 / 60 Hz)

INPUT POWER

 200 VA maximum

PLUG RATINGS

IEC

UL

10 A / 250 VAC; 50 Hz
15 A / 250 VAC; 50/60 Hz

EX1629-003 (DC Version)

Input Voltage Limits

 Lower/Nominal/Upper

Input Current Limits

 Lower/Nominal/Upper

Power Supply Ripple

27 VDC / 28 VDC / 29 VDC

4.0 A / 4.5 A / 8 A

<100 mVrms @ 20 MHz

ENVIRONMENTAL
OPERATING TEMPERATURE

 -5 °C to +55 °C

HUMIDITY

 5% to 85% relative humidity

VTI Instruments Corp.

22 EX1629 Introduction

MECHANICAL

HEIGHT

 3.5 in (8.89 cm)

WIDTH

 19 in (48.26 cm)

DEPTH

 22 in (55.88 cm)

www.vtiinstruments.com

EX1629 Introduction 23

EXPLANATION OF SPECIFICATIONS

This section provides explanatory notes to certain elements of the EX1629 specifications that may

be confusing or easily misunderstood.

Sampling Rate

The EX1629 ADCs run at 50 kSa/s and data is decimated down by an integer factor to the user-

selected sample rate. The EX1629 is capable of supporting a sampling rate of 10 kSa/s on all

48 channels simultaneously. Over a limited number of channels, however, the EX1629 is capable

of supporting a sample rate of 25 kSa/s. In order to realize this higher sampling rate, the number of

operating channels must be limited to 16 maximum and these channels must all exist on the same

analog board (i.e. channels 0 through 15, 16 through 31, or 32 through 47 can be selected). If these

conditions are not met, an error will occur.

Bridge Excitation

Performance of the excitation source is quantified in two ways. Set point accuracy refers to the

absolute accuracy of the excitation output compared to its nominal programmed value.

Conversely, stability refers to the drift characteristics of the source once it has been programmed

to a specific value. Since the EX1629 provides the ability to measure the excitation source and use

the measured value in the EU conversion, it is the source’s stability that ultimately effects strain

measurement accuracy, not its set point accuracy.

While the source’s performance characteristics are provided, they should not be added to the listed

quarter-bridge and full-bridge accuracy tables, as these accuracy tables already contain the effects

of the excitation source stability. The source characteristics are listed for reference and for the

possibility that a user might use the EX1629 to provide bridge excitation, but another piece of

equipment to measure the bridge output. In that case, the excitation performance is required in

order to calculate the total system uncertainty. For this analysis, it must be noted that the listed

characteristics are for each source independently.

Bridge Completion

The characteristic input connector lead resistance refers to the residual resistance that the input

connector represents in a quarter-bridge configuration. Specifically, referring to Figure 2-4, this is

the resistance between Pin 1 (+Excitation) of the connector and the local connection of the

+Excitation Sense line. Similarly, it is the resistance between Pin 2 (-Excitation) and the point at

which the completion resistor is shunted. These resistances serve to slightly desensitize a quarter-

bridge configuration, even in the absence of external lead wire resistances. This resistance is

specified from 30 mΩ to 60 mΩ, depending on the selected channel. This results in an

uncompensated gain error on a 350 Ω bridge of 86 ppm to 172 ppm.

This error is not reflected in the quarter-bridge accuracy table, however, because it is assumed that

lead wire compensation will be done to remove the effects of external lead wire resistance. That

process will simultaneously and completely compensate for this resistance, as it is matched within

each channel to within 5 mΩ. If the lead wire compensation is done via shunt calibration, the

30 mΩ possible difference between channels is unimportant, as each channel will undergo a

unique shunt calibration. If, however, the lead wire compensation is done theoretically (as one

might do if the connecting cable is well characterized), an average compensation of 129 ppm

should be used for the internal resistance. This would leave a possible uncompensated error of

only 43 ppm.

Automatic measurement is possible, conversely, using the traditional shunt calibration process.

Shunt calibration is the process of placing a known resistance in parallel with one of the bridge

elements to create a known simulated strain. For quarter-bridge configuration, this element is

usually the internal completion resistor. In this method, the deviation of the actual measured strain

VTI Instruments Corp.

24 EX1629 Introduction

from the theoretical strain is then considered to be due to lead wire desensitization, and a

compensation factor is determined. However, some strain purists argue that shunt calibration is

actually meant to be a verification step and should not be used for this purpose. What is needed,

then, is an automated way to determine the lead wire desensitization error without using shunt

calibration. This can be accomplished using the vtex1629_set_lead_wire_resistance and

vtex1629_set_half_bridge_lead_wire_desensitization functions. An additional API is available to

help measure the lead wire resistance, beginning with firmware version 1.0:

vtex1629_measure_lead_wire_resistance.

NOTE This functionality was added to the EX1629 after September 2006 in firmware version 1.0. To

ensure compatibity, use the instrument’s embedded web page interface or use the EX1629’s

vtex1629_revision_query function.

Shunt Calibration

Shunt calibration can be performed with either the internal 55 kΩ resistor or an external resistor

inserted into the front panel shunt connector. For highest accuracy, the value of this external

resistor should be precisely known. The connection resistance characteristic refers to the series

resistance of the switch mechanisms used to route the external resistor into the requested bridge

circuit. This resistance must be considered in conjunction with the raw resistor value when

determining the theoretical simulated strain of the shunt calibration process. The connection

resistance is the same for local or remote connection.

Quarter-Bridge Strain Measurement

The strain dynamic range is slightly different for tension vs. compression. While the dynamic

range of the voltage measurement circuitry is a balanced ±160 mV, the transfer function of strain-

to-voltage is nonlinear for quarter-bridge configuration, and that results in the small disparity.

Quarter-bridge measurement accuracy is noted as being exclusive of lead wire desensitization

errors. This refers to the gain error that is generated by lead wire resistance in series with the

actual strain gage. Depending on the length and gauge of the wire employed, the resultant

resistance can cause errors that are much larger than the underlying instrument accuracy. Precision

measurements consequently demand that lead wire compensation is conducted to eliminate this

error. This compensation can be calculated theoretically if the resistance of the connection wire is

characterized or can be inferred through the shunt calibration process. Reference the Bridge

Completion paragraph above for information on how to compensate for the lead wire resistance

that is internal to the EX1629.

Quarter-Bridge Strain Measurement/Full-Bridge Strain Measurement

The key concepts regarding the conditions on the strain measurement accuracy tables are:

 The stability effects of the excitation source are already captured in the listed accuracies. It is

thus not necessary to combine the two to create a total system accuracy. The listed strain

accuracies are already for the entire EX1629 measurement system.

 The accuracies do assume that the excitation voltage is measured and used in the EU

conversion before the initiation of strain measurements. This eliminates its set point accuracy

from being an error source.

 The restriction of 30 days, ±5 °C is used throughout the conditions. Essentially the intention is

to describe a strain test setup that is initiated with a self-calibration, excitation voltage

measurement, and unstrained voltage measurement. From that point, continuous strain

measurements are considered to be taken over ambient conditions of 30 days, ±5 ºC.

www.vtiinstruments.com

EX1629 Introduction 25

The advantage to specifying in this way is that it provides maximum values that correspond to real

world conditions. For in a production environment, it is impractical to allow, for example, only a

±1 ºC temperature swing. Similarly, since many strain tests can be very long in duration, it is

impractical to demand a daily self-calibration or excitation voltage measurement.

The disadvantage, however, is that these assumptions result in measurement uncertainties that are

overstated for test sequences that are significantly shorter in duration and subject to less

environmental movement. However, since the gain and offset temperature coefficients are

provided, the resultant performance improvements can be interpolated.

Wideband Outputs

The offset accuracy of the wideband outputs is provided referred to input (RTI). This is the

accuracy of the calculated input signal. When considered in its raw form at the connector, namely

referred to output (RTO), the listed accuracies must be multiplied by the gain of the range used.

The bandwidth specifications for each range were generated for an output sine wave signal of 2 V

peak-to-peak. Very large signals (as a percentage of range) will encounter slew rate limiting and

have a lower effective bandwidth.

Confidence Measurements

There are two specifications listed for excitation voltage measurement. The ±excitation voltage

accuracy refers to the uncertainty of each excitation source measurement as an independent

measurement. Conversely, the total excitation voltage accuracy refers to the uncertainty of the

combined excitation source measurement, specifically the difference between the +excitation

voltage and the –excitation voltage. This quantity has a lower uncertainty, because, as a difference

measurement, it is subject to fewer error sources. While these performance characteristics are

provided, they should not be added to the listed quarter-bridge and full-bridge accuracy tables, as

these accuracy tables already contain the effects of the excitation voltage measurement.

The excitation current measurements are defined such that current flowing out of the source is

positive current and current flowing into the source is negative current. Consequently, the

+excitation current quantity is nominally a positive number, and the –excitation current quantity

is nominally a negative number. Moreover, the current measurements are defined to be the total

current of the source, not just that flowing in the external bridge. As shown in Figure 2-4, there is

a 20 kΩ resistance, represented by the back-half resistors, that is always connected between the

excitation sources. As a result, nonzero excitation source values will generate nonzero excitation

currents even if the input channel is open. For example, a total excitation voltage of 5 V on an

unpopulated channel will nominally display excitation currents of ±250 µA.

MAXIMIZING MEASUREMENT PERFORMANCE

This section discusses tips and procedures that can help maximize the actual performance realized

with the EX1629 and aid the user in avoiding some common pitfalls associated with strain gage

measurement.

Utilize self-calibration

Self-Calibration should be conducted as often as practical, especially if the ambient environment

has changed significantly since the previous calibration. However, fast ambient environmental

changes should ideally be followed by a period of thermal stabilization before conducting self-

calibration. The self-calibration process completes quickly and does not require removal of the

actual input connections, making it convenient to run often.

VTI Instruments Corp.

26 EX1629 Introduction

Utilize excitation measurement

Measurement accuracy is notably improved by utilizing the EX1629’s ability to measure its

excitation source and use the measurement in the EU conversion. By doing so, the set point

accuracy of the excitation source ceases to be an error source. The strain accuracy tables are based

on the assumption that excitation measurement is performed.

While a tightly regulated supply, the excitation source does, nonetheless, have a temperature drift

characteristic. For this reason, it is best to conduct the excitation source measurement just prior to

the initiation of strain measurements, making the source measurement as current as possible.

Utilize proper strain gage wiring techniques

In addition to the accuracy of the measuring instrument, the total system accuracy of the strain

measurement is a function of the gage characteristics and the connection wiring of the gage to the

measuring instrument. Nonideal wiring techniques can create measurement inaccuracies far above

those of the measuring instrument.

For half- and full-bridge configurations, it is highly recommended that the remote excitation sense

lines be used on the excitation source, as shown in Figure 2-5 and Figure 2-6, respectively. These

lines should be connected at the same point that the ±Excitation lines are connected to the bridge.

Ultimately, the excitation source regulates based on the voltage present on its sense lines. Without

remote sense, this regulation point is at the EX1629 input connector. This is a nonideal connection

because the lead wire resistance between the EX1629 and the bridge will create a voltage drop,

lowering the effective excitation value at the bridge. Remote sense inherently compensates for the

lead wire resistance and delivers the correct excitation value.

For quarter-bridge configurations, it is highly recommended that the full 3-wire connection be

used, as shown in Figure 2-4. Specifically, it is important that the –Sense line be connected at the

gage, instead of locally at the EX1629 input connector. The 3-wire connection reduces the total

lead wire resistance seen by the gage by putting half of it in series with the completion resistor.

Not only does this reduce the static lead wire desensitization error, but it also provides an inherent

level of temperature compensation. Specifically, since the same lead wire resistance is in the

active leg as well as the completion leg, any variation of the resistance due to temperature

naturally occurs in both legs and cancels.

Compensate for lead wire desensitization error

Even if the 3-wire connection is employed in quarter-bridge configuration, there may still be

significant error in the measurement, as there is lead wire resistance that does not move with the

underlying strain, but is indistinguishable from the actual gage resistance. This results in the

measured strain being systematically in error. Depending on the length and gauge of the wire

employed, this error may be much larger than the underlying instrument accuracy. Precision

measurements consequently demand that lead wire compensation is conducted to eliminate this

error. The error arises from the fact that the measuring instrument cannot distinguish between the

resistance of the lead wires and the resistance of the strain gage. Specifically, when the resistance

of the gage changes under load, the measuring instrument reads a strain value lower than the true

value, because part of the total resistance it considers to be the gage is not changing. The extent of

the desensitization error is dependent on the resistance values of the gage and the lead wire,

related by this equation:

leadgage

lead

RR

R
error




www.vtiinstruments.com

EX1629 Introduction 27

For example, lead wire resistance of 1 Ω on a 350 Ω gage causes a desensitization error of:

02849.0
1350

1



error

Because it is a gain error, it is easily compensated if the desensitization can be measured or

calculated prior to the commencement of the strain testing. Depending on the abilities of the data

collection mechanism, the compensation can be done as a post-acquisition mathematical

operation, through manipulation of the gage factor in the calculation equation, or through internal

gain compensation based on an inputted lead wire value.

But, regardless of how the compensation is conducted, the first step in the process is to determine

the value of the desensitization for each measurement channel in the system. Depending on the

consistency of the test setup and the accuracy desired, there are two common ways of determining

the error. The most basic way is simply to measure the resistance value of the lead wire with a

DMM during the gage installation process. However, for a large channel count application with

little consistency in the distance between the sensors and the measuring instrument, this would

require the manual measurement and tracking of hundreds of wires, an obviously arduous task.

This compensation can be calculated theoretically if the resistance of the connection wire is

characterized or can be inferred through the shunt calibration process, or by calling the

vtex1629_set_lead_wire_resistance and vtex1629_set_half_bridge_lead_wire_desensitization

functions. Please reference the Bridge Completion subsection in Section 1 for information on how

to compensate for the lead wire resistance that is internal to the EX1629.

Allow for thermal stabilization of the bridge

Compared to other sensor measurements, bridge measurements inherently involve relatively high

amounts of power dissipation. Power is dissipated in the excitation source, the completion resistor,

as well as the gage itself. The power dissipation is not so much a problem as a change in power.

Specifically, when the excitation source value is changed, the amount of power being dissipated in

the various bridge elements changes. A power dissipation change then leads to a temperature

change through the thermal impedance of each element. Temperature change then ultimately

results in performance characteristic drift. Since bridge power is directly related to the excitation

current amount, this issue is worsened by increasing the excitation voltage or decreasing the

bridge resistance.

To achieve maximum performance, it is best to allow the system elements to thermally stabilize

once the bridge configuration has been programmed and the excitation source set and enabled.

This time will be largely driven by the characteristics of the strain gage chosen for the application,

and should be determined empirically. Only after this time should the excitation and unstrained

voltage measurements be conducted.

VTI Instruments Corp.

28 EX1629 Introduction

www.vtiinstruments.com

EX1629 Preparation for Use 29

 SECTION 2

PREPARATION FOR USE

OVERVIEW

This section provides a step-by-step process for setting up the EX1629 for use. It covers hardware

installation, input connections, and software installation.

UNPACKING/INSPECTION

When the EX1629 is unpacked from its shipping carton, the contents should include the following

items:

 EX1629 High-Performance Strain Gage Instrument

 Power line cord

 EX1629 User’s Manual (this manual)

 VTI Instruments Corp. Drivers and Product Manuals CD

All components should be immediately inspected for damage upon receipt of the unit. If any

visual damage is observed or if the unit behaves in an unexpected manner after initial start up,

please contact VTI Instruments to return the unit for repair.

INSTALLATION LOCATION

The EX1629 is designed to be largely insensitive to external electrical, magnetic, and thermal

disturbances. However, as with all precision instrumentation, certain precautions, if taken into

consideration, can help achieve maximum performance.

1) The unit, particularly its front panel, should be located away from sources of extreme high or

low temperatures.

2) The unit should be located away from sources of high magnetic fields such as motors,

generators, and power transformers.

The EX1629 employs active cooling for maximum product reliability. Fans located at the rear of

the instrument pull ambient air through holes on the sides of the chassis and exhaust it out through

the rear. The unit’s installation with regards to other instrumentation and mounting cabinetry

should ensure that the intake holes and exhaust fans remain unobstructed.

NOTE When selecting the installation location, be certain that there is enough space around the power

plug and the outlet so that they are readily accessible. Do not insert the power plug into an outlet

where accessibility to the plug and outlet is poor.

VTI Instruments Corp.

30 EX1629 Preparation for Use

CONNECTING/DISCONNECTING AC LINE POWER

When connecting the EX1629 to an outlet, there should be no connections to the front panel and

the power switch at the rear of the mainframe should be in the off position. Connect the power line

cord provided to the EX1629 and the outlet, then turn the power switch to the on position.

To power down the EX1629, disconnect all connections to the front panel, move the power switch

at the to the off position, then disconnect the power line cord from the outlet.

CONNECTING/DISCONNECTING DC LINE POWER

The EX1629-003 uses DC power as its power source. The following DC input wier can be

constructed.

FIGURE 2-1: DC POWER CABLE DIAGRAM

WARM-UP TIME

The specified warm-up time of the EX1629 is 60 minutes. If, however, the unit is being subjected

to an ambient temperature change greater than 10 C, extra stabilization time is recommended to

achieve maximum performance.

Description VTI P/N Mfg and P/N Comments
Connector, Plug,

Positive Lock, 2-pin

27-0420-001 Lemo. PAG.M0.2GL.AC65G Connect red wire below on the same side

as the notch on the plug.

Wire, 18 GA Teflon,
Stranded, Red

35-0016-222 M16878/4-BHE-2 Wire length is determined by user. Must
be capable of delivering 8 A maximum.

May substitute for commercial 18 AWG

stranded wire at the user’s discretion.

Wire, 18 GA Teflon,
Stranded, Black

35-0016-000 M16878/4-BHE-0 Wire length is determined by user. Must
be capable of delivering 8 A maximum.

May substitute for commercial 18 AWG

stranded wire at the user’s discretion.

www.vtiinstruments.com

EX1629 Preparation for Use 31

SOFTWARE INSTALLATION

The fastest way to begin controlling an EX1629 is to discover the unit using VTI’s LAN

Instrument Connection and Upgrade (or LInC-U) utility. To do this, the following is required:

 A PC or laptop computer

 A Microsoft™ Windows™ XP OS with Service Pack 2 (SP2) and Internet Explorer™ (IE)

 An Internet connection

 VTI’s LInC-U utility

The LInC-U Utility searches for all LAN-based VTI devices on the network and can be found on

the Distribution CD that shipped with the EX1629 or may be downloaded from the

VTI Instruments corporate website. This utility uses the VXI-11 discovery protocol to discover the

EX1629. This utility can also be used to upgrade the EX1629’s driver and firmware. For more

information on using the LInC-U utility, please refer to its online Help file. For more information

on discovering the EX1629, please refer to Opening the Web Page in Section 5.

LInC-U Installation

To install LInC-U as a discovery tool for the EX1200’s embedded webpage, insert the

VTI Instruments Corp. Drivers and Product Manuals CD into the host PCs CD-ROM and, using

Windows Explorer, navigate to the <CD-ROM Drive>:\EX Platforms Requisites directory. Next,

run the VTI_LInC-U_setup.exe program. Once installation begins, simply follow the on-screen

instructions.

INPUT CONNECTIONS / WIRING

Extensive testing has resulted in the qualification of the standard RJ-45 telecom connector as the

ideal low-cost connector for strain gages. Not only are these connectors reliable, but low-cost

construction of custom length cables is also readily available. Reconfiguration or replacement of

strain gage connections is as easy as connecting a telephone. An example cable connection is

illustrated in Figure 2-2.

Figure 2-3 shows the pin assignment for each EX1629 strain gage connector. Depending on the

bridge configuration employed, anywhere from three to all eight of the signal connections will be

actively used, as illustrated in the bridge configuration diagrams that follow. For proper operation,

unused input connections must be left open, as opposed to being grounded or tied together.

RJ-45 Modular Connector (Shielded)

8-Conductor Twisted-Pair, Overall-Shielded

(Example Half-Bridge Connection)

FIGURE 2-2: CONNECTING STRAIN GAGES

NOTE Unused user connections must be left open.

VTI Instruments Corp.

32 EX1629 Preparation for Use

Color Coding per TIA/EIA-568-B

Pin 1 - Orange/White

Pin 2 - Orange

Pin 3 - Green/White

Pin 4 - Blue

Pin 5 - Blue/White

Pin 6 - Green

Pin 7 - Brown/White

Pin 8 - Brown

Pinout for Upper Connector Row

Excitation Sense

Shield Gnd

Sense

Excitation

R Cal

Sense

- +

-
-
+

Shield Gnd6 5 4 2 138 7

Shield Gnd

Excitation Excitation Sense

R Cal

+
-

-+

Shield Gnd
321 4 5 6 7 8

SenseSense

Pinout for Lower Connector Row

FIGURE 2-3: INPUT CONNECTOR PIN ASSIGNMENT

Depending on the bridge configuration and cable length employed, the wire gauge (and thus

resistance) of the input connections can be a factor in determining ultimate system performance.

For example, in a full-bridge configuration using excitation remote sense, the measurements are

insensitive to the resistance of all connections. However, in a quarter-bridge configuration, the

resistance of the +Excitation and –Excitation connections can be a significant error source if not

properly compensated. For more details, see Maximizing Measurement Performance in Section 1.

BRIDGE CONFIGURATIONS

Figure 2-4 illustrates how to connect a single strain gage in quarter-bridge configuration. As

explained in Maximizing Measurement Performance in Section 1, the –Sense line should ideally

be connected at the gage, instead of locally at the EX1629 input connector. Moreover, the wire

length and gauge of the connections to Pins 1 and 2 should be matched. Fortunately, this is

typically guaranteed by routing both lines as part of the same cable. For this configuration, the

±Excitation Sense lines are not used and must be left open, as opposed to being grounded or tied

together. Whether the gage will be in tension or compression, the connection is the same.

www.vtiinstruments.com

EX1629 Preparation for Use 33

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

Pin 5

Pin 4

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+ Excitation

 - Excitation

Quarter-Bridge (1 of 48 channels)

+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

-Excitation

+Excitation Sense

-Excitation Sense

RJ-45 Pin#

12345678

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 2-4: QUARTER-BRIDGE CONFIGURATION

NOTE The ±Excitation Sense lines must be left open.

VTI Instruments Corp.

34 EX1629 Preparation for Use

Figure 2-5 illustrates how to connect two strain gages in basic half-bridge bending configuration.

As explained in Maximizing Measurement Performance in Section 1, the remote excitation sense

lines should ideally be used on the excitation source, connected at the same point that the

±Excitation lines are connected to the bridge. The shunt calibration lines (Pins 4 and 5), however,

are only necessary if that functionality is required. Note that the gage in tension is connected from

Pin 1 to Pin 3 and the gage in compression is connected from Pin 2 to Pin 3.

Furthermore, it is critical to understand how the EX1629 defines its measurement in this

configuration. Specifically, it defines the measured strain to be the strain that is present in each

gage, not the total of the two gages. For example, if the upper gage is subjected to tensile strain of

1000 µε and the lower gage is subjected to compressive strain of 1000 µε, the EX1629 will

measure a value of +1000 µε, not +2000 µε.

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+Excitation Sense

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

+ Excitation

- Excitation

Half-Bridge (1 of 48 channels)

+Excitation

+Sense

-Sense

-R Cal

+R Cal

+Excitation Sense

-Excitation Sense

-Excitation

-Excitation Sense

RJ-45 Pin#

12345678

Pin 5

Pin 4

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

+

-

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 2-5: HALF-BRIDGE CONFIGURATION

Figure 2-6 illustrates how to connect four strain gages in basic full-bridge bending configuration.

As explained in Maximizing Measurement Performance in Section 1, the remote excitation sense

lines should ideally be used on the excitation source, connected at the same point that the

±Excitation lines are connected to the bridge. The shunt calibration lines (Pins 4 and 5), however,

are only necessary if that functionality is required. Note that the gages in tension are connected

from Pin 1 to Pin 6 and from Pin 2 to Pin 3 and the gages in compression are connected from Pin 2

to Pin 6 and from Pin 1 to Pin 3.

www.vtiinstruments.com

EX1629 Preparation for Use 35

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

Pin 5

Pin 4

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+Excitation Sense

+ Excitation

 - Excitation

Full-Bridge (1 of 48 channels)

+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

-Excitation

-Excitation Sense

RJ-45 Pin#

12345678

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

+

-

-

+

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 2-6: FULL-BRIDGE CONFIGURATION

Furthermore, it is critical to understand how the EX1629 defines its measurement in this

configuration. Specifically, it defines the measured strain to be the strain that is present in each

gage, not the total of the four gages. For example, if the positive gages are subjected to tensile

strain of 1000 µε and the negative gages are subjected to compressive strain of 1000 µε, the

EX1629 will measure a value of +1000 µε, not +4000 µε.

VOLTAGE MEASUREMENT CONFIGURATIONS

The EX1629 main input channels can also be used for general voltage measurement. For this

application, the channel is effectively configured for Full-Bridge measurements (i.e., no

completion resistor or “back-half” of the bridge is enabled). The signal to be measured should be

connected to the +Sense and –Sense lines. The excitation source may be used in this mode, if the

measurement requires it, but the excitation source limits should be kept in mind.

For fully differential inputs, the configuration in Figure 2-7 should be used. For situations that

require a single-ended connection (i.e. one side grounded), the configuration in Figure 2-8 should

be used. When using these configurations, Negative Excitation Sense should be set to 0 V.

VTI Instruments Corp.

36 EX1629 Preparation for Use

Voltage Measurement (1 of 48 channels)

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+Excitation Sense

+ Excitation

 - Excitation
+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense = 0 V

-Excitation

-Excitation Sense

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

HI

LO

* The parameter of the must be set to 0 V.negativeExcitationVoltage vtex1629_set_excitation function

FIGURE 2-7: VOLTAGE MEASUREMENT CONFIGURATION (DIFFERENTIAL INPUT)

www.vtiinstruments.com

EX1629 Preparation for Use 37

Voltage Measurement (1 of 48 channels)

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+Excitation Sense

+ Excitation

 - Excitation
+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

* The parameter of the must be set to 0 V.negativeExcitationVoltage vtex1629_set_excitation function

-Excitation

-Excitation Sense

*

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

-Excitation Sense = 0 V

FIGURE 2-8: VOLTAGE MEASUREMENT CONFIGURATION (GROUNDED INPUT)

WIDEBAND OUTPUT CONFIGURATION

The wideband output connector, defined in Table 3-5, is a high-performance analog wideband

buffered output that can be connected to a high-speed digitizer for measuring structural vibration

levels. The Hi, Lo, and Shield pins of this connector are indicated in the shaded section of

Figure 2-9.

If a digitizer with a differential input will be connected to the wideband output, the Hi signal of

the digitizer should be connected to the Hi signal of the wideband output and the Lo signal of the

digitizer should be connected to the Lo signal of the EX1629.

If a digitizer with a single-ended input will be connected to the wideband output, the Hi signal of

the digitizer should be connected to the Hi signal of the wideband output and the ground of the

digitizer should be connected to the Shield pin of the wideband output connector.

NOTE The low-side of a single-ended digitizer should be isolated from chassis/earth ground.

VTI Instruments Corp.

38 EX1629 Preparation for Use

Wideband Output

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

Pin 5

Pin 4

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+ Excitation

 - Excitation

(1 of 48 channels)

+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

-Excitation

+Excitation Sense

-Excitation Sense

RJ-45 Pin#

12345678

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

Wideband Output

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 2-9: WIDEBAND OUTPUT DIAGRAM

DRIVER INSTALLATION

The EX1629 is shipped with a VTI Instruments Corp. Drivers and Product Manuals CD which

includes software drivers, user’s manuals, the VTI Instruments Product Catalog, as well as some

third-party software. Please refer to the ReadMe.txt file included on the Distribution CD for

installation instructions specific to revision of the CD provided.

NETWORK CONFIGURATION

With its default network configuration, the EX1629 will attempt to locate a DHCP server. If one is

found, the IP address assigned by the DHCP server will be used. Otherwise, after a timeout of 20

seconds, the unit will attempt to obtain an IP address by using AutoIP.

NOTE At any time, the EX1629 can be returned to a known, default network configuration by using the

LCI (LAN Configuration Initialize) mechanism. See Reset Button for more information.

www.vtiinstruments.com

EX1629 Preparation for Use 39

AutoIP is a mechanism for finding an unused IP address in the range 169.254.X.Y, where X is in

the range 1 - 254 and Y is in the range 0 - 255. The device will first attempt to obtain the specific

address 169.254.X.Y, where X and Y are the second-to-last and last octets (bytes) of the device’s

MAC address. However, X will be set to 1 if it is 0 in the MAC address, and to 254 if it is 255 in

the MAC address. This is in accordance with the AutoIP standard (RFC 3927). If this address is

already in use, the unit will attempt to obtain other IP addresses in a pseudorandom fashion until it

finds one that is available.

To illustrate the AutoIP mechanism, Table 2-1 lists the AutoIP default address for some example

MAC addresses.

MAC Address AutoIP Default Address

00:0D:3F:01:00:01 169.254.1.1

00:0D:3F:01:01:01 169.254.1.1

00:0D:3F:01:A3:28 169.254.163.40

00:0D:3F:01:FE:FE 169.254.254.254

00:0D:3F:01:FF:FE 169.254.254.254

TABLE 2-1: AUTOIP DEFAULT ADDRESS ASSIGNMENT

If a static IP address assignment is preferred, one can be optionally assigned via the embedded

web page interface. This is done by clicking the Network Configuration link, disabling DHCP

and AutoIP, enabling Static, and then assigning a static IP address, subnet mask, and gateway

address, and, optionally up to three DNS servers (see Figure 5-3). For more information, see

Network Configuration in Section 5.

NETWORK TROUBLESHOOTING

If an error occurs when trying to discover the EX1629 (see Web Page Operation in Section 5 for

more information on discovery), it may be necessary to change the network settings for the

EX1629 and the host PC. By using the following methodology, most network-related issues can

be resolved:

1) Restore the EX1629’s Default Network Settings

2) Determine PCs Network Settings

3) Set the EX1629 to Auto IP or Set the EX1629 to Static IP

4) Restore the Host PCs Network Settings

5) Using Multiple Network Cards

Restore the EX1629’s Default Network Settings

It may be the case that the EX1629 is in an unknown network configuration. The EX1629 can be

returned to its default state by pressing the Reset Button located at the rear of the chassis.

1) Power off the EX1629.

2) Press and hold the reset button.

3) Power on the EX1629.

4) Continue to hold the reset button for at least 30 seconds.

5) Release the reset button.

Determine PCs Network Settings

1) Ensure that all host PC Ethernet connections are made that will be used while controlling the

EX1629. If the PC will be connected to a LAN, ensure that the LAN connection is made.

2) From Windows , navigate to Start→Settings→Network Connections.

3) Right click on the connection that will be used to communicate with the EX1629, then select

Properties (see Figure 2-10). Some PCs have multiple network connections, so it is important

to make certain that the connection used to communicate with the EX1629 is selected.

VTI Instruments Corp.

40 EX1629 Preparation for Use

FIGURE 2-10: NETWORK CONNECTION PROPERTIES

4) Select Internet Protocol (TCP/IP), then click the Properties button as shown in Figure 2-11.

FIGURE 2-11: LOCAL AREA CONNECTION PROPERTIES DIALOG BOX

5) Determine if the PC is set to use auto or static IP. Figure 2-12 shows examples of both auto

and static IP address configurations.

www.vtiinstruments.com

EX1629 Preparation for Use 41

FIGURE 2-12: DYNAMIC (LEFT) AND STATIC (RIGHT) IP ADDRESS CONFIGURATIONS

6) If set to use a static IP, record the IP address, subnet mask, and default gateway for use later.

Select Obtain an IP address automatically to establish a connection to the EX1629. Click

the OK button and proceed to Set the EX1629 to Static IP. If set to use a dynamic IP, click the

OK button and proceed to Set the EX1629 to Auto IP.

Set the EX1629 to Auto IP

1) Remove all network connections from the PC except for the connection to the EX1629.

Wireless adapters should be disabled as well.

2) Apply power to the EX1629 and wait for the LAN LED to turn green.

3) Discover the EX1629 using the LInC-U utility as described in the Web Page Operation in

Section 5. The steps taken previously should ensure that discovery works.

4) Once connected to the EX1629, click on Network Configuration in the command menu.

5) Select DHCP and AutoIP in the IP Address Source field and ensure that Static IP is not

selected. Figure 2-13 shows the proper configuration. Click the Submit button to save all

changes.

FIGURE 2-13: EX1629 SET TO USE AUTO IP

VTI Instruments Corp.

42 EX1629 Preparation for Use

Set the EX1629 to Static IP

1) Disconnect all network connections from the PC except for the connection between the PC

and the EX1629.

2) Apply power to the EX1629 and wait for the LAN LED to turn green.

3) Discover EX1629 using the LInC-U utility as described in the Web Page Operation in

Section 5. The steps taken previously should ensure that discovery works.

4) Once connected to the embedded web interface, click on the Network Configuration link in

the command menu.

5) Select the Static checkbox in the IP Address Source field and ensure that DHCP and

AutoIP are not selected.

6) In the IP Address field, enter an appropriate IP address for the EX1629. Use the IP address

obtained the Determine PCs Network Settings step to determine the network address. The

network address is the first three digits of the IP address (10.1.0 in the example provided).

The last digit of the IP address (the node), is a number, 0 through 255, that is not currently

assigned to any other device on the network. Ensure that a unique IP address is assigned to the

EX1629 by consulting a network administrator.

7) In the Subnet Mask field, enter the subnet mask in the Determine PCs Network Settings step.

8) In the Gateway Address field, enter the same gateway address in the Determine PCs Network

Settings step.

9) Click Submit to save all changes made to the Network Configuration page.

FIGURE 2-14: EX1629 SET TO USE STATIC IP

Restore the Host PCs Network Settings

1) Power down the EX1629 and reconnect it to the LAN in its desired location.

2) If the PC was originally set to use a static IP address, use the procedure in Determine PCs

Network Settings to change the PCs IP address back to its original state.

3) Power on the EX1629 and wait for the LAN LED to turn solid green.

4) Discover the EX1629 using VTI’s LInC-U as described in Web Page Operation in Section 5.

Using Multiple Network Cards

When multiple network cards exist in a single PC, it may be necessary to define a static IP address

to both the host PC NIC card that will interface with the EX1629 mainframe as well as the

EX1629 itself. This process is only necessary if a DCHP server is not connected to the network to

which the device is connected and typically occurs when the NIC is connected directly to the

instrument.

www.vtiinstruments.com

EX1629 Preparation for Use 43

The following process can be used to ensure proper functionality.

1) Navigate to Start → Settings → Network Connections.

2) Disable all network interfaces except the one that is connected to the EX1629 mainframe.

This is done by right clicking on the interface, then selecting Disable.

3) Open the web page of the EX1629 mainframe.

4) Click the IP Configuration link. A prompt may appear to log into the EX1629 mainframe.

5) Unselect DHCP and AutoIP and ensure that Static is selected.

6) Enter an IP address into the IP Address field. Although any valid network IP address can be

used, 192.168.1.2 is used in this example. For more information on valid IP addresses, please

consult with an IT administrator.

7) Set the Subnet Mask. For this example, the subnet mask is 255.255.255.0.

FIGURE 2-15: COMPLETED EX1629 MAINFRAME STATIC IP CONFIGURATION

8) Click the Submit button. Once this is done, it is no longer possible to communication with the

EX1629 mainframe. This is normal and is addressed in the following steps.

9) Set a static IP address for the NIC card by doing the following:

a) Navigate to Start → Settings → Network Connections.

b) Right click on the NIC card that the EX1629 mainframe is connected to and select

Properties.

c) Select Internet Protocol (TCP/IP) and click Properties.

VTI Instruments Corp.

44 EX1629 Preparation for Use

FIGURE 2-16: TCI/IP SELECTION

d) Click the Use the following IP address radio button.

e) Enter the desired IP address. If using the IP from the example above, 192.168.1.1 can be

used.

f) If not automatically completed after the IP address is entered, set the Subnet mask field

to 255.255.255.0.

FIGURE 2-17: COMPLETED NIC STATIC IP CONFIGURATION

g) Click OK to exit the network configuration properties.

PREVENTIVE MAINTENANCE

Although the EX1629 requries no preventive maintainence, it should be operated in laboratory

environments only. The factory calibration should be performed annually, either by VTI customer

www.vtiinstruments.com

EX1629 Preparation for Use 45

service staff or by qualified technicans capable of using the optional calibration kit. Self-

calibration is recommended on a monthly basis and should only be performed by qualified

technicians/operators (see Self-Calibration for more information). Should the unit need repair at

any time, it should be returned to VTI Instruments for service.

www.vtiinstruments.com

EX1629 Basic Operation 47

 SECTION 3

BASIC OPERATION

INTRODUCTION

This section expands on the description of the EX1629’s features and explains how to best use

them.

ENGINEERING UNIT (EU) CONVERSION

Each EX1629 input channel can be individually configured for one of eleven different preset,

standard EU conversions. Each of these conversions is described below. Setting a specific

conversion not only controls the mathematical operations applied to the acquisition data, but also

automatically configures elements of the signal conditioning path. For example, setting a quarter-

bridge 350 conversion enables the 350 Ω completion resistor and connects the back-half resistors

to the +Sense measurement line, as illustrated in Figure 2-4. The automatic configuration,

however, can be overridden, as these elements can be configured independently.

Common terms used in the conversion equations are the following:

ε = strain

Vbackhalf = the voltage sensed from the back-half resistor network

V-sense = the voltage sensed on the –Sense input pin

V+sense = the voltage sensed on the +Sense input pin

Vunstrained = the unstrained voltage (measured or manually entered)

Vexcitation = the excitation voltage (measured or manually entered)

GF = gage factor

ν = Poisson ratio

Quarter-Bridge 350, Quarter-Bridge 120, Quarter-Bridge User

These conversions apply to the following bridge configuration:

Rcom p

R ()g 

VOUT
VEXC

+

–

+ –

R

R

FIGURE 3-1: QUARTER-BRIDGE CONFIGURATION

The specific conversion is selected to match the nominal resistance of the active gage.

VTI Instruments Corp.

48 EX1629 Basic Operation

The quarter-bridge strain conversion is calculated according to:

sensebackhalfdiff  VVV

excitation

unstraineddiff

V

VV
Vr




 r

r

VGF

V






21

4


Setting this conversion automatically configures the input path for quarter-bridge mode, in which

the required completion resistor is enabled and the back-half resistors are connected. This

configuration is illustrated in Figure 2-4.

Any of these quarter-bridge conversions also apply to the following bridge configuration, where

the dummy gage is utilized for temperature compensation of the active gage:

VEXC

R

R

VOUT

R ()g 

R (Dummy)g

R ()g 

R (Dummy)g

+

–

+ –

FIGURE 3-2: QUARTER-BRIDGE WITH DUMMY GAGE

This is simply a quarter-bridge configuration where the completion resistor is external to the

instrument (since only one leg of the bridge is active, it is a quarter-bridge, not a half-bridge which

would contain two strain gage resistors). To configure a channel for this use, the channel’s EU

conversion should be set to quarter-bridge (any of the 120, 350, or User configurations can be

used, since the nominal resistance only effects which completion resistor is selected), the input

multiplexer should be set to half-bridge, and then the completion resistor should be set to full.

While this configuration appears similar to a half-bridge configuration, it is different in that the

quarter-bridge conversion equation is used. This configuration may be used with any external

completion resistor.

Half-Bridge Bending

This conversion applies to the following bridge configuration:

VOUTVEXC

R

R

+

–

+ –

R (+)g 

R (-)g 

FIGURE 3-3: HALF-BRIDGE BENDING CONFIGURATION

www.vtiinstruments.com

EX1629 Basic Operation 49

The half-bridge strain conversion is calculated according to:

sense-backhalfdiff VVV 

excitation

unstraineddiff

V

VV
Vr




GF

Vr


2


Setting this conversion automatically configures the input path for half-bridge mode, in which the

completion resistor is shorted and the back-half resistors are connected. This configuration is

illustrated in Figure 2-5.

Half-Bridge Poisson

This conversion applies to the following bridge configuration:

R (+)g 

R (-)g 

VOUTVEXC

R

R

+

–

+ –

FIGURE 3-4: HALF-BRIDGE POISSON CONFIGURATION

The half-bridge strain conversion is calculated according to:

sense-backhalfdiff VVV 

excitation

unstraineddiff

V

VV
Vr




    121

4









r

r

VGF

V

Setting this conversion automatically configures the input path for half-bridge mode, in which the

completion resistor is shorted and the back-half resistors are connected. This configuration is

illustrated in Figure 2-5.

Full-Bridge Bending

This conversion applies to the following bridge configuration:

VEXC

+ 

+

–

+–

+ – 

– 

VOUT

FIGURE 3-5: FULL-BRIDGE BENDING CONFIGURATION

VTI Instruments Corp.

50 EX1629 Basic Operation

The full-bridge strain conversion is calculated according to:

sense-sensediff VVV  

excitation

unstraineddiff

V

VV
Vr




GF

Vr


Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected. This configuration is

illustrated in Figure 2-6.

Full-Bridge Poisson

This conversion applies to the following bridge configuration:

+ 

+

–

+–

+ – 

– 

VOUT
VEXC

FIGURE 3-6: FULL-BRIDGE POISSON CONFIGURATION

The full-bridge strain conversion is calculated according to:

sense-sensediff VVV  

excitation

unstraineddiff

V

VV
Vr




    11

2









r

r

VGF

V

Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected. This configuration is

illustrated in Figure 2-6.

Full-Bridge Bending Poisson

This conversion applies to the following bridge configuration:

+ 

+

–

+–

+ – 

– 

VOUT
VEXC

FIGURE 3-7: FULL-BRIDGE BENDING POISSON CONFIGURATION

www.vtiinstruments.com

EX1629 Basic Operation 51

The full-bridge strain conversion is calculated according to:

sense-sensediff VVV  

excitation

unstraineddiff

V

VV
Vr




 1
2









GF

Vr

Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected. This configuration is

illustrated in Figure 2-6.

Voltage

This simply returns the differential voltage, Vdiff.

sense-sensediff VVV  

Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected. This configuration is

illustrated in Figure 2-7.

Ratiometric

This performs a scaling of the differential voltage, Vdiff, according to:

sense-sensediff VVV  

excitation

unstraineddiff

V

VV
Vr




Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected.

Linear

This performs a scaling of the differential voltage, Vdiff, according to:

sense-sensediff VVV  

unstraineddiff VVGFV 

Setting this conversion automatically configures the input path for full-bridge mode, in which the

completion resistor is shorted and the back-half resistors are disconnected.

Nonstandard

As previously mentioned, there are potentially desirable configurations that are not covered by the

standard conversions. An example of this is a quarter-bridge configuration that provides voltage

output instead of strain. Fortunately, the EX1629 provides the flexibility to create virtually any

bridge measurement configuration. Creating a nonstandard EU conversion begins by selecting the

standard conversion that provides the desired conversion equation. Following that, the nominal

settings of the completion resistor and input multiplexer can be changed to fit the requirements of

the application.

The default selection is voltage.

VTI Instruments Corp.

52 EX1629 Basic Operation

COMPLETION RESISTOR

In a standard quarter-bridge strain application, the completion resistor value must match the

nominal resistance of the active strain gage. The required completion resistor is normally enabled

through the appropriate setting of the EU conversion. For example, setting a quarter-bridge 350

conversion automatically enables the 350 Ω completion resistor. However, there are potentially

desirable configurations that are not covered by the standard conversions. An example of this is a

quarter-bridge configuration that provides voltage output instead of strain (this is sometimes

useful as a “sanity” check). In that case, the completion resistor must be specifically configured.

Creating a nonstandard EU conversion begins by selecting the standard conversion that provides

the desired conversion equation. Following that, the nominal settings of the completion resistor

and input multiplexer can be changed to fit the requirements of the application.

The available settings for the completion resistor are full, 120, 350, user, and off. 120 and 350

refer to the 120 Ω and 350 Ω resistor paths. Full refers to a low-impedance connection between the

–excitation source and the –Excitation connection (Pin 2 of the input connector). The typical

resistance in full mode is 125 mΩ. User refers to the user-specified resistor path, which may be

populated as a factory option. Off refers to the disabling of all of the resistor paths.

The default value of the completion resistor is full.

INPUT MULTIPLEXER

The connection of the EX1629’s signal conditioning circuitry is governed by the setting of its

input multiplexer, which connects the measurement path to the input measurement lines (±Sense),

the back-half resistors, the calibration source, or ground. The required input multiplexer

configuration is normally controlled through the appropriate setting of the EU conversion. For

example, setting a quarter-bridge 350 conversion automatically configures the input multiplexer

for quarter mode, as shown in Figure 2-4. However, there are potentially desirable configurations

that are not covered by the standard conversions. An example of this is a quarter-bridge

configuration that provides voltage output instead of strain. In that case, the input multiplexer

must be specifically configured.

Creating a nonstandard EU conversion begins by selecting the standard conversion that provides

the desired conversion equation. Following that, the nominal settings of the completion resistor

and input multiplexer can be changed to fit the requirements of the application.

The available settings for the input multiplexer are shown in Table 3-1, mapped to the specific

connections of the instrumentation amplifier inputs.

Setting (+) Input (-) Input
full +Sense -Sense

half back-half -Sense

quarter back-half -Sense

cal‡ cal source cal source

gnd‡ ground Ground
‡ For factory use only.

TABLE 3-1: INPUT MULTIPLEXER SETTINGS

The default value of the input multiplexer is full.

www.vtiinstruments.com

EX1629 Basic Operation 53

COMPLETION RESISTOR/INPUT MULTIPLEXER DEFAULT SETTINGS

Table 3-2 contains the default input multiplexer and completion resistor values for each EU

conversion.

EU Conversion Completion Resistor Input Multiplexer
Voltage Full Full

Quarter 120 Ω 120 Ω Back-half

Quarter 350 Ω 350 Ω Back-half

Quarter User User Back-half

Half Bending Full Back-half

Half Poisson Full Back-half

Full Bending Full Full

Full Poisson Full Full

Full Bending Poisson Full Full

Ratiometric Full Full

Linear Full Full

TABLE 3-2: DEFAULT COMPLETION RESISTOR/INPUT MULTIPLEXER VALUES

GAGE FACTOR / POISSON RATIO

As illustrated in the Engineering Unit (EU) Conversion subsection, there are two constants

utilized in the EU strain conversions: gage factor and Poisson ratio.

The gage factor (GF), a measure of strain gage sensitivity, is a dimensionless quantity defined as

the ratio of the fractional change in resistance to the fractional change in length along the primary

axis of the strain gage. Mathematically, this is expressed as:

ε

R
ΔR

L
L

R
R

GF 






The gage factor value for a specific strain gage is provided by the strain gage manufacturer. The

default gage factor is 2.0.

The Poisson ratio (ν), in simple terms, is a measure of the extent to which a material contracts as it

is being stretched. In engineering terms, it is a dimensionless quantity defined as the ratio of

transverse contraction strain to longitudinal extension strain in the direction of the stretching force.

Mathematically, this is expressed as:

long

trans

ε

-ε
ν 

The Poisson ratio value for a specific material should be obtained from a mechanical engineering

reference. The default Poisson ratio is 0.3.

VTI Instruments Corp.

54 EX1629 Basic Operation

MEASUREMENT RANGE / GAIN

Each EX1629 input channel can be individually configured with respect to its signal conditioning

gain. The differential voltage measurement range of the EX1629 is ±150 mV, ±1.5 V, or ±15 V,

for gain settings of 100, 10, and 1, respectively. As strain measurements will nearly always be

conducted at a gain of 100, its measurement range is primarily a function of bridge configuration

and excitation voltage level. The extent of initial bridge imbalance, which is reflected in the

unstrained voltage measurement, is a secondary factor, but it is normally not large enough to be

significant. Nominal measurement ranges for some common bridge configurations are listed in

Table 3-3.

Bridge Configuration Excitation Range

Quarter 10 V +30927 µε/-29126 µε

Quarter 5 V +63829 µε/-56603 µε

Half 10 V ±15000 µε

Half 5 V ±30000 µε

Full 5 V ±15000 µε

Full 2.5 V ±30000 µε

TABLE 3-3: EX1629 MEASUREMENT RANGE

For quarter-bridge configuration, note that the dynamic range is slightly different for tension vs.

compression. While the dynamic range of the voltage measurement circuitry is a balanced

±150 mV, the transfer function of strain-to-voltage is nonlinear, and that results in the small

disparity.

The default gain setting is 1, although most strain gage measurements are taken using a gain of

100.

EXCITATION SOURCE

Each EX1629 input channel features an independent excitation source that is not only

programmable on a per channel basis, but also with respect to the positive and negative supplies

that compose the total excitation voltage. This programming independence provides the flexibility

of balanced or unbalanced excitation. Specifically, the positive and negative excitation voltages

are programmable from 0 V to +8 V and 0 V to -8 V, respectively, with a total current capability

of 50 mA per channel. Overcurrent protection is 60 mA. Moreover, each source is independently

regulated, such that an overcurrent condition on one channel does not affect the regulation of any

other channels.

The operations to program and enable each excitation voltage are discrete. Excitation voltages that

are not enabled output an actual value of 0 V, regardless of their programmed value.

When the excitation source is changed, the nominal value of the total excitation voltage is updated

in the EU strain conversions. However, for highest accuracy, the excitation voltage should be

measured and the measurement used in the EU conversion (see the Excitation Source

Measurement section that follows). The strain accuracy tables are based on the requirement that

excitation measurement is performed.

For highest accuracy in half-bridge and full-bridge configurations, each excitation source has a

remote sense connection. In order to properly remove the effects of lead wire resistance, these

lines should be connected at the same point that the ±Excitation lines are connected to the bridge.

The remote sense lines are always active in the circuitry; there is no control to turn on/off remote

sense. Because of this, it is critical that they be left open (unconnected) in quarter-bridge

configuration, where their connection would be invalid.

www.vtiinstruments.com

EX1629 Basic Operation 55

As explained in Maximizing Measurement Performance in Section 1, because of the relatively

high levels of power dissipation involved, it is best to allow the bridge system elements to

thermally stabilize after an excitation source change. Excitation and unstrained voltage

measurements taken after an appropriate delay will demonstrate improved stability during the

subsequent strain testing.

NOTE For maximum measurement performance, an excitation source change should be followed by a

thermal stabilization delay before the excitation and unstrained voltage measurements are

performed.

The default programmed values for the excitation sources are 0 V. The default enable states for the

excitation sources are off.

EXCITATION SOURCE MEASUREMENT

For highest measurement accuracy, the EX1629 provides the ability to measure its excitation

source and use the measurement in the EU conversion. By doing so, the set point accuracy of the

excitation source ceases to be an error source. The strain accuracy tables are based on the

requirement that excitation measurement is performed.

An excitation source measurement is composed of two confidence system measurements: a

measurement of the +excitation voltage followed by a measurement of the –excitation voltage.

The total excitation voltage is then calculated as (+Vexc) – (-Vexc). Through program control, the

user dictates whether the measurement is used in the EU strain conversions, taking the place of the

nominal excitation value. However, because the measurement system accuracy exceeds the set

point accuracy of the source, overall strain accuracy is always improved by using the source

measurement in the EU conversion.

The excitation source measurement also provides control over whether the local sense or remote

sense lines of the excitation source are measured. If the remote sense lines are not connected to the

external strain bridge, such as in quarter-bridge configuration, either setting can be used. The

values in either case are the same. However, if the remote sense lines are connected to the bridge,

as they ideally should be in half- or full-bridge configuration, the remote sense lines should be

measured, as they represent the true source output seen by the bridge.

While a tightly regulated supply, the excitation source does, nonetheless, have a temperature drift

characteristic. For this reason, it is best to conduct the excitation source measurement just prior to

the initiation of strain measurements, making the source measurement as fresh as possible.

Moreover, to achieve maximum performance, it is best to allow the system elements to thermally

stabilize following an excitation source change before conducting its measurement. For more

details, see Maximizing Measurement Performance in Section 1.

NOTE For maximum measurement performance, an excitation source change should be followed by a

thermal stabilization delay before the excitation source measurement is performed.

While measuring the excitation source is the conventional method of providing a non-nominal

value of the excitation voltage to the EU conversion, it is also possible to manually enter a value.

This would normally only be done for system diagnostic purposes.

UNSTRAINED VOLTAGE MEASUREMENT

Integral to strain measurement, the unstrained voltage measurement mathematically removes the

effects of initial bridge imbalance by measuring the bridge voltage with the gage(s) in an

unstrained state and using the resultant value in the EU conversion. For while an unstrained bridge

would ideally have an output of 0 V, component tolerances of the gages and, if employed, the

completion resistor produce a nonzero output. Performing an unstrained voltage measurement

VTI Instruments Corp.

56 EX1629 Basic Operation

eliminates these tolerances as an error source. The strain accuracy tables are based on the

requirement that unstrained voltage measurement is performed.

The unstrained voltage measurement should only be taken once the bridge configuration and

excitation source parameters are established. It is critical that the operating conditions under which

the unstrained voltage measurement is taken be identical to those present during strain

measurement. That is, an unstrained voltage measurement taken before an excitation source

change would be mathematically invalid.

NOTE The unstrained voltage measurement should only be taken once the bridge configuration and

excitation source parameters are established.

The EX1629 components responsible for the unstrained voltage are primarily the completion

resistor and the main bridge measurement circuitry. And while they are of extremely high quality,

there is, nonetheless, a small temperature drift characteristic. For this reason, it is best to perform

the unstrained voltage measurement just prior to the initiation of strain measurements, making it as

fresh as possible. Moreover, to achieve maximum performance, it is best to allow the system

elements to thermally stabilize following an excitation source change before conducting its

measurement. For more details, see Maximizing Measurement Performance in Section 1.

NOTE For maximum measurement performance, an excitation source change should be followed by a

thermal stabilization delay before the unstrained voltage measurement is performed.

While measuring the unstrained voltage is the conventional method of providing a value to the EU

conversion, it is also possible to manually enter a value. This would normally only be done for

system diagnostic purposes.

SCAN LIST CONFIGURATION

The EX1629 can be configured to include from 1 to all 48 of its input channels in the scan list.

Because of the channel independence present in the EX1629 design, there are no accuracy, noise,

or speed ramifications from the structure of the scan list. Its channel entries can consequently be

solely dictated by the user’s application requirements. Moreover, since the EX1629 features an

independent A/D converter per channel, input channels are, in a sense, not “scanned” at all.

Instead, the scan list simply dictates the specific data to be returned. The term “scan list” is

borrowed from traditional scanning (multiplexed) data acquisition systems. A valid scan list

consists of:

 at least one channel

 not more than 48 channels

 no repeated channels

Each EX1629 input channel maintains its high input impedance and operational independence

from the other channels regardless of its inclusion in the scan list.

SAMPLING RATE

The EX1629 can be configured for a sampling rate from 1 Sa/s to 10000 Sa/s in 30 discrete

settings, regardless of the number of channels in the scan list. This permits the tailoring of the data

load to the dynamic requirements of the test application. The valid sample rates are 1, 2, 4, 5, 8,

10, 16, 20, 25, 33.33, 40, 50, 80, 100, 125, 166.67, 200, 250, 400, 500, 625, 833.33, 1000, 1250,

2000, 2500, 3125, 5000, 6250, 10000 and 12500 Sa/s. A rate of 25000 Sa/s can be achieved if 1)

the number of active channels is limited to a maximum of 16 and 2) all active channels are on the

same analog board (i.e. channels 0 through 15, 16 through 31, or 32 through 47 can be selected).

Requested rates that fall between valid ones are rounded to the closest valid one.

www.vtiinstruments.com

EX1629 Basic Operation 57

Unique in its design, the EX1629 features a secondary “confidence” measurement system that runs

in parallel with the main bridge measurement system. This confidence system, if enabled,

produces data at a fixed rate of approximately 500 Sa/s. If the sampling rate is set at or below

500 Sa/s, the confidence system can produce fresh data for every main bridge output reading. If,

however, the sampling rate is set above 500 Sa/s, the returned data will periodically be returned

without confidence data.

The default setting is 1000.

UNITS

Each EX1629 input channel can be individually configured with respect to the units of its strain

conversions, either strain (ε) or microstrain (µε). The default units setting is strain. The results of

voltage and linear conversions are always in volts, and ratiometric conversions are unitless.

If the tare feature is employed, it should be noted that an entered tare value is unaffected by a

change in the units setting. For example, if a tare value of 100 is entered when the units are

microstrain, it will be considered as 100 µε. If the unit’s setting is then changed to strain, this tare

value will be considered as 100 ε. To avoid this confusion, it is best to set the desired units first

and then enter any tare value.

TARE

Each EX1629 input channel can be assigned a tare, or relative, value. The tare value is subtracted

from the nominal conversion results to produce the final readings, yielding measurements that are

referenced to a nonzero point. Tare can be used on strain as well as non-strain EU conversions.

A subtle characteristic of the tare value is that it is not linked to the units setting of the instrument.

For example, if a tare value of 100 is entered when the units are microstrain, it will be considered

as 100 µε. However, if the units setting is then changed to strain, this tare value will be considered

as 100 ε. Similarly, if instead the conversion is changed to voltage, this tare value will be

considered as 100 V. To avoid this confusion, it is best to set the desired EU conversion and units

first and then enter any tare value.

Tare values apply only to main bridge conversions, not to confidence system measurements.

The default tare value is 0.

DIGITAL FILTER

The EX1629 finite impulse response (FIR) filters provide near Nyquist bandwidths as indicated in

Table B-1. The passband ripple for sample frequencies (fs) greater than or equal to 3125 Hz is

-0.01 dB, while it is ±0.001 dB for fs < 3125 Hz. The filters provide an alias rejection of 100 dB

and have linear phase. Some sampling frequencies result in very high attenuation of 60 Hz signals.

The FIR filters are solely a function of sampling and are not user configurable.

Each EX1629 channel can be individually configured with respect to infinite impulse response

(IIR) filtering. The user can select either Butterworth or Bessel type filters, or may choose no IIR

filter. If IIR filtering is turned on, the -3 dB frequencies can be chosen continuously from fs/1000

to fc max as indicated in Table B-1. The order of the filters can be set by the user as well.

Butterworth filters can be set from 0 - 10 and Bessel filters can be set from 1 to 10. When the user

order is specified as 0, the EX1629 calculates the order based on an analog prototype Butterworth

filter with -200 dB attenuation at fs/2, given the sampling frequency and the -3 dB frequency. The

on-board DSP will design IIR filters on-the-fly given a sampling frequency, the -3 dB frequency, a

user order between 1 and 10, the filter type, and the transform.

VTI Instruments Corp.

58 EX1629 Basic Operation

The default settings are: Butterworth filter with -3 dB freq = 10 Hz, bilinear transform, and user

order = 0 (calculated order = 6). More information on filtering can be found in Appendix B.

TRIGGERING

The EX1629 supports a full function trigger model with a separate arm source and trigger source

event structure. For a complete explanation of the trigger model, see Section 4. In summary, an

acquisition sequence is enabled with a trigger initialize function. Measurement data is then

acquired upon the receipt of the programmed arm source event followed by the receipt of the

programmed trigger source event. Trigger and arm source events can be independently

programmed from a variety of sources including Immediate, Timer, Digital I/O, and the Trigger

Bus.

DATA FORMAT

By default, the data returned during data retrieval is limited to the main bridge readings and the

absolute time of scan initiation. If enabled, the EX1629 can also return data from its confidence

measurement system, such as the excitation source voltages and excitation source currents.

SHUNT CALIBRATION

The EX1629 features an extremely capable and fully programmable shunt calibration architecture

to ensure correct bridge performance. Three discrete shunt calibration modes are supported that

can be employed in local and remote connections. Figure 3-8 illustrates the shunt calibration

design.

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

Pin 5

Pin 4

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+Excitation Sense

+ Excitation

 - Excitation

Full-Bridge (1 of 48 channels)

+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

-Excitation

-Excitation Sense

RJ-45 Pin#

12345678

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

+

-

-

+

D

C

B E

FA

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 3-8: SHUNT CALIBRATION CONFIGURATION

www.vtiinstruments.com

EX1629 Basic Operation 59

Each input channel provides a unique, precision 55 kΩ resistor that can be connected locally

(switch C) for quarter-bridge shunting or remotely (switch B) for full- or half-bridge shunting.

Since there is a resistor per channel, all 48 input channels may be shunted simultaneously.

If an alternate shunt resistor is required, an external resistor may be connected into each of three

front panel connectors, one for each group of 16 input channels. Each resistor may be connected

locally (switches D, F) for quarter-bridge shunting or remotely (switches A, F) for full- or half-

bridge shunting. Up to three front panel resistors may be used simultaneously, but not for more

than one channel in each 16-channel block.

For highest accuracy, the value of this external resistor should be precisely known. The connection

resistance characteristic in the specifications refers to the total resistance of the connection

switches. This resistance must be considered in conjunction with the raw resistor value when

determining the theoretical simulated strain of the shunt calibration process. The connection

resistance is the same for local or remote connection.

Finally, the EX1629 offers the ability to read and control a TEDS-equipped remote resistor

(switches A, E) for full- or half-bridge shunting. Up to three TEDS remote resistors may be used

simultaneously, but not for more than one channel in each 16-channel block.

Table 3-4 summarizes the shunt calibration capabilities and the specific connection switches they

utilize.

Setting Usage Switches
front_panel_remote 1 per 16 channels A, F

front_panel_local 1 per 16 channels D, F

internal_remote every channel B

internal_local every channel C

teds_remote 1 per 16 channels A, E

TABLE 3-4: SHUNT CALIBRATION SETTINGS

Shunt calibration configuration involves two discrete and disjoint operations. Each channel is

assigned a shunt calibration mode, as described above. Separately, each shunt is enabled

(connected) or disabled (disconnected).

The default shunt calibration mode is internal_remote. The default shunt enable setting is disabled.

SELF-CALIBRATION

In order to deliver high measurement accuracy over a wide ambient operating temperature range,

the EX1629 provides the ability to perform an instrument self-calibration. During self-calibration,

the input signal conditioning paths are internally disconnected from the input jacks and connected

instead to a calibration bus that is driven by an internal, precision calibration source. Through

measurement of the conditioning paths at multiple calibration source points, software

compensation for circuitry drift since the last full calibration is conducted. Once self-calibration is

performed, the accuracy specifications listed in Section 1 are valid for 30 days and over a ±5 ºC

ambient temperature change. Note, however, that the unit must still undergo a full calibration at

least once a year, regardless of the use of self-calibration.

Self-calibration should be conducted as often as practical, especially if the ambient environment

has changed significantly since the previous calibration. However, fast ambient environmental

changes should ideally be followed by a period of thermal stabilization before conducting self-

calibration to allow the internal circuitry to stabilize to a new thermal operating condition. The

self-calibration process completes quickly and does not require removal of the actual input

connections, making it convenient to run often.

VTI Instruments Corp.

60 EX1629 Basic Operation

Similarly, self-calibration should only be performed after the EX1629 has been allowed to warm

up from a cold start for at least 60 minutes. To protect the user, the instrument will return a

warning if self-calibration is initiated prior to the completion of this warm-up time. However, it is

only a warning and can be overridden by repeating the calibration function. An override would be

completely acceptable, for example, in cases where a) the unit is already fully warmed-up and is

quickly moved from one physical location to another or b) instrument line power is briefly lost

due to a facility power outage.

Self-calibration does not overwrite, modify, or take the place of the instrument’s nonvolatile

calibration constants generated by a full calibration. Instead, it generates an additional set of

calibration constants that are applied to the measurement calculation after the full calibration

constants. By default, self-calibration data is volatile, meaning that it is not saved through

instrument reboots or power cycles. This ensures that the instrument always initializes with

calibration constants generated by a full calibration. This feature is particularly important when the

instrument is being shared among multiple users. Each user is consequently sheltered from the

actions of others.

Despite having the ability to conduct self-calibration at any time, there may be user applications

that require the use of self-calibration, but demand that it create nonvolatile data. The EX1629

supports that operation as well. Once self-calibration is performed, the data can be stored to

nonvolatile memory through a separate function. Similarly, previously stored self-calibration data

can be loaded or cleared from nonvolatile memory.

Self-calibration offers a convenient way to mitigate the effects of time and temperature on the

signal conditioning circuitry of the EX1629, resulting in significant performance improvement.

However, it cannot compensate or correct for potential drift errors caused by an excitation source

change that is not followed by a thermal equilibrium delay. Similarly, any error caused by lead

wire desensitization is outside of the calibration loop and is not eliminated. Finally, the use of self-

calibration does not remove the necessity of excitation source measurement to achieve stated

accuracies. For more details, see Maximizing Measurement Performance in Section 1.

LOCKING

By default, the EX1629 allows unrestricted operation from multiple hosts. While this offers a high

level of user flexibility, there are instances where protected operation is desirable, if not required.

For these applications, the EX1629 can be “locked,” meaning that it will accept function calls

from only the host IP address that issued the lock function call. With the EX1629 in this mode,

other host connections that attempt function calls will be denied.

By design, the locking mechanism is able to be overridden by a secondary host that issues a break

lock function. Thus, the lock provides a warning to other users that the unit is in a protected

operation state, but not absolute security. This allows for instrument recovery if the host or

application should become disabled. Self-calibration requires the acquisition of a lock prior to its

initiation.

CONFIDENCE SCAN LIST CONFIGURATION

The Confidence Measurement System allows several signals within a bridge to be measured, in

addition to the voltage across the bridge (main input channels), including the excitation voltages

and currents. The confidence measurement system is configured by a scanlist, analogous to the

main input channel scanlist, except that, in the case of the confidence measurement system, the

measurements are actually taken sequentially (scanned) by a number of ADCs, whereas the main

input channels each have a dedicated ADC.

www.vtiinstruments.com

EX1629 Basic Operation 61

The confidence scanlist contains the list of confidence channels to be measured on each main

input channel. There is a single confidence scanlist for the entire instrument, so all channels in the

main input channel scanlist have the same confidence measurements taken. That is, if there are 16

channels enabled in the main input scanlist, say channels 0 through 15, and the confidence scanlist

is configured with 4 channels, say excitation current (positive and negative) and excitation output

voltage (positive and negative), 64 confidence measurements will be taken (16 x 4).

The confidence system runs at a fixed rate (500 Sa/s), regardless of the sampling rate of the main

input channels, and asynchronously to the main input measurements. Confidence measurement

data is inserted into the same data stream as the main input channel data. When the main input

sampling rate is equal to or less than 500 Sa/s, all scans of data include confidence data. Between

500 Sa/s and 1000 Sa/s, confidence data is included in the scans when available – the data stream

is self-describing a manner such that clients can tell when confidence data is available and when it

is not. Above 1000 Sa/s, the confidence data is not available.

NOTE The key restriction that MUST be enforced is that any confidence scan list that includes

+V_SENSE and -V_SENSE must also include +EXCITEOUT and -EXCITELOW as well.

CONFIGURATION STORAGE

By default, all configuration options on the EX1629 are at factory defaults when the instrument is

powered-on or is reset. The instrument does support the ability to save user configurations to non-

volatile storage, however. This option saves all configuration variables, and automatically restores

them at power-on or reset, instead of using the factory defaults.

To aid developers, the instrument can generate a “digest” (also known as a “hash”) for the

instrument’s configuration. This digest is a statistically unique value, 16 bytes long, that serves as

a signature or fingerprint for the current configuration state of the instrument. By configuring the

instrument with the desired values and then saving the configuration to non-volatile storage, the

configuration will be available whenever the instrument powers on or is reset. Additionally, by

retaining the digest of the configuration when it is stored, an application can quickly verify that the

instrument is configured identically to the desired state, without laboriously retrieving all

configuration variables and verifying them against the desired state.

NOTES 1) The configuration storage (and digest) pertains only to the acquisition configuration of the

 instrument (e.g., scanlist, EU conversions, excitation voltages, etc.). Other instrument

 configuration, such as network and time configuration are not covered by this mechanism.

 2) Due to the way in which the internal configuration state of the instrument is stored, digest

 values for the factory default configuration as well as digest values for saved configurations

 may change between firmware versions.

WIDEBAND OUTPUT

The wideband output connector carries a buffered image of the main channel signal. It is a single

ended signal, referenced to GND, and shielded to the chassis. The magnitude of this signal is

±15 V. Assmann Electronics’ P/N: AHDF44LL-Z is one example of a mating connector.

15

30

44

1

16

31

FIGURE 3-9: WIDEBAND OUTPUT CONNECTOR

VTI Instruments Corp.

62 EX1629 Basic Operation

WIDEBAND OUT CH 0-15

WIDEBAND OUT CH 16-31

WIDEBAND OUT CH 32-47

Pin # Signal Pin # Signal Pin # Signal

1 CH 7 HI 1 CH 23 HI 1 CH 39 HI

2 CH 6 HI 2 CH 22 HI 2 CH 38 HI

3 CH 5 HI 3 CH 21 HI 3 CH 37 HI

4 CH 4 HI 4 CH 20 HI 4 CH 36 HI

5 CH 3 HI 5 CH 19 HI 5 CH 35 HI

6 CH 2 HI 6 CH 18 HI 6 CH 34 HI

7 CH 1 HI 7 CH 17 HI 7 CH 33 HI

8 CH 0 HI 8 CH 16 HI 8 CH 32 HI

9 CH 15 HI 9 CH 31 HI 9 CH 47 HI

10 CH 14 HI 10 CH 30 HI 10 CH 46 HI

11 CH 13 HI 11 CH 29 HI 11 CH 46 HI

12 CH 12 HI 12 CH 28 HI 12 CH 44 HI

13 CH 11 HI 13 CH 27 HI 13 CH 43 HI

14 CH 10 HI 14 CH 26 HI 14 CH 42 HI

15 CH 9 HI 15 CH 25 HI 15 CH 41 HI

16 CH 7 LO 16 CH 23 LO 16 CH 39 LO

17 CH 6 LO 17 CH 22 LO 17 CH 38 LO

18 CH 5 LO 18 CH 21 LO 18 CH 37 LO

19 CH 4 LO 19 CH 20 LO 19 CH 36 LO

20 CH 3 LO 20 CH 19 LO 20 CH 35 LO

21 CH 2 LO 21 CH 18 LO 21 CH 34 LO

22 CH 1 LO 22 CH 17 LO 22 CH 33 LO

23 CH 0 LO 23 CH 16 LO 23 CH 32 LO

24 CH 15 LO 24 CH 31 LO 24 CH 47 LO

25 CH 14 LO 25 CH 30 LO 25 CH 46 LO

26 CH 13 LO 26 CH 29 LO 26 CH 45 LO

27 CH 12 LO 27 CH 28 LO 27 CH 44 LO

28 CH 11 LO 28 CH 27 LO 28 CH 43 LO

29 CH 10 LO 29 CH 26 LO 29 CH 42 LO

30 CH 9 LO 30 CH 25 LO 30 CH 41 LO

31 CH 7 Shield 31 CH 23 Shield 31 CH 39 Shield

32 Ch 6 Shield 32 Ch 22 Shield 32 Ch 38 Shield

33 CH 5 Shield 33 CH 21 Shield 33 CH 37 Shield

34 CH 4 Shield 34 CH 20 Shield 34 CH 36 Shield

35 CH 3 Shield 35 CH 19 Shield 35 CH 35 Shield

36 CH 2 Shield 36 CH 18 Shield 36 CH 34 Shield

37 CH 1 & CH 0 Shield 37 CH 17 & CH 16 Shield 37 CH 33 & CH 32 Shield

38 CH 8 HI 38 CH 24 HI 38 CH 40 HI

39 CH 15 & CH 14 Shield 39 CH 31 & CH 30 Shield 39 CH 47 & CH 46 Shield

40 CH 8 LO 40 CH 24 LO 40 CH 40 LO

41 CH 13 & CH 8 Shield 41 CH 29 & CH 24 Shield 41 CH 45 & CH 40 Shield

42 CH 12 Shield 42 CH 28 Shield 42 CH 44 Shield

43 CH 11 Shield 43 CH 27 Shield 43 CH 43 Shield

44 CH 10 & CH 9 Shield 44 CH 26 & CH 25 Shield 44 CH 42 & CH 41 Shield

TABLE 3-5: EX1629 WIDEBAND OUTPUT PIN ASSIGNMENTS

NOTE Wideband output signals should always be measured using an instrument that has true differential

inputs. If any sensor wires connect to GND, single ended inputs will cause ground loops and

reading errors.

www.vtiinstruments.com

EX1629 Basic Operation 63

DIGITAL I/O

The EX1629 provides sixteen programmable digital input/output signals, modeled on the

VT1533A digital input/output signal conditioning plug-on (SCP) module. These sixteen signals

are divided into two banks of 8 signals: Bank 0 is digital I/O signals 0 through 7 and Bank 1 is

digital I/O signals 8 through 15. Each bank is configurable as inputs (default) or outputs. Further,

when configured as outputs, each bank can be configured as a passive (resistor) pull-up or an

active (transistor) pull-up. When configured as inputs, the DIO signals (0 through 15) may be used

as trigger and/or arm sources.

Several vendors provide appropriate mating connectors. AMP part number 216166-1 (44-pin

housing) is one example.

15

30

44

1

16

31

FIGURE 3-10: DIGITAL I/O DB-44 CONNECTOR

Pin Signal Pin Signal

1 DIO_BUS0 23 GND

2 DIO_BUS1 24 GND

3 DIO_BUS2 25 GND

4 DIO_BUS3 26 GND

5 DIO_BUS4 27 GND

6 DIO_BUS5 28 GND

7 DIO_BUS6 29 GND

8 DIO_BUS7 30 GND

9 DIO_BUS8 31 DIO_TRIG0

10 DIO_BUS9 32 GND

11 DIO_BUS10 33 DIO_TRIG1

12 DIO_BUS11 34 GND

13 DIO_BUS12 35 GND

14 DIO_BUS13 36 GND

15 DIO_BUS14 37 GND

16 GND 38 GND

17 GND 39 GND

18 GND 40 GND

19 GND 41 GND

20 GND 42 GND

21 GND 43 GND

22 GND 44 DIO_BUS15

TABLE 3-6: DIGITAL I/O CONNECTOR PIN ASSIGNMENTS

VTI Instruments Corp.

64 EX1629 Basic Operation

LXI TRIGGER BUS

The EX1629 provides an LXI compatible trigger bus connector. For more information on the LXI

Trigger Bus, please visit www.lxistandard.org and refer to LXI Standard Revision 1.1 and

LXI Trigger Bus Cable and Terminator Specifications Rev 1.1.

Pin 1 Pin 13

Pin 14 Pin 25

FIGURE 3-11: TRIGGER BUS DB-25 CONNECTOR

Pin Signal Pin Signal

1 +3.3 V 14 RP_TRIG_P0

2 GND 15 RP_TRIG_N0

3 RP_TRIG_P1 16 RESERVED

4 RP_TRIG_N1 17 RP_TRIG_P2

5 GND 18 RP_TRIG_N2

6 RP_TRIG_P3 19 GND

7 RP_TRIG_N3 20 RP_TRIG_P4

8 GND 21 RP_TRIG_N4

9 RP_TRIG_P5 22 GND

10 RP_TRIG_N5 23 RP_TRIG_P6

11 RESERVED 24 RP_TRIG_N6

12 RP_TRIG_P7 25 RESERVED

13 RP_TRIG_N7

TABLE 3-7: LXI TRIGGER BUS CONNECTOR PIN ASSIGNMENTS

TEDS TRANSDUCER SUPPORT

The EX1629 supports reading and writing to Transducer Electronic Data Sheets (TEDS) devices

that implement the IEEE 1451.4 standard. Each channel (0 through 47) functions as a 1-Wire bus

master, although only one channel can be active at a time, reading, or writing. Only one TEDS

device per channel is supported.

There are two software interfaces to support TEDS devices, one that is tailored specifically for the

Dallas/Maxim DS2430 part and one that is more general purpose that will work with any 1-Wire

TEDS device, implementing the MicroLAN (MLAN) protocol. The former is deprecated; the

latter, MLAN interface, is more general purpose and should be used by all new applications. The

MLAN protocol is documented in IEEE 1451.4-2004 Annex G. See the MicroLAN (MLAN)

Primer and associated sections for more information.

www.vtiinstruments.com

EX1629 Basic Operation 65

TEDS
COMM

External customer
shunt cal
resistor terminals

Internal
Rcal55K

-R Cal

+R Cal

Pin 5

Pin 4

TEDS
Device

(i.e. DS2430
or DS2431)

Strain

Bridge

8-pin telcom

connector (RJ-45)

350

120

User

10K

10K

+ Excitation

 - Excitation

Quarter-Bridge (1 of 48 channels)

+Excitation

+Sense

-Sense

+Excitation Sense

-Excitation Sense

-Excitation

+Excitation Sense

-Excitation Sense

RJ-45 Pin#

12345678

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1

IO

GND

10K

10K
Instrumentation

Amplifier

+

-

x1
x10
x100

Hi

Lo

Shield

150

150

-Sense

-Cal

AGND

+Sense

Wagner

+Cal

AGND

430 kHz
LOW-PASS

FILTER

60.3 kHz
LOW-PASS

FILTER
ADC

TRIFILAR
FILTER

FIGURE 3-12: TEDS WIRING SCHEMATIC

NOTE Wiring the TEDS device to the EX1629 may not be as expected given the signal names used. The

correct wiring is provided above in Figure 3-12 as well as below:

 RJ-45 Pin 4 (RCAL + / TEDS +) to DS2430/1 GND

 RJ-45 Pin 5 (RCAL - / TEDS -) to DS2430/1 IO

 The “+” and “-” indicators for the signal names indicate that, since negative voltages are used to

communicate with the TEDS device, the GND signal is actually more positive than the IO signal.

VTI Instruments Corp.

66 EX1629 Basic Operation

RESET BUTTON

The reset button on the rear panel of the EX1629, implemented according to the LXI LAN

Configuration Initialize (LCI) Mechanism specification, can be used to restore default network

settings. This is useful for recovery from an incorrect or unknown network configuration. To

perform a network reset:

1) Power off the EX1629.

2) Press and hold the reset button.

3) Power on the EX1629.

4) Continue to hold the reset button for at least 30 seconds.

5) Release the reset button.

The EX1629 will power up as usual, but will use the default network configuration (DHCP and

AutoIP enabled) instead of its previous settings. VXI-11 Discovery (supported by the VISA

IO-Libraries) or the vtex1629_findinstr function can be used to determine the IP address of the

instrument.

www.vtiinstruments.com

EX1629 Triggering 67

 SECTION 4

TRIGGERING

OVERVIEW

The EX1629 supports a full function trigger model with a separate arm source and trigger source

event structure. The trigger model is based on the industry standard SCPI 1999 Trigger Subsystem

and is diagramed in Figure 4-1.

IDLE
IDLE

LAYER

ARM

LAYER

TRIG

LAYER

INIT

LAYER

DEVICE

LAYER

Init

Wait for
ARM Event

ARM Delay

ARM Event

ARM:Count > 0

or

ARM:Count:Inf?

No

YesSoftware Arm

ARM:COUNT:INF?
Decrement

ARM:COUNT
No

Yes

TRIG:Count > 0

or

TRIG:Count:Inf?

No

Wait for
TRIG Event

TRIG Delay

TRIG Event

Software Trigger

TRIG:COUNT:INF?

Yes

Yes

Decrement
TRIG:COUNT

No

Sample Count

Done?

No Decrement

Sample Count Yes

Acquire

Data

FIGURE 4-1: EX1629 TRIGGER MODEL

VTI Instruments Corp.

68 EX1629 Triggering

The trigger model is sectioned into five layers: IDLE, INIT, ARM, TRIG, and DEVICE. The

EX1629 reset condition places it in the IDLE state. A trigger initialize command begins the

acquisition sequence by transitioning the instrument through the INIT layer into the ARM layer.

As this occurs, the reading buffer memory is cleared

Upon entering the ARM layer, the ARM Count is reset to its specified value. The instrument

remains in the ARM layer until the specified ARM event occurs or a Software Arm is issued.

Once that occurs, the specified ARM Delay (if any) is waited, the ARM Count is decremented,

and the instrument transitions into the TRIG layer.

Upon entering the TRIG layer, the TRIG Count is reset to its specified value. The instrument

remains in the TRIG layer until the specified TRIG event occurs or a Software Trigger is issued.

Once that occurs, the specified TRIG Delay (if any) is waited, the TRIG Count is decremented,

and the instrument transitions into the DEVICE layer.

In the DEVICE layer, channels in the scan list are measured the requested sample count number of

times, and stored into local memory (FIFO).

If the TRIG Count remains nonzero, the instrument stays in the TRIG layer until the specified

TRIG event (and subsequent device action) occurs enough times to decrement it to zero. Once the

TRIG Count reaches zero, the instrument then evaluates the remaining ARM Count and repeats

the ARM layer action if it is nonzero. However, since each transition into the TRIG layer resets

the TRIG Count, each additional ARM layer action results in the full specified number of TRIG

Count actions through the TRIG layer and DEVICE layer.

Once the ARM Count reaches zero, the instrument transitions back into the INIT layer. If Init

Continuous mode is enabled, the ARM layer is automatically reentered without the issuance of a

trigger initialize command. However, unlike with a trigger initialize, the reading buffer memory is

not cleared. Conversely, if Init Continuous mode is disabled, the instrument is returned to the

IDLE layer and requires the issuance of a new trigger initialize command to begin a new

acquisition sequence.

ACQUISITION DATA AND FIFO

When a trigger event occurs and the instrument transitions into the Device Layer of Figure 4-1, a

user-configured number of samples are acquired. Main bridge acquisition data is acquired in

parallel from all channels enabled in the scanlist, using a separate ADC per channel. Acquisition

data, from both the main bridge measurements as well as the confidence subsystem, is captured,

filtered appropriately, calibration compensated, converted to engineering units, and stored in a

FIFO in the EX1629’s RAM along with a timestamp. In parallel, the instrument’s DIO values are

sampled and placed into the FIFO as well.

The digital inputs (DIO) are sampled during acquisition as well. The maximum sample rate for

DIO data is 1 kSa/s. If the main acquisition sample rate is higher than 1 kSa/s, the expected phase

error in terms of samples between DIO & Main bridge shall be ±[Main bridge samp freq/(2*DIO

sample freq)].

To maintain current data within the digital filters, data is always acquired from the main bridge

channels. When not within the Device Layer of Figure 4-1, this data is discarded before it reaches

the RAM FIFO. This serves to keep the digital filter states updated.

Applications may retrieve data from this FIFO using either the Read FIFO or Streaming Data

interfaces. Please refer to the Retrieving Data (Read FIFO and Streaming Data) section for further

details. Once data is retrieved from the FIFO, via either method, it is no longer kept within the

FIFO.

www.vtiinstruments.com

EX1629 Triggering 69

CONFIDENCE MEASUREMENT SYSTEM

The Confidence Measurement System runs in parallel with the main bridge measurement system,

but largely asynchronously. The Confidence Measurement System scans the various Confidence

Measurement Sources on each main input channel enabled in the scanlist. This scanning occurs at

the same rate as the main input channel sampling rate, up to 500 Sa/s. Above 500 Sa/s and below

1000 Sa/s, the Confidence Measurement System continues to sample at 500 Sa/s, inserting data

into the FIFO when new data is available. At 1000 Sa/s, confidence data is available with every

other dataset. The confidence data is filtered by a transfer function represented by the following

differential equation: y(n) = 0.01x(n) + 0.99y(n-1), where y(n) is the filtered confidence data and

x(n) is the measured confidence data. This function serves to reduce noise variance.

Confidence data is acquired for every main input channel enabled in the scanlist. Which

confidence data is acquired is controlled by the confidence scanlist. There is only one confidence

scanlist in the system, and thus the same confidence data is sampled for every main input channel.

The amount of confidence data returned is basically the product of the length of the main input

channel scanlist with the length of the confidence scanlist. For example, if the main input scanlist

is configured to measure channels 0, 1, 3, and 5, and the confidence scanlist is configured to

measure +Excite and –Excite, the total number of confidence data values returned will be 8.

To be clear, there is a single FIFO in the EX1629 that holds both main input channel data as well

as confidence measurement system data.

ADC CLOCK AND SYNCHRONIZATION

As was previously described, each input channel is an independent measurement system with its

own synchronous analog to digital converter (ADC). Input data is acquired synchronous to a

sample clock that is distributed to each ADC. In addition to the sample clock, a synchronization

signal is used to reset each of the ADCs and align them to acquire data synchronously. The

triggering system must be re-synchronized each time a change is made to the sample clock source,

sample frequency, or filtering parameters.

LXI LIMIT EVENTS

LXI Limit Events allow the EX1629 to send triggers to other instruments when an over-limit

condition is detected for bridge measurements. Each of the eight LXI Trigger Bus lines can have a

minimum and/or maximum limit defined for any and all of the 48 bridge measurement channels.

When an over-limit condition occurs, the trigger line is driven high. Because the limit comparison

is performed after filtering, the group delay of the chosen filter also delays trigger assertion. When

all filters are disabled and at a sample rate of 1 kSa/s, the typical delay is 14 ms.

Limit events also allow the user to latch their trigger signal. When latching is enabled, the trigger

line is driven high when the first over-limit condition occurs and remains high until the instrument

is reset or until the next measurement sequence is initiated. When latching is disabled, the state of

the trigger line is decided once per scan. When all chosen limit conditions are satisfied, the line is

driven low. Whenever any limits are exceeded, the line is driven high.

VTI Instruments Corp.

70 EX1629 Triggering

SYNCHRONIZING MULTIPLE INSTRUMENTS

In cases where larger acquisition systems are required, multiple devices can be configured to

utilize the same ADC sample clock and synchronization signal to acquire data that is synchronized

across all acquisition channels. This requires configuring one of the devices as a master and the

remaining devices as slaves. The devices must be connected together using the LXI Trigger Bus in

either a star or daisy chain configuration. The details of how to program the configuration of

multi-box systems is described in Section 6.

Please refer to Configure Trigger and ADC Clock for further details.

www.vtiinstruments.com

EX1629 Web Page Operation 71

 SECTION 5

WEB PAGE OPERATION

INTRODUCTION

The EX1629 offers an embedded web page to control network configuration, time configuration,

and firmware upgrades.

OPENING THE WEB PAGE

To open the embedded web page, start the LInC-U utility by navigating to Start → Programs →

VTI Instruments Corporation → LInC-U Utility → LInC-U Utility. Once the utility is run,

LInC-U will scan the network to discover all LAN-based VTI instruments. Once the scan is

complete, the Discovery Devices tab will appear and show the instruments that were discovered,

as shown in Figure 5-1. To open the web page, click on the hostname hyperlink in the Discover

Devices tab. The IP address of the EX1629 can also be viewed from this window as well as its

firmware version.

FIGURE 5-1: LINC-U DISCOVERY TAB WITH EX1629 SELECTED

Alternatively, the IP address of the EX1629 can be entered into the address bar of any web

browser to view the embedded web page. By default, the EX1629 will first attempt to use DHCP

to set its IP Address. If DHCP is not available on the network it is connected to, it will instead use

Auto IP. Determining the Auto IP address is discussed in the Network Configuration discussion in

Section 2. Other discovery methods can be used as well.

VTI Instruments Corp.

72 EX1629 Web Page Operation

GENERAL WEB PAGE OPERATION

When initial connection is made to the EX1629, the instrument home page, Index, appears. This

page displays instrument-specific information including:

 Name

 Serial number

 IP address

 MAC address

 Firmware version (also visible in the bottom right corner of every page)

 Date of last full calibration

 Presence of nonvolatile self-calibration data

This page is accessible from any other instrument page by clicking on the EX1629 web page

header.

The EX1629 command menu is displayed on the left hand side of every internal web page. The

entries on the command menu represent three types of pages:

Status This type of page performs no action and accepts no entries. It provides operational

status and information only. The Index page is an example of a status page.

Action This type of page initiates a command on the instrument, but does not involve

parameter entry. The Reboot page is an example of an action page.

Entry This type of page displays and accepts changes to the configuration of the instrument.

The Time Configuration page is an example of an entry page.

Use of the entry-type web pages in the EX1629 are governed by a common set of operational

characteristics:

 Pages initially load with the currently-entered selections displayed.

 Each page contains a Submit button to accept newly entered changes. Leaving a page before

submitting any changes has the effect of canceling the changes, leaving the instrument in its

original state.

 Navigation through a parameter screen is done with the Tab key. The Enter key has the same

function as clicking the Submit button and cannot be used for navigation.

FIGURE 5-2: EX1629 MAIN WEB PAGE

www.vtiinstruments.com

EX1629 Web Page Operation 73

PASSWORD

Pages that modify instrument configuration (e.g., Network Configuration) require a password

login. This mechanism is meant to prevent accidental configuration modification. The default

password is ex1629. Pages that require a password will provide a link to the password login page.

NOTES 1) The instrument password uses lower-case letters.

 2) This password mechanism provides only the most basic security. Applications requiring

 additional security should consider using private, dedicated subnets, firewalls, etc. to limit

 access to the instrument on the network.

VTI INSTRUMENTS LOGO

The VTI Instruments Logo that appears on the upper left of all EX1629 web pages is a link to the

VTI Instruments Corp. corporate website: http://www.vtiinstruments.com.

EX1629 STRAIN GAGE MEASUREMENT UNIT

The title block (“EX1629 Strain Gage Measurement Unit” on a black background at the top of the

page) of all EX1629 Web Pages is a link to the Main Web Page.

RESET

This action page is used to return all of the EX1629’s acquisition configuration parameters to their

default values. It is most commonly used to return the instrument to a known configuration state

prior to the initiation of a new test sequence. Specific affected configuration parameters and their

reset values are documented in Table 6-1. An instrument reset only affects acquisition parameters

and does not affect self-calibration data. This is equivalent to the vtex1629_reset function.

NOTE An instrument reset clears the FIFO reading memory. All desired acquisition data must be

retrieved from the FIFO prior to the issuance of this command.

REBOOT

This action page is used to perform a complete instrument reboot, equivalent to that which occurs

when the instrument is power cycled. It is most commonly used to accept changes that are made to

the network configuration or time configuration settings. In addition, it is suggested that a reboot

be performed before conducting a firmware upgrade.

NETWORK CONFIGURATION

The EX1629 Network Configuration page can be seen in Figure 5-3. By default, the EX1629 will

attempt to locate a DHCP server. If one is found, the IP address assigned by the DHCP server will

be assumed, along with subnet masks, gateway, etc. Otherwise, after a timeout of 20 seconds, the

unit will attempt to obtain an IP address by using AutoIP (IPv4 Dynamic Link Local Addressing).

NOTE The EX1629 can be returned to a known, default network configuration by using the LCI (LAN

Configuration Initialize) Mechanism. See Reset Button for more information.

AutoIP is a mechanism for finding an unused IP address in the IANA assigned range 169.254.X.Y

(169.254/16) where X is in the range 1 - 254 and Y is in the range 0 - 255. The device will first

attempt to obtain the specific address 169.254.X.Y, where X and Y are the second-to-last and last

octets of the device’s MAC address. However, X will be set to 1 if it is 0 in the MAC address, and

to 254 if it is 255 in the MAC address for conformance with the AutoIP specifications. If this

address is already in use, the unit will attempt to obtain other IP addresses in the 169.254/16 range

in a pseudorandom fashion until it finds one that is available.

VTI Instruments Corp.

74 EX1629 Web Page Operation

To illustrate the AutoIP mechanism, Table 5-1 lists the AutoIP default address for some example

MAC addresses.

MAC Address AutoIP Default Address

00:0D:3F:01:00:01 169.254.1.1

00:0D:3F:01:01:01 169.254.1.1

00:0D:3F:01:A3:28 169.254.163.40

00:0D:3F:01:FE:FE 169.254.254.254

00:0D:3F:01:FF:FE 169.254.254.254

TABLE 5-1: AUTOIP DEFAULT ADDRESS ASSIGNMENT

If a static IP address assignment is preferred, one can be optionally assigned via the embedded

web page interface. This is done by clicking the Network Configuration link, disabling DHCP

and AutoIP, enabling Static, and then assigning a static IP address, subnet mask, and gateway

address, and, optionally up to three DNS servers (see Figure 5-3).

NOTE The 169.254/16 subnet is reserved by the IANA for AutoIP usage. It should not be used for either

DHCP or static IP configurations.

FIGURE 5-3: EX1629 NETWORK CONFIGURATION

However, a much more convenient and recommended way to obtain the benefits of a static IP

address is to employ DHCP, but assign the instrument a reserved IP address in your company’s

DHCP server configuration. This reserved address, linked to the EX1629’s MAC address on the

DHCP server, would be assigned to the EX1629 at power up initialization without having to

manually set it on the EX1629. The DHCP server configuration provides a centralized, controlled

www.vtiinstruments.com

EX1629 Web Page Operation 75

database of assigned IP addresses, preventing accidental assignment of the same IP address to

multiple instruments. Consult your company’s Information Technology department for assistance.

VXI-11 Device Discovery is also supported by the EX1629. This allows all EX1629s on a local

network to be found without knowledge of their MAC address or IP address with the use of a

broadcast message. The vtex1629_findinstr function can be used programmatically to find all

available EX1629 instruments on the LAN.

TIME CONFIGURATION

This entry page is used to change the time configuration of the EX1629. By default, the instrument

has no notion of “wall-clock” or calendar time. The instrument has no battery-backed clock or any

other mechanism to retain time between reboots and power-cycles. By default, the instrument’s

time and date at power-up are midnight, January 1, 1970 (the beginning of the “epoch”). The time

and date can be manually specified on the Time Configuration page (Figure 5-4). Manual

configuration will be necessary if the network environment is such that the instrument cannot

reach the Internet. Manual time entry is not affected by the Zone control and does not require an

instrument reboot to be activated. However, manually-specified time is volatile, and therefore

must be reentered upon an instrument reboot or power cycle. It is not, however, affected by the

Reset page.

FIGURE 5-4: EX1629 TIME CONFIGURATION WEB PAGE - MANUAL

Optionally, the EX1629 supports SNTP (Simple Network Time Protocol), allowing it to receive its

time from an SNTP server. The Zone control provides a pull-down selection in which the user’s

specific time zone is selected. SNTP or NTP (Network Time Protocol) servers are specified in the

Server configuration panel, by IP Address or hostname. An instrument reboot is then required to

activate the new selection.

NOTE Specifying SNTP or NTP servers by hostname requires that the instrument be configured for DNS,

either by DHCP or Static IP.

VTI Instruments Corp.

76 EX1629 Web Page Operation

FIGURE 5-5: TIME CONFIGURATION WEB PAGE - SNTP

UPGRADE

This action page is used to upgrade the embedded firmware of the EX1629. Prior to initiating the

firmware upgrade process, a new, uncompressed firmware image must be obtained from

VTI Instruments and be accessible from the computer that is connected to the EX1629. Unless

specifically noted by VTI Instruments, firmware upgrades do not alter the calibration or non-

volatile configuration settings (network configuration, time configuration) of the EX1629.

NOTE Do not power cycle the EX1629 during the firmware upgrade process. If power is lost during the

upgrade, the instrument may be put into an inoperable state, requiring return to the factory. An

uninterruptible power supply may be used to avoid this risk.

Perform the following steps to conduct a firmware upgrade:

1) Perform a Reboot or a power cycle.

2) Connect to the EX1629 via the embedded web page.

3) Click on the Upgrade link.

4) Click on the Browse button and select the firmware image file to be uploaded to the

instrument.

5) Click the Submit button to initiate the upgrade process.

The upgrade process takes approximately 5 minutes to complete, culminating with an automatic

instrument reboot. Once the reboot is complete, reconnect and confirm on the Index page that the

firmware revision level has been properly updated.

NOTE Due to the way in which the internal configuration state of the instrument is stored, digest values

for the factory default configuration, as well as digest values for saved configurations, may change

between firmware versions.

www.vtiinstruments.com

EX1629 Programming 77

 SECTION 6

PROGRAMMING

INTRODUCTION

This section provides programming examples and rationale for use with the EX1629. While this is

not an exhaustive list, it provides a basis for the creation of code for several basic operations.

DEFAULT SETTINGS

The factory default instrument settings after an instrument reset or a power cycle are listed in

Table 6-1. Many programming applications do not require parameter changes from the default

settings and can be made far simpler by the elimination of redundant functions. The EX1629 can

be returned to the reset state at any time through the issuance of the vtex1629_reset function call.

NOTE The EX1629 supports saving user-defined configurations to non-volatile storage. If there is a user-

defined configuration stored in non-volatile storage, that configuration is applied after a reset,

power cycle, or use of the vtex1629_reset function. The vtex1629_clear_stored_config function

can be used to remove a configuration from non-volatile storage, after which the vtex1629_reset

function will restore the instrument to the factory defaults.

SCAN LIST CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Scan List (enabled channels) 0-47

Gain 1

Completion Resistor Full

Input Multiplexer Full

Sampling Rate (Sa/s) 1000

Confidence Scan List (elements) None

EU CONVERSION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

EU Conversion Voltage

Excitation Voltage 0

Unstrained Voltage 0

Gage Factor 2.0

Poisson Ratio 0.3

Strain Units Strain

Tare Value 0

EXCITATION SOURCE CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Programmed Value 0

Output Enable Disabled

TABLE 6-1: DEFAULT SETTINGS

VTI Instruments Corp.

78 EX1629 Programming

TRIGGER CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Sample Count 1000

Arm Source Immediate

Arm Count 1

Arm Delay (seconds) 0

Trig Source Immediate

Trig Count 1

Trig Delay (seconds) 0

Trig Timer Interval (seconds) 0

SHUNT CALIBRATION CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Shunt Mode Internal_remote

Shunt Enable Disabled

DIGITAL FILTER CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Type 1 (Butterworth)

Cutoff Frequency (hertz) 10

Transform 0 (Bilinear)

Specified Order 0 (Auto)

Calculated Order 6

DIGITAL I/O CONFIGURATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Bank 0 Direction 0 (Input)

Bank 0 Pull-up 0 (Passive)

Bank 1 Direction 0 (Input)

Bank 1 Pull-up 0 (Passive)

Output 0

ADC CLOCK RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Sample Clock Mode Master (Standalone)

Sample Clock Input Internal sample clock line

Sample Clock Output Internal sample clock line

SYNCHRONIZATION RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Synch. Mode Master (Standalone)

Synch. Input Internal synch. line

Synch. Output Internal synch. line

LXI TRIGGER BUS RESET VALUES
CONFIGURATION PARAMETER RESET VALUE

Direction 0 (Input)

Transmission Scope 1 (External and Internal)

Output 0

TABLE 6-1: DEFAULT SETTINGS (CONTINUED)

www.vtiinstruments.com

EX1629 Programming 79

OPENING AN INSTRUMENT SESSION

Prior to performing any programmatic actions with an instrument, a session must be opened. The

following sample code illustrates this using the EX1629 VXIplug&play driver, along with

querying the revision of the instrument driver and instrument firmware.

Sample Code

ViStatus result = VI_SUCCESS;

ViChar instrrev[256];

ViChar driverrev[256];

ViChar filename[256];

ViSession vi;

ViChar errDescription[256] = "";

/* open a session */

result = vtex1629_init(instr, VI_ON, VI_ON, &vi);

if(result != VI_SUCCESS) {

 vtex1629_error_message(vi, result, errDescription);

 printf(errDescription);

}

/* query the driver and firmware revision */

result = vtex1629_revision_query(vi, driverrev, instrrev);

if(result != VI_SUCCESS) {

 vtex1629_error_message(vi, result, errDescription);

 printf(errDescription);

}

/* display results */

printf("Driver Revsion: %s\n", driverrev);

printf("Instrument Firmware Revision: %s\n", instrrev);

Note that in the sample code above, error code checking and handling is included. The structure

used above can be used as a template for all functions. In the examples that follow, error code

checking and handling has not been included for brevity.

CLOSING AN INSTRUMENT SESSION

In order to release system resources, applications should close instrument sessions when finished

with them. The following code illustrates this.

Sample Code

/* close the instrument session*/

result = vtex1629_close(vi);

CONFIGURING THE ACQUISITION CHANNELS

Configuration of the EX1629 is an application-specific process. The following sample code,

however, will satisfy many applications and may serve as a template. The sample code does the

following:

 Configures the scanlist to contain all 48 channels

 Configures all channels for quarter-bridge 120 Ω strain gage EU (which also configures the

input multiplexer and completion resistors appropriately)

 Sets the gain to 100X (most sensitive)

 Disables the IIR filters

 Sets the excitation voltage to ±2.5 V, and enables the excitation supplies

 Sets the sampling rate to 100 Sa/s

VTI Instruments Corp.

80 EX1629 Programming

 Measures the unstrained voltage and updates the unstrained EU conversion variables

 Measures the excitation voltage with the confidence subsystem and updates the excitation EU

conversion variables

Sample Code

#define MAX_NUM_CHANNELS 48

ViStatus result = VI_SUCCESS;

ViInt32 channels[MAX_NUM_CHANNELS];

ViInt32 numberOfChannels = MAX_NUM_CHANNELS;

ViInt32 i, numval;

/* initialize a channel array */

for(i = 0; i < MAX_NUM_CHANNELS; i++)

 channels[i] = i;

/* set the scanlist */

result = vtex1629_set_scanlist(vi, channels, numberOfChannels);

/* set the EU conversion for all channels*/

result = vtex1629_set_EU_conversion(vi,

 channels,

 numberOfChannels,

 VTEX1629_EUCONV_QTR_BRIDGE_120);

/* set the gain */

result = vtex1629_set_gain(vi,

 channels,

 numberOfChannels,

 VTEX1629_GAIN_HUNDRED);

/* set the excitation */

result = vtex1629_set_excitation(vi,

 channels,

 numberOfChannels,

 2.5,

 -2.5);

/* enable the excitation */

result = vtex1629_set_excitation_enabled(vi,

 channels,

 numberOfChannels,

 VI_TRUE);

/* turn off the IIR filters */

result = vtex1629_set_IIR_filter_configuration(vi,

 channels,

 numberOfChannels,

 VTEX1629_IIR_FILT_NONE,

 0,

 VTEX1629_TRANSFORM_BILINEAR,

 1);

/* set the sample frequency */

result = vtex1629_set_sample_frequency(vi, 100.0);

/* measure the unstrained voltage */

result = vtex1629_measure_unstrained_voltage(vi,

 channels,

 numberOfChannels,

 50,

www.vtiinstruments.com

EX1629 Programming 81

 NULL,

 &numval,

 VI_TRUE);

/* measure the excitation voltage */

result = vtex1629_measure_ excitation _voltage(vi, channels,

numberOfChannels, VTEX1629_EXCITE_SRC_REMOTE, 50, NULL, &numval,

VI_TRUE);

Setting Bridge Limits

Once the EX1629’s channels are configured for data acquisition, the user’s can also set limits on

the data being acquired so that, if a minimum or maximum value is exceeded, an error message is

returned.

Sample Code

ViStatus status = VI_SUCCESS;

ViChar errMessage[256];

ViInt32 channels[MAX_NUMBER_OF_CHANNELS];

ViInt32 numChannels = MAX_NUMBER_OF_CHANNELS;

ViReal64 minArr[MAX_NUMBER_OF_CHANNELS];

ViReal64 maxArr[MAX_NUMBER_OF_CHANNELS];

int i = 0;

for(i = 0; i < MAX_CHANNELS; i++) {

 channels[i] = i;

}

for(i = 0; i < MAX_NUMBER_OF_CHANNELS; i++) {

 minArr[i] = (-2.0);

}

for(i = 0; i < MAX_NUMBER_OF_CHANNELS; i++) {

 maxArr[i] = 4.0;

}

status = vtex1629_set_bridge_limit(instrumentHandle,

 numChannels,

 channels,

 minArr,

 maxArr);

if(status < VI_SUCCESS){

 <inform the user the API call failed>

}

Setting LXI Event Limits

Once bridge limits have been defined, LXI trigger bus lines can be programmed to produce trigger

outputs when any of the limit conditions are tripped.

Sample Code

ViStatus status = VI_SUCCESS;

status = vtex1629_set_lxi_limit_event_enabled(vi, 0, 0xffffffff,

0xffffffff, 0xffffffff);

if(status < VI_SUCCESS){

 <inform the user the API call failed>

}

VTI Instruments Corp.

82 EX1629 Programming

status = vtex1629_set_lxi_limit_event_latch(vi, 0x01);

if(status < VI_SUCCESS){

 <inform the user the API call failed>

}

Lead Wire Compensation

The user can also use the EX1629 to compensate for lead wire for lead wire resistance. This is a

common source of error when making measurements and can be difficult to quantify for large

channel count applications. This work can be simplified by utilizing the EX1629s

vtex1629_measure_lead_wire_resistance function.

Sample Code

ViChar errMessage[256];

ViInt32 numberOfChannels = MAX_NUMBER_OF_CHANNELS;

ViInt32 channels[MAX_NUMBER_OF_CHANNELS];

ViReal64 resistance[MAX_NUMBER_OF_CHANNELS];

ViInt32 sampleCount = 100;

int i = 0;

for(i = 0; i < numberOfChannels; i++) {

 channels[i] = i;

}

memset(resistance, 0x00, sizeof(resistance));

status = vtex1629_measure_lead_wire_resistance(instrumentHandle,

 numberOfChannels,

 channels,

 resistance,

 sampleCount,

 VI_TRUE);

if(status < VI_SUCCESS){

 <inform the user the API call failed>

}

CONFIGURE TRIGGER AND ADC CLOCK

The EX1629 supports two general use-cases: standalone (one or more instruments that sample

independently and asynchronously) and master/slave (one master instrument and one or more

slave instruments, sampling synchronously). While the configurations for these two use cases are

similar, the master/slave configuration is slightly more complicated, due to the additional

requirements for distributing clock and synchronization signals to guarantee synchronous, phase-

aligned acquisition.

ADC Sample Clock

The sample clock configuration options on a standalone device and a master device are very

similar. In each case, the device is configured as a sample clock master and the internal oscillator

is used as the clock source. This sample clock can be distributed within the device and to other

devices using any of the LXI Trigger Bus lines. In the case of a standalone device, the internal

sample clock line can be also used to distribute the clock without the need to use one of the

general-purpose trigger bus lines. This internal sample clock line cannot be used in multi-box

configurations since its distribution is limited to within one device.

www.vtiinstruments.com

EX1629 Programming 83

To allow added flexibility for more complicated multi-box configurations, the sample clock can

also be output on one trigger bus line and input on another. This functionality is useful in star

multi-box configurations. For example, the master device can be configured to output the clock on

LXI0. A trigger bus hub can be utilized to receive this clock on LXI0 and distribute it to the

master and slave devices on LXI4. The master device can then be configured to receive its clock

on LXI4 instead of using the clock that it is outputting on LXI0. This allows the master and slave

devices to use the same clock from the trigger bus hub instead of the master using one clock and

the slaves using the same clock but with the added phase delay of the trigger bus hub.

The vtex1629_set_sample_clock_source instrument driver function is used to configure the

sample clock source. For a master or standalone device, the sampleClockMode parameter should

be set to VTEX1629_SAMP_CLK_MODE_MASTER. The outLine parameter specifies the

trigger bus line that is used to output the clock. This can be either one of the trigger bus lines or

can be set to VTEX_LXI_LINE_NONE to use the internal sample clock line. The inLine

parameter specifies what line is used by the device for its ADC clock. This may or may not be the

same as the lines that is specified to output the clock via the outLine parameter. As with the

outLine parameter, specifying an input line of VTEX_LXI_LINE_NONE will instruct the device

to use the internal sample clock line. In the case of a stand alone device that uses the internal

sample clock line, both the input and the output lines are set to VTEX_LXI_LINE_NONE.

If a trigger bus line will be used for distributing the sample clock or for receiving a clock back into

the device from an external source, it must be configured prior to configuring the sample clock.

Regardless of whether the sample clock is only used within the device or if it is distributed to

other devices, the trigger bus line that is used to output the sample clock (specified by the outLine

parameter) must be configured as an output using the vtex1629_set_lxibus_configuration function.

If this line will only be used within the device, the transmission scope for the line should be set to

internal transmission only. If the sample clock output is intended to be driven out on the external

trigger bus, the transmission scope must be set for external and internal transmission. If the sample

clock is input on different trigger bus line than it is output, the input trigger bus line must be

configured as an input with external and internal transmission scope using the

vtex1629_set_lxibus_configuration function. When the internal sample clock line is used,

configuration of the trigger bus lines is not required.

Sample clock configuration on a slave device is much simpler than that of a master device. The

vtex1629_set_sample_clock_source function is used to specify a sampleClockMode parameter of

VTEX1629_SAMP_CLK_MODE_SLAVE as well as indicating the trigger bus line that will be

used to receive the sample clock. The trigger bus line must be configured as an input with external

and internal transmission scope.

ADC Synchronization

Configuration of the ADC synchronization signal is similar to configuration of the ADC sample

clock. Standalone and master devices are similar in that they are both configured with a syncMode

parameter of VTEX1629_SYNC_MODE_MASTER using the vtex1629_set_synch_source

function. As a standalone or master device, synchronization pulses are generated on the specified

synchronization signal line using the vtex1629_soft_synch function. The outLine parameter for

this function is used to specify which trigger bus line is used to output the synchronization signal.

It can either specify one of the trigger bus lines or a dedicated internal synchronization signal line.

As with the ADC sample clock source, the synchronization signal can be configured to only be

used within the device or to be output to other devices using the external trigger bus. To allow

flexibility, the synchronization signal can be received back into the device on a different line than

the one on which it is output. As with the ADC sample clock, any trigger bus lines that are used

for the synchronization signal must be properly configured as inputs or outputs and with the

proper transmission scope before they can be used for the synchronization signal. For a standalone

device, the synchronization signal is typically configured to use the internal dedicated

synchronization signal line by setting both the input and output lines to

VTEX1629_LXI_LINE_NONE.

VTI Instruments Corp.

84 EX1629 Programming

The synchronization mode on a slave device is set to VTEX1629_SYNC_MODE_SLAVE and the

trigger bus line that is to be used to input the synchronization signal is specified using the

vtex1629_set_sample_clock_source inLine parameter.

Trigger Source

An EX1629 device can utilize a variety of trigger sources. The simplest is the immediate trigger

source. This causes the trigger state machine to bypass the TRIG layer and automatically begin to

acquire data. The device can also be configured to receive its trigger signal from either the positive

or negative edge transition of one of the LXI Trigger Bus lines. The final, and most complicated,

configuration is to generate a trigger signal based on a specified pattern of conditions. A

standalone device will either utilize an immediate or pattern trigger source. A slave device will

either also utilize an immediate trigger source or will specify a trigger bus line to receive a pattern

trigger source that is generated by a master device. The trigger source is specified using the

vtex1629_set_trigger_source function.

The vtex1629_set_pattern_trig_configuration function is used to configure the trigger pattern for a

master or standalone device that is using a pattern trigger source. This function can be used to

specify a combination of LXI Trigger Bus, digital I/O, timer, and software trigger events that will

generate a trigger event. In addition to the LXI Trigger Bus lines that may be used as pattern

inputs, a trigger bus line must be used to output the pattern trigger events. This line is specified

using the vtex1629_set_pattern_trig_configuration function’s lxiOutput parameter. This output

can either be used within the device or can be output to other devices using the external trigger

bus. As with the sample clock and synchronization signal configurations, the same LXI Trigger

Bus line can be used by the device for its trigger source or another trigger bus input can be

specified using the lxiInput parameter. In most cases, the lxiInput and lxiOutput parameters will

be the same. In a star configuration, however, the trigger event might be output on one LXI

Trigger Bus line and back in on a different trigger bus line.

The vtex1629_set_lxibus_configuration function must be used to configure the lxiOutput line as

an output with either internal only scope (if the signal will only be used within the device) or

external and internal transmission scope (if the line will be output to other devices). If the lxiInput

parameter is different from the lxiOutput parameter, the trigger bus line specified by lxiInput

must be configured as an input with external and internal transmission scope. Other LXI Trigger

Bus lines that are used for pattern inputs must be properly configured as inputs with external and

internal transmission scope.

Arm Source

The arm source is configured in the same manner as the trigger source. It utilizes the

vtex1629_set_arm_source and vtex1629_set_pattern_arm_configuration functions.

Standalone (Single Instrument) Example Configuration

The standalone configuration is suitable when only one instrument is required for the data

acquisition or if synchronization of multiple instruments is not required. It uses the instrument’s

internal oscillator for acquisition. The sample code that is provided performs the following tasks:

 Sets the number of samples to acquire on a trigger to 100 (one second’s worth with the

100 Sa/s sample rate)

 Reset the trigger system to return the trigger bus to its default configuration

 Sets the Trigger to Immediate

 Sets the Arm to Immediate

 Sets the internal ADC clock

 Sets the internal ADC synchronization

www.vtiinstruments.com

EX1629 Programming 85

Sample Code

ViStatus result = VI_SUCCESS;

/* Configure the system to acquire 100 samples. */

result = vtex1629_set_sample_count(vi, 0, 100);

/* Reset the trigger system to return the trigger bus to its default

configuration. */

result = vtex1629_reset_trigger_arm(vi);

/* Set the sample clock source as a standalone device using the

dedicated sample clock line. */

result = vtex1629_set_sample_clock_source(vi,

 VTEX1629_SAMP_CLK_MODE_MASTER,

 VTEX1629_LXI_LINE_NONE,

 VTEX1629_LXI_LINE_NONE);

/* Set the synch source as a standalone device using the dedicated

synch line. */

result = vtex1629_set_synch_source(vi,

 VTEX1629_SYNC_MODE_MASTER,

 VTEX1629_LXI_LINE_NONE,

 VTEX1629_LXI_LINE_NONE);

/* Set the arm source to immediate ARM. */

result = vtex1629_set_arm_source(vi, VTEX1629_TRIG_SRC_IMMEDIATE);

/* Set the trigger source to immediate trigger. */

result = vtex1629_set_trigger_source(vi,

 VTEX1629_TRIG_SRC_IMMEDIATE);

/* Issue a synchronization signal since the sample clock source was

changed. */

result = vtex1629_soft_synch(vi);

Multiple Instruments (Master/Slave) Example Configuration

The Master/Slave configuration is suitable for larger acquisition systems, up to several thousand

channels (hundreds of instruments). By sharing a single oscillator and utilizing a synchronization

signal from the master, the acquisition of all instruments can be coordinated and phase aligned.

One instrument is assigned the role of “master” and its internal oscillator and synchronization

signals are routed externally via the LXI Trigger Bus. The remaining “slave” instruments are

configured to accept the external clock and synchronization signals from the LXI Trigger Bus.

Through the proper sequencing of instrument driver calls, and the resultant hardware events and

signals, the ensemble of instruments can be made to behave as one large acquisition system, as

illustrated by the sample code below. The following code:

 Sets the number of samples to acquire on a trigger to 100 (one second’s worth with the

100 Sa/s sample rate)

 Properly configures the LXI Trigger Bus and DIO banks

 Sets the ADC clock to master/slave on LXI 0

 Sets ADC synchronization to master/slave on LXI 1

 Configures a timer trigger on LXI 2

 Configures a pattern arm on LXI 3

VTI Instruments Corp.

86 EX1629 Programming

NOTE Master/Slave configuration requires the use of LXI Trigger Bus Cables, terminators, and, possibly,

LXI Trigger Bus hubs, switches, or repeaters. Please talk to your application engineer for further

information.

Sample Code

ViStatus result = VI_SUCCESS;

ViInt16 trigLxiLines[4] = {0,0,0,0};

ViInt16 trigDioLines[4] = {0,0,0,0};

ViInt16 armLxiLines[4] = {0,0,0,0};

ViInt16 armDioLines[4] = {0,0,0x09,0x06};

/* Configure the master system to acquire 100 samples. */

result = vtex1629_set_sample_count(master_vi, 0, 100);

/* Configure the slave system to acquire 100 samples. */

result = vtex1629_set_sample_count(slave_vi, 0, 100);

/* Reset the trigger system on the slave device to return it to its

default configuration. The slave devices should be reset first to

switch them back to using their internal sample clock oscillators

before changing the configuration of the master.*/

result = vtex1629_reset_trigger_arm(slave_vi);

/* Reset the trigger system on the master device. */

result = vtex1629_reset_trigger_arm(master_vi);

/* Configure the LXI trigger bus lines on the master device. Lines 0

- 3 are external outputs while lines 4 - 7 are outputs that remain

within the device. */

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_TWO,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_THREE,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_FOUR,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_FIVE,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_SIX,

www.vtiinstruments.com

EX1629 Programming 87

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(master_vi,

 VTEX1629_LXI_LINE_SEVEN,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

/* Configure DIO bank 0 as inputs on the master device. */

result = vtex1629_set_dio_bank0_direction(master_vi,

 VTEX1629_DIO_DIRECTION_IN);

/* Configure the sample clock on the master to output on LXI0. */

result = vtex1629_set_sample_clock_source(master_vi,

 VTEX1629_SAMP_CLK_MODE_MASTER,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_LINE_ZERO);

/* Configure the synch source on the master to output on LXI1. */

result = vtex1629_set_synch_source(master_vi,

 VTEX1629_SYNC_MODE_MASTER,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_LINE_ONE);

/* Configure the trigger timer on the master to trigger every 5

seconds. */

result = vtex1629_set_trigger_timer(master_vi, 5);

/* Configure the trigger pattern to generate an event based on the

timer. */

result = vtex1629_set_pattern_trig_configuration(master_vi,

 trigLxiLines,

 trigDioLines,

 VI_TRUE,

 VTEX1629_LXI_LINE_TWO,

 VTEX1629_LXI_LINE_TWO);

/* Configure the trigger source on the master as a pattern trigger.

*/

result = vtex1629_set_trigger_source(master_vi,

 VTEX1629_TRIG_SRC_PATTERN);

/* Configure the ARM pattern to generate an event on LXI3 when DIO0

and 3 are high and DIO 1 and 2 are low. */

result = vtex1629_set_pattern_arm_configuration(master_vi,

 armLxiLines,

 armDioLines,

 VI_FALSE,

 VTEX1629_LXI_LINE_THREE,

 VTEX1629_LXI_LINE_THREE);

/* Configure the ARM source on the master as a pattern ARM. */

result = vtex1629_set_arm_source(master_vi,

VTEX1629_TRIG_SRC_PATTERN);

/* Configure the LXI trigger bus lines on the slave device. Lines 0 -

3 are external inputs while lines 4 - 7 are outputs that remain

within the device. */

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

VTI Instruments Corp.

88 EX1629 Programming

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_TWO,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_THREE,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_FOUR,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_FIVE,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_SIX,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

result = vtex1629_set_lxibus_configuration(slave_vi,

 VTEX1629_LXI_LINE_SEVEN,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL);

/* Configure the sample clock on the slave as an input from LXI0. */

result = vtex1629_set_sample_clock_source(slave_vi,

 VTEX1629_SAMP_CLK_MODE_SLAVE,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_LINE_NONE);

/* Configure the synch source on the slave as an input from LXI1. */

result = vtex1629_set_synch_source(slave_vi,

 VTEX1629_SYNC_MODE_SLAVE,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_LINE_NONE);

/* Configure the trigger source on the slave as an input from LXI2.

*/

result = vtex1629_set_trigger_source(slave_vi,

 VTEX1629_TRIG_SRC_LXI2_POS);

/* Configure the ARM source on the slave as an input from LXI3. */

result = vtex1629_set_arm_source(slave_vi,

 VTEX1629_TRIG_SRC_LXI3_POS);

/* Issue a soft synch command to the master to generate a

synchronization signal since the sample clock source was changed. */

result = vtex1629_soft_synch(master_vi)

www.vtiinstruments.com

EX1629 Programming 89

RETRIEVING DATA (READ FIFO AND STREAMING DATA)

The EX1629 stores acquisition data in a large, on-board FIFO in the instruments RAM memory.

48 MB of RAM are reserved for the on-board FIFO. There are two primary mechanisms for

retrieving acquisition data from the EX1629 FIFO:

 Read FIFO

 Asynchronous Streaming Data

The Read FIFO mechanism is similar to the way data is returned from traditional data acquisition

instruments, with the user application making periodic (polling) queries of the instrument to

retrieve data from the instrument’s on-board FIFO, while asynchronous data streaming is a more

modern, efficient technique, made possible by the instrument’s LXI interface, in which the

instrument automatically transmits acquisition data to the user application as data becomes

available.

The streaming data interface is slightly more complicated to use than the Read FIFO interface, but

makes very efficient use of the host computer’s processor and the test system’s network. As such,

the streaming data interface scales well for high channel count and/or high sample rate systems.

The two data retrieval mechanisms are mutually exclusive – if the streaming data interface is

enabled, Read FIFO requests will return an error.

Read FIFO

Use of the Read FIFO mechanism is straight-forward. After properly configuring the system and

initializing acquisition (vtex1629_trig_init), a user-application queries the instrument’s FIFO for

data using the vtex1629_read_fifo function (or the vtex1629_read_fifoEx function – see below).

This function takes the number of data scans to retrieve as an argument, along with a timeout

value in seconds. The instrument driver attempts to retrieve the requested number of samples from

the instrument, returning to the user-application when either the request has been fulfilled, or the

timeout elapses. To fulfill the request, the instrument driver may need to make many, repeated

queries of the instrument, each query being a network transaction with the instrument. The

instrument driver continues “polling” the instrument for data. During the instrument driver call,

the user-application “blocks”, meaning that the user-application does not continue to the next

instructions until the vtex1629_read_fifo function returns.

Figure 6-1 illustrates the general sequence of events when using Read FIFO. In this diagram, time

flows from top to bottom. The two vertical lines represent the two network nodes: the host

computer, running the user application, and the EX1629 instrument. The diagonal arrows

connecting them represent network messages sent between them (the diagonal arrow, instead of a

horizontal arrow, indicates that the message is not received instantaneously). As illustrated in this

diagram, each instrument driver function call results in two network messages: one to the EX1629

(a request) and one from the EX1629 (a response). The instrument driver function does not return

control to the user application until the response message is received.

As can be seen by the vertical distances, each of the instrument driver function calls takes some

finite amount of time, allowing for host computer processing, network transmission and reception,

and instrument processing. For instrument setup (e.g., configuring acquisition channels or trigger

parameters), this time is typically negligible. For retrieving acquisition data, however, these delays

can become significant. This is especially true in high sample count and/or high channel count

systems. In such systems, the host computer can waste a significant amount of CPU time in these

polling loops, also consuming network bandwidth. The streaming data mechanism offers a more

efficient alternative.

VTI Instruments Corp.

90 EX1629 Programming

`

Host Computer

EX1629

5 7

0 2

3

HD

LAN

SHUNT
CAL
RES

SHUNT
CAL
RES

SHUNT
CAL
RES

1

4 6

13 15

8 10

11 9

12 14

21 23

16 18

19 17

20 22

29 31

24 26

27 25

28 30

37 39

32 34

35 33

36 38

45 47

40 42

43 41

44 46

PWR

EX1629

time time

Send: vtex1629_trig_init() request

Send: vtex1629_read_fifo() request

Send: vtex1629_read_fifo() request

Receive: vte
x16

29_
tri

g_i
nit

() response

Receive: vte
x16

29_
rea

d_f
ifo

() response

Receive: vte
x16

29_
rea

d_f
ifo

() response

FIGURE 6-1: READ FIFO NETWORK EXAMPLE

The vtex1629_read_fifo function provides access to the main channel acquisition data and

timestamp information. The following code segment illustrates the basic usage of the

vtex1629_read_fifo function, issuing a FIFO query to return 10 scans of data with all 48 channels

enabled. The maximum number of scans to return is specified, as is the maximum number of data

elements to be returned. The acquisition data, along with the timestamp for each scan, is returned

in three arrays of ViReal64 elements, two for the timestamps (seconds and fractional seconds) and

one for the acquisition data. Each scan of data will contain 1 to 48 channels worth of data,

depending on the scanlist configuration. Scan data is returned sequentially within the acqdata

array, so, for the example below, acqdata[0]…acqdata[47] will contain the first scan of data,

acqdata[48]….acqdata[95] the second scan of data, etc. The timestamp for the first scan will be

contained in seconds[0] and fractseconds[0], the second timestamp in seconds[1] and

fractseconds[1], etc.

#define NUM_SCANS 10

#define NUM_CHANNELS 48

#define MAX_NUM_SAMPLES (NUM_SCANS * NUM_CHANNELS)

#define TIMEOUT_SECS 5

ViSession vi;

ViReal64 seconds[NUM_SCANS];

ViReal64 fractseconds[NUM_SCANS];

ViReal64 acqdata[MAX_NUM_SAMPLES];

ViInt32 numdata, numscans;

result = vtex1629_read_fifo(vi,

 NUM_SCANS,

 seconds,

 fractseconds,

 &numscans,

 MAX_NUM_SAMPLES,

www.vtiinstruments.com

EX1629 Programming 91

 acqdata,

 &numdata,

 TIMEOUT_SECS);

The actual number of scans and data returned by vtex1629_read_fifo may be equal to or less than

the values requested (NUM_SCANS and MAX_NUM_SAMPLES in the example) if the timeout

period (TIMEOUT_SECS in the example) expires before the EX1629 has acquired the requested

number of samples. The actual number of scans returned and data values returned are stored in

numscans and numdata, respectively, by vtex1629_read_fifo.

Additionally, there is a vtex1629_read_fifoEx function that provides access to acquisition data

from the confidence measurement system. Please refer to the function references for further

details.

Asynchronous Streaming Data

The asynchronous streaming data interface optimizes communication between the host computer

and the EX1629. The asynchronous streaming data interface allows the EX1629 to transmit

acquisition data to the host computer whenever data is available. It “streams” data to the host

computer – that is the EX1629 transmits data when available – and is “asynchronous” in that data

arrives outside the normal control flow of the user-application. This is in contrast to the Read

FIFO mechanism, where the client polls or queries the instrument for data, and the data is returned

to the user application when the vtex1629_read_fifo function returns (synchronous with the

normal program control flow).

Figure 6-2 illustrates the general sequence of events when using the streaming data mechanism.

This can be compared to Figure 6-1 for using the Read FIFO mechanism. Prior to initiating the

acquisition (vtex1629_trig_init), the streaming data interface must be enabled via the

vtex1629_enable_streaming_data function). This configures the streaming data communication on

both the instrument and the host computer. It is important that the streaming data interface be

enabled prior to initiating acquisition, as the EX1629 prevents streaming data from being enabled

after initiating acquisition. As Figure 6-2 shows, the EX1629 transmits acquisition data to the host

computer periodically, whenever data is available, without the host having to request it.

The streaming data interface uses a separate “socket”, or communications link, than the one used

for other instrument driver functions. Since TCP/IP can support thousands of concurrent sockets,

all multiplexed on the same network interface, this does not present a problem for the network.

NOTE The network communication diagrams provided are oversimplifications. Since TCP/IP is used as

the transport layer, there are potentially several Ethernet packets involved (send and receive) in

each high-level message. These packets provide, among other things, the reliable data transport

feature of TCP.

The asynchronous nature of the streaming data arrival at the host computer presents the issue of

how to deliver the data to the user application. For efficiency, particularly when the acquisition

system consists of many instruments, a multi-threaded model was chosen.

Multi-threaded programming is beyond the scope of this manual, but the general idea is that an

application can have multiple, concurrent “threads” of control. By default, all applications have

one thread, the one that begins executing at the main() function (or similar entry point, depending

on the programming language). Optionally, applications may have additional, programmer created

threads. These threads all execute in the same memory space, making it very efficient for them to

share data. This is different from multi-process programming, wherein each process – basically a

memory space with a single, default thread – executes independently.

Threads execute asynchronously to each other by default – that is, their execution relative to other

threads within the same application (process) is non-deterministic, and shared data must be

VTI Instruments Corp.

92 EX1629 Programming

protected by design or through suitable inter-thread communication mechanisms (e.g., mutexes) to

guarantee consistency. Again, multi-threaded programming is beyond the scope of this manual,

but it is important to understand the fundamentals before the streaming data mechanism can be

used properly. For more information on this topic, we recommend reviewing a textbook on

operating systems (e.g., Operating System Concepts, by Silberschatz, Galvin, and Gagne or

Modern Operating Systems, by Tanenbaum) as well as the Windows SDK information available

online.

`

Host Computer

EX1629

5 7

0 2

3

HD

LAN

SHUNT
CAL
RES

SHUNT
CAL
RES

SHUNT
CAL
RES

1

4 6

13 15

8 10

11 9

12 14

21 23

16 18

19 17

20 22

29 31

24 26

27 25

28 30

37 39

32 34

35 33

36 38

45 47

40 42

43 41

44 46

PWR

EX1629

time time

Receive streaming data

Receive streaming data

Receive streaming data

Receive streaming data

Receive: vte
x16

29_
tri

g_i
nit

() response

Send: vtex1629_enable_streaming_data() request

Receive: vte
x16

29_
ena

ble
_st

rea
min

g_d
ata

() response

Send: vtex1629_trig_init() request

FIGURE 6-2: STREAMING DATA NETWORK EXAMPLE

Basic Streaming Data Usage

When using the streaming data interface, via the vtex1629_enable_streaming_data function, the

user application provides a callback function. Internally, the instrument driver creates a thread and

then opens a socket for streaming data between the host computer and the instrument. The newly

constructed thread does a “blocking” read on the socket, which causes it to “sleep” (become idle)

until data arrives. When acquisition data arrives, the thread begins executing, receives the

acquisition data from the instrument, executes the user-provided callback function, passing in the

newly arrived data, and then returns to the “sleep” state. The callback function can do whatever is

necessary for the application: write the acquisition values to a file on disk, perform limit checking

on the acquisition values, update an application-specific data structure (e.g., FIFO) post the

acquisition data to a database or spreadsheet, etc. This behavior is illustrated in Figure 6-3, with

the reception of streaming data causing the user-provided callback function to be executed.

NOTE Since the callback function executes asynchronously in the same process as the main application

thread, it is important that any data or data structures used by both threads are suitably protected to

guarantee consistency. As with any multi-thread application, care must be taken when using inter-

thread communication primitives (e.g., mutexes) to prevent deadlocks and livelocks. Similarly,

performing GUI operations (e.g., updating an on-screen graph) within the callback function needs

to be implemented carefully.

www.vtiinstruments.com

EX1629 Programming 93

`

Host Computer

EX1629

5 7

0 2

3

HD

LAN

SHUNT
CAL
RES

SHUNT
CAL
RES

SHUNT
CAL
RES

1

4 6

13 15

8 10

11 9

12 14

21 23

16 18

19 17

20 22

29 31

24 26

27 25

28 30

37 39

32 34

35 33

36 38

45 47

40 42

43 41

44 46

PWR

EX1629

time time

Receive streaming data

Receive streaming data

Receive streaming data

Receive streaming data

Receive: vte
x16

29_
tri

g_i
nit

() response

Send: vtex1629_enable_streaming_data() request

Receive: vte
x16

29_
ena

ble
_st

rea
min

g_d
ata

() response

Send: vtex1629_trig_init() request

User callback

User callback

User callback

User callback

User callback

FIGURE 6-3: STREAMING DATA WITH USER CALLBACK

The following sample code segment illustrates a very basic use of the streaming data interface.

The callback function, stream_callback, just prints the timestamps and data values to a FILE

handle. The FILE handle, as well as a sample count total variable, are stored in a user-defined data

structure. A pointer to this structure is passed to the vtex1629_enable_streaming_data function,

along with a function pointer to the streaming callback function. Later, when streaming data pages

(scans) are received, a pointer to the acquisition data, along with the pointer to the user-defined

data structure, are passed to the callback function. The user-defined data structure pointer is passed

as a void* and should be cast to the appropriate type within the callback function.

#define INSTR_LANGUAGE_SPECIFIC

#include<vtex1629.h>

typedef struct {

 FILE *fout;

 ViInt32 sample_count;

} user_struct;

user_struct my_struct = {0};

ViInt32 stream_callback(void *priv, EX1629_rpc_datapage *data)

{

 user_struct *priv_struct; // pointer to user structure

 ViInt32 ds_idx; // dataset index

 ViInt32 smp_idx; // sample index

 priv_struct = (user_struct *)priv;

 /* Loop through all of the datasets in the datapage. */

 for(ds_idx = 0; ds_idx < data->dataset.dataset_len && ds_idx <

 MAX_NUM_DATASETS; ds_idx++) {

VTI Instruments Corp.

94 EX1629 Programming

 /* print the timestamp. */

 fprintf(priv_struct->fout,

 "Timestamp: %5u.%09u",

 data->dataset.dataset_val[ds_idx]->timestamp_sec,

 data->dataset.dataset_val[ds_idx]->timestamp_nsec);

 /* print the data */

 for(smp_idx = 0;

 smp_idx < data->dataset.dataset_val[ds_idx]->data.data_len;

 smp_idx++) {

 fprintf(priv_struct->fout,

 "\t%i %f\n",

 data->dataset.dataset_val[ds_idx]->data.data_val[smp_idx]);

 }

 }

 if(data->dataset.dataset_len > 0) {

 priv_struct->sample_count++;

 }

}

result = vtex1629_enable_streaming_data(vi,

 &my_struct,

 stream_callback);

result = vtex1629_trig_init(vi);

// application code…

result = vtex1629_abort(vi);

result = vtex1629_disable_streaming_data(vi);

It is imperative that the streaming data interface be enabled prior to initializing acquisition (the

vtex1629_trig_init function) and disabled after acquisition completes, or is aborted explicitly

(vtex1629_abort).

The streaming callback function extracts the acquisition and timestamp data from the

EX1629_rpc_datapage structure. Each datapage contains three data sets, which contains data for a

range of channels: the first data set contains data for channels 0 through 15, the second for 16

through 31, and the third contains data for channels 32 through 47. Only data for channels enabled

in the scanlist are included. That is, if the main input scanlist contains channels 0 through 15 and

16, the first data set (the zeroeth) will contain 16 samples (channels 0 through 15), the second data

set will contain 1 sample (channel 16), and the third data set will contain no samples.

Beyond the timestamp and acquisition values illustrated in the example above, the

EX1629_rpc_datapage structure also contains DIO sample data as well as data from the

Confidence Measurement Subsystem. The EX1629_rpc_datapage structure is documented in the

instrument driver header file.

Advanced Data Streaming Usage

In addition to the basic streaming data supported via the vtex1629_enable_streaming_data

function, the vtex1629_enable_streaming_dataEx function supports a more advanced streaming

interface. Where the vtex1629_enable_streaming_data automatically creates a thread, opens the

socket, configures the instrument for streaming data, etc., the vtex1629_enable_streaming_dataEx

only configures the instrument for streaming data, making the user application responsible for the

other tasks. This provides the application developer more control over the data streaming

mechanism than is allowed by the vtex1629_enable_streaming_data function. This, clearly, makes

www.vtiinstruments.com

EX1629 Programming 95

use of the vtex1629_enable_streaming_dataEx function more complicated than the

vtex1629_enable_streaming_data function.

For most applications, the basic streaming data interface provides sufficient execution speed and

flexibility. If you believe your application would benefit from the advanced streaming interface,

please contact your application engineer for further details.

Calibration Data

Once calibration is run, a file with this data is stored in memory. To view this data, the following

code could be generated. This code determines the size of the calibration file first in order to

prevent overwriting any data that may already exist in the external memory location to which the

calibration file will be written. In this example, the self-calibration and full calibration files are

output in XML format.

Sample Code

ViStatus status = VI_SUCCESS;

ViChar errMessage[256];

ViInt32 fileType = 0;

ViInt32 bufferSize = 0;

ViString xmlBuffer_combined = 0;

ViInt32 actualSize = 0;

memset(errMessage, 0x00, sizeof(errMessage));

fileType = VTEX1629_CAL_DATA_COMBINED;

status = vtex1629_get_cal_file_size(instrumentHandle,

 fileType,

 &bufferSize);

if(status < VI_SUCCESS) {

 <inform the user the API call failed>

}

if((status >= VI_SUCCESS) && (bufferSize > 0)) {

 xmlBuffer_combined = malloc(bufferSize * sizeof(ViString));

 status = vtex1629_get_cal_file(instrumentHandle,

 fileType,

 bufferSize,

 xmlBuffer_combined,

 &actualSize);

 if(status < VI_SUCCESS) {

 <inform the user the API call failed> }

...

 free(xmlBuffer_combined);

}

VTI Instruments Corp.

96 EX1629 Programming

STARTING/STOPPING ACQUISITION

Acquisition is started by using the vtex1629_trig_init function, which initializes the trigger

subsystem. This causes the trigger state machine to transition from the IDLE state to the Waiting

for ARM state (see Figure 4-1). Depending on the configuration of the Arm and Trigger sources,

data acquisition may begin immediately – if both Arm and Trigger are configured for Immediate

(VTEX1629_TRIG_SRC_IMMEDIATE) –, or at some point in the future when the instrument

receives the required signals (e.g., a raising edge on LXI 0). In general, after acquisition is

initiated by the vtex1629_trig_init function, it will continue until the requested number of samples

has been acquired, possibly several times, depending on the configuration of the Arm and Trigger

Count variables, and the value of Continuous Init.

status = vtex1629_trig_init(vi);

The acquisition may be halted at any time by using the vtex1629_abort function. This causes

acquisition to stop, and the trigger state machine transitions to the IDLE state (see Figure 4-1).

status = vtex1629_abort(vi);

www.vtiinstruments.com

EX1629 Command Set 97

 SECTION 7

FUNCTION CALLS

INTRODUCTION

This section presents the instrument function set. It begins by listing the APIs according to

function and is then followed by an alphabetical listing. With each function is a brief description.

The remainder of this section is devoted to describing each function in detail. Each function entry

provides the function prototype, the use and range of parameters, and a description of the

function’s purpose.

FUNCTION RETURN VALUE

Each function will return a status that will contain either VI_SUCCESS or an error status returned

by the function call. Refer to the Error Messages section found later in the chapter for possible

error codes. If the vtex1629_error_message function call is used, it will return a description of the

error code returned by the last function call made.

FUNCTION TREE

The function set for the EX1629 has been categorized according to function and is presented

below.

Initialize

Initialize vtex1629_init

Limit Checking

Set Bridge Limit Enabled vtex1629_set_bridge_limit_enabled

Get Bridge Limit Enabled vtex1629_get_bridge_limit_enabled

Set Bridge Limit vtex1629_set_bridge_limit

Get Bridge Limit vtex1629_get_bridge_limit

Set Confidence Reporting Mode vtex1629_set_confidence_reporting_mode

Get Confidence Reporting Mode vtex1629_get_confidence_reporting_mode

Set Confidence Limit vtex1629_set_confidence_limit

Get Confidence Limit vtex1629_get_confidence_limit

Set LXI Limit Event vtex1629_set_lxi_limit_event_enabled

Get LXI Limit Event vtex1629_get_lxi_limit_event_enabled

Set LXI Limit Event Latch vtex1629_set_lxi_limit_event_latch

Get LXI Limit Event Latch vtex1629_get_lxi_limit_event_latch

Configuration Calls

Store Current Configuration vtex1629_store_current_config

Load Stored Configuration vtex1629_load_stored_config

Clear Stored Configuration vtex1629_clear_stored_config

Get Current Configuration Digest vtex1629_get_current_config_digest

Get Stored Configuration Digest vtex1629_get_stored_config_digest

Compare Digests vtex1629_compare_digests

VTI Instruments Corp.

98 EX1629 Command Set

Lock Function Calls

Break Lock on Instrument vtex1629_break_lock

Check Lock on Instrument vtex1629_check_lock

Lock Instrument vtex1629_lock

Unlock Instrument vtex1629_unlock

Digital Input/Output Calls

Send Pulse vtex1629_send_dio_pulse

Configuration Read

 Get Bank 0 Direction vtex1629_get_dio_bank0_direction

 Get Bank 0 Pull-up vtex1629_get_dio_bank0_pullup

 Get Bank 1 Direction vtex1629_get_dio_bank1_direction

 Get Bank 1 Pull-up vtex1629_get_dio_bank1_pullup

 Get Output State vtex1629_get_dio_output

 Get Input State vtex1629_get_dio_input

Configuration Write

 Set Bank 0 Direction vtex1629_get_dio_bank0_direction

 Set Bank 0 Pull-up vtex1629_set_dio_bank0_pullup

 Set Bank 1 Direction vtex1629_set_dio_bank1_direction

 Set Bank 1 Pull-up vtex1629_set_dio_bank1_pullup

 Set Output State vtex1629_set_dio_output

Event Control

 Set DIO Configuration Events vtex1629_set_dio_config_events

 Get DIO Configuration Events vtex1629_get_dio_config_events

 Clear DIO Events vtex1629_dio_clear_event

 Clear All DIO Events vtex1629_dio_clear_events_all

LXI Trigger Bus Calls

Send LXI Bus Pulse vtex1629_send_lxibus_pulse

Get LXI Bus Configuration vtex1629_get_lxibus_configuration

Get LXI Bus Output vtex1629_get_lxibus_output

Get LXI Bus Input vtex1629_get_lxibus_input

Set LXI Bus Configuration vtex1629_set_lxibus_configuration

Set LXI Bus Output vtex1629_set_lxibus_output

Scanlist Calls

Get Channel Scanlist vtex1629_get_scanlist

Set Channel Scanlist vtex1629_set_scanlist

Get Gain vtex1629_get_gain

Get Completion Resistor Value vtex1629_get_completion_resistor

Get Input Multiplexer vtex1629_get_input_multiplexer

Get Sampling Frequency vtex1629_get_sample_frequency

Get Confidence Scanlist vtex1629_get_conf_scanlist

Set Gain vtex1629_set_gain

Set Completion Resistor Mode vtex1629_set_completion_resistor

Set Input Multiplexer vtex1629_set_input_multiplexer

Set Sampling Frequency vtex1629_set_sample_frequency

Set Confidence Scanlist vtex1629_set_conf_scanlist

Trigger System Calls

Trigger Initiate vtex1629_trig_init

Software Arm vtex1629_soft_arm

Software Trigger vtex1629_soft_trig

Software Synchronize vtex1629_soft_synch

Reset vtex1629_reset_trigger_arm

Abort vtex1629_abort

Get Sample Count vtex1629_get_sample_count

Get Arm Source vtex1629_get_arm_source

www.vtiinstruments.com

EX1629 Command Set 99

Get Arm Count vtex1629_get_arm_count

Get Arm Delay vtex1629_get_arm_delay

Get Trigger Source vtex1629_get_trigger_source

Get Trigger Count vtex1629_get_trigger_count

Get Trigger Delay vtex1629_get_trigger_delay

Get Trigger Timer vtex1629_get_trigger_timer

Get Synchronization Source vtex1629_get_synch_source

Get Sample Clock Source vtex1629_get_sample_clock_source

Get Arm Pattern Configuration vtex1629_get_pattern_arm_configuration

Get Trig Pattern Configuration vtex1629_get_pattern_trig_configuration

Set Sample Count vtex1629_set_sample_count

Set Arm Source vtex1629_set_arm_source

Set Arm Count vtex1629_set_arm_count

Set Arm Delay vtex1629_set_arm_delay

Set Trigger Source vtex1629_set_trigger_source

Set Trigger Count vtex1629_set_trigger_count

Set Trigger Delay vtex1629_set_trigger_delay

Set Trigger Timer vtex1629_set_trigger_timer

Set Synchronization Source vtex1629_set_synch_source

Set Sample Clock Source vtex1629_set_sample_clock_source

Set Arm Pattern Configuration vtex1629_set_pattern_arm_configuration

Set Trig Pattern Configuration vtex1629_set_pattern_trig_configuration

Set Trigger Source Timer vtex1629_set_trigger_source_timer

Filter Configuration Calls

Get IIR Filter Configuration vtex1629_get_IIR_filter_configuration

Set IIR Filter Configuration vtex1629_set_IIR_filter_configuration

Get Settling Time vtex1629_get_settling_time

Excitation Voltage Calls

Get Programmed Excitation Voltage vtex1629_get_excitation

Get Excitation Voltage Enabled vtex1629_get_excitation_enabled

Set Programmed Excitation Voltage vtex1629_set_excitation

Set Excitation Voltage Enabled vtex1629_set_excitation_enabled

EU Conversion Calls

Get EU Conversion Type vtex1629_get_EU_conversion

Get EU Conversion Excitation Voltage vtex1629_get_euconv_excitation

Get Unstrained Voltage vtex1629_get_unstrained_voltage

Get Gage Factor vtex1629_get_gauge_factor

Get Poisson Ratio vtex1629_get_poisson_ratio

Get Strain Units vtex1629_get_strain_units

Get Tare Value vtex1629_get_tare

Set EU Conversion Type vtex1629_set_EU_conversion

Set EU Conversion Excitation Voltage vtex1629_set_euconv_excitation

Set Unstrained Voltage vtex1629_set_unstrained_voltage

Set Gage Factor vtex1629_get_gauge_factor

Set Poisson Ratio vtex1629_set_poisson_ratio

Set Strain Units vtex1629_set_strain_units

Set Tare Values vtex1629_set_tare

Get Linear Scaling Coefficients vtex1629_get_linearscaling_configuration

Set Linear Scaling Coefficients vtex1629_set_linearscaling_configuration

Measure Unstrained Voltage vtex1629_measure_unstrained_voltage

Measure Excitation Voltage vtex1629_measure_excitation_voltage

Measure Confidence vtex1629_measure_confidence

Reset Tare Values vtex1629_reset_tare

Set Dynamic Excitation EU Enabled vtex1629_set_euconv_dynamic_excitation_enabled

Get Dynamic Excitation EU Enabled vtex1629_set_euconv_dynamic_excitation_enabled

VTI Instruments Corp.

100 EX1629 Command Set

Shunt Configuration Calls

Get Shunt Source vtex1629_get_shunt_source

Get Shunt Enabled vtex1629_get_shunt_enabled

Get Shunt Value vtex1629_get_shunt_value

Set Shunt Source vtex1629_set_shunt_source

Set Shunt Enabled vtex1629_set_shunt_enabled

Set Shunt Value vtex1629_set_shunt_value

TEDS Calls

Get TEDS Data vtex1629_get_teds_data

Set TEDS Data vtex1629_set_teds_data

Erase TEDS Data vtex1629_erase_teds_data

Read TEDS MLAN vtex1629_read_teds_MLAN

Write TEDS MLAN vtex1629_write_teds_MLAN

Read TEDS URN vtex1629_read_teds_URN

Data Retrieval Calls

Get FIFO Count vtex1629_get_fifo_count

Read FIFO vtex1629_read_fifo

Read FIFO Extra vtex1629_read_fifoEx

Reset FIFO vtex1629_reset_fifo

Data Retrieval Calls - Advanced

Enable Streaming Data vtex1629_enable_streaming_data

Disable Streaming Data vtex1629_disable_streaming_data

Enable Streaming Data Expert Mode vtex1629_enable_streaming_dataEx

Self-Calibration Calls

Initialize Self-Calibration vtex1629_self_cal_init

Initialize Zero Calibration vtex1629_zero_cal

Query Self-Calibration File in Non-vol Memory vtex1629_self_cal_is_stored

Load Self-Calibration File from Non-vol Memory vtex1629_self_cal_load

Store Self-Calibration File to Non-vol Memory vtex1629_self_cal_store

Clear Self-Calibration File from Non-vol Memory vtex1629_self_cal_clear_stored

Clear Current Self-Calibration Image vtex1629_self_cal_clear

Get Self-Calibration Status vtex1629_self_cal_get_status

Get Self-Calibration Failure Status vtex1629_get_selfcal_status

Query Self-Calibration isRunning vtex1629_self_cal_is_running

Internal Calibration Source Calls

Get Calibration Source vtex1629_get_cal_source

Set Cal Source vtex1629_set_cal_source

Set Cal Out vtex1629_set_cal_out

Utility Function Calls

Reset vtex1629_reset

Self-Test Functions

 Self-Test vtex1629_self_test

 Self Test Init vtex1629_self_test_init

 Self Test Get Status vtex1629_self_test_get_status

Error Message vtex1629_error_message

Error Query vtex1629_error_query

Revision Query vtex1629_revision_query

Instrument Discovery vtex1629_findinstr

Enable Logging vtex1629_enable_logging

Disable Logging vtex1629_disable_logging

www.vtiinstruments.com

EX1629 Command Set 101

Get Serial Number vtex1629_get_instrument_serial_number

Get DSP Version vtex1629_get_dsp_version

Lead Wire Calls

Measure Lead Wire Resistance vtex1629_measure_lead_wire_resistance

Set Lead Wire Resistance vtex1629_set_lead_wire_resistance

Get Lead Wire Resistance vtex1629_get_lead_wire_resistance

Set Half-Bridge Lead Wire Desensitization vtex1629_set_half_bridge_lead_wire_desensitization

Get Half-Bridge Lead Wire Desensitization vtex1629_get_half_bridge_lead_wire_desensitization

Calibration File Query

Get Calibration File Size vtex1629_get_cal_file_size

Get Calibration File vtex1629_get_cal_file

Calibration Coefficient Query vtex1629_get_cal_coefficients

Close

Close vtex1629_close

VTI Instruments Corp.

102 EX1629 Command Set

ALPHABETICAL FUNCTION SET

The following table provides a summary of the function calls used by the EX1629 along with an

abbreviated description of the function. The pages following this table are function definitions that

provide in-depth detail for each function. A sample function definition is provided immediately

following this table to illustrate what each section of the definition describes.

Command Description
vtex1629_abort Aborts data acquisition.

vtex1629_allow_all_channels Allows the user to include channels that failed calibration in the scanlist

for data acquisition.

vtex1629_break_lock Releases a lock on the instrument.

vtex1629_check_lock Queries the lock status of the instrument.

vtex1629_clear_stored_config Erases the stored configuration from nonvolatile storage.

vtex1629_close Closes an instrument programming session.

vtex1629_compare_digests Compares the two provided digests byte-by-byte.

vtex1629_dio_clear_event Clears the DIO event configuration for the specified inputLine.

vtex1629_dio_clear_events_all Clears the DIO event configuration for all events.

vtex1629_disable_logging Stops the logging of driver calls.

vtex1629_disable_streaming_data Stops streaming data from instrument.

vtex1629_enable_logging Allows an application to log messages to a file for later review.

vtex1629_enable_streaming_data Starts data streaming from instrument.

vtex1629_enable_streaming_dataEx Start data streaming from instrument (expert mode).

vtex1629_erase_teds_data Erases the data on a TEDS device for one particular channel.

vtex1629_error_message Outputs the error message associated with the statusCode parameter.

vtex1629_findinstr Scans the LAN for available EX1629 instruments.

vtex1629_get_arm_count Queries and returns the arm count for the EX1629.

vtex1629_get_arm_delay Queries and returns the arm delay for the EX1629.

vtex1629_get_arm_source Queries and returns the current setting for the arm source.

vtex1629_get_bridge_limit Queries and returns the minimum and maximum bridge limit values.

vtex1629_get_bridge_limit_enabled Queries and returns the enabled status of the bridge limit function.

vtex1629_get_cal_coefficients Queries and returns the value of a selected calibration coefficient for

one or more channels.

vtex1629_get_cal_file Reads up to bufferSize characters from the EX1629 and places them in

the XML buffer.

vtex1629_get_cal_file_size Returns the total buffer size required to read the cal data.

vtex1629_get_cal_source Queries and returns the current setting for the calibration input source.

vtex1629_get_completion_resistor Queries and returns the mode and the value of the completion resistor

for a specific channel.

vtex1629_get_conf_scanlist Queries and returns a list of confidence data values that are currently

configured to be measured and stored with data acquisition.

vtex1629_get_confidence_limit Queries and retrieves the current confidence limit settings.

vtex1629_get_confidence_reporting_mode Queries and retrieves the reporting mode for confidence limit checking.

vtex1629_get_current_config_digest Retrieves the digest for the current instrument configuration.

vtex1629_get_dio_bank0_direction Indicates whether bank zero of the digital I/O is configured as input or

output.

vtex1629_get_dio_bank0_pullup Queries and returns the pull-up mode for bank zero of the digital I/O.

vtex1629_get_dio_bank1_direction Indicates whether bank one of the digital I/O is configured as input or

output.

vtex1629_get_dio_bank1_pullup Queries and returns the pull-up mode for bank one of the digital I/O.

vtex1629_get_dio_config_events Queries and returns the current setting for DIO event transitions.

vtex1629_get_dio_input Queries and returns the current input state of both banks of the digital

I/O.

vtex1629_get_dio_output Queries and returns the current programmed output state of both banks

of the digital I/O.

vtex1629_get_dsp_version Returns the DSP version information for a given analog board.

vtex1629_get_EU_conversion Reads the EU conversion type for a specific channel.

vtex1629_get_euconv_dynamic_excitation_enabled Queries and returns the dynamic excitation EU conversion state

www.vtiinstruments.com

EX1629 Command Set 103

Command Description
vtex1629_get_euconv_excitation Queries and returns the current value used in EU conversions for the

excitation voltage for a given channel.

vtex1629_get_excitation Queries and returns the programmed excitation voltage for a given

channel.

vtex1629_get_excitation_enabled Queries and returns the enabled status of the excitation voltage for a

specific channel.

vtex1629_get_fifo_count Queries the EX1629 for the current FIFO page count.

vtex1629_get_gain Reads the specified channel's current signal conditioning gain.

vtex1629_get_gauge_factor Queries and returns the gage factor for a specific channel. This is one of

the parameters used in EU conversion calculations.

vtex1629_get_half_bridge_lead_wire_desensitization Queries and returns the lead wire desensitization factor for the specified

channel.

vtex1629_get_IIR_filter_configuration Queries and returns the IIR filter configuration parameters for a given

channel.

vtex1629_get_input_multiplexer Queries and returns the input multiplexer source.

vtex1629_get_instrument_serial_number Returns the instrument's serial number

vtex1629_get_lead_wire_resistance Queries and returns the currently defined lead wire resistance value.

vtex1629_get_linearscaling_configuration Returns the slope (m) and intercept (b) parameters for a given channel.

vtex1629_get_lxi_limit_event_enabled Returns which measurement channels are enabled for Limit Events on

the specified LXI Trigger Bus line.

vtex1629_get_lxi_limit_event_latch Returns a mask indicating which LXI trigger lines will be latched for

LXI Limit Event outputs.

vtex1629_get_lxibus_configuration Queries and returns information pertaining to a specified LXI Trigger

Bus channel.

vtex1629_get_lxibus_input Queries and returns the input state of each of the channels on the LXI

Trigger Bus.

vtex1629_get_lxibus_output Queries and returns the output state of each of the channels on the LXI

Trigger Bus.

vtex1629_get_pattern_arm_configuration Queries and returns the EX1629’s current configuration for the pattern

arm mode of operation.

vtex1629_get_pattern_trig_configuration This queries and returns the EX1629’s current configuration for the

pattern trigger mode of operation.

vtex1629_get_poisson_ratio Queries and returns the Poisson ratio for a specific channel. This is one

of the parameters used in EU conversion calculations.

vtex1629_get_sample_clock_source Queries and returns the configured sample clock source.

vtex1629_get_sample_count Queries and returns both the pre- and post-trigger sample counts for the

EX1629.

vtex1629_get_sample_frequency Queries and returns the currently configured sampling frequency for all

channels on the EX1629.

vtex1629_get_scanlist Queries and returns a list of channels currently configured to be

sampled in the data acquisition process.

vtex1629_get_selfcal_status Queries and returns self-calibration failure status for the selected

channels

vtex1629_get_settling_time Queries and returns the current settling time for a particular channel.

vtex1629_get_shunt_enabled Queries and returns the enabled status of a particular channel's shunt

resistor.

vtex1629_get_shunt_source Queries and returns the shunt source for a particular channel.

vtex1629_get_shunt_value Queries and returns a shunt resistor value based on a given channel and

shunt source.

vtex1629_get_stored_config_digest Retrieves the digest of the instrument configuration saved in non-

volatile memory.

vtex1629_get_strain_units Queries and returns the configured strain units for a given channel.

vtex1629_get_synch_source Queries and returns the synchronization source.

vtex1629_get_tare Reads the currently configured tare value for a specific channel

vtex1629_get_teds_data Returns the TEDS data for a given channel.

vtex1629_get_trigger_count Queries and returns the currently configured trigger count for the

EX1629.

vtex1629_get_trigger_delay Queries and returns the trigger delay for the EX1629.

vtex1629_get_trigger_source Queries and returns the current setting for the trigger source.

VTI Instruments Corp.

104 EX1629 Command Set

Command Description
vtex1629_get_trigger_timer Queries and returns the trigger system timer for the EX1629.

vtex1629_get_unstrained_voltage Queries and returns the unstrained voltage currently configured for a

given channel.

vtex1629_identify_sensor Controls the activity of a sensor-linked LED.

vtex1629_init Opens a session with the instrument and returns a session handle.

vtex1629_load_stored_config Applies the stored configuration to the instrument.

vtex1629_lock Attempts to acquire a lock on the instrument.

vtex1629_measure_confidence Measures the indicated bridge parameter to indicate measurement

confidence.

vtex1629_measure_excitation_voltage Measures the total excitation voltage for a list of channels.

vtex1629_measure_lead_wire_resistance Measures the lead wire resistance that exists in a strain gage set up

vtex1629_measure_unstrained_voltage Measures the unstrained voltage for a particular list of channels.

vtex1629_read_fifo This function is the means by which data is retrieved from the

instrument.

vtex1629_read_fifoEx Returns data and its confidence elements from the instrument.

vtex1629_read_teds_MLAN Reads a different sized EEPROM from TEDS device.

vtex1629_read_teds_URN Reads the unique registration number (URN) from a TEDS device.

vtex1629_reset Commands the instrument to assume the default settings.

vtex1629_reset_fifo Clears all the currently stored data from the FIFO.

vtex1629_reset_tare Resets the tare values for all channels.

vtex1629_reset_trigger_arm Resets the trigger system configuration settings to their default values.

vtex1629_revision_query Outputs the driver revision and the instrument's firmware revision.

vtex1629_self_cal_clear Clears the current self-calibration image.

vtex1629_self_cal_clear_stored Erases the self-calibration file that is stored in nonvolatile memory.

vtex1629_self_cal_get_status Returns the status of the self-calibration process.

vtex1629_self_cal_init Initializes the self-calibration routine on the EX1629.

vtex1629_self_cal_is_running This functions queries the existence of a previously saved self-

calibration file within non-volatile memory.

vtex1629_self_cal_is_stored This functions queries the existence of a previously saved self-

calibration file within nonvolatile memory.

vtex1629_self_cal_load Takes a currently stored self-calibration file and loads it as the current

self-calibration file to be used in data acquisition.

vtex1629_self_cal_store Takes the current self-calibration image and stores it to nonvolatile

memory.

vtex1629_self_test Causes the instrument to perform a self test.

vtex1629_self_test_get_status Obtains the status of the self-test.

vtex1629_self_test_init Initiates a self-test.

vtex1629_send_dio_pulse Sends a pulse out on the selected DIO channels.

vtex1629_send_lxibus_pulse Sends a pulse out on the desired LXI Trigger Bus channels.

vtex1629_set_arm_count Sets the arm count for the EX1629.

vtex1629_set_arm_delay Sets the arm delay for the EX1629.

vtex1629_set_arm_source Sets the arm source on the EX1629.

vtex1629_set_bridge_limit Sets the minimum and maximum bridge limit values for an array of

channels

vtex1629_set_bridge_limit_enabled Sets the enabled status of the bridge limit function.

vtex1629_set_cal_out Sets the calibration input source to a specified voltage.

vtex1629_set_cal_source Sets the current setting for the calibration input source.

vtex1629_set_completion_resistor Sets the mode of the completion resistor for a set of channels.

vtex1629_set_conf_scanlist Defines the list of confidence data items to be returned with the

measurements.

vtex1629_set_confidence_limit Sets the minimum and maximum values for confidence data limit

checking

vtex1629_set_confidence_reporting_mode Sets the reporting mode for confidence limit checking.

vtex1629_set_dio_bank0_direction Sets the direction of bank zero of the digital I/O as input or output.

vtex1629_set_dio_bank0_pullup Sets the pull-up mode for bank zero of the Digital I/O to passive or

active.

vtex1629_set_dio_bank1_direction Sets the direction of bank one of the digital I/O as input or output.

vtex1629_set_dio_bank1_pullup Sets the pull-up mode for bank one of the Digital I/O to passive or

active.

www.vtiinstruments.com

EX1629 Command Set 105

Command Description
vtex1629_set_dio_config_events Sets the conditions under which DIO event transitions will occur.

vtex1629_set_dio_output Sets the programmed output state for both digital I/O banks.

vtex1629_set_EU_conversion Set the EU conversion type for a given list of channels.

vtex1629_set_euconv_dynamic_excitation_enabled Sets the dynamic excitation EU conversion state.

vtex1629_set_euconv_excitation Manually sets the excitation voltage to be used in EU conversions for a

particular list of channels.

vtex1629_set_excitation Sets the programmed excitation voltages for a given list of channels.

vtex1629_set_excitation_enabled Enables or disables the excitation voltages for a list of channels.

vtex1629_set_gain Sets the signal conditioning gain for a given list of channels.

vtex1629_set_gauge_factor Sets the gage factor for a list of channels.

vtex1629_set_half_bridge_lead_wire_desensitization Sets the lead wire desensitization factor a given list of channels.

vtex1629_set_IIR_filter_configuration Configures the IIR filters for a given list of channels.

vtex1629_set_input_multiplexer Sets the input multiplexer source.

vtex1629_set_lead_wire_resistance Sets the resistance of the lead wire.

vtex1629_set_linearscaling_configuration Sets the coefficients for linear scaling for multiple channels

vtex1629_set_lxi_limit_event_enabled Sets which measurement channels are enabled for Limit Events on the

specified LXI Trigger Bus line.

vtex1629_set_lxi_limit_event_latch Sets which LXI Trigger Bus lines will be latched for LXI Limit Event

outputs.

vtex1629_set_lxibus_configuration Configures several characteristics of a specific LXI Trigger Bus

channel.

vtex1629_set_lxibus_output Configures the output state of each of the LXI Trigger Bus channels.

vtex1629_set_pattern_arm_configuration Configures the EX1629’s pattern arm mode of operation.

vtex1629_set_pattern_trig_configuration Configures the EX1629’s pattern trigger mode of operation.

vtex1629_set_poisson_ratio Sets the Poisson ratio for a list of channels

vtex1629_set_sample_clock_source Sets the sample clock source.

vtex1629_set_sample_count Sets both the pre-trigger and the post-trigger sample count for the

EX1629.

vtex1629_set_sample_frequency Sets the sampling frequency of all channels of the EX1629.

vtex1629_set_scanlist Defines a list of channels which will be sampled in the data acquisition

process.

vtex1629_set_shunt_enabled Enables or disables the shunt resistors for a particular list of channels.

vtex1629_set_shunt_source Sets the shunt source for a given list of channels.

vtex1629_set_shunt_value Sets the value of a shunt resistor based on a given channel and shunt

source.

vtex1629_set_strain_units Determines whether the EX1629 will return strain measurements in

units of strain (ε) or microstrain (µε) for a given list of channels.

vtex1629_set_synch_source Sets the sample clock source.

vtex1629_set_tare Sets the tare values for a list of channels.

vtex1629_set_teds_data Writes data to a TEDS device on a particular channel.

vtex1629_set_trigger_count Sets the trigger count for the EX1629.

vtex1629_set_trigger_delay Sets the trigger delay for the EX1629.

vtex1629_set_trigger_source Sets the trigger source on the EX1629.

vtex1629_set_trigger_source_timer A convenience functions that makes calls to several other driver

functions.

vtex1629_set_trigger_timer Sets the trigger timer for the EX1629.

vtex1629_set_unstrained_voltage Sets the unstrained voltage for a list of channels

vtex1629_soft_arm Sends a software generated ARM event to the EX1629.

vtex1629_soft_synch Sends a software generated synchronization event to the device.

vtex1629_soft_trig Sends a software-generated TRIG event to the EX1629.

vtex1629_store_current_config Stores the current configuration of the instrument in the nonvolatile

storage.

vtex1629_trig_init Initiates the trigger system.

vtex1629_unlock Unlocks the EX1629 instrument.

vtex1629_write_teds_MLAN Writes a variable sized block to a TEDS EEPROM.

vtex1629_zero_cal Resets the offset values of the unit before a measurement is taken.

VTI Instruments Corp.

106 EX1629 Command Set

SAMPLE FUNCTION DEFINITION

Function_Name

FUNCTION PROTOTYPE

This section provides the exact syntax of the function as it would be written in a program.

FUNCTION PARAMETERS

This section identifies the parameters that are associated with the function. A description of the parameter will be

provided and, when appropriate, the range of values that the parameter will accept without creating an error. Ranges

are assumed to be inclusive unless otherwise specified.

DATA ITEM RESET VALUE

This section provides the values the data items associated with this function assume after a reset condition. This

section is only applicable to “set” functions.

DESCRIPTION

This section details what occurs when this function is called.

EXAMPLE

This section provides an example of how this function might appear in an application.

www.vtiinstruments.com

EX1629 Command Set 107

EX1629 FUNCTION SET

vtex1629_abort

FUNCTION PROTOTYPE

ViStatus vtex1629_abort (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function aborts data acquisition. Specifically, calling this function moves the trigger system from its current

state into the IDLE state.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_abort(instrumentHandle);

VTI Instruments Corp.

108 EX1629 Command Set

vtex1629_allow_all_channels

FUNCTION PROTOTYPE

ViStatus _VI_FUNC vtex1629_allow_all_channels (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function allows the user to include channels that failed calibration in the scanlist for data acquisition.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_allow_all_channels(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 109

vtex1629_break_lock

FUNCTION PROTOTYPE

ViStatus vtex1629_break_lock (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function releases a lock on the instrument, regardless of its owner. This allows for instrument recovery if the

locking client (application or computer) becomes disabled, without rebooting or cycling power on the instrument.

NOTE Breaking a lock on the instrument does not automatically acquire it. Acquisition must be done

with a separate vtex1629_lock function call.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_break_lock(instrumentHandle);

VTI Instruments Corp.

110 EX1629 Command Set

vtex1629_check_lock

FUNCTION PROTOTYPE

ViStatus vtex1629_check_lock (ViSession vi, ViPBoolean locked, ViPBoolean mine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

locked = a Boolean return value indicating if the EX1629 is locked. A return value of “1” indicates that the EX1629

is locked.

mine = a Boolean return value indicating if the session that called the vtex1629_check_lock function owns the lock.

A value of “1” returned indicates that the EX1629 is locked and that the current session owns that lock.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function checks the lock status of the EX1629 instrument. It reports whether it is locked and if so whether the

current session owns the lock. When locked, the EX1629 will only accept function calls from the session handle that

issued the lock function call. When not locked, the EX1629 will accept function calls from any client.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean locked, mine;

…

status = vtex1629_check_lock (instrumentHandle, &locked, &mine);

if(locked == VI_TRUE && mine == VI_TRUE){

 printf(“Instrument locked by this client!\n”);

}

www.vtiinstruments.com

EX1629 Command Set 111

vtex1629_clear_stored_config

FUNCTION PROTOTYPE

ViStatus vtex1629_clear_stored_config (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function erases the stored configuration from non-volatile storage. This function does not modify the current

configuration of the device.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_clear_stored_config (instrumentHandle);

VTI Instruments Corp.

112 EX1629 Command Set

vtex1629_close

FUNCTION PROTOTYPE

ViStatus vtex1629_close (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function closes the current instrument programming session. This command should be performed at the

conclusion of the test application. If the current session locked the instrument, vtex1629_close will unlock, leaving it

in the proper state for the next application.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_close (instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 113

vtex1629_compare_digests

FUNCTION PROTOTYPE

ViStatus vtex1629_compare_digests (ViInt32 digestArraySize, ViInt8 _VI_FAR digestA[],ViInt8 _VI_FAR

digestB[], ViPBoolean equal);

FUNCTION PARAMETERS

digestArraySize = defines how many bytes from the two digests will be compared. For consistency, this number

should be VTEX1629_MAX_DIGEST_LENGTH bytes.

digestA[]= configuration digest (obtained from system)

digestB[]= configuration digest (obtained from system).

equal = a pointer to a return Boolean value indicating whether all the bytes in the configuration digests are the same.

A value of VI_TRUE indicates that the digests are equal, where a value of VI_FALSE indicates otherwise.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function compares the two provided digests byte-by-byte. If VI_TRUE is returned in equal, all bytes in

digestA and digestB are equal. A digest is a digital signature, or a fingerprint, representing the actual configuration

data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt8 active[VTEX1629_MAX_DIGEST_LENGTH], stored[VTEX1629_MAX_DIGEST_LENGTH];

ViInt32 actualDigestSize;

ViBoolean equal;

…

status = vtex1629_get_current_config_digest // Read active configuration signature

 (instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,

 active,

 actualDigestSize);

if (status >= VI_SUCCESS) // Read stored configuration signature

{

 status = vtex1629_get_stored_config_digest (instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,

 stored,

 actualDigestSize);

}

if (status >= VI_SUCCESS) // Compare the two

{

 status = vtex1629_compare_digests (VTEX1629_MAX_DIGEST_LENGTH,

 active,

 stored,

 &equal);

}

if (status >= VI_SUCCESS)

{

 if (equal == VI_TRUE)

 {

 <the current configuration is the same as the stored one>

 } else

 <the current configuration differs from the stored one>

 }}

VTI Instruments Corp.

114 EX1629 Command Set

vtex1629_dio_clear_event

FUNCTION PROTOTYPE

ViStatus vtex1629_dio_clear_event (ViSession vi, ViInt32 inputLine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

inputLine = the DIO Input Line whose event action entries are being cleared.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function clears the DIO event configuration for the specified inputLine.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dioLine;

…

…

dioLine = 2;

status = vtex1629_dio_clear_event (instrumentHandle, dioLine);

www.vtiinstruments.com

EX1629 Command Set 115

vtex1629_dio_clear_events_all

FUNCTION PROTOTYPE

ViStatus vtex1629_dio_clear_events_all (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function clears the DIO event configuration for all events.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

…

status = vtex1629_dio_clear_events_all(instrumentHandle);

VTI Instruments Corp.

116 EX1629 Command Set

vtex1629_disable_logging

FUNCTION PROTOTYPE

ViStatus vtex1629_disable_logging (void);

FUNCTION PARAMETERS

No parameters are defined for this function.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function stops the logging of driver calls.

EXAMPLE

ViStatus status;

…

status = vtex1629_disable_logging ();

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

www.vtiinstruments.com

EX1629 Command Set 117

vtex1629_disable_streaming_data

FUNCTION PROTOTYPE

ViStatus vtex1629_disable_streaming_data (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function causes streaming data from the EX1629 to cease. In order to use this function, the macro

INSTR_LANGUAGE_SPECIFIC must be defined in the application program.

EXAMPLE

#define INSTR_LANGUAGE_SPECIFIC

#include<vtex1629.h>

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_disable_streaming_data(instrumentHandle);

VTI Instruments Corp.

118 EX1629 Command Set

vtex1629_enable_logging

FUNCTION PROTOTYPE

ViStatus vtex1629_enable_logging (ViChar _VI_FAR filename[], ViBoolean append);

FUNCTION PARAMETERS

filename = an input string that specifies the file to which logging data will be recorded. The format may be simply a

file name (“ex1629_log”) or an absolute path (“C:\vxipnp\vtex1629\ex1629_log.txt”). If a file name (relative path)

is provided, the file will be created in the current working directory of the application.

append = a Boolean input value that specifies if log results will be appended to an existing file. A value of

VI_TRUE will cause logged information to be appended to an existing file. Otherwise, any previous data will be

overwritten.

DATA ITEM RESET VALUE

Not applicable to this function.

EXAMPLE

ViStatus status;

ViString fileName = “myTemporaryFile”;

ViBoolean append = VI_TRUE;

…

status = vtex1629_enable_logging (fileName, append);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

www.vtiinstruments.com

EX1629 Command Set 119

vtex1629_enable_streaming_data

FUNCTION PROTOTYPE

ViStatus vtex1629_enable_streaming_data (ViSession vi, void *private_data, EX1629_STREAM_CALLBACK

callback);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

private_data = a user-defined object. It will be passed as a parameter to the callback function.

callback = pointer to user-defined routine which should be in charge of handling the data.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function starts data streaming from the EX1629. In order to implement this function, the macro

INSTR_LANGUAGE_SPECIFIC must be defined.

It should be noted that the data page created by this function contains an error code field which should equal zero. In

the event that this error code equals 28, this is an indication that the instrument is no longer synchronized with the

LXI clock and it is now utilizing the EX1629’s internal oscillator as its clock source. Possible causes of this error

include the accidental removal of the LXI cable or a missing clock. To clear this error, use the

vtex1629_reset_trigger_arm function. The EX1629 will continue to use the internal clock after this error is cleared,

so it will be necessary to correct the cause of the error by reconfiguring the trigger subsystem.

EXAMPLE

#define INSTR_LANGUAGE_SPECIFIC

#include<vtex1629.h>

ViSession instrumentHandle;

ViStatus status;

typedef struct {

 FILE *fout;

 ViInt32 sample_count;

} user_struct;

user_struct my_struct = {0};

ViInt32 stream_callback(void *priv, EX1629_rpc_datapage *data)

{

 user_struct *priv_struct; // pointer to user structure

 ViInt32 ds_idx; // dataset index

 ViInt32 smp_idx; // sample index

 priv_struct = (user_struct *)priv;

 /* Loop through all of the datasets in the datapage. */

 for(ds_idx = 0;

 ds_idx < data->dataset.dataset_len && ds_idx < MAX_NUM_DATASETS;

 ds_idx++) {

 /* check error code */

 if (dataset.dataset_val[ds_idx]->error_code != 0) {

 /* handle error in an application-appropriate manner…*/

 fprintf(stderr,

 “Error %d in data stream!\n”,

 dataset.dataset_val[ds_idx]->error_code)

 }

VTI Instruments Corp.

120 EX1629 Command Set

 /* print the timestamp. */

 fprintf(priv_struct->fout,

 "Timestamp: %5u.%09u",

 data->dataset.dataset_val[ds_idx]->timestamp_sec,

 data->dataset.dataset_val[ds_idx]->timestamp_nsec);

 /* print the data */

 for(smp_idx = 0;

 smp_idx < data->dataset.dataset_val[ds_idx]->data.data_len;

 smp_idx++) {

 fprintf(priv_struct->fout,

 "\t%i %f\n",

 data->dataset.dataset_val[ds_idx]- >data.data_val[smp_idx]);

 }

 }

 if(data->dataset.dataset_len > 0) {

 priv_struct->sample_count++;

 }

}

status = vtex1629_enable_streaming_data(instrumentHandle,

 &my_struct,

 stream_callback);

status = vtex1629_trig_init(instrumentHandle);

… // application code

www.vtiinstruments.com

EX1629 Command Set 121

vtex1629_enable_streaming_dataEx

FUNCTION PROTOTYPE

ViStatus vtex1629_enable_streaming_dataEx (ViSession vi, ViInt32 port);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

port = indicates the TCP/IP port that will be used to stream data. Valid input values: 0 to 65535. (Note that some of

these ports are reserved and it is recommended values between 1024 to 65535 be used.)

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function starts data streaming from instrument (expert mode). In order to implement this function the macro

INSTR_LANGUAGE_SPECIFIC must be defined.

It should be noted that the data page created by this function contains an error code field which should equal zero. In

the event that this error code equals 28, this is an indication that the instrument is no longer synchronized with the

LXI clock and it is now utilizing the EX1629’s internal oscillator as its clock source. Possible causes of this error

include the accidental removal of the LXI cable or a missing clock. To clear this error, use the

vtex1629_reset_trigger_arm function. The EX1629 will continue to use the internal clock after this error is cleared,

so it will be necessary to correct the cause of the error by reconfiguring the trigger subsystem.

EXAMPLE

For examples of using the vtex1629_enable_streaming_dataEx function, please contact your application engineer.

VTI Instruments Corp.

122 EX1629 Command Set

vtex1629_erase_teds_data

FUNCTION PROTOTYPE

ViStatus vtex1629_erase_teds_data (ViSession vi, ViInt32 channel);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value indicating the channel for which the completion resistor is desired. Valid input

values: 0 to 47.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function erases the data on the TEDS device indicated by the channel parameter. The only supported

EEPROM is DS2430A. For other EEPROMs, the vtex1629_write_teds_MLAN and vtex1629_read_teds_MLAN

functions should be used.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_erase_teds_data(instrumentHandle, 0);

www.vtiinstruments.com

EX1629 Command Set 123

vtex1629_error_message

FUNCTION PROTOTYPE

ViStatus vtex1629_error_message (ViSession vi, ViStatus statusCode, ViChar _VI_FAR errMessage[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

statusCode= an input status code corresponding to the error for which the error message is desired.

errMessage = a return string that contains the error message. This string should be at least 256 characters long.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the error message text associated with the statusCode parameter.

EXAMPLE

ViSession instrumentHandle;

ViStatus status, code;

ViChar errorMessage[256];

…

status = vtex1629_error_message (instrumentHandle, code, errorMessage);

VTI Instruments Corp.

124 EX1629 Command Set

vtex1629_error_query

FUNCTION PROTOTYPE

ViStatus vtex1629_error_query (ViSession vi, ViPInt32 error_code, ViChar _VI_FAR error_message[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

error_code = Instrument Error Code.

error_message[] = Error Message.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function is intended to query system errors generated by an instrument. It returns

VI_WARN_NSUP_ERROR_QUERY. It is provided as part of the plug&play standard. When errors occur on the

EX1629, the vtex1629_error_message function should be used.

www.vtiinstruments.com

EX1629 Command Set 125

vtex1629_findinstr

FUNCTION PROTOTYPE

ViStatus vtex1629_findinstr (ViPString instruments, ViInt32 maxinstr, ViPInt32 numinstr, ViInt32

timeout_secs);

FUNCTION PARAMETERS

instruments = a return pointer to an array of strings, each of which contains the Plug&Play compliant resource

descriptor of an EX1629 found on the network. (Example descriptor: "TCPIP::192.168.1.1::INSTR".)

maxinstr = an integer input value that specifies the maximum number of instruments to return.

numinstr = a returned integer indicating the number of instruments found.

timeout_secs = an integer input value, in seconds, indicating the amount of time to search before timing out.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function scans the LAN for available EX1629 instruments and returns their resource descriptors, including IP

addresses, as an array of strings, suitable for use with the function.

EXAMPLE

#define MAX_INSTRUMENTS (500)

#define TIMEOUT (1000)

ViStatus status;

ViString instrumentIDs[MAX_INSTRUMENTS];

ViInt32 i, numberDiscovered;

…

…

status = vtex1629_findinstr (&instrumentIDs[0],

 MAX_INSTRUMENTS,

 &numberDiscovered,

 TIMEOUT);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

} else {

 for (i=0; i < numberDiscovered; i++)

 {

 <handle this instrument>

 }

}

VTI Instruments Corp.

126 EX1629 Command Set

vtex1629_get_arm_count

FUNCTION PROTOTYPE

ViStatus vtex1629_get_arm_count (ViSession vi, ViPInt32 armCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

armCount = an integer output value that specifies the currently configured arm count for the EX1629. Valid return

values: 1 to 2,147,483,647 (231-1).

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the arm count for the EX1629. This count represents the number of times the

EX1629 will wait for ARM events to occur after the trigger state machine leaves the IDLE layer. Trigger counts

should be kept in mind when considering this trigger state machine. If the state machine is configured with both arm

and trigger counts set greater than one, then, after an ARM event is received, the state machine will go through all

trigger counts before returning to the ARM layer to wait for the next ARM event.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 armcount;

…

status = vtex1629_get_arm_count(instrumentHandle, &armcount);

www.vtiinstruments.com

EX1629 Command Set 127

vtex1629_get_arm_delay

FUNCTION PROTOTYPE

ViStatus vtex1629_get_arm_delay (ViSession vi, ViPReal64 delay);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

delay = a real output value, in seconds, indicating the arm delay. Valid return values: 0 s to 4294.967295 s

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the arm delay for the EX1629. This indicates the amount of time, in seconds, that

the EX1629 will wait after receiving an ARM event before it transitions the trigger state machine from the ARM

layer into the TRIG layer. Note that the value this function returns may not be identical to the value set by the

vtex1629_set_arm_delay function, as the actual delay time will vary with the set sample frequency (i.e., there is

some inherent quantization of the value).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 armdelay;

…

status = vtex1629_get_arm_delay(instrumentHandle, &armdelay);

VTI Instruments Corp.

128 EX1629 Command Set

vtex1629_get_arm_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_arm_source (ViSession vi, ViPInt32 armSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

armSource = an integer return value that indicates the current source the EX1629 monitors for ARM events. See the

Description section below for more information. Valid return values: 0 to 17.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current arm source setting. Possible values for the armSource parameter are:

Decimal

Value

Hex

Value
#define armSource Description

0 0x00 VTEX1629_TRIG_SRC_IMMEDIATE Immediate

1 0x01 VTEX1629_TRIG_SRC_PATTERN Pattern

2 0x02 VTEX1629_TRIG_SRC_LXI0_POS LXI 0 Positive Edge

3 0x03 VTEX1629_TRIG_SRC_LXI1_POS LXI 1 Positive Edge

4 0x04 VTEX1629_TRIG_SRC_LXI2_POS LXI 2 Positive Edge

5 0x05 VTEX1629_TRIG_SRC_LXI3_POS LXI 3 Positive Edge

6 0x06 VTEX1629_TRIG_SRC_LXI4_POS LXI 4 Positive Edge

7 0x07 VTEX1629_TRIG_SRC_LXI5_POS LXI 5 Positive Edge

8 0x08 VTEX1629_TRIG_SRC_LXI6_POS LXI 6 Positive Edge

9 0x09 VTEX1629_TRIG_SRC_LXI7_POS LXI 7 Positive Edge

10 0x0A VTEX1629_TRIG_SRC_LXI0_NEG LXI 0 Negative Edge

11 0x0B VTEX1629_TRIG_SRC_LXI1_NEG LXI 1 Negative Edge

12 0x0C VTEX1629_TRIG_SRC_LXI2_NEG LXI 2 Negative Edge

13 0x0D VTEX1629_TRIG_SRC_LXI3_NEG LXI 3 Negative Edge

14 0x0E VTEX1629_TRIG_SRC_LXI4_NEG LXI 4 Negative Edge

15 0x0F VTEX1629_TRIG_SRC_LXI5_NEG LXI 5 Negative Edge

16 0x10 VTEX1629_TRIG_SRC_LXI6_NEG LXI 6 Negative Edge

17 0x11 VTEX1629_TRIG_SRC_LXI7_NEG LXI 7 Negative Edge

Immediate (0): an immediate ARM source. After initialization of the trigger system, the trigger state machine will

bypass the ARM layer and will automatically transition into the TRIG layer.

Pattern (1): this arm source allows the EX1629 to accept ARM events from multiple sources. Specifically, the

EX1629 can be configured to accept ARM events from any of the LXI Trigger Bus channels, from any of the digital

I/O channels, from an internal timer, or from software arm commands. The instrument can be configured to accept

any combination of these events simultaneously. The specific pattern is queried with the

vtex1629_get_pattern_arm_configuration call.

LXI n Positive Edge (2 – 9): these arm sources refer to ARM events coming from the LXI Trigger Bus. More

specifically, these arm sources will cause the EX1629 to arm on the positive edge of signals coming into the LXI

Trigger Bus.

LXI n Negative Edge (10 – 17): these arm sources refer to ARM events coming from the LXI Trigger Bus. More

specifically, these arm sources will cause the EX1629 to arm on the negative edge of signals coming into the LXI

Trigger Bus.

www.vtiinstruments.com

EX1629 Command Set 129

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 armsource;

…

status = vtex1629_get_arm_source (instrumentHandle, &armsource);

VTI Instruments Corp.

130 EX1629 Command Set

vtex1629_get_bridge_limit

FUNCTION PROTOTYPE

ViStatus vtex1629_get_bridge_limit (ViSession vi, ViInt32 channel, ViPReal64 min, ViPReal64 max);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value indicating the channel for which the completion resistor is desired. Valid input

values: 0 to 47.

min = the returned minimum bridge limit value.

max = the returned minimum bridge limit value.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the minimum and maximum bridge limit values. The limit check data is part of the

data page along with the bridge data. If the bridge data exceeds the maximum or minimum limit values set for any

channel, the corresponding flags are set in the limit check result field in a data page.

0 = Bridge data is

less than the MAX

for CH 15

1 = Bridge data is

greater than the

MAX for CH 15

0 = Bridge data is

less than the MAX

for CH 0

1 = Bridge data is

greater than the

MAX for CH 0

0 = Bridge data is

greater than the

MIN for CH 15

1 = Bridge data is

less than the MIN

for CH 15

0 = Bridge data is

greater than the

MIN for CH 0

1 = Bridge data is

less than the MIN

for CH 0

31 015

MSW

(MAX Limit exceeded status)

LSW

(MIN Limit exceeded status)

The “limits” field is a bit-field. This UINT32 has two bits per channel (16-channels per analog board), one to

represent MAX limit exceeded and one to represent MIN limit exceeded. The MSW (upper 16-bits) represent the

MAX Limit Exceeded status for each of the 16-channels, and the LSW (lower 16-bits) represent the MIN Limit

Exceeded status for each of the 16-channels. Bit 0 represents the MIN Limit Exceeded status for channel 0 (channels

0, 16, 32). Bit 16 represents the MAX Limit Exceeded status for Channel 0 (channels 0, 16, 32). Bit 15 represents

the MIN Limit Exceeded status for channel 15 (channels 15, 31, and 47). Bit 31 represents the MAX Limit

Exceeded status for channel 15 (channels 15, 31, and 47). The rest of the channels follow the same pattern.

NOTE The channel-to-bit mapping is constant, regardless of scanlist configuration. For example, whether

or not channels 0 and 1 are enabled in the scanlist, for instance, channel 2’s MIN Limit Exceeded

Bit and MAX Limit Exceeded Bit are always bits 2 and 18, respectively.

This mode is valid for main bridge sampling frequencies of 1 kHz or less. If the sampling frequency exceeds 1 kHz

a value of 0x0 is reported. Also, the bit fields corresponding to inactive channels in the scanlist will be 0.

Limit checking is performed on the output of the EU conversion. So, if the specified EU conversion is in Strain

(quarter-, half-, or full-bridge) the limit values are in strain (or microstrain). If the specified EU conversion is volts,

then the limit values are in volts.

www.vtiinstruments.com

EX1629 Command Set 131

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channel = 5;

ViReal64 min = 0;

ViReal64 max = 0;

…

status = vtex1629_get_bridge_limit (instrumentHandle, channel, &min, &max);

VTI Instruments Corp.

132 EX1629 Command Set

vtex1629_get_bridge_limit_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_get_bridge_limit_enabled (ViSession vi, ViPBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

enabled = a Boolean return value indicating the enabled status of the excitation source. A returned value of “1”

indicates that the excitation source is enabled.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the enabled status of the bridge limit function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean armsource;

…

status = vtex1629_get_bridge_limit_enabled (instrumentHandle, &enabled);

www.vtiinstruments.com

EX1629 Command Set 133

vtex1629_get_cal_coefficients

FUNCTION PROTOTYPE

ViStatus vtex1629_get_cal_coefficients (ViSession vi, ViInt32 caltype, ViInt32 coefficientSelector, ViInt32

_VI_FAR channelList[],ViInt32 numberOfChannels, ViReal64 _VI_FAR coefficientOutputArray[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

calType = file type for which to query the coefficients. Valid values are 1 through 3. See Description below for

more details.

coefficientSelector = an integer input value indicating the desired coefficient to query. Valid values are from

VTEX1629_CALSRC_0 (0x00) through VTEX1629_SUPPLY_EXCITE_OUT_POS_OFFSET (0x3F).

channelList[] = an integer array containing a list of channel numbers for which to query the coefficient. Acceptable

values for this array are VTEX1629_MIN_CHANNEL(0) to VTEX1629_MAX_CHANNEL(47), inclusive.

NOTE Since the calibration sources VTEX1629_CALSRC_0 (0x00) through

VTEX1629_CALSRC_ALL (0x13) are global across all channels, if the value of the

coefficientSelector parameter is within the aforementioned range, the API will not query the

channels listed in this channelList array.

numberOfChannels = a return integer value indicating the number of channels currently included in the scan list.

Valid return values: 1 to 48.

coefficientOutputArray[] = Return array of the queried coefficients. See the Description section below for valid

return values.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the value of a selected calibration coefficient for one or more channels.

The calType parameter has the following valid input values:

Decimal

Value

Hex

Value
#define Symbol Description

1 0x01 VTEX1629_CAL_DATA_SELF Returns self-calibration data

2 0x02 VTEX1629_CAL_DATA_FACTORY Returns factory calibration data

3 0x03 VTEX1629_CAL_DATA_COMBINED_XML Returns factory and self-calibration data in XML

format.

If one of the above values is not defined for the calType parameter, an error of VI_ERROR_PARAMETER2 will be

returned.

The coefficientSelector parameter has the following valid input values:

Decimal

Value

Hex

Value
#define Symbol

19 0x13 VTEX1629_CALSRC_ALL

20 0x14 VTEX1629_MAIN_ADC_X1_GAIN

21 0x15 VTEX1629_MAIN_ADC_X1_OFFSET

22 0x16 VTEX1629_MAIN_ADC_X10_GAIN

23 0x17 VTEX1629_MAIN_ADC_X10_OFFSET

24 0x18 VTEX1629_MAIN_ADC_X100_GAIN

25 0x19 VTEX1629_MAIN_ADC_X100_OFFSET

26 0x1A VTEX1629_WAGNER_VOLT

27 0x1B VTEX1629_COMP_RESISTOR_350

28 0x1C VTEX1629_COMP_RESISTOR_120

VTI Instruments Corp.

134 EX1629 Command Set

Decimal

Value

Hex

Value
#define Symbol

29 0x1D VTEX1629_COMP_RESISTOR_USER

30 0x1E VTEX1629_COMP_RESISTOR_SHORT

31 0x1F VTEX1629_SHUNT_RESISTOR_INTERNAL

32 0x20 VTEX1629_SHUNT_RESISTOR_FRONT_PANEL

33 0x21 VTEX1629_SHUNT_RESISTOR_TEDS

34 0x22 VTEX1629_CONF_AGND_GAIN

35 0x23 VTEX1629_CONF_AGND_OFFSET

36 0x24 VTEX1629_CONF_CAL_POS_GAIN

37 0x25 VTEX1629_CONF_CAL_POS_OFFSET

38 0x26 VTEX1629_CONF_BUFF_IN_POS_GAIN

39 0x27 VTEX1629_CONF_BUFF_IN_POS_OFFSET

40 0x28 VTEX1629_CONF_BUFF_V_CMD_GAIN

41 0x29 VTEX1629_CONF_BUFF_V_CMD_OFFSET

42 0x2A VTEX1629_CONF_BUFF_IN_NEG_GAIN

43 0x2B VTEX1629_CONF_BUFF_IN_NEG_OFFSET

44 0x2C VTEX1629_CONF_EXCITE_OUT_NEG_GAIN

45 0x2D VTEX1629_CONF_EXCITE_OUT_NEG_OFFSET

46 0x2E VTEX1629_CONF_EXCITE_OUT_POS_GAIN

47 0x2F VTEX1629_CONF_EXCITE_OUT_POS_OFFSET

48 0x30 VTEX1629_CONF_V_SENSE_NEG_GAIN

49 0x31 VTEX1629_CONF_V_SENSE_NEG_OFFSET

50 0x32 VTEX1629_CONF_V_SENSE_POS_GAIN

51 0x33 VTEX1629_CONF_V_SENSE_POS_OFFSET

52 0x34 VTEX1629_CONF_EXCITE_OUT_CURR_POS_GAIN

53 0x35 VTEX1629_CONF_EXCITE_OUT_CURR_POS_OFFSET

54 0x36 VTEX1629_CONF_EXCITE_OUT_CURR_POS_COMMON_MODE_RESISTANCE

55 0x37 VTEX1629_CONF_EXCITE_OUT_CURR_NEG_GAIN

56 0x38 VTEX1629_CONF_EXCITE_OUT_CURR_NEG_OFFSET

57 0x39 VTEX1629_CONF_EXCITE_OUT_CURR_NEG_COMMON_MODE_RESISTANCE

58 0x3A VTEX1629_SENSE_RESISTOR_NEG

59 0x3B VTEX1629_SENSE_RESISTOR_POS

60 0x3C VTEX1629_SUPPLY_EXCITE_OUT_NEG_GAIN

61 0x3D VTEX1629_SUPPLY_EXCITE_OUT_NEG_OFFSET

62 0x3E VTEX1629_SUPPLY_EXCITE_OUT_POS_GAIN

63 0x3F VTEX1629_SUPPLY_EXCITE_OUT_POS_OFFSET

If the value of the coefficientSelector parameter is between VTEX1629_CALSRC_0 (0x00) and

VTEX1629_CALSRC_N_14_0 (0x12), the resultant coefficient will be placed in element 0 of this array (i.e.

coefficientOutputArray[0]). See note with the channelList parameter for more information.

If the value of coefficientSelector is VTEX1629_CALSRC_ALL (0x13), then the resultant data will be stored in the

first 0x13 elements of this array. Each element can subsequently be queried by simply using its “constant” value as

the index. For example, the value for VTEX1629_CALSRC_N_0_7 is located at

coefficientOutputArray[VTEX1629_CALSRC_N_0_7], the value for VTEX1629_CALSRC_N_14_0 is located at

coefficientOutputArray[VTEX1629_CALSRC_N_14_0], etc.

If the value of the coefficientSelector parameter is between VTEX1629_MAIN_ADC_X1_GAIN (0x14) and

VTEX1629_SUPPLY_EXCITE_OUT_POS_OFFSET (0x3F), each element of this array corresponds to the

equivalent index in the channelList array. For example, the coefficient value at element i in this array corresponds

to the channel designated in element i of the channelList array.

www.vtiinstruments.com

EX1629 Command Set 135

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 CalType = -1;

ViInt32 coefficientSelector = -1;

ViInt32 channelList[MAX_CHANNELS];

ViInt32 numberOfChannels = 0;

ViReal64 coefficientOutputArray[MAX_CHANNELS];

int i = 0;

…

memset(channelList, 0x00, sizeof(channelList));

memset(coefficientOutputArray, 0x00, sizeof(coefficientOutputArray));

CalType = VTEX1629_CAL_DATA_SELF;

coefficientSelector = VTEX1629_MAIN_ADC_X1_GAIN;

numberOfChannels = MAX_NUMBER_OF_CHANNELS;

for(i = 0; i < numberOfChannels; i++) {

 channelList[i] = i;

}

status = vtex1629_get_cal_coefficients(instrumentHandle,

 CalType,

 coefficientSelector,

 channelList,

 numberOfChannels,

 coefficientOutputArray);

VTI Instruments Corp.

136 EX1629 Command Set

vtex1629_get_cal_file

FUNCTION PROTOTYPE

ViStatus vtex1629_get_cal_file (ViSession vi, ViInt32 fileType, ViInt32 bufferSize, ViString xmlBuffer, ViPInt32

actualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

fileType = deinfes the file type that will be acquired. Valid input values: 0 through 3. See the Description section

below for more information.

bufferSize = defines the size of the xmlBuffer allocated array.

xmlBuffer = defines the location where the requested calibration file will be loaded.

actualSize = returns the number of bytes actually read by the API. The API reads up to bufferSize characters from

the EX1629 and places them in the buffer.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function reads up to bufferSize characters from the EX1629 and places them in the XML buffer. It returns, in

the actualSize parameter, the number of bytes read.

The fileType parameter has the following valid input values:

Decimal

Value

Hex

Value
#define Symbol Description

0 0x00 VTEX1629_CAL_DATA_COMBINED Both self and factory calibration data

1 0x01 VTEX1629_CAL_DATA_SELF Self-calibration data

2 0x02 VTEX1629_CAL_DATA_FACTORY Factory calibration data

3 0x03 VTEX1629_CAL_DATA_COMBINED_XML Both self and factory calibration data in XML format.

The bufferSize parameter represents the size of the xmlBuffer parameter. Ideally, the user should first call the

vtex1629_get_cal_file_size function to determine size of the desired calibration file and, hence, the appropriate

value for this parameter. If this parameter is not set to one of the valid values listed above, an error of

VI_ERROR_PARAMETER2 will be returned.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViChar errMessage[256];

ViInt32 fileType = 0;

ViString buffer = 0;

ViInt32 bufferSize = 0;

ViInt32 actualSize = 0;

…

fileType = VTEX1629_CAL_DATA_SELF;

status = vtex1629_get_cal_file_size(instrumentHandle, fileType, &bufferSize);

if(status < VI_SUCCESS) {

 Log("Error occurred when getting cal file size");

 vtex1629_error_message (vi, status, errMessage);

 Log(errMessage);

}

if(status > VI_SUCCESS) {

 buffer = malloc(bufferSize * sizeof(ViString));

 status = vtex1629_get_cal_file(instrumentHandle,

www.vtiinstruments.com

EX1629 Command Set 137

 fileType,

 bufferSize,

 buffer,

 &actualSize);

 if(status < VI_SUCCESS) {

 <inform the user the API call failed>

 }

}

VTI Instruments Corp.

138 EX1629 Command Set

vtex1629_get_cal_file_size

FUNCTION PROTOTYPE

ViStatus vtex1629_get_cal_file_size (ViSession vi, ViInt32 fileType, ViPInt32 fileSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

fileType = deinfes the file type that will be acquired. Valid input values: 0 through 3. See the Description section

below for more information.

fileSize = returned file size for the specified calibration file type.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the total buffer size required to read the cal data, including terminating nulls, etc. The client

application should use this size to allocate a sufficiently large buffer.

The fileType parameter has the following valid input values:

Decimal

Value

Hex

Value
#define Symbol Description

0 0x00 VTEX1629_CAL_DATA_COMBINED Both self and factory calibration data

1 0x01 VTEX1629_CAL_DATA_SELF Self-calibration data

2 0x02 VTEX1629_CAL_DATA_FACTORY Factory calibration data

3 0x03 VTEX1629_CAL_DATA_COMBINED_XML Both self and factory calibration data in XML format.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 bufferSize = 0;

fileType = VTEX1629_CAL_DATA_COMBINED;

…

status = vtex1629_get_cal_file_size(instrumentHandle, fileType, &bufferSize);

www.vtiinstruments.com

EX1629 Command Set 139

vtex1629_get_cal_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_cal_source (ViSession vi, ViPInt32 calSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

calSource = an integer output value that indicates the calibration source voltage. See the Description section below

for valid return values. Valid return values: 0 to 18.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current voltage setting of the calibration source. Valid return values are:

Decimal

Value

Hex

Value
#define Symbol Nominal Voltage (V)

0 0x00 VTEX1629_CALSRC_0 0

1 0x01 VTEX1629_CALSRC_P_0_07 +0.07

2 0x02 VTEX1629_CALSRC_N_0_07 -0.07

3 0x03 VTEX1629_CALSRC_P_0_11 +0.11

4 0x04 VTEX1629_CALSRC_N_0_11 -0.11

5 0x05 VTEX1629_CALSRC_P_0_14 +0.14

6 0x06 VTEX1629_CALSRC_N_0_14 -0.14

7 0x07 VTEX1629_CALSRC_P_0_7 +0.7

8 0x08 VTEX1629_CALSRC_N_0_7 -0.7

9 0x09 VTEX1629_CALSRC_P_1_1 +1.1

10 0x0A VTEX1629_CALSRC_N_1_1 -1.1

11 0x0B VTEX1629_CALSRC_P_1_4 +1.4

12 0x0C VTEX1629_CALSRC_N_1_4 -1.4

13 0x0D VTEX1629_CALSRC_P_7_0 +7.0

14 0x0E VTEX1629_CALSRC_N_7_0 -7.0

15 0x0F VTEX1629_CALSRC_P_11_0 +11.0

16 0x10 VTEX1629_CALSRC_N_11_0 -11.0

17 0x11 VTEX1629_CALSRC_P_14_0 +14.0

18 0x12 VTEX1629_CALSRC_N_14_0 -14.0

NOTE This function is intended for factory use only.

VTI Instruments Corp.

140 EX1629 Command Set

vtex1629_get_completion_resistor

FUNCTION PROTOTYPE

ViStatus vtex1629_get_completion_resistor (ViSession vi, ViInt32 channel, ViPInt32 completionResistorMode,

ViPReal64 calibratedValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value indicating the channel for which the completion resistor is desired. Valid input

values: 0 to 47.

completionResistorMode = an integer return value indicating the completion resistor mode. Valid return values: 0,

3, 4, 120, or 350.

calibratedValue = a real return value that indicates the calibrated value of the currently configured completion

resistor. This value is retrieved from the non-volatile, factory calibration file that is stored within the device.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the mode and value of the completion resistor for a specific channel. The valid

return values are as follows:

Decimal

Value

Hex

Value
#define Symbol Resistor Mode calibratedValue

0 0x00 VTEX1629_COMPRES_FULL Full 0.0 (N/A)

3 0x03 VTEX1629_COMPRES_USER User-Defined Actual value installed, 0.0 (N/A) otherwise

4 0x04 VTEX1629_COMPRES_OFF OFF 0.0 (N/A)

120 0x78 VTEX1629_COMPRES_120 120 Ω Actual value

350 0x15E VTEX1629_COMPRES_350 350 Ω Actual value

Referring to the “Full” completion resistor is a bit of a misnomer – it really represents a short in the leg of the bridge

circuit that contains the completion resistor. It is used in Full and Half-Bridge mode.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 compmode;

ViReal64 resvalue;

…

status = vtex1629_get_completion_resistor(instrumentHandle, 0, &compmode, &resvalue);

www.vtiinstruments.com

EX1629 Command Set 141

vtex1629_get_conf_scanlist

FUNCTION PROTOTYPE

ViStatus vtex1629_get_conf_scanlist (ViSession vi, ViInt32 _VI_FAR confElements[], ViPInt32

numConfElements);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

confElements = a return array of integers indicating the enabled data elements in the confidence scan list. Valid

return values: 0 to 12. This array must be at least 12 elements long.

numConfElements = an integer return value indicating the size of the confElements list. Valid return values: 0 to

12.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns a list of confidence data elements that will be measured and returned along with

the main bridge data. The confidence data elements are the following:

Decimal

Value

Hex

Value
#define Symbol confElements Description

0 0x00 VTEX1629_CONFSRC_BRIDGE_POS Bridge (+)

1 0x01 VTEX1629_CONFSRC_BRIDGE_COMM Bridge (common mode)

2 0x02 VTEX1629_CONFSRC_BRIDGE_NEG Bridge (-)

3 0x03 VTEX1629_CONFSRC_EXCITE_POS Excite (+)

4 0x04 VTEX1629_CONFSRC_EXCITE_NEG Excite (-)

5 0x05 VTEX1629_CONFSRC_EXCITE_NEG_SENSE Excite Sense (-)

6 0x06 VTEX1629_CONFSRC_EXCITE_POS_SENSE Excite Sense (+)

7 0x07 VTEX1629_CONFSRC_EXCITE_POS_CURR Excite Current (+)

8 0x08 VTEX1629_CONFSRC_EXCITE_NEG_CURR Excite Current (-)

9 0x09 VTEX1629_CONFSRC_POS_CAL Calibration Bus (+)

10 0x0A VTEX1629_CONFSRC_NEG_CAL Calibration Bus (-)

11 0x0B VTEX1629_CONFSRC_GND Ground

12 0x0C VTEX1629_CONFSRC_EXCITEOUT_BUFF Excite Out (Buffered)

NOTES 1) Confidence elements 9 through 11 are for system diagnostic use only and should not be

 employed during normal operation.

 2) Confidence element 12 can only be used on EX1629 with firmware version 1.0 or later.

A value of 0 for the numConfElements parameter indicates that the confidence scan list is empty. In this case, any

values in the confElements parameter are invalid.

NOTE The key restriction that MUST be enforced is that any confidence scan list that includes

+V_SENSE and -V_SENSE must also include +EXCITEOUT and -EXCITELOW as well.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 conf[12];

ViInt32 numelements;

…

status = vtex1629_get_conf_scanlist(instrumentHandle, conf, &numelements);

VTI Instruments Corp.

142 EX1629 Command Set

vtex1629_get_confidence_limit

FUNCTION PROTOTYPE

ViStatus vtex1629_get_confidence_limit (ViSession vi, ViInt32 channel, ViInt32 confSrcEnum, ViPReal64 min,

ViPReal64 max);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value indicating the channel for which the completion resistor is desired. Valid input

values: 0 to 47.

min = the returned minimum confidence limit value.

max = the returned maximum confidence limit value.

confSrcEnum = defines the confidence source value that will be queried. Valid input values: 0 to 12.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and retrieves the minimum and maximum values for confidence data limit checking.

Confidence limit checking mode is only valid for main bridge sampling frequencies less than 1 kHz. Returned

values in the datapage correspond to the confidence channels for channels in the active scanlist. There exists a

confidence limit check result summary field (shown in the diagram below) which indicates if any of the limits on all

active confidence sources for a particular channel were exceeded or not. This is a 16-bit field, stored in the least-

significant 16 bits of a UINT32 variable.

0 = Confidence Data within Limits

1 = Confidence Data Limit

exceeded for CH 15

0 = Confidence Data

within Limits

1 = Confidence Data

Limit exceeded for CH 0

31 015

MSW

(Unused)

LSW

(Confidence Limit exceeded status)

Confidence Limit Check Result summary (Available per Analog Board)

A detailed confidence limit check result (shown in the diagram below) is also available which returns two bits per

channel per confidence source – that is, MAX Limit Exceeded and MIN Limit Exceeded, per channel, per

confidence source. There is one UINT32 entry per bridge channel in the bridge scanlist. This UINT32 has two bits

per confidence source (CONF_NUM_SRC sources per bridge channel), one to represent MAX limit exceeded and

one to represent MIN limit exceeded. The MSW (lower CONF_NUM_SRC of the upper 16-bits) represent the MAX

Limit Exceeded status for each of the CONF_NUM_SRC confidence sources, and the LSW (lower

CONF_NUM_SRC bits of the lower 16-bits) represent the MIN Limit Exceeded status for each of the

CONF_NUM_SRC confidence sources. Bit 0 represents the MIN Limit Exceeded status for source 0. Bit 16

represents the MAX Limit Exceeded status for source 0. Bit (CONF_NUM_SRC-1) represents the MIN Limit

Exceeded status for source (CONF_NUM_SRC-1). Bit (16+CONF_NUM_SRC-1) represents the MAX Limit

Exceeded status for source CONF_NUM_SRC. The rest of the sources follow the same pattern.

www.vtiinstruments.com

EX1629 Command Set 143

0 = Conf. data is less

than the MAX for

Conf. Source 0

1 = Conf. data is

greater than the MAX

for Conf. Source 0

0 = Conf. data is

greater than the MIN

for Conf. Source 0

1 = Conf. data is less

than the MIN for

Conf. Source 0

31 015

MSW

(MAX Limit exceeded status)

LSW

(MIN Limit exceeded status)

Confidence Limit Check Detailed Result (Available per Bridge channel)

NOTE The source-to-bit mapping is constant, regardless of confidence scanlist configuration. For

example, whether or not sources 0 and 1 are enabled in the confidence scanlist, for instance,

source 2’s MIN Limit Exceeded Bit and MAX Limit Exceeded Bit are always bits 2 and 18,

respectively.

The confidence source mapping follows the same ordering as the source # define in vtex1629.h i.e. if sources 3, 8,

and 10 are selected then they are reported in that order. Confidence sources that are not part of the confidence

scanlist are not reported and will have their bit-fields set to 0.

Confidence values are reported at a maximum frequency of 500 Hz. This mode is supported up to 1 kHz sampling

rate. Hence, at 1 kHz, every other packet will contain confidence information. The datapage size is 248 words when

it has full confidence information i.e. confidence data and full limit check values, and is 24 words when it has no

confidence information. Hence, the total data rate = ((248+24)/2)*4*8*1000 samples/second= 4.352 Mb/s.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channel = 10;

ViReal64 min = 0;

ViReal64 max = 0;

ViInt32 confSrcEnum = 0;

…

status = vtex1629_get_confidence_limit (instrumentHandle,

 channel,

 confSrcEnum,

 &min,

 &max);

VTI Instruments Corp.

144 EX1629 Command Set

vtex1629_get_confidence_reporting_mode

FUNCTION PROTOTYPE

ViStatus vtex1629_get_confidence_reporting_mode (ViSession vi, ViPInt32 mode);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

mode = the returned mode value. Valid input values: 0 through 2.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and retrieves the mode used for confidence limit checking. Valid return values for the mode

parameter are as follows:

Decimal

Value

Hex

Value
#define Symbol mode Description

0 0x00 VTEX1629_CONF_LIMIT_DISABLE_REPORT Reporting disabled

1 0x01 VTEX1629_CONF_LIMIT_SUMMARY_REPORT_ONLY Summary report mode selected

2 0x02 VTEX1629_CONF_LIMIT_DETAILED_REPORT Detailed report mode selected

If set to VTEX1629_CONF_LIMIT_DISABLE_REPORT, the EX1629 will not collect confidence limit checking

data. If set to VTEX1629_CONF_LIMIT_SUMMARY_REPORT_ONLY, an array will be created which indicates

the channels that exceeded their limits. VTEX1629_CONF_LIMIT_DETAILED_REPORT, by contrast, provides an

array that indicates if the minimum or maximum limit of a channel has been exceeded.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 reportingMode;

…

status = vtex1629_get_confidence_reporting_mode(instrumentHandle, &reportingMode);

www.vtiinstruments.com

EX1629 Command Set 145

vtex1629_get_current_config_digest

FUNCTION PROTOTYPE

ViStatus vtex1629_get_current_config_digest (ViSession vi, ViInt32 digestArraySize, ViInt8 _VI_FAR digest[],

ViPInt32 digestActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

digestArraySize = contains the size of the allocated digest array. For consistency, the client application should

allocate VTEX1629_MAX_DIGEST_LENGTH bytes.

digest[] = the current configuration’s digest.

digestActualSize = the actual configuration digest size.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function retrieves the digest for the current instrument configuration. The digest is a digital signature

representing the configuration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 digestActualSize;

ViInt8 digest[VTEX1629_MAX_DIGEST_LENGTH];

…

status = vtex1629_get_current_config_digest(instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,

 &digestActualSize);

VTI Instruments Corp.

146 EX1629 Command Set

vtex1629_get_dio_bank0_direction

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_bank0_direction (ViSession vi, ViPInt32 direction);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

direction = an integer return value indicating the direction of bank zero of the digital I/O. Valid return values: 0 or

1.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function indicates whether bank zero of the digital I/O is configured as input or output. The direction

parameter is defined as follows:

0 = input 1 = output

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio0dir;

…

status = vtex1629_get_dio_bank0_direction(instrumentHandle, &dio0dir);

www.vtiinstruments.com

EX1629 Command Set 147

vtex1629_get_dio_bank0_pullup

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_bank0_pullup (ViSession vi, ViPInt32 pullup);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pullup = an integer return value indicating the pull-up mode for bank zero of the digital I/O. Valid return values: 0

or 1.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the pull-up mode for bank zero of the digital I/O. The pullup parameter is defined

as follows:

0 = passive pull-up mode 1 = active pull-up mode

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio0pullup;

…

status = vtex1629_get_dio_bank0_pullup(instrumentHandle, &dio0pullup);

VTI Instruments Corp.

148 EX1629 Command Set

vtex1629_get_dio_bank1_direction

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_bank1_direction (ViSession vi, ViPInt32 direction);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

direction = an integer return value indicating the direction of bank one of the digital I/O. Valid return values: 0 or 1.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function indicates whether bank one of the digital I/O is configured as input or output. The direction parameter

is defined as follows:

0 = input 1 = output

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio1dir;

…

status = vtex1629_get_dio_bank1_direction(instrumentHandle, &dio1dir);

www.vtiinstruments.com

EX1629 Command Set 149

vtex1629_get_dio_bank1_pullup

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_bank1_pullup (ViSession vi, ViPInt32 pullup);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pullup = an integer return value indicating the pull-up mode for bank one of the digital I/O. Valid return values: 0 or

1.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the pull-up mode for bank one of the digital I/O. The pullup parameter is defined

as follows:

0 = passive pull-up mode 1 = active pull-up mode

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio1pullup;

…

status = vtex1629_get_dio_bank1_pullup(instrumentHandle, &dio1pullup);

VTI Instruments Corp.

150 EX1629 Command Set

vtex1629_get_dio_config_events

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_config_events (ViSession vi, ViInt32 inputLine, ViInt32 inputTrigType, ViInt32

numActions, ViReal64 _VI_FAR outputLineArr[], ViReal64 _VI_FAR outputActionTypeArr[], ViPInt32

numActionsActual);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

inputLine = defines the DIO input line whose configuration is being queried. Valid input values: 0 through 7.

inputTrigType = defines the input trigger type. Valid input values: 0 (high-to-low transition) or 1 (low-to-high

transition).

numActions = defines the size of the outputLineArr[] and outputActionTypeArr[] arrays. Valid input values: 0

through 8.

outputLineArr[] = an integer array containing a list of digital output lines that are affected by the inputLine and

inputTrigType combination. Valid return values: 0 through 7.

outputActionTypeArr[] = an integer array containing a list of the output action that will occur based on the

inputLine and inputTrigType parameters. Valid return values: 0 through 3.

numActionsActual = the actual number of actions available. Valid return values: 1 through 8.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current setting for DIO event transitions.

The numActions parameter defines the size of both the outputLineArr[] and outputActionTypeArr[] arrays.

Although any value 0 through 8 is acceptable, to avoid possible errors, it is recommended that this parameter be set

to 8.

The outputActionTypeArr[] parameter is an array which contains a list of output actions that will occur based on

events that occur on the specified inputLine. Note that each element of this array corresponds to the equivalent

index in the outputLineArr[] parameter. For example, the action type at element i in this array corresponds to (i.e.

will occur on) the line designated in element i of the outputLineArr[] array.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViChar errMessage[256];

ViChar tempString[256] = "";

ViInt32 inputLine = 1;

ViInt32 inputTrigType = 2;

ViInt32 numActions = MAX_DIO_CHANNELS;

ViInt32 outputLineArr[MAX_DIO_CHANNELS];

ViInt32 outputActionTypeArr[MAX_DIO_CHANNELS];

...

memset(outputLineArr, 0x00, sizeof(outputLineArr));

memset(outputActionTypeArr, 0x00, sizeof(outputActionTypeArr));

status = vtex1629_get_dio_config_events(instrumentHandle,

 inputLine,

 inputTrigType,

 numActions,

 outputLineArr,

 outputActionTypeArr);

www.vtiinstruments.com

EX1629 Command Set 151

vtex1629_get_dio_input

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_input (ViSession vi, ViPInt32 dioIn);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

dioIn = an integer return value indicating the input state of the digital I/O. See the Description below for more

information concerning this parameter. Valid return values: 0 to 65535.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current input state of both banks of the digital I/O. The dioIn parameter is a

decimal value that must be converted to a 16-bit binary value. Once done, the eight most significant bits correspond

to the eight channels of bank one (channels 8-15). The eight least significant bits correspond to the eight channels of

bank zero (channels 0-7). This is illustrated below.

bank one

channel #

bank zero

dioIn

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

The upper 16-bits will always be zero.

For example, a user queries the output state and the following was returned:

dioIn = 49164 → 0x0000C00C → 11000000 00001100

This indicates that channels 2 and 3 of digital I/O bank zero and channels 14 and 15 of digital I/O bank one are high,

while the remaining channels are low.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio_in;

…

status = vtex1629_get_dio_input(instrumentHandle, &dio_in);

VTI Instruments Corp.

152 EX1629 Command Set

vtex1629_get_dio_output

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dio_output (ViSession vi, ViPInt32 dioOut);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

dioOut = an integer return value indicating the output state of the digital I/O. See the Description below for more

information concerning this parameter. Valid return values: 0 to 65535.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current programmed output state of both banks of the digital I/O. The dioOut

parameter is a decimal value that must be converted to a 16-bit binary value. Once done, the eight most significant

bits correspond to the eight channels of bank one (channels 8-15). The eight least significant bits correspond to the

eight channels of bank zero (channels 0-7). This is illustrated below.

bank one

channel #

bank zero

dioOut

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

The upper 16-bits will always be zero.

For example, a user queries the output state and the following was returned:

dioOut = 49164 → 0x0000C00C → 11000000 00001100

This indicates that channels 2 and 3 of digital I/O bank zero and channels 14 and 15 of digital I/O bank one are

configured high, while the remaining channels are low.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 dio_out;

…

status = vtex1629_get_dio_output(instrumentHandle, &dio_out);

www.vtiinstruments.com

EX1629 Command Set 153

vtex1629_get_dsp_version

FUNCTION PROTOTYPE

ViStatus vtex1629_get_dsp_version (ViSession vi, ViInt32 board, ViPInt32 dspMajor, ViPInt32 dspMinor,

ViPInt32 dspBuild, ViChar _VI_FAR date[], ViChar _VI_FAR time[], ViPInt32 FPGAVersion);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

board = indicates the analog board for which the function will retrieve information. Valid values are 0, 1, or 2.

dspMajor = indicates the minor dsp version.

dspMinor = indicates the minor DSP version.

dspBuild = indicates the DSP build.

date[] = indicates the date of the DSP build. The client should allocate an array of 32 characters for this returned

string.

time[] = indicates the time of the DSP build. The client should allocate an array of 32 characters for this returned

string.

FPGAVersion = indicates the FPGA version.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the DSP (digital signal processor) version information for a given analog board. This function

is intended for factory use only. Customers should refer to the firmware version reported by

vtex1629_revision_query function.

VTI Instruments Corp.

154 EX1629 Command Set

vtex1629_get_EU_conversion

FUNCTION PROTOTYPE

ViStatus vtex1629_get_EU_conversion (ViSession vi, ViInt32 channel, ViPInt32 EUConversionType);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the EU conversion type will be returned. Valid

input values: 0 to 47.

EUConversionType = an integer return value indicating the EU conversion type. See Description below for more

information. Valid return values: 0 to 10.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the EU conversion type for a specific channel. Valid return values for the

EUConversionType parameter are:

Decimal

Value

Hex

Value
#define Symbol EUConversionType Description

0 0x00 VTEX1629_EUCONV_VOLT_OUTPUT Voltage

1 0x01 VTEX1629_EUCONV_QTR_BRIDGE_120 Quarter-Bridge 120

2 0x02 VTEX1629_EUCONV_QTR_BRIDGE_350 Quarter-Bridge 350

3 0x03 VTEX1629_EUCONV_QTR_BRIDGE_USER Quarter-Bridge User

4 0x04 VTEX1629_EUCONV_HALF_BRIDGE_BEND Half-Bridge Bending

5 0x05 VTEX1629_EUCONV_HALF_BRIDGE_POIS Half-Bridge Poisson

6 0x06 VTEX1629_EUCONV_FULL_BRIDGE_BEND Full-Bridge Bending

7 0x07 VTEX1629_EUCONV_FULL_BRIDGE_POIS Full-Bridge Poisson

8 0x08 VTEX1629_EUCONV_FULL_BRIDGE_BPOIS Full-Bridge Bending Poisson

9 0x09 VTEX1629_EUCONV_RATIOMETRIC Ratiometric

10 0x0A VTEX1629_EUCONV_LINEAR Linear

See the Engineering Unit (EU) Conversion section in Section 3 for more details.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 euconv;

…

status = vtex1629_get_EU_conversion(instrumentHandle, 16, &euconv);

www.vtiinstruments.com

EX1629 Command Set 155

vtex1629_get_euconv_dynamic_excitation_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_get_euconv_dynamic_excitation_enabled (ViSession vi, ViInt32 channel, ViPBoolean

enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the EU conversion type will be returned. Valid

input values: 0 to 47.

enabled = a Boolean return value indicating the enabled status of the excitation source. A returned value of “1”

indicates that the excitation source for the given channel is enabled.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the dynamic excitation EU conversion state. In this mode of operation, the EX1629

uses the excitation voltage measured by the confidence ADC (in real time) in its calculations. This mode is available

for bridge sampling frequencies (fs) less than or equal to 1 kHz. While in this mode, it is advised to give the

confidence filters at least 1.5 s to settle, from the time the confidence source for excitation voltage is enabled or the

excitation value is changed.

The vtex1629_measure_excitation_voltage interface uses the confidence subsystem to measure the excitation

voltage. It returns these voltages to the calling function. Optionally, it can update the excitation voltage value used

for the strain EU conversion. The dynamic excitation EU conversion is slightly different. It is a mode of operation

that essentially does the same operations as vtex1629_measure_excitation_voltage, measuring the excitation voltage

using the confidence subsystem and updating the excitation voltage value used in the EU conversion in real-time.

This is a Boolean mode of operation, selectable per channel. If the user enables this mode, the set excitation voltage

EU function should return an error (users should not be able to manually set the excitation voltage EU value when in

this automatic mode). If the user queries the excitation voltage EU value, the result is the latest, real-time value.

EXAMPLE

ViSession instrumentHandle;

ViInt32 channel = 5;

ViBoolean get_enabled = VI_TRUE;

status = vtex1629_get_euconv_dynamic_excitation_enabled (instrumentHandle,

 channel,

 &get_enabled);

VTI Instruments Corp.

156 EX1629 Command Set

vtex1629_get_euconv_excitation

FUNCTION PROTOTYPE

ViStatus vtex1629_get_euconv_excitation (ViSession vi, ViInt32 channel, ViPReal64 euConversionVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel =an integer input value that specifies the channel for which the EU conversion excitation voltage will be

returned. Valid input values: 0 to 47.

euConversionVoltage = a real return value, in volts, that indicates the EU conversion excitation voltage for the

given channel. Valid return values: 0.00000 to +16.00000.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current value used in EU conversions for the excitation voltage for a given

channel.

NOTE This value may be different than what is currently programmed on the excitation sources,

depending on the system configuration (although in almost all cases it should be the same). This

value is the number that is used int the formulas that convert voltage measurements to strain

measurements.

Please refer to vtex1629_get_excitation, vtex1629_get_excitation_enabled, and

vtex1629_measure_excitation_voltage for more information.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 euexcite;

…

status = vtex1629_get_euconv_excitation(instrumentHandle, 47, &euexcite);

www.vtiinstruments.com

EX1629 Command Set 157

vtex1629_get_excitation

FUNCTION PROTOTYPE

ViStatus vtex1629_get_excitation (ViSession vi, ViInt32 channel, ViPReal64 positiveExcitationVoltage,

ViPReal64 negativeExcitationVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the programmed excitation voltages will be

returned. Valid input values: 0 to 47.

positiveExcitationVoltage = a real return value, in volts, indicating the programmed positive excitation voltage for

a given channel. Valid return values: 0.000000 through 8.000000.

negativeExcitationVoltage = a real return value, in volts, indicating the programmed negative excitation voltage for

a given channel. Valid return values: -8.000000 through 0.000000.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the actual excitation voltages for a given channel. The excitation value is quantized

with a 14-bit DAC. As a result, excitation value returned may be different from the value that was programmed

using the vtex1629_set_excitation function call. The total voltage applied to the bridge is equal to the positive

excitation voltage minus the negative excitation voltage. For example, if the positive excitation voltage is +5.0 V

and the negative excitation voltage is -5.0 V, the total excitation voltage is 10.0 V (5.0 - -5.0).

NOTE The control of the excitation voltage values and their enabling are disjoint operations. Thus, the

return of a nonzero value does not guarantee that the excitation source is enabled. That must be

queried with the vtex1629_get_excitation_enabled call.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 exc_pos, exc_neg;

…

status = vtex1629_get_excitation(instrumentHandle, 0, &exc_pos, &exc_neg);

VTI Instruments Corp.

158 EX1629 Command Set

vtex1629_get_excitation_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_get_excitation_enabled (ViSession vi, ViInt32 channel, ViPBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the enabled status of the excitation source will

be returned. Valid input values: 0 to 47.

enabled = a Boolean return value indicating the enabled status of the excitation source. A returned value of “1”

indicates that the excitation source for the given channel is enabled.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the enabled status of the excitation source for a particular channel. An excitation

source that is not enabled will output 0 V, regardless of its programmed value.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean exc_ena;

…

status = vtex1629_get_excitation_enabled(instrumentHandle, 0, &exc_ena);

www.vtiinstruments.com

EX1629 Command Set 159

vtex1629_get_fifo_count

FUNCTION PROTOTYPE

ViStatus vtex1629_get_fifo_count (ViSession vi, ViPInt32 pageCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pageCount = an integer return value that indicates the current number of pages stored in the FIFO.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries the EX1629 for the current FIFO memory page count. One page of data in the FIFO

corresponds to one scan, or sample of all enabled channels, taken by the instrument.

NOTE When this function is used, data may be buffered which may lead to a lower count being returned.

This function is best used as a “sanity check” to ensure that data is being captured. To accurately

return data, the vtex1629_read_fifo or vtex1629_read_fifoEx should be used.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 fifo_count;

…

status = vtex1629_get_fifo_count(instrumentHandle, &fifo_count);

VTI Instruments Corp.

160 EX1629 Command Set

vtex1629_get_gain

FUNCTION PROTOTYPE

ViStatus vtex1629_get_gain (ViSession vi, ViInt32 channel,ViPReal64 gain);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the gain will be returned. Valid input values: 0

to 47.

gain = a real return value indicating the specified channel’s currently configured gain setting. Valid return values:

1.00, 10.0, and 100.0.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the specified channel’s signal conditioning gain.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 gain;

…

status = vtex1629_get_gain(instrumentHandle, 31, &gain);

www.vtiinstruments.com

EX1629 Command Set 161

vtex1629_get_gauge_factor

FUNCTION PROTOTYPE

ViStatus vtex1629_get_gauge_factor (ViSession vi, ViInt32 channel, ViPReal64 gageFactor);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the gage factor will be returned. Valid input

values: 0 to 47.

gageFactor = a real return value indicating the given channel's currently entered gage factor value.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the gage factor for a specific channel. This is one of the parameters used in EU

conversion calculations.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 gf;

…

status = vtex1629_get_gage_factor(instrumentHandle, 0, &gf);

VTI Instruments Corp.

162 EX1629 Command Set

vtex1629_get_half_bridge_lead_wire_desensitization

FUNCTION PROTOTYPE

ViStatus vtex1629_get_half_bridge_lead_wire_desensitization (ViSession vi, ViInt32 channel, ViPReal64 factor);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the gage factor will be returned. Valid input

values: 0 to 47.

factor = returned factor value for the specified channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the lead wire desensitization factor for the specified channel. The factor parameter

is defined as follows:

gage

lead

R

R
factor 1

where Rlead represents the resistance of the lead and Rgage is the resistance of the strain gage.

EXAMPLE

ViSession instrumentHandle;

ViInt32 channel = 5;

ViReal64 factorVal = 0;

status = vtex1629_get_half_bridge_lead_wire_desensitization(instrumentHandle,

 channel,

 &factorVal);

www.vtiinstruments.com

EX1629 Command Set 163

vtex1629_get_IIR_filter_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_get_IIR_filter_configuration (ViSession vi, ViInt32 channel, ViPInt32 filterType, ViPReal64

cutoffFreq, ViPInt32 transform, ViPInt32 filterOrder, ViPReal64 groupDelay);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the IIR filter configuration will be returned.

Valid input values: 0 to 47.

filterType = an integer return value indicating the type of filter that is currently configured to be used for the given

channel. See Description below for more information. Valid return values: 0, 1, or 2.

cutoffFreq = a real return value indicating the current cutoff frequency, in hertz (Hz), currently configured in filters

on the given channel. This parameter is only relevant for Bessel and Butterworth filter types. Valid return values:

0.001 to 4005.

transform = an integer return value indicating the type of filter transform currently configured for the given

channel. This parameter is only relevant for Bessel and Butterworth filter types. Valid return values: 0 or 1.

filterOrder = an integer return value indicating the order of the filter on a given channel. This parameter is only

relevant for Bessel and Butterworth filter types. Valid return values: 1 to 10.

groupDelay = a real return value indicating the group delay, in number of samples, of the currently configured filter

for the given channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the IIR filter configuration parameters for a given channel. The filterType

parameter has three allowed values:

Decimal

Value

Hex

Value
#define Symbol filterType Description

0 0x00 VTEX1629_IIR_FILT_NONE None

1 0x01 VTEX1629_IIR_FILT_BUTTERWORTH Butterworth

2 0x02 VTEX1629_IIR_FILT_BESSEL Bessel

A value of “None” disables the IIR filters. Note, however, that the FIR filter is always enabled and is not user-

configurable.

The cutoffFreq parameter defines the cutoff (-3 dB) frequency for the low-pass filter indicated above. The EX1629

will locate this parameter in the range [fs/1000, fc max] (see Table B-1), where fs is the current sampling frequency.

Note that this value can change if the sampling frequency is altered. The actual value can be queried with the

vtex1629_get_IIR_filter_configuration command.

The transform parameter provides for two modes of transformation:

Decimal

Value

Hex

Value
#define Symbol transform Description

0 0x00 VTEX1629_TRANSFORM_BILINEAR Bilinear

1 0x01 VTEX1629_TRANSFORM_MATCHEDZ Matched-Z

The filterOrder parameter defines the desired order of the filter. When the filterType is set to Butterworth, there is

an additional option of 0. This corresponds to an automatic option, whereby the EX1629 will assign an order based

on an analog prototype Butterworth design given the sampling frequency, cutoff frequency, and a -200 dB

attenuation at the Nyquist frequency. The actual order can be determined using the command.

VTI Instruments Corp.

164 EX1629 Command Set

The groupDelay parameter is a measure of rate of change of the total phase shift with respect to angular frequency.

When IIR filters are enabled, this number is specific to the dc portion of the signal. When IIR filters are disabled,

this parameter reflects the group delay of the FIR filters only which are constant across all frequencies.

NOTE When setting channel filters on the EX1629, it is highly recommended that the same filter setting

be used for each group of sixteen channels (0 through 15, 16 through 31, and 32 through 47) as

this ensures the tightest relative timing between channels. For more information on IIR filtering

delays, please see the Group Delay discussion in Appendix B.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 ftype, fxfrm, forder

ViReal64 ffreq, grpdly;

…

status = vtex1629_get_IIR_filter_configuration(instrumentHandle,

 0,

 &ftype,

 &ffreq,

 &fxfrm,

 &forder,

 &grpdly);

www.vtiinstruments.com

EX1629 Command Set 165

vtex1629_get_input_multiplexer

FUNCTION PROTOTYPE

ViStatus vtex1629_get_input_multiplexer (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32

numberOfChannels, ViPInt32 muxInValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel[] = an integer input array that specifies the channel for which the configuration will be returned. Valid input

values: 0 to 47.

numberOfChannels = a return integer value indicating the number of channels currently included in the scan list.

Valid return values: 1 to 48.

muxInValue = indicates the input multiplexer source. Valid return values: 0 to 4

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the input multiplexer source of the channel(s) indicated by the channel[] parameter. Possible

values for muxInValue are:

Decimal

Value

Hex

Value
#define Symbol muxInValue Description

0 0x00 VTEX1629_INPUTMUX_BRIDGE_TYPE_FULL Full Bridge

1 0x01 VTEX1629_INPUTMUX_BRIDGE_TYPE_HALF Half Bridge

2 0x02 VTEX1629_INPUTMUX_BRIDGE_TYPE_QUARTER Quarter Bridge

3 0x03 VTEX1629_INPUTMUX_BRIDGE_TYPE_CAL Cal

4 0x04 VTEX1629_INPUTMUX_BRIDGE_TYPE_GND Gnd

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 mux;

…

status = vtex1629_get_input_multiplexer(instrumentHandle, 0, &mux);

VTI Instruments Corp.

166 EX1629 Command Set

vtex1629_get_instrument_serial_number

FUNCTION PROTOTYPE

ViStatus vtex1629_get_instrument_serial_number (ViSession vi, ViChar _VI_FAR serialNumber[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

serialNumber[] = indicates the instruments serial number. The client should allocate an array of 64 bytes for the

serial number.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the instrument’s serial number.

EXAMPLE

ViStatus status;

ViSession instrumentHandle;

ViChar serialNumber[64];

…

…

status = vtex1629_get_instrument_serial_number (instrumentHandle, serialNumber);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

www.vtiinstruments.com

EX1629 Command Set 167

vtex1629_get_lead_wire_resistance

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lead_wire_resistance (ViSession vi, ViInt32 channel, ViPReal64 resistance);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the IIR filter configuration will be returned.

Valid input values: 0 to 47.

resistance = returned resistance value for the specified channel. Valid return values are numbers greater than 0.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the currently defined lead wire resistance value.

EXAMPLE

ViSession instrumentHandle;

ViInt32 channel = 5;

ViReal64 resistance = 0;

status = vtex1629_get_lead_wire_resistance(instrumentHandle,

 channel,

 &resistance);

VTI Instruments Corp.

168 EX1629 Command Set

vtex1629_get_linearscaling_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_get_linearscaling_configuration (ViSession vi, ViInt32 channel, ViPReal64 m, ViPReal64 b);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the linear scaling coefficients will be returned.

Valid input values: 0 to 47.

m = a real return value indicating the gain factor m in the linear equation y = mx + b.

b = a real return value indicating the offset factor b in the linear equation y = mx + b.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the slope (m) and intercept (b) parameters for a channel when configured for linear EU

conversion (x being in volts).

NOTE The m parameter (slope) is stored in the same location as the gage factor and the b parameter

(intercept) is stored in the same location as the unstrained voltage. Since the linear scaling EU

conversion and the strain EU conversions are mutually exclusive, this is never an issue in practice.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 m, b;

…

status = vtex1629_get_linearscaling_configuration(instrumentHandle, 24, &m, &b);

www.vtiinstruments.com

EX1629 Command Set 169

vtex1629_get_lxi_limit_event_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lxi_limit_event_enabled (ViSession vi, ViInt32 lxi, ViUInt32 enabled0, ViUInt32

enabled1, ViUInt32 enabled2);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxi = the number of the LXI Trigger Bus line to configure. Valid input values: 0 to 7.

enabled0 = the limit mask for the channels 0 through 15, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

enabled1 = the limit mask for the channels 16 through 31, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

enabled2 = the limit mask for the channels 32 through 47, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns which measurement channels are enabled for Limit Events on the specified LXI Trigger Bus

line. Implemented in firmware version 1.4.0.

EXAMPLE

VTI Instruments Corp.

170 EX1629 Command Set

vtex1629_get_lxi_limit_event_latch

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lxi_limit_event_latch (ViSession vi, ViInt32 latches);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

latches = an 8-bit mask that indicates which of the eight corresponding LXI Trigger Bus lines will be latched when

an over-limit condition is met.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns a mask indicating which LXI trigger lines will be latched for LXI Limit Event outputs.

Implemented in firmware version 1.4.0.

EXAMPLE

www.vtiinstruments.com

EX1629 Command Set 171

vtex1629_get_lxibus_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lxibus_configuration (ViSession vi, ViInt32 lxiLine, ViPInt32 inOut, ViPInt32

transmissionScope);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiLine = an integer input value that indicates the LXI Trigger Bus channel for which the function will return

configuration values. Valid values: 0 to 7.

inOut = an integer return value that indicates whether the specified LXI Trigger Bus channel is configured for input

or output. Valid return values: 0 or 1.

transmissionScope = an integer return value indicating whether transmissions on the specified channel are

configured to be input from and output to the external LXI bus or will be kept internal to the EX1629. Valid return

values: 0 or 1.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns information pertaining to a specified LXI Trigger Bus channel. It determines how

the channel’s direction and scope of transmissions are currently configured.

Decimal

Value

Hex

Value
#define Symbol lxiLine Description

0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

The inOut parameter indicates whether the channel is configured as an input or an output. The return values indicate

the following:

Decimal

Value

Hex

Value
#define Symbol inOut Description

0 0x00 VTEX1629_LXI_INPUT Input

1 0x01 VTEX1629_LXI_OUTPUT Output

The transmissionScope parameter indicates whether the specified LXI channel is configured to communicate with

other devices on the external LXI bus or simply configured to communicate on the internal LXI bus. In the case of

an output, the transmissionScope indicates whether the output will be driven out onto the external LXI bus in

addition to being driven on the internal LXI bus. In the case of an input, the transmissionScope determines if the

input is read from the external bus or read from the internal bus. The return value indicates the following:

Decimal

Value

Hex

Value
#define Symbol

transmissionScope

Description
0 0x00 VTEX1629_LXI_INTERNAL LXI bus signal routed

internally

1 0x01 VTEX1629_LXI_INTERNAL_EXTERNAL LXI bus signal routed

internally and externally

VTI Instruments Corp.

172 EX1629 Command Set

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 inout, scope;

…

status = vtex1629_get_lxibus_configuration(instrumentHandle, 0, &inout, &scope);

www.vtiinstruments.com

EX1629 Command Set 173

vtex1629_get_lxibus_input

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lxibus_input (ViSession vi, ViPInt32 input);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

input = an integer return value, that indicates the current input state of each LXI Trigger Bus channel. Valid return

values: 0 to 255.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the input state of each of the channels on the LXI Trigger Bus. The input

parameter is an 8-bit integer where the least significant bit of the integer corresponds to LXI Trigger Bus channel

zero and the most significant bit corresponds to LXI Trigger Bus channel seven.

If, for example, the value 129 (0x81) is returned, this corresponds to the 8-bit number 1000 0001. This indicates that

LXI Trigger Bus channels zero and seven are currently inputting high signals while the other channels are inputting

low signals.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 ins;

…

status = vtex1629_get_lxibus_input(instrumentHandle, &ins);

VTI Instruments Corp.

174 EX1629 Command Set

vtex1629_get_lxibus_output

FUNCTION PROTOTYPE

ViStatus vtex1629_get_lxibus_output (ViSession vi, ViPInt32 output);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

output = an integer return value that indicates the current output state of each LXI Trigger Bus channel. Valid return

values: 0 to 255.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the output state of each of the channels on the LXI Trigger Bus. The output

parameter is an 8-bit integer where the least significant bit of the integer corresponds to LXI Trigger Bus channel

zero, and the most significant bit corresponds to LXI Trigger Bus channel seven. If an LXI channel is configured as

an input, the output state of that channel has no effect.

If, for example, the value 129 (0x81) is returned, this corresponds to the 8-bit number 1000 0001b, which indicates

that LXI Trigger Bus channels zero and seven are configured to output high signals, while the rest will output low

signals.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 outs;

…

status = vtex1629_get_lxibus_output(instrumentHandle, &outs);

www.vtiinstruments.com

EX1629 Command Set 175

vtex1629_get_pattern_arm_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_get_pattern_arm_configuration (ViSession vi, ViInt16 _VI_FAR lxiTrigLines[],ViInt16

_VI_FAR dioLines[],ViPBoolean timer, ViPInt32 lxiOutput, ViPInt32 lxiInput);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiTrigLines[] = an integer input array specifying the LXI Trigger Bus channel states that will be accepted as arm

events. This includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

dioLines = an integer input array specifying the digital I/O channels that will be accepted as arm events. This

includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

timer = a Boolean input value that indicates whether the EX1629 will generate arm events based on the internal

timer. When this parameter is VI_TRUE(1), periodic arm events will be generated. Valid return values:

VI_FALSE(0) or VI_TRUE(1).

lxiOutput = this parameter specifies which LXI Trigger Bus line will be used to output the arm event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN.

lxiInput = this parameter specifies which LXI Trigger Bus line will be used to input the arm event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the EX1629’s current configuration for pattern arm mode operation. This mode

allows the EX1629 to accept arm events from multiple sources. While in pattern mode, the instrument can accept

arm events from the LXI Trigger Bus, digital I/O bus, internal timer, and the software arm function. There is no

need to explicitly enable the software arm source. It is always available for use while in pattern arm mode. All of the

conditions specified must be met for an arm event to be generated. If multiple conditions are specified for the same

LXI or DIO line, any of the conditions for that line can be met to satisfy the pattern requirements for that line.

The lxiTrigLines[] parameter is an array of four elements with each array element being an unsigned 8-bit integer.

Each bit of this integer corresponds to an LXI Trigger Bus channel. Specifically, the least significant bit corresponds

to LXI Trigger Bus channel zero and the most significant bit corresponds to LXI Trigger Bus channel seven. Each

element specifies which signals the EX1629 will accept for arm events on the LXI Trigger Bus for different edges or

states. If a user wants to specify a channel for arm events, the corresponding bit should be set to “1”. The individual

array elements specify the following:

0 = lxiTrigLines (Positive Edge) 1 = lxiTrigLines (Negative Edge)

2 = lxiTrigLines (Positive Level) 3 = lxiTrigLines (Negative Level)

For example, if a user wishes to arm the EX1629 on a negative edge signal coming into the LXI Trigger Bus on

channel 0 and a positive level on channels 3 and 6, then: lxiTrigLines[1] = 0000 0001 = 1 (0x01) and

lxiTrigLines[2] = 0100 1000 = 72 (0x48).

The dioLines parameter is an array of four elements with each array element being an unsigned 16-bit integer. Each

bit of this integer corresponds to a digital I/O channel. Specifically, the least significant bit corresponds to a digital

I/O channel zero, and the most significant bit corresponds to digital I/O channel seven. Each element specifies which

events the EX1629 will accept as arm events on the digital I/O bus for different clock edges or states. If a user wants

to specify a channel for arm events, the corresponding bit should be set to “1”. Specifically, the individual array

elements specify the following:

0 = dioLines (Positive Edge) 1 = dioLines (Negative Edge)

2 = dioLines (Positive Level) 3 = dioLines (Negative Level)

VTI Instruments Corp.

176 EX1629 Command Set

For example, if a user wishes to arm the EX1629 on a negative edge signal coming into the digital I/O bus on

channels 0 and 3, then: dioLines[1] = 0000 1001 = 9 (0x09).

With regard to the lxiOutput parameter, it is important to note that since the EX1629 can simultaneously accept arm

events from multiple sources, it is necessary to reserve one of the LXI Trigger Bus lines to communicate these

events within the device and to other devices in a multi-device configuration. If the EX1629 is a master driving arm

events to peripheral slaves, the lxiOutput parameter indicates the LXI Trigger Bus line that will be used to

communicate the arm event to the slave devices. It is also necessary to configure this LXI Trigger Bus line to be

used as an output (see vtex1629_set_lxibus_configuration).

The lxiInput parameter specifies which trigger bus line the master device uses for its arm events. Although this

parameter is often set to the same value as lxiOutput, there are cases where it might be set to a different value. For

instance, when the device is configured as a master device in a star multi-box configuration, the master might output

the arm event on LXI2 and input it back in on LXI6.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 lxilines[VTEX1629_MAX_LINES];

ViInt16 diolines[VTEX1629_MAX_LINES];

ViBoolean timer_enabled;

ViInt32 lxi_out, lxi_in;

…

status = vtex1629_get_pattern_arm_configuration(instrumentHandle,

 lxilines, diolines,

 &timer_enabled,

 &lix_out,

 &lxi_in);

www.vtiinstruments.com

EX1629 Command Set 177

vtex1629_get_pattern_trig_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_get_pattern_trig_configuration (ViSession vi, ViInt16 _VI_FAR lxiTrigLines[],ViInt16

_VI_FAR dioLines[], ViPBoolean timer, ViPInt32 lxiOutput, ViPInt32 lxiInput);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiTrigLines[] = an integer input array specifying 1) the LXI Trigger Bus channels that will be configured to

“listen” for TRIG events and 2) the polarity of the incoming signal will cause the EX1629 to trigger. Valid return

values: 0 to 255.

dioLines = an integer input array specifying 1) the digital I/O channels that will be configured for trigger events,

and 2) the polarity of the incoming signal will cause the EX1629 to trigger. Valid return values: 0 to 255.

timer = a Boolean input value that indicates whether the EX1629 will generate trigger events based on the internal

timer. When this parameter is VI_TRUE(1), periodic trigger events will be generated. Valid return values:

VI_FALSE(0) or VI_TRUE(1).

lxiOutput = this parameter specifies which LXI Trigger Bus line will be used to output the trigger event signals.

Valid return values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN.

lxiInput = this parameter specifies which LXI Trigger Bus line will be used to input trigger event signals. Valid

return values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This queries and returns the EX1629’s current configuration for the pattern trigger mode of operation. This mode

allows the EX1629 to accept TRIG events from multiple sources. While in pattern mode, the instrument can accept

TRIG events from the LXI Trigger Bus, digital I/O bus, internal timer, and the software trigger function. The re is

no need to explicitly enable the software trigger source. It is always available for use while in pattern trigger mode.

All of the conditions specified must be met for a trigger event to be generated. If multiple conditions are specified

for the same LXI or DIO line, any of the conditions for that line can be met to satisfy the trigger pattern

requirements for that line.

The lxiTrigLines[] parameter is an array of four elements with each array element being an unsigned 8-bit integer.

Each bit of this integer corresponds to an LXI Trigger Bus channel. Specifically, the least significant bit corresponds

to LXI Trigger Bus channel zero and the most significant bit corresponds to LXI Trigger Bus channel seven. Each

element specifies which events the EX1629 will accept for trigger events on the LXI Trigger Bus for different clock

edges or states. If a user wants to specify a channel for trigger events, the corresponding bit should be set to “1”. The

individual array elements specify the following:

0 = lxiTrigLines (Positive Edge) 1 = lxiTrigLines (Negative Edge)

2 = lxiTrigLines (Positive Level) 3 = lxiTrigLines (Negative Level)

For example, if a user wishes to trigger the EX1629 on a negative edge signal coming into the LXI Trigger Bus on

channel 0 and a positive level on channels 3 and 6, then: lxiTrigLines[1] = 0000 0001 = 1 (0x01) and

lxiTrigLines[2] = 0100 1000 = 72 (0x48).

VTI Instruments Corp.

178 EX1629 Command Set

The dioLines parameter is an array of four elements with each array element being an unsigned 16-bit integer. Each

bit of this integer corresponds to a digital I/O channel. Specifically, the least significant bit corresponds to a digital

I/O channel zero and the most significant bit corresponds to digital I/O channel seven. Each element specifies which

events the EX1629 will accept as trigger events on the digital I/O bus for different clock edges or states. If a user

wants to specify a channel for trigger events, the corresponding bit should be set to “1”. Specifically, the individual

array elements specify the following:

0 = dioLines (Positive Edge) 1 = dioLines (Negative Edge)

2 = dioLines (Positive Level) 3 = dioLines (Negative Level)

For example, if a user wishes to trigger the EX1629 on a negative edge signal coming into the digital I/O bus on

channels 0 and 3, then: dioLines[1] = 0000 1001 = 9 (0x09).

With regard to the lxiOutput parameter, it is important to note that since the EX1629 can simultaneously accept

trigger events from multiple sources, it is necessary to reserve one of the LXI Trigger Bus line to communicate these

events within the device and to other devices in a multi-device configuration. If the EX1629 is a master driving

trigger events to peripheral slaves, the lxiOutput parameter specifies the LXI Trigger Bus line that will be used to

communicate the trigger event to the slave devices. It is also necessary to configure this LXI Trigger Bus line to be

used as an output (see vtex1629_set_lxibus_configuration).

The lxiInput parameter specifies which trigger bus line the master device uses for its trigger events. Although this

parameter is often set to the same value as lxiOutput, there are cases where it might be set to a different value. For

instance, when the device is configured as a master device in a star multi-box configuration, the master might output

the trigger event on LXI2 and input it back in on LXI6.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 lxilines[VTEX1629_MAX_LINES];

ViInt16 diolines[VTEX1629_MAX_LINES];

ViBoolean timer_enabled;

ViInt32 lxi_out, lxi_in;

…

status = vtex1629_get_pattern_trig_configuration(instrumentHandle,

 lxilines,

 diolines,

 &timer_enabled,

 &lix_out,

 &lxi_in);

www.vtiinstruments.com

EX1629 Command Set 179

vtex1629_get_poisson_ratio

FUNCTION PROTOTYPE

ViStatus vtex1629_get_poisson_ratio (ViSession vi, ViInt32 channel, ViPReal64 poissonRatio);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the Poisson ratio will be returned. Valid input

values: 0 to 47.

poissonRatio = a real return value that indicates the Poisson ratio of the specified channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the Poisson ratio for a specific channel. This is one of the parameters used in some

strain gage EU conversion calculations.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 p_ratio;

…

status = vtex1629_get_poisson_ratio(instrumentHandle, 12, &p_ratio);

VTI Instruments Corp.

180 EX1629 Command Set

vtex1629_get_sample_clock_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_sample_clock_source (ViSession vi, ViPInt32 sampleClockMode, ViPInt32 inLine,

ViPInt32 outLine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

sampleClockMode = an integer output value that indicates whether the EX1629 is operating as a master or slave.

Valid return values: VTEX1629_SAMP_CLK_MODE_MASTER or VTEX1629_SAMP_CLK_MODE_SLAVE

inLine = an integer output value that indicates the trigger bus line configured to listen for sample clock events.

Valid return values: VTEX1629_LXI_LINE_ZERO, VTEX1629_LXI_LINE_FOUR, or

VTEX1629_LXI_LINE_NONE.

outLine = an integer output value that indicates the trigger bus line configured to output sample clock events. Valid

return values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the configured sample clock source.

The sampleClockMode parameter indicates whether the EX1629 is configured as a master device that outputs a

sample clock for itself and other devices or as a slave device that receives its sample clock from another device.

When operating in standalone mode, sampleClockMode should be configured as a master.

The inLine parameter indicates the LXI line that should be used as the sample clock input. This value is applicable

regardless of whether the device is configured as a master or a slave. When inLine is set to

VTEX1629_LXI_LINE_NONE, the internal sample clock line is used.

The outLine parameter indicates the LXI line that should be used as the sample clock output. This value is only

applicable when the device is configured as a master. When outLine is set to VTEX1629_LXI_LINE_NONE, the

sample clock is output on the internal sample clock line.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

8 0x08 VTEX1629_LXI_LINE_NONE None

When in master mode, the inLine and outLine parameters may be the same or they may be different. One case

where they would be different is if the master is outputting the sample clock on one LXI line and receiving it back in

from a LXI Trigger Bus hub on another line. When in standalone mode, inLine and outLine will always be the

same.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 sample_clock_mode;

ViInt32 in_line, out_line;

…

status = vtex1629_get_sample_clock_source(instrumentHandle,

 &samp_clock_mode,

 &in_line,

 &out_line);

www.vtiinstruments.com

EX1629 Command Set 181

vtex1629_get_sample_count

FUNCTION PROTOTYPE

ViStatus vtex1629_get_sample_count (ViSession vi, ViPInt32 preTrigSampleCount, ViPInt32

postTrigSampleCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

preTrigSampleCount = an integer return value indicating the currently configured pre-trigger sample count. Valid

return values: 0 to 400000000.

postTrigSampleCount = an integer return value indicating the currently configured post-trigger sample count.

Valid return values: 0 to 400000000.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns both the pre-trigger and the post-trigger sample count for the EX1629.

Specifically, this is the number of samples that will be taken per TRIG event. If “0” is returned, the sample count is

infinite.

NOTE Pre-trigger sampling is not currently supported. Setting the preTrigSampleCount to a value other

than zero (0) will result in an error.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 pretrig, posttrig;

…

status = vtex1629_get_sample_count(instrumentHandle, &pretrig, &posttrig);

VTI Instruments Corp.

182 EX1629 Command Set

vtex1629_get_sample_frequency

FUNCTION PROTOTYPE

ViStatus vtex1629_get_sample_frequency (ViSession vi, ViPReal64 sampleFrequency);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

sampleFrequency = a real return value indicating the currently configured sample frequency in hertz (Hz).

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the currently configured sample frequency, in hertz (Hz), for all channels. The

EX1629 offers a discrete number of sample frequencies. Programmed values that fall between valid values will be

rounded to the closest valid value. This function returns the actual sample frequency, which, due to this quantization,

may be different from that which was programmed with the vtex1629_set_sample_frequency call.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 samp_freq;

…

status = vtex1629_get_sample_frequency(instrumentHandle, &samp_freq);

www.vtiinstruments.com

EX1629 Command Set 183

vtex1629_get_scanlist

FUNCTION PROTOTYPE

ViStatus vtex1629_get_scanlist (ViSession vi, ViInt32 _VI_FAR channels[],ViPInt32 numberOfChannels);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an integer return array indicating which channels are included in the scan list. Valid return values: 0 to

47.

numberOfChannels = a return integer value indicating the number of channels currently included in the scan list.

Valid return values: 1 to 48.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns a list of channels currently configured to be sampled in the data acquisition

process. The channels array must be at least 48 elements long.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[VTEX1629_MAX_SCANLIST_LENGTH];

ViInt32 numberOfChannels;

…

status = vtex1629_get_scanlist(instrumentHandle, channels, &numberOfChannels);

VTI Instruments Corp.

184 EX1629 Command Set

vtex1629_get_selfcal_status

FUNCTION PROTOTYPE

ViStatus vtex1629_get_selfcal_status (ViSession vi, ViInt32 failedChannelArraySize, ViInt32 _VI_FAR

failedChannelArray[],ViPInt32 failedChannelArrayActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

failedChannelArraySize = defines the size of the failedChannelArray[] parameter. Valid return values: 1 to 48.

failedChannelArray[] = a integer return array of the channels that failed self-calibration. Valid return values: 0 to

47.

failedChannelArrayActualSize = the actual size of the returned array failedChannelArray[] parameter. Valid

return values: 0 to 48.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns self-calibration failure status for the selected channels. To ensure that an

incomplete list is not returned, it is recommended that the failedChannelArraySize parameter be set to 48. Note

that if the failedChannelArrayActualSize parameter returns a ‘0’, all channels passed self-calibration.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 failedChannelArraySize = MAX_CHANNELS;

ViInt32 failedChannelArray[MAX_CHANNELS];

ViInt32 failedChannelArrayActualSize = 0;

status = vtex1629_get_selfcal_status(instrumentHandle,

 failedChannelArraySize,

 failedChannelArray,

 &failedChannelArrayActualSize);

www.vtiinstruments.com

EX1629 Command Set 185

vtex1629_get_settling_time

FUNCTION PROTOTYPE

ViStatus vtex1629_get_settling_time (ViSession vi, ViInt32 channel, ViPReal64 settling_time);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the settling time will be returned. Valid input

values: 0 to 47.

settling_time = a real return value that indicates the settling time (in seconds) of the specified channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current settling time for a particular channel. Settling time is defined as the

amount of time, in seconds, taken by the EX1629 signal conditioning module to settle to the input vale ± 2% of the

input value after a reset of the signal conditioning path. The signal conditioning path is reset on a sync event. The

settling time is a function of the sampling frequency and the IIR filter settings. As such, disabling the IIR filters does

not make sampling time “0”.

NOTE The signal conditioning path is reset on a sync event, which means that acquisition data will not

reflect the input signals until settling_time seconds have elapsed. Settling times will vary between

channels, depending on the channel’s filter configuration. The recommended technique is to

configure the instrument completely, query each channel’s settling time delay, and then delay for

the maximum of these settling delays after issue a sync (vtex1629_soft_synch) prior to initiating

acquisition.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 settling_time;

…

status = vtex1629_get_settling_time(instrumentHandle, 0, &settling_time);

VTI Instruments Corp.

186 EX1629 Command Set

vtex1629_get_shunt_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_get_shunt_enabled (ViSession vi, ViInt32 channel, ViPBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the enabled status of the shunt resistor will be

returned. Valid input values: 0 to 47.

enabled = a Boolean return value indicating whether or not the shunt resistor is enabled for the given channel. A

returned value of “1” indicates that the shunt is enabled for that channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the enabled status of a particular channel’s shunt resistor. Unless the shunt source

is enabled by using the vtex1629_set_shunt_enabled function, it will not be applied in hardware. The shunt source

can be configured using the vtex1629_set_shunt_source function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean shunt_enabled;

…

status = vtex1629_get_shunt_enabled(instrumentHandle, 0, & shunt_enabled);

www.vtiinstruments.com

EX1629 Command Set 187

vtex1629_get_shunt_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_shunt_source (ViSession vi, ViInt32 channel, ViPInt32 shuntSource)

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the shunt source mode will be returned. Valid

input values: 0 to 47.

shuntSource = an integer return value that indicates the shunt source mode of the given channel. Valid return

values: 0 to 4.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the shunt source mode for a particular channel. The shuntSource parameter

returns an integer value which correlates to the following sources:

Decimal

Value

Hex

Value
#define Symbol shuntSource Description

0 0x00 VTEX1629_SHUNT_SOURCE_FPS_REMOTE Front panel remote

1 0x01 VTEX1629_SHUNT_SOURCE_FPS_LOCAL Front panel local

2 0x02 VTEX1629_SHUNT_SOURCE_IS_REMOTE Internal remote

3 0x03 VTEX1629_SHUNT_SOURCE_IS_LOCAL Internal local

4 0x04 VTEX1629_SHUNT_SOURCE_TEDS TEDS remote

Local and Remote refer to how the shunt resistor is connected to the bridge. For “Local”, the connection is made

within the EX1629. For “Remote”, the connection is made externally, using the ±RCal signals.

Front Panel, Internal, and TEDS, refer to the three types of shunt sources supported. “Front Panel” refers to the

shunt resistors that may be connected directly to the front panel of the EX1629, which are shared by 16 channels

(0 through 15, 16 through 31, and 32 through 47). Only one channel may be connected to the Front Panel shunt at a

time. “Internal” refers to the internal, per-channel shunt resistor. Since each channel has its own, all channels may be

shunted simultaneously. “TEDS” refers to a special shunt resistor/TEDS (1-Wire) configuration. Only one channel

may be shunted via the TEDS shunt at a time.

NOTE The configuration of the shunt source and its enabling are separate operations. Thus, the return of

a shunt source using the vtex1629_get_shunt_source function does not guarantee that the shunt

source is enabled. That must be queried using the vtex1629_get_shunt_enabled function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 shunt_src;

…

status = vtex1629_get_shunt_source(instrumentHandle, 0, &shunt_src);

VTI Instruments Corp.

188 EX1629 Command Set

vtex1629_get_shunt_value

FUNCTION PROTOTYPE

ViStatus vtex1629_get_shunt_value (ViSession vi, ViInt32 channel, ViInt32 shuntSource, ViPReal64

shuntValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the shunt value will be returned. Valid input

values: 0 to 47.

shuntSource = an integer input value indicating the source of the desired shunt value. Valid input values: 0 to 4.

shuntValue = a real return value indicating the shunt value for the given channel and shunt source.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns a shunt resistor value based on a given channel and shunt source. The

shuntSource parameter returns an integer value, 0 through 4, which correlates to the following shunt sources:

Decimal

Value

Hex

Value
#define Symbol shuntSource Description

0 0x00 VTEX1629_FRONT_PANEL_REMOTE Front panel remote

1 0x01 VTEX1629_FRONT_PANEL_LOCAL Front panel local

2 0x02 VTEX1629_INTERNAL_REMOTE Internal remote

3 0x03 VTEX1629_INTERNAL_REMOTE Internal local

4 0x04 VTEX1629_TEDS_REMOTE TEDS remote

Local and Remote refer to how the shunt resistor is connected to the bridge. For “Local”, the connection is made

within the EX1629. For “Remote”, the connection is made externally, using the ±RCal signals.

Front Panel, Internal, and TEDS, refer to the three types of shunt sources supported. “Front Panel” refers to the

shunt resistors that may be connected directly to the front panel of the EX1629, which are shared by 16 channels

(0 through 15, 16 through 31, and 32 through 47). Only one channel may be connected to the Front Panel shunt at a

time. “Internal” refers to the internal, per-channel shunt resistor. Since each channel has its own, all channels may be

shunted simultaneously. “TEDS” refers to a special shunt resistor/TEDS (1-Wire) configuration. Only one channel

may be shunted via the TEDS shunt at a time.

Any shunt source mode may be queried for its value, regardless of whether it is selected as the current mode or

enabled.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 shunt_src;

ViReal64 shunt_value;

…

status = vtex1629_get_shunt_value(instrumentHandle, 0, &shunt_src, &shunt_value);

www.vtiinstruments.com

EX1629 Command Set 189

vtex1629_get_stored_config_digest

FUNCTION PROTOTYPE

ViStatus vtex1629_get_stored_config_digest (ViSession vi, ViInt32 digestArraySize, ViInt8 _VI_FAR digest[],

ViPInt32 digestActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

digestArraySize = contains the size of the allocated digest array. For consistency, the client application should

allocate VTEX1629_MAX_DIGEST_LENGTH bytes.

digest[] = the current configuration’s digest.

digestActualSize = the actual configuration digest size.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function retrieves the digest of the instrument configuration saved in non-volatile memory. The digest is a

digital signature representing the configuration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 digestActualSize;

ViInt8 digest[VTEX1629_MAX_DIGEST_LENGTH];

…

…

status = vtex1629_get_stored_config_digest (instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,
 &digestActualSize);

VTI Instruments Corp.

190 EX1629 Command Set

vtex1629_get_strain_units

FUNCTION PROTOTYPE

ViStatus vtex1629_get_strain_units (ViSession vi, ViInt32 channel, ViPBoolean microStrain);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the strain units will be returned. Valid input

values: 0 to 47.

microStrain = a Boolean return value that indicates whether the EX1629 will return strain measurements in units of

strain (ε) or microstrain (µε). A value of “1” indicates that the EX1629 is configured to return microstrain units for

the given channel, whereas a value of “0” indicates the EX1629 is configured to return strain units for the given

channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the configured strain units for a given channel. Each channel can be configured to

return strain measurements in strain or microstrain (1 strain (ε) = 1x106 microstrain (µε)). This setting has no effect

for non-strain EU conversions.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean units_are_microstrain;

…

…

status = vtex1629_get_strain_units(instrumentHandle, 0, &units_are_microstrain);

www.vtiinstruments.com

EX1629 Command Set 191

vtex1629_get_synch_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_synch_source (ViSession vi, ViPInt32 synchMode, ViPInt32 inLine, ViPInt32 outLine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

synchMode = an integer output value that indicates whether the EX1629 is operating as a master or slave. Valid

return values: VTEX1629_SYNC_MODE_MASTER or VTEX1629_SYNC_MODE_SLAVE.

inLine = an integer output value that indicates the trigger bus line configured to listen for sample clock events.

Valid return values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN,

VTEX1629_LXI_LINE_NONE.

outLine = an integer output value that indicates the trigger bus line configured to output sample clock events. Valid

return values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the configured synchronization source.

The synchMode parameter indicates whether the EX1629 is configured as a master device that outputs a synch

signal for itself and other devices or as a slave device that receives its synch signal from another device. When

operating in standalone mode, synchMode should be configured as a master.

The inLine parameter indicates the LXI line that should be used as the synch input. This value is applicable

regardless of whether the device is configured as a master or a slave. When inLine is set to

VTEX1629_LXI_LINE_NONE, the internal synch line is used.

The outLine parameter indicates the LXI line that should be used as the synch output. This value is only applicable

when the device is configured as a master. When outLine is set to VTEX1629_LXI_LINE_NONE, the synch signal

is output on the internal synch line.

When in master mode, the inLine and outLine values may be the same or they may be different. One case where

they would be different is if the master is outputting the synch signal on one LXI line and receiving it back in from a

LXI Trigger Bus hub on another line. When in standalone mode, inLine and outLine will always be the same.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

8 0x08 VTEX1629_LXI_LINE_NONE None

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 synchmode, inline, outline;

…

…

status = vtex1629_get_synch_source(instrumentHandle, &synchmode, &inline, &outline);

VTI Instruments Corp.

192 EX1629 Command Set

vtex1629_get_tare

FUNCTION PROTOTYPE

ViStatus vtex1629_get_tare (ViSession vi, ViInt32 channel, ViPReal64 tareValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the tare value will be returned. Valid input

values: 0 to 47.

tareValue = a real return value that indicates the currently configured tare value for the given channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function reads the currently configured tare value for a specific channel. The tare value is subtracted from the

output of the EU conversion for the channel. It should be specified in the proper units for the EU conversion (e.g.,

strain, volts, etc.) For strain measurements, it is also important to take into account whether a strain measurement is

being output in strain (ε) or microstrain (µε) and configure the tare value appropriately.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 tare_value;

…

…

status = vtex1629_get_tare(instrumentHandle, 16, &tare_value);

www.vtiinstruments.com

EX1629 Command Set 193

vtex1629_get_teds_data

FUNCTION PROTOTYPE

ViStatus vtex1629_get_teds_data (ViSession vi, ViInt32 channel, ViInt16 _VI_FAR tedsID[], ViInt32

maxLength, ViInt16 _VI_FAR tedsInfo[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the tare value will be returned. Valid input

values: 0 to 47.

tedsID = a return array that will contain the TEDS ID. Each element of the array corresponds to a byte of data from

the ID register of the TEDS device. The size of this array is VTEX1629_TEDS_IDSIZE (8).

maxLength = an integer input value that specifies the maximum number of bytes to be retrieved from the TEDS

device into tedsInfo. In general, this should be equal to VTEX1629_TEDS_DATASIZE (32).

tedsInfo[] = A return array that will contain the TEDS Info. Each element of the array corresponds to a byte of data

from the ID register of the TEDS device.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the TEDS data for a given channel. It only supports the DS2430 EEPROM. For

communicating with other TEDS EEPROM devices, the vtex1629_read_teds_URN, vtex1629_read_teds_MLAN,

and vtex1629_write_teds_MLAN functions should be used.

The tedsID element is a unique, 64-bit (8-byte) serial number assigned by the manufacturer to the 1-Wire TEDS

device. The tedsInfo element contains the data stored in the DS2430’s 32-bytes of non-volatile memory.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 tedsID[VTEX1629_TEDS_IDSIZE];

ViInt32 maxlen;

ViInt16 tedsinfo[VTEX1629_TEDS_DATASIZE];

…

…

status = vtex1629_get_teds_data(instrumentHandle,

 47,

 tedsID,

 VTEX1629_TEDS_DATASIZE,

 tedsinfo);

VTI Instruments Corp.

194 EX1629 Command Set

vtex1629_get_trigger_count

FUNCTION PROTOTYPE

ViStatus vtex1629_get_trigger_count (ViSession vi, ViPInt32 trigCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

trigCount = an integer output value that specifies the currently configured trigger count for the EX1629. Valid

return values: 1 to (231-1).

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the currently configured trigger count for the EX1629. Specifically, this is the

number of times the EX1629 will wait for triggers after being armed before it will abort acquisition and return to the

arm layer of the trigger state machine.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 trig_count;

…

…

status = vtex1629_get_trigger_count(instrumentHandle, &trig_count);

www.vtiinstruments.com

EX1629 Command Set 195

vtex1629_get_trigger_delay

FUNCTION PROTOTYPE

ViStatus vtex1629_get_trigger_delay (ViSession vi, ViPReal64 delay);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

delay = a real output value, in seconds, indicating the trigger delay. Valid return values: 0 s to 4294.967295 s.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the trigger delay for the EX1629. Specifically, this is the amount of time, in

seconds, that the EX1629 will wait after receiving a TRIG event before it begins to acquire data. Note that the value

this function returns may not be identical to the value set by the vtex1629_set_trigger_delay function, as the actual

delay time will vary with the set sample frequency (i.e., it is quantized, based on the sampling frequency).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 trig_delay;

…

…

status = vtex1629_get_trigger_delay(instrumentHandle, &trig_delay);

VTI Instruments Corp.

196 EX1629 Command Set

vtex1629_get_trigger_source

FUNCTION PROTOTYPE

ViStatus vtex1629_get_trigger_source (ViSession vi, ViPInt32 triggerSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

triggerSource = an integer return value that indicates the current source the EX1629 monitors for TRIG events. See

the Description below for more information. Valid return values: 0 to 17.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the current setting for the trigger source. Possible values for the triggerSource

parameter are:

Decimal

Value

Hex

Value
#define armSource Description

0 0x00 VTEX1629_TRIG_SRC_IMMEDIATE Immediate

1 0x01 VTEX1629_TRIG_SRC_PATTERN Pattern

2 0x02 VTEX1629_TRIG_SRC_LXI0_POS LXI 0 Positive Edge

3 0x03 VTEX1629_TRIG_SRC_LXI1_POS LXI 1 Positive Edge

4 0x04 VTEX1629_TRIG_SRC_LXI2_POS LXI 2 Positive Edge

5 0x05 VTEX1629_TRIG_SRC_LXI3_POS LXI 3 Positive Edge

6 0x06 VTEX1629_TRIG_SRC_LXI4_POS LXI 4 Positive Edge

7 0x07 VTEX1629_TRIG_SRC_LXI5_POS LXI 5 Positive Edge

8 0x08 VTEX1629_TRIG_SRC_LXI6_POS LXI 6 Positive Edge

9 0x09 VTEX1629_TRIG_SRC_LXI7_POS LXI 7 Positive Edge

10 0x0A VTEX1629_TRIG_SRC_LXI0_NEG LXI 0 Negative Edge

11 0x0B VTEX1629_TRIG_SRC_LXI1_NEG LXI 1 Negative Edge

12 0x0C VTEX1629_TRIG_SRC_LXI2_NEG LXI 2 Negative Edge

13 0x0D VTEX1629_TRIG_SRC_LXI3_NEG LXI 3 Negative Edge

14 0x0E VTEX1629_TRIG_SRC_LXI4_NEG LXI 4 Negative Edge

15 0x0F VTEX1629_TRIG_SRC_LXI5_NEG LXI 5 Negative Edge

16 0x10 VTEX1629_TRIG_SRC_LXI6_NEG LXI 6 Negative Edge

17 0x11 VTEX1629_TRIG_SRC_LXI7_NEG LXI 7 Negative Edge

Immediate (0): an immediate TRIG source. After receiving the ARM event, the trigger state machine will bypass

the TRIG layer and will automatically begin to acquire data.

Pattern (1): this trigger source allows the EX1629 to “listen” for TRIG events on multiple sources. The EX1629 can

be configured to “listen” for TRIG events on LXI Trigger Bus channels, digital I/O channels, a timer, and software

triggers. The EX1629 can simultaneously “listen” for any combination of these events. The specific pattern is

queried with the vtex1629_get_pattern_trig_configuration call.

LXI n Positive Edge (2 – 9): these trigger sources refer to TRIG events coming from the LXI Trigger Bus and will

cause the EX1629 to trigger on the positive edge of signals coming into the LXI Trigger Bus.

LXI n Negative Edge (10 – 17): these trigger sources refer to TRIG events coming from the LXI Trigger Bus and

will cause the EX1629 to trigger on the negative edge of signals coming into the LXI Trigger Bus.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 trigsource;

…

status = vtex1629_get_trigger_source(instrumentHandle, &trigsource);

www.vtiinstruments.com

EX1629 Command Set 197

vtex1629_get_trigger_timer

FUNCTION PROTOTYPE

ViStatus vtex1629_get_trigger_timer (ViSession vi, ViPReal64 timer);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

timer = a real output value, in seconds, indicating the trigger system timer. Valid return values: 0 s to

4294.967295 s.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries and returns the trigger system timer for the EX1629. This is the amount of time, in seconds,

that the EX1629 will wait before generating successive timer events, which can be used as an arm source and/or a

trigger source.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 timer;

…

status = vtex1629_get_trigger_timer(instrumentHandle, &timer);

VTI Instruments Corp.

198 EX1629 Command Set

vtex1629_get_unstrained_voltage

FUNCTION PROTOTYPE

ViStatus vtex1629_get_unstrained_voltage (ViSession vi, ViInt32 channel, ViPReal64 unstrainedVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the unstrained voltage will be returned. Valid

input values: 0 to 47.

unstrainedVoltage = a real return value that indicates the currently configured unstrained voltage for the given

channel.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

The function queries and returns the unstrained voltage currently configured for a given channel. This is one

parameter in the EU calculations and represents the quiescent voltage across the bridge (i.e., with no load applied).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViReal64 unstrained_voltage;

…

status = vtex1629_get_unstrained_voltage(instrumentHandle, 0, &unstrained_voltage);

www.vtiinstruments.com

EX1629 Command Set 199

vtex1629_identify_sensor

FUNCTION PROTOTYPE

ViStatus _VI_FUNC vtex1629_identify_sensor (ViSession vi, ViInt32 channel, ViBoolean LEDOn);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an integer input value that specifies the channel for which the unstrained voltage will be returned. Valid

input values: 0 to 47.

LEDOn = a real return value that indicates the currently configured unstrained voltage for the given channel. Valid

input values: VI_TRUE = LED is on, VI_FALSE = LED is off.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

The function provides the user the ability to control and LED co-located to a sensor to ease the sensor identification

process. Two LEDs cannot be illuminated on the same analog board (i.e. channels 0 through 15 are on one analog

board, channels 16 through 31 are on another, and channels 32 through 47 are on another board) if front panel shunt,

TEDS remote shunt, or internal shunt (remove) are active. If these conditions occur, an error will be generated.

EXAMPLE

ViSession instrumentHandle;

ViInt32 channel = 10;

ViBoolean LED = VI_TRUE;

status = vtex1629_identify_sensor(instrumentHandle, channel, LED);

VTI Instruments Corp.

200 EX1629 Command Set

vtex1629_init

FUNCTION PROTOTYPE

ViStatus vtex1629_init (ViRsrc resourceName, ViBoolean IDQuery, ViBoolean resetEX1629, ViPSession vi);

FUNCTION PARAMETERS

resourceName = this parameter must contain a unique descriptor for the EX1629 to which a session is to be opened.

Part of this descriptor is the IP address of the instrument to which the user will connect. See Description below for

more information.

IDQuery = specifies if an identification query will be sent to the instrument. Valid input values: VI_FALSE or

VI_TRUE.

resetEX1629 = determines whether a reset command will be issued to the instrument upon initialization. Valid input

values: VI_FALSE or VI_TRUE.

vi = this output parameter holds the session handle to the instrument described by the input parameter

resourceName. If vtex1629_init fails, the location pointed to by this parameter will contain a value of zero.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function opens a session with the instrument and returns a session handle. It can optionally perform an

identification query and/or reset the instrument to its default state. If VI_TRUE is passed to the IDQuery parameter,

an identification query will be made upon initialization. This is done as a protective measure to ensure that the

instrument specified by the provided IP address is actually an EX1629. If a VI_TRUE is passed to the resetEX1629

parameter, the instrument will be reset upon connection, putting it into a known, default configuration. If a

VI_FALSE is passed for either parameter, the respective operation will not be performed upon initialization.

The format for the resourceName parameter is as follows:

‘TCPIP::y::INSTR’

where y is the IP address or hostname of the instrument where a connection is desired (e.g.

‘TCPIP::10.1.1.216::INSTR’ specifies an instrument connected at the IP address of 10.1.1.216).

EXAMPLE

ViStatus status;

ViSession instrumentHandle;

ViRsrc instrumentName = “TCPIP::169.128.1.2::INSTR”;

…

status = vtex1629_init (instrumentName, VI_TRUE, VI_TRUE, &instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 201

vtex1629_load_stored_config

FUNCTION PROTOTYPE

ViStatus vtex1629_load_stored_config (ViSession vi, ViInt32 digestArraySize, ViInt8 _VI_FAR digest[],

ViPInt32 digestActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

digestArraySize = contains the size of the allocated digest array. For consistency, the client application should

allocate VTEX1629_MAX_DIGEST_LENGTH bytes.

digest[] = the stored configuration’s digest.

digestActualSize = the actual configuration digest size.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function loads the stored configuration from the instrument’s non-volatile memory. It also returns a copy of the

stored configuration digest, which is a digital signature representing the actual configuration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 digestActualSize;

ViInt8 digest[VTEX1629_MAX_DIGEST_LENGTH];

…

status = vtex1629_load_stored_config(instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,

 &digestActualSize);

VTI Instruments Corp.

202 EX1629 Command Set

vtex1629_lock

FUNCTION PROTOTYPE

ViStatus vtex1629_lock (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function attempts to acquire a lock on the instrument. When locked, the EX1629 will only accept calls from the

instrument session that successfully acquired the lock. When no client has a lock, calls are accepted from all clients.

A lock can only be acquired if the instrument is not already locked by another user.

By design, the locking mechanism is able to be overridden by a secondary host that issues a vtex1629_break_lock

call. Thus, the lock provides a warning to other users that the unit is in a protected operation state, but not absolute

security.

The lock status of the instrument is unaffected by the vtex1629_reset call. The instrument cannot be reset if the user

is not the owner of the lock.

Self-calibration requires the acquisition of a lock prior to its initiation.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_lock(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 203

vtex1629_measure_confidence

FUNCTION PROTOTYPE

ViStatus vtex1629_measure_confidence (ViSession vi, ViInt32 confValue, ViInt32 numberOfChannels, ViInt32

_VI_FAR channels[],ViInt32 sampleCount, ViReal64 _VI_FAR returnedValues[], ViPInt32

numReturnedValues);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

confValue = defines the confidence source for which to query. Valid input range: 0, 1, or 2.

numberOfChannels = a return integer value indicating the number of channels currently included in the scan list.

Valid return values: 1 to 48.

channel[] = an integer input array that specifies the channel for which the configuration will be returned. Valid input

values: 0 to 47.

sampleCount = an integer input value indicating the number of measurements to average.

returnedValues[]=a real return array of the measured values.

numReturnedValues = an integer return value that indicates the number of measured values returned in the

returnedValues array.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function measures the indicated bridge parameter to indicate measurement confidence. The confValue

parameter can assume the following values:

Decimal

Value

Hex

Value
#define confValue Description

0 0x00 CONFIDENCE_BUFFERED_INPUT Buffered input

1 0x01 CONFIDENCE_EXCITATION_CURRENT Excitation current

2 0x02 CONFIDENCE_COMMON_MODE_VOLTAGE Common mode voltage

The “Buffered Input” confidence source measures the Main ADC input with GAIN = 1. This is useful to verify the

Main ADC value and the gain settings. The “Excitation Current” measures the current from the excitation source.

Finally, the “Common Mode Voltage” measures the common mode voltage appearing across the inputs of the

differential amplifier in the main ADC.

The returnedValues[] array returns the values measured. These values are placed in the array according to the

channels[] array passed to the function. In other words, for every channel number in channels[], there will be a

corresponding measurement in returnedValues.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 numOfChannels = MAX_CHANNELS;

ViInt32 channels[MAX_CHANNELS];

ViInt32 sampleCount = 100;

ViReal64 returnedVals[MAX_CHANNELS];

ViInt32 numOfReturnedValues = 0;

int i = 0;

for(i = 0; i < numOfChannels; i++) {

 channels[i] = i;

}

VTI Instruments Corp.

204 EX1629 Command Set

memset(returnedVals, 0x00, sizeof(returnedVals));

status = vtex1629_measure_confidence(instrumentHandle,

 CONFIDENCE_EXCITATION_CURRENT,

 numOfChannels,

 channels,

 sampleCount,

 returnedVals,

 &numOfReturnedValues);

www.vtiinstruments.com

EX1629 Command Set 205

vtex1629_measure_excitation_voltage

FUNCTION PROTOTYPE

ViStatus vtex1629_measure_excitation_voltage (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32

numberOfChannels, ViInt32 excitationSource, ViInt32 sampleCount, ViReal64 _VI_FAR

measuredValues[],ViPInt32 numMeasuredValues, ViBoolean euConversion);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the excitation will be measured.

Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

excitationSource = an integer input value indicating the excitation sense lines to be measured. Valid input values: 0

or 1.

sampleCount = an integer input value indicating the number of measurements to average. See the Description

section below for valid input values.

measuredValues = a real return array of the measured values. The measured values are placed in the array

according to the channels array passed to the function. In other words, for every channel number in channels, there

will be a corresponding excitation voltage measurement in measuredValues.

numMeasuredValues = an integer return value that indicates the number of measured values returned in the

measuredValues array.

euConversion = a Boolean input value indicating whether the measured values should be used for future EU

conversions.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function measures the total excitation voltage [(positive excitation voltage) – (negative excitation voltage)] for

a list of channels. Setting the euConversion parameter to VI_TRUE (1) indicates that these values are to be used for

future EU conversions. Setting it to VI_FALSE (0) causes this data to be discarded after being read. Using

VI_TRUE is a short cut that eliminates the need for invoking vtex1629_set_euconv_excitation for each channel.

Measuring the excitation voltage improves the accuracy of the strain gage EU Conversions.

The excitationSource parameter indicates the source to be used for measuring the excitation voltage. The parameter

values are defined as follows:

VTEX1629_EXCITE_SRC_LOCAL (0) = local sense

VTEX1629_EXCITE_SRC_REMOTE (1) = remote sense

If the remote sense lines are not connected to the external strain bridge, such as in quarter-bridge configuration,

either setting can be used. The values in either case are the same. However, if the remote sense lines are connected

to the bridge, as they ideally should be in half- or full-bridge configuration, the remote sense lines should be

measured, as they represent the true source output seen by the bridge.

NOTE This measurement is done with a sampling rate of 500 Hz. This requires that the instrument

configuration be modified during the execution of this function, and, thus, requires a sync (see

vtex1629_soft_synch) event to be generated before any other acquisitions are performed.

The sampleCount parameter typically can be set to values between 1 and approximately 3000 samples if sampling

is performed at 500 Hz and filtering turned off. Since the maximum number of samples that can be stored is

dependent on available memory and other settings this value can vary.

VTI Instruments Corp.

206 EX1629 Command Set

EXAMPLE

ViSession instrumentHandle;

ViInt32 channels[5] = {0, 1, 2, 3, 4};

ViInt32 numberOfChannels = 5, numValues = 0;

ViReal64 data[5];

ViStatus status;

…

status = vtex1629_measure_excitation_voltage(instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_EXCITE_SRC_REMOTE,

 100,

 data,

 &numValues,

 VI_TRUE);

www.vtiinstruments.com

EX1629 Command Set 207

vtex1629_measure_lead_wire_resistance

FUNCTION PROTOTYPE

ViStatus vtex1629_measure_lead_wire_resistance (ViSession vi, ViInt32 channelsArraySize, ViInt32 _VI_FAR

channels[],ViReal64 _VI_FAR resistance[],ViInt32 sampleCount, ViInt32 setEuconv);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channelsArraySize = the size of the channel[] array. Valid input values: VTEX1629_MIN_SCANLIST_LENGTH

(1) to VTEX1629_MAX_SCANLIST_LENGTH (48).

channel[] = an integer input array that specifies the channel for which the configuration will be returned. Valid input

values: 0 to 47.

resistance[] = a real return array of the measured values.

sampleCount = an integer input value indicating the number of confidence values to average.

setEuconv = a Boolean input value indicating whether or not the measured values should be used for future EU

conversions. Valid input values: VI_TRUE or VI_FALSE. See Description below for more details.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function measures the lead wire resistance that exists in a strain gage set up. Specifically, there are confidence

inputs that represent the absolute voltage of the -Sense node (-BUFFERED_IN) and the -Excitation node

(-EXCITEOUT_BUFF). In a three-wire quarter bridge configuration, these points represent both sides of the lead

wire resistance that exists between the gage and the -Excitation front panel connection. Moreover, the EX1629 has

the capability, again through the confidence system, to determine the current that is flowing through the lead wire

resistance. Having the voltage drop and the current flow, the lead wire resistance is then a simple calculation.

It should be noted that there is an implicit assumption that the two lead wire resistances connecting the strain gage to

the EX1629 are essentially equal. That is, while this process measures the lead resistance that exists between the

gage and the -Excitation front panel connection, it is actually the lead resistance that exists between the gage and the

+Excitation front panel connection that causes the desensitization error. However, given that the lead wires should

be made from the same material and inherently be equal in length, this is a valid assumption.

NOTE Early EX1629s do not have hardware which supports this functionality. Implementation of direct

lead wire measurement is not possible on first generation units.

For the setEuconv parameter, a value of VI_TRUE (1) instructs the EX1629 to use the measured values for future

EU conversions. If set to VI_FALSE (0), the values are stored in the resistance[] array, but are not used in

measurements. In order for these values to be used, the user must read the array and then manually enter the values

using the vtex1629_set_lead_wire_resistance function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 numberOfChannels = MAX_NUMBER_OF_CHANNELS;

ViInt32 channels[MAX_NUMBER_OF_CHANNELS];

ViReal64 resistance[MAX_NUMBER_OF_CHANNELS];

ViInt32 sampleCount = 100;

int i = 0;

for(i = 0; i < numberOfChannels; i++) {

 channels[i] = i;

}

VTI Instruments Corp.

208 EX1629 Command Set

memset(resistance, 0x00, sizeof(resistance));

status = vtex1629_measure_lead_wire_resistance(instrumentHandle,

 numberOfChannels,

 channels,

 resistance,

 sampleCount,

 VI_TRUE);

www.vtiinstruments.com

EX1629 Command Set 209

vtex1629_measure_unstrained_voltage

FUNCTION PROTOTYPE

ViStatus vtex1629_measure_unstrained_voltage (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32

numberOfChannels, ViInt32 sampleCount, ViReal64 _VI_FAR measuredValues[], ViPInt32

numMeasuredValues, ViBoolean setEuconv);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the unstrained voltage will be

measured. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

sampleCount = an integer input value that indicates the number of samples to average. See the Description section

below for valid input values.

measuredValues = a real return array of the measured values. The measured values are placed in the array

according to the channels array passed to the function. In other words, for every channel number in channels, there

will be a corresponding unstrained voltage measurement in measuredValues.

numMeasuredValues = an integer return value that indicates the number of measured samples actually returned in

the measuredValues array.

setEuconv = a Boolean input value indicating whether the measured values will be used for future EU conversions.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function measures the unstrained voltage for a particular list of channels. The unstrained voltage is one of the

variables in the strain EU conversion functions (see the Basic Operation section). A precise reading of the

unstrained voltage is necessary for accurate strain gage measurements. The measured values are returned in the user-

provided measuredValues array. Setting the setEuconv parameter to VI_TRUE (1) indicates that these values are

to be used for future EU conversions. Setting it to VI_FALSE (0) causes this data to be discarded after being read.

Using VI_TRUE is a short cut that eliminates the need for invoking vtex1629_set_unstrained_voltage for each

channel.

The sampleCount parameter typically can be set to values between 1 and approximately 9000 samples if sampling

is performed at 500 Hz and filtering turned off. Since the maximum number of samples that can be stored is

dependent on available memory and other settings this value can vary. If filters are turned on and/or sampling

frequency is reduced, for example, this would decreases the maximum value.

EXAMPLE

ViSession instrumentHandle;

ViInt32 channels[5] = {0, 1, 2, 3, 4};

ViInt32 numberOfChannels = 5, numValues = 0;

ViReal64 data[5];

ViStatus status;

…

status = vtex1629_measure_unstrained_voltage(instrumentHandle,

 channels,

 numberOfChannels,

 100,

 data,

 &numValues,

 VI_TRUE);

VTI Instruments Corp.

210 EX1629 Command Set

vtex1629_read_fifo

FUNCTION PROTOTYPE

ViStatus vtex1629_read_fifo (ViSession vi, ViInt32 maxscans, ViReal64 _VI_FAR seconds[], ViReal64 _VI_FAR

nanoSeconds[], ViPInt32 numscans, ViInt32 maxdata, ViReal64 _VI_FAR data[], ViPInt32 numdata, ViInt32

to_secs);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

maxscans = an integer input value indicating the maximum number of scans that the function should return from the

EX1629. Valid input values: 1 to 10,000.

seconds = a returned array of real numbers. Each element in the array contains a time stamp, in seconds (s),

corresponding to a single scan taken by the instrument.

nanoSeconds = a returned array of real numbers. Each element in the array contains a time stamp, in nanoseconds

(ns), corresponding to a single scan taken by the instrument.

numscans = a returned integer value indicating the number of scans actually returned by the function call.

maxdata = an integer input value indicating the maximum length of the data array.

data = a returned array of real numbers that contains data sampled from the main inputs.

numdata = an integer return value indicating the number of data elements actually returned in the data array.

to_secs = an integer input value indicating the time, in seconds, that the function will spend retrieving data from the

EX1629 before timing out and returning (timeout). If a zero is passed for this parameter, the timeout period is

infinite.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function retrieves data from the instrument’s FIFO (First In, First Out) buffer. Once data is retrieved, the data is

permanently erased from the EX1629. The following data is returned by this function:

• Data timestamps in seconds (s) and nanoseconds (ns) • Number of scans returned

• Sampled data from the main inputs • Number of data points returned

Data items from the data parameter are organized in the array according to the scan list set at the time of data

acquisition. For example, if channels 0 - 15 are the scan list channels at the time of acquisition, then after a

vtex1629_read_fifo function call is made, the first sixteen elements of the data array will correspond to the data

from the first scan for channels 0 through 15 (if there is a second scan of data, the next sixteen elements would

contain the second scan, etc.).

For each scan of data returned, there will be one timestamp (a seconds and a nanoseconds value) and a number of

data values equal to the length of the scanlist. Assuming that the timestamp and data arrays are sized properly, the

number of data elements returned (numdata) will be equal to numscans multiplied by the scanlist length.

vtex1629_read_fifo will return as soon as either the maxscans scans of data have been retrieved, or the timeout

(to_secs) expires, whichever happens first.

There are other mechanisms for retrieving data from the EX1629. Please see Retrieving Data (Read FIFO and

Streaming Data) for more information.

www.vtiinstruments.com

EX1629 Command Set 211

EXAMPLE

#define NUM_SCANS 10

#define NUM_CHANNELS 48

#define MAX_NUM_SAMPLES (NUM_SCANS * NUM_CHANNELS)

#define TIMEOUT_SECS 5

ViSession instrumentHandle;

ViReal64 seconds[NUM_SCANS];

ViReal64 fractseconds[NUM_SCANS];

ViReal64 acqdata[MAX_NUM_SAMPLES];

ViInt32 numdata, numscans;

result = vtex1629_read_fifo(instrumentHandle,

 NUM_SCANS,

 seconds,

 fractseconds,

 &numscans,

 MAX_NUM_SAMPLES,

 acqdata,

 &numdata,

 TIMEOUT_SECS);

VTI Instruments Corp.

212 EX1629 Command Set

vtex1629_read_fifoEx

FUNCTION PROTOTYPE

ViStatus vtex1629_read_fifoEx (ViSession vi, ViInt32 maxscans, ViReal64 _VI_FAR seconds[],ViReal64

_VI_FAR nanoSeconds[],ViPInt32 numscans, ViInt32 maxdata, ViReal64 _VI_FAR data[], ViPInt32 numdata,

ViInt32 maxConfData, ViReal64 _VI_FAR confData[], ViPInt32 numConfData, ViInt32 to_secs);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

maxscans = an integer input value indicating the maximum number of scans that the function should return from the

EX1629.

seconds = a returned array of real numbers. Each element in the array contains a time stamp, in seconds (s),

corresponding to a single scan taken by the instrument.

nanoSeconds = a returned array of real numbers. Each element in the array contains a time stamp, in nanoseconds

(ns), corresponding to a single scan taken by the instrument.

numscans = a returned integer value indicating the number of scans actually returned by the function call.

maxdata = an integer input value indicating the maximum length of the data array.

data = a returned array of real numbers containing data sampled from the main inputs.

numdata = an integer return value indicating the number of data elements actually returned in the data array.

maxConfData = an integer input value indicating the maximum length of the confData array.

confData = a returned array of real numbers containing sampled confidence data. See Description below for more

information.

numConfdata = an integer return value indicating the number of elements actually returned in the confData array.

to_secs = an integer input value indicating the time, in seconds, that the function will spend retrieving data from the

EX1629 before timing out and returning. If a zero is passed for this parameter, the timeout period is infinite.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function retrieves data from the instrument. Once data is retrieved, the data is permanently erased from the

EX1629. In contrast to vtex1629_read_fifo, vtex1629_read_fifoEx provides access to additional acquisition data.

Even more data is available via the streaming data interface (please see Retrieving Data (Read FIFO and Streaming

Data) for more information).

The following data is returned from this function:

• Data timestamps in seconds (s) and nanoseconds (ns) • Number of scans returned

• Sampled data from the main inputs • Number of data points returned

• Confidence data • Number of confidence data elements returned

Data items from the data parameter are organized in the array according to the scan list set at the time of data

acquisition. For example, if channels 0 through 15 are the scan list channels at the time of acquisition, then after a

vtex1629_read_fifo function call is made, the first sixteen elements of the data array will correspond to the data

from the first scan for channels 0 through 15(if there is a second scan of data, the next sixteen elements would

contain the second scan, etc.).

For each scan of data returned, there will be one timestamp (a seconds and a nanoseconds value) and a number of

data values equal to the length of the scanlist. Assuming that the timestamp and data arrays are sized properly, the

number of data elements returned (numdata) will be equal to numscans multiplied by the scanlist length.

The confData parameter is very similar to the data parameter. Where the data parameter returns a one-to-one

channel-to-data ratio based on the scan list configuration, the confData has an additional scan list of its own

(configured via vtex1629_set_conf_scanlist) that indicates how much confidence data will be acquired. If the

www.vtiinstruments.com

EX1629 Command Set 213

confidence scan list is set to five elements, five real values of confidence data will be acquired for each channel in

the regular channel scan list. The next five data elements in the confData[] array will be confidence data for the next

channel in the scan list and so on. If a scan list has x channels and the confidence scanlist has a length of y, then

there will be x•y data items placed in the confData array each scan.

vtex1629_read_fifo will return as soon as either the maxscans scans of data have been retrieved, or the timeout

(to_secs) expires, whichever happens first.

There are other mechanisms for retrieving data from the EX1629. Please see Retrieving Data (Read FIFO and

Streaming Data) for more information.

EXAMPLE

#define NUM_SCANS 10

#define NUM_CHANNELS 48

#define MAX_NUM_SAMPLES (NUM_SCANS * NUM_CHANNELS)

#define CONF_LENGTH 2

#define MAX_CONF_NUM_SAMPLES (MAX_NUM_SAMPLES * CONF_LENGHT)

#define TIMEOUT_SECS 5

ViSession instrumentHandle;

ViReal64 seconds[NUM_SCANS];

ViReal64 fractseconds[NUM_SCANS];

ViReal64 acqdata[MAX_NUM_SAMPLES];

ViReal64 confdata[MAX_CONF_NUM_SAMPLES];

ViInt32 numdata, numscans, numconfdata;

result = vtex1629_read_fifoEx(instrumentHandle,

 NUM_SCANS,

 seconds,

 fractseconds,

 &numscans,

 MAX_NUM_SAMPLES,

 acqdata,

 &numdata,

 MAX_CONF_NUM_SAMPLES,

 confdata,

 &numconfdata,

 TIMEOUT_SECS);

VTI Instruments Corp.

214 EX1629 Command Set

vtex1629_read_teds_MLAN

FUNCTION PROTOTYPE

ViStatus vtex1629_read_teds_MLAN (ViSession vi, ViInt32 channel, ViInt32 bufferArraySize, ViInt8 _VI_FAR

buffer[],ViPInt32 bufferActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an input integer value that specifies the channel number for the TEDS device from which the MicroLAN

(MLAN) buffer should be read. Valid input values: 0 to 47.

bufferArraySize = an input integer indicating the size of the array that holds the MLAN buffer data. Its value

should be less than VTEX1629_MAX_MLAN_DATA_LEN.

buffer[] = an output array that will contain the TEDS MLAN buffer data. Its size should be equal to

VTEX1629_MAX_MLAN_DATA_LEN.

bufferActualSize = an output integer indicating the number of bytes actually written to the array holding the

MLAN buffer data.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function reads the MicroLAN (MLAN) response buffer from a TEDS device. This response buffer is the

response from the TEDS device that corresponds to a series of MLAN commands that were issued to the device

using a vtex1629_write_teds_MLAN function. Refer to the vtex1629_write_teds_MLAN function for more

information, as well as the MicroLAN (MLAN) Primer appendix.

NOTES 1) Details of the MLAN specification can be found at http://www.maxim-

 ic.com/products/ibutton/applications/ and other sites.

 2) The bytes returned in ‘buffer’ need to be interpreted by the application in accordance with the

 MLAN specification.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 bufferActualSize;

ViInt8 mlanData[VTEX1629_MAX_MLAN_DATA_LEN];

…

status = vtex1629_read_teds_MLAN(instrumentHandle,

 15,

 VTEX1629_MAX_MLAN_DATA_LEN,

 mlanData,

 &bufferActualSize);

If (status >= VI_SUCCESS)

{

 <interpret the data structure in mlanData>

} else {

 <inform the user the API call failed>

}

www.vtiinstruments.com

EX1629 Command Set 215

vtex1629_read_teds_URN

FUNCTION PROTOTYPE

ViStatus vtex1629_read_teds_URN (ViSession vi, ViInt32 channel, ViInt32 teds_urnArraySize, ViInt8 _VI_FAR

teds_urn[], ViPInt32 teds_urnActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channel = an input integer value that specifies the channel number for the TEDS device from which the Unique

Registration Number (URN) should be read. Valid input values: 0 to 47.

teds_urnArraySize = an integer indicating the size of the array that holds the URN. Its value should be equal to

VTEX1629_MAX_MLAN_URN_SIZE.

teds_urn[] = an output array that will contain the TEDS URN. Its size should be equal to

VTEX1629_MAX_MLAN_URN_SIZE.

teds_urnActualSize = Output integer indicating the number of bytes actually written to the array that holds the

URN.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function reads the Unique Registration Number (URN) from a TEDS device. This is a 64-bit value which

encodes a device family and a unique serial number.

NOTES 1) Details of the MLAN specification can be found at http://www.maxim-

 ic.com/products/ibutton/applications/ and other sites.

 2) The bytes returned in ‘buffer’ need to be interpreted by the application in accordance with the

 MLAN specification.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 urnActualSize;

ViInt8 urnData[VTEX1629_MAX_MLAN_URN_SIZE];

…

status = vtex1629_read_teds_URN

 (instrumentHandle, 15, VTEX1629_MAX_MLAN_URN_SIZE, urnData, &urnActualSize);

If (status >= VI_SUCCESS)

{

 <do something with the device’s URN>

} else {

 <inform the user the API call failed>

}

VTI Instruments Corp.

216 EX1629 Command Set

vtex1629_reset

FUNCTION PROTOTYPE

ViStatus vtex1629_reset (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function commands the instrument to assume the default settings, as defined in Table 6-1.

NOTE This function will not release a lock on the EX1629 nor will it affect self-calibration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

…

status = vtex1629_reset(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 217

vtex1629_reset_fifo

FUNCTION PROTOTYPE

ViStatus vtex1629_reset_fifo (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function clears all the currently stored data from the FIFO memory.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_reset_fifo(instrumentHandle);

VTI Instruments Corp.

218 EX1629 Command Set

vtex1629_reset_tare

FUNCTION PROTOTYPE

ViStatus vtex1629_reset_tare (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function resets the tare values for all channels to zero.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_reset_tare(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 219

vtex1629_reset_trigger_arm

FUNCTION PROTOTYPE

ViStatus vtex1629_reset_trigger_arm (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function resets all trigger system configuration settings (Trigger and Arm) to their reset values, as defined in

Table 6-1. When reconfiguring the trigger system, it is often easiest to reset to the default configuration and then

apply the desired configuration.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_reset_trigger_arm(instrumentHandle);

VTI Instruments Corp.

220 EX1629 Command Set

vtex1629_revision_query

FUNCTION PROTOTYPE

ViStatus vtex1629_revision_query (ViSession vi, ViChar _VI_FAR driverRev[], ViChar _VI_FAR instrRev[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

driverRev = a return string indicating the driver revision.

instrRev = a return string indicating the firmware revision.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the revision of the driver as well as the instrument’s firmware revision.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViChar driverRevision[256], instrumentRevision[256];

…

status = vtex1629_revision_query (instrumentHandle,

 driverRevision,

 instrumentRevision);

www.vtiinstruments.com

EX1629 Command Set 221

vtex1629_self_cal_clear

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_clear (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function clears the current self-calibration data. This operation clears the volatile data, but does not affect any

self-calibration data that is stored in nonvolatile memory. After this function, the effective calibration will be the full

calibration (factory calibration, also known as the annual calibration) plus, if it exists, the nonvolatile self-

calibration. If a self-calibration is performed, and non-volatile self-calibration data exists, executing this function

effectively reverts to the non-volatile self-calibration data. With no non-volatile self-calibration data, this effectively

reverts to full (factory/annual) calibration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_self_cal_clear (instrumentHandle);

VTI Instruments Corp.

222 EX1629 Command Set

vtex1629_self_cal_clear_stored

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_clear_stored (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function clears self-calibration data from nonvolatile memory. It does not, however, affect the current self-

calibration data, regardless of whether it came from a recent self-calibration or a loading from nonvolatile memory

upon power-up initialization. Thus, the effective calibration will not be changed by this call. To return to an

operating state where only the full calibration is used, the vtex1629_self_cal_clear function can be called, or the

system can be rebooted.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_self_cal_clear_stored (instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 223

vtex1629_self_cal_get_status

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_get_status (ViSession vi, ViPInt32 percentComplete, ViPInt32 calStatus);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

percentComplete = an integer return value, from 0 to 100, indicating a percentage of completion for the self-

calibration process.

calStatus = an integer return value indicating the status of the currently running self-calibration process, or the last

self-calibration process that was run, and completed. Expected data return values: 0, 1, or 2.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the status of the self-calibration process. This will be the status of the currently running self-

calibration routine, or the last self-calibration routine that was completed.

The calStatus parameter indicates the following:

0 = Self-calibration in progress 1 = Self-calibration complete

2 = Self-calibration failed.

NOTE Additional instrument driver calls should not be performed until the result of calStatus is equal to

VTEX1629_SELF_CAL_COMPLETE.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 percent;

ViInt32 calstatus;

…

status = vtex1629_self_cal_get_status (instrumentHandle, &percent, &calstatus);

VTI Instruments Corp.

224 EX1629 Command Set

vtex1629_self_cal_init

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_init (ViSession vi, ViPInt32 overRide, ViPInt32 recommendedUpTime, ViPInt32

currentUpTime);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

overRide = a returned integer value indicating the override value.

recommendedUpTime = an integer return value indicating the number of seconds recommended for having the box

powered on before attempting a self-calibration.

currentUpTime = an integer return value indicating the number of seconds that the unit has been powered up.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function initializes the self-calibration routine on the EX1629. Note that the device should be left on and

undisturbed throughout the entire calibration process. To check the progress of the calibration routine, refer to the

vtex1629_self_cal_get_status function.

NOTE The self-calibration uptime requirement is in place to protect the measurement integrity of the

instrument. Overriding the requirement must only be done when the operating conditions allow it.

An example of this is where the unit has actually been warmed up, but has simply been subjected

to a quick power cycle or reboot. In order to ensure that the override is intentional, it is strongly

recommended that user intervention be required in the software application to employ it.

The overRide parameter is used in the case where a self-calibration is attempted on a unit that has not been powered

on for a sufficient amount of time. In this special case, the first call to this function will return an error, but will also

populate this override variable with a unique integer value. The vtex1629_self_cal_init function can then be called a

second time using this unique value. The second call to the function will successfully initiate a self-calibration on a

unit that has not been powered up for the recommended duration of time.

Because it modifies the system configuration, an instrument synch (vtex1629_soft_synch) will be required before

continuing with other operations.

NOTE In order to perform a self-calibration, a lock on the instrument must first be acquired. Attempting

to self-calibrate without the acquisition of a lock will generate an error that is not able to be

overridden. See the vtex1629_lock function.

NOTE Additional instrument driver calls, other than vtex1629_self_cal_get_status, should not be

performed until the result of calStatus in the vtex1629_self_cal_get_status call is equal to

VTEX1629_SELF_CAL_COMPLETE.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 ovrride, rec_uptime, act_uptime;

ViBoolean okay_to_override = VI_FALSE;

…

status = vtex1629_self_cal_init (instrumentHandle,

 &override,

 &rec_uptime,

 &act_uptime);

if (status >= VI_SUCCESS) {

www.vtiinstruments.com

EX1629 Command Set 225

 if(status == VTEX1629_ERROR_INSUFFICIENT_UPTIME_FOR_CAL){

 <prompt user to verify that it is okay to override the uptime requirement>

 if(okay_to_override) {

 status = vtex1629_self_cal_init (instrumentHandle,

 &override,

 &rec_uptime,

 &act_uptime);

 if(status < VI_SUCCESS) {

 <inform the user the API call failed>

 }

 } else {

 <inform the user the API call failed>

 }

 }

}

VTI Instruments Corp.

226 EX1629 Command Set

vtex1629_self_cal_is_running

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_is_running (ViSession vi, ViPBoolean isRunning);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

isRunning = a Boolean return value indicating whether self-calibration is running. A return value of “1” indicates

that self-calibration is running, whereas “0” indicates that it is not.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function queries the status of self-calibration to determine if self-calibration is currently running.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean isrunning;

ViInt32 count = 0;

…

<start self calibration with vtex1629_self_cal_init>

…

while(count < 30) {

 status = vtex1629_self_cal_is_running (instrumentHandle, &isrunning);

 if (status >= VI_SUCCESS) {

 if(isrunning) {

 sleep(5);

 } else {

 break;

 }

 } else {

 <inform the user the API call failed>

 }

 count += 1;

}

www.vtiinstruments.com

EX1629 Command Set 227

vtex1629_self_cal_is_stored

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_is_stored (ViSession vi, ViPBoolean stored);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

stored = a Boolean return value indicating the presence of a previously saved self-calibration file within nonvolatile

memory. A return value of VI_TRUE (1) indicates the existence of a file, whereas VI_FALSE (0) indicates that no

file exists.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This functions queries the existence of a previously saved self-calibration file within non-volatile memory. Non-

volatile self-calibration data is automatically loaded and used upon an instrument power cycle or reboot. It is stored

with the vtex1629_self_cal_store function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean isstored;

…

status = vtex1629_self_cal_is_stored (instrumentHandle, &isstored);

VTI Instruments Corp.

228 EX1629 Command Set

vtex1629_self_cal_load

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_load (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function takes a currently stored self-calibration file from nonvolatile memory and loads it as the current self-

calibration file to be used in data acquisition. If current (volatile) self-calibration data previously existed, it is simply

overwritten and need not be cleared in advance.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_self_cal_load(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 229

vtex1629_self_cal_store

FUNCTION PROTOTYPE

ViStatus vtex1629_self_cal_store (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function takes the current self-calibration image and stores it to nonvolatile memory, enabling it to be loaded

upon instrument power cycle and reboot. Any other previously stored self-calibration data will be lost. Since the

existence of nonvolatile self-calibration data represents a permanent (although revocable) change from the full

calibration settings, its presence is able to be queried. See the vtex1629_self_cal_is_stored command.

NOTE Performing a self-calibration does not automatically store the determined calibration constants in

nonvolatile memory. However, it does turn the determined constants into the current self-

calibration data. A call to this function will store that image permanently in non-volatile storage.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_self_cal_store(instrumentHandle);

VTI Instruments Corp.

230 EX1629 Command Set

vtex1629_self_test

FUNCTION PROTOTYPE

ViStatus vtex1629_self_test (ViSession instrumentHandle, ViPInt16 selfTestResult, ViChar _VI_FAR

testMessage[]);

FUNCTION PARAMETERS

instrumentHandle = contains a session handle to the instrument. This handle is obtained by the function and

remains valid until the session is closed.

selfTestResult = pointer to an INT16. Upon return from the function, it will contain a numerical value indicating

the result of the self test.

testMessage[] = string where the driver places the textual representation of the self test result.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function causes the instrument to perform a self-test. It waits for the instrument to complete the test and then

queries the instrument for the results of the self-test and returns the results to the user. If the instrument passes the

self-test, this function returns the constant VTEX1629_SELF_TEST_PASSED in the TestResult parameter and

"Self test passed" in the TestMessage parameter.

The TestMessage parameter must be able to store up to 256 characters.

The EX1629 self-test consists of a set of operations that are identical to those performed during self-calibration. No

calibration data is modified by this function. Because it modifies the system configuration, however, an instrument

synch (vtex1629_soft_synch) will be required before continuing with other operations.

There are two different interfaces to execute the self-test procedure. The vtex1629_self_test function is the simplest

– it executes the self-test and returns when the test is complete. When working with a large number of instruments,

however, running the self-test sequentially on all instruments can take quite a while. Instead of using

vtex1629_self_test, the vtex1629_self_test_init, and vtex1629_self_test_get_status functions can be used, allowing

the self-tests on all instruments to be executed in parallel.

EXAMPLE

ViStatus status;

ViSession instrumentHandle;

ViInt16 selfTestResult;

ViChar testMessage[256];

…

status = vtex1629_self_test (instrumentHandle, &selfTestResult, testMessage);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

if ((status >= VI_SUCCESS) && (selfTestResult != VTEX1629_SELF_TEST_PASSED))

{

 <inform the user the self test failed>

}

if ((status >= VI_SUCCESS) && (selfTestResult == VTEX1629_SELF_TEST_PASSED))

{

 <continue normal processing>

}

www.vtiinstruments.com

EX1629 Command Set 231

vtex1629_self_test_get_status

FUNCTION PROTOTYPE

ViStatus vtex1629_self_test_get_status (ViSession vi, ViPInt32 selfTestStatus);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

selfTestStatus = upon return from the function call, it will contain one of the following constants:

 VTEX1629_SELF_TEST_NO_STATUS (self-test not started)

 VTEX1629_SELF_TEST_RUNNING (self-test started)

 VTEX1629_SELF_TEST_PASSED (self-test passed)

 VTEX1629_SELF_TEST_FAILED (self-test failed)

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function returns the status of the self-test initiated via the vtex1629_self_test_init function. It should not be

used (and is not necessary) with the vtex1629_self_test function, as that function does not return until the self-test

has completed. The self-test takes approximately 3 minutes to execute.

Because the self-test modifies the system configuration, an instrument synch (vtex1629_soft_synch) will be required

before continuing with other operations.

EXAMPLE

ViStatus status;

ViSession instrumentHandle;

ViInt16 selfTestResult;

…

status = vtex1629_self_test_get_status (instrumentHandle, &selfTestResult);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

if ((status >= VI_SUCCESS) && (selfTestResult != VTEX1629_SELF_TEST_PASSED))

{

 <inform the user the self test failed>

}

if ((status >= VI_SUCCESS) && (selfTestResult == VTEX1629_SELF_TEST_PASSED))

{

 <continue normal processing>

}

VTI Instruments Corp.

232 EX1629 Command Set

vtex1629_self_test_init

FUNCTION PROTOTYPE

ViStatus vtex1629_self_test_init (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function initiates a self-test. It returns immediately, without waiting for the self-test to complete. The

vtex1629_self_test_get_status is used to monitor the self-test progress. The vtex1629_self_test function initiates the

self-test and waits until the test has completed before returning.

Because it modifies the system configuration, an instrument synch (vtex1629_soft_synch) will be required before

continuing with other operations.

EXAMPLE

ViStatus status;

ViSession instrumentHandle;

…

status = vtex1629_self_test_init (instrumentHandle);

if (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

www.vtiinstruments.com

EX1629 Command Set 233

vtex1629_send_dio_pulse

FUNCTION PROTOTYPE

ViStatus vtex1629_send_dio_pulse (ViSession vi, ViInt32 dioPulse);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

dioPulse = a bit mask which instructs the instrument to send a pulse on the specified DIO channels. The low 16 bits

map to the 16 DIO channels. The upper 16 bits are ignored.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sends a pulse out on the selected DIO channels.

bank one

channel #

bank zero

dioOut

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

The upper 16-bits will always be zero.

For example, to issue pulses on DIO lines 0 and 8 (assuming both backs are configured for output:

dioPulse = 49164 → 0x00000101 → 00000001 00000001b

Pulse widths are 1 microsecond (µs).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 pulse_mask = 0x00000101; // pulse output bits 0 and 8

…

status = vtex1629_send_dio_pulse(instrumentHandle, pulse_mask);

VTI Instruments Corp.

234 EX1629 Command Set

vtex1629_send_lxibus_pulse

FUNCTION PROTOTYPE

ViStatus vtex1629_send_lxibus_pulse (ViSession vi, ViInt32 pulseLines);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pulseLines = an integer input value that determines which channels on the LXI Trigger Bus will generate a pulse.

Valid input values: 0 to 255.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sends a pulse out on the desired LXI Trigger Bus channels. The pulseLines parameter is an 8-bit

integer where the least significant bit of the integer corresponds to LXI Trigger Bus channel zero, and the most

significant bit corresponds to LXI Trigger Bus channel seven. For example, if a user wants to send a pulse out on

LXI Trigger Bus channels zero and seven, then: pulseLines = 10000001b (0x0000 0081), or 129.

Pulse widths are 1 microsecond (µs).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 pulse_mask = 0x00000081; // pulse bits 7 and 0

…

status = vtex1629_send_lxibus_pulse(instrumentHandle, pulse_mask);

www.vtiinstruments.com

EX1629 Command Set 235

vtex1629_set_arm_count

FUNCTION PROTOTYPE

ViStatus vtex1629_set_arm_count (ViSession vi, ViInt32 armCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

armCount = an integer input value that specifies the desired arm count for the EX1629. Valid input values: 0 to

(231-1). Setting this parameter to “0” makes the armCount infinite.

DATA ITEM RESET VALUE

armCount = 1

DESCRIPTION

This function sets the arm count for the EX1629. This count represents the number of times the EX1629 will wait

for arm events to occur after the trigger state machine leaves the INIT layer. Trigger counts should be kept in mind

when considering this trigger state machine. If the state machine is configured with both arm and trigger counts

greater than one, then, after an arm event is received, the state machine will go through all trigger counts before

returning to the arm layer to wait for the next arm event.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_arm_count(instrumentHandle, 2);

VTI Instruments Corp.

236 EX1629 Command Set

vtex1629_set_arm_delay

FUNCTION PROTOTYPE

ViStatus vtex1629_set_arm_delay (ViSession vi, ViReal64 delay);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

delay = a real input value, in seconds, indicating the desired arm delay. Valid input values: 0 s to 4294.967295 s.

DATA ITEM RESET VALUE

delay = 0.000000000

DESCRIPTION

This function sets the arm delay for the EX1629. This indicates the amount of time, in seconds, that the EX1629 will

wait after receiving an ARM event before it transitions the trigger state machine from the ARM layer into the TRIG

layer.

The actual delay exhibited by the EX1629 is dependent on the sample frequency, set by calling the

vtex1629_set_sample_frequency function. The actual delay will be a multiple of the sample time. For example, if

the sample frequency is 1 kHz, the sample time is 1 ms. If the arm delay is set to a value less than 0.5 ms, the

EX1629 will experience no delay. If the arm delay is set to a value between 0.5 ms and 1.49 ms, the delay exhibited

will be 1 ms.

As a result, it is best practice to perform a vtex1629_get_arm_delay call after a vtex1629_set_arm_delay or a

vtex1629_set_sample_frequency call is performed to determine the actual delay.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_arm_delay(instrumentHandle, 0.01);

www.vtiinstruments.com

EX1629 Command Set 237

vtex1629_set_arm_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_arm_source (ViSession vi, ViInt32 armSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

armSource = an integer input value that indicates the desired source to be monitored for ARM events. See the

Description section below for more information. Valid input values: 0 to 17.

DATA ITEM RESET VALUE

armSource = 0 (immediate)

DESCRIPTION

This function sets the arm source on the EX1629. Possible values for the armSource parameter are:

Decimal

Value

Hex

Value
#define armSource Description

0 0x00 VTEX1629_TRIG_SRC_IMMEDIATE Immediate

1 0x01 VTEX1629_TRIG_SRC_PATTERN Pattern

2 0x02 VTEX1629_TRIG_SRC_LXI0_POS LXI 0 Positive Edge

3 0x03 VTEX1629_TRIG_SRC_LXI1_POS LXI 1 Positive Edge

4 0x04 VTEX1629_TRIG_SRC_LXI2_POS LXI 2 Positive Edge

5 0x05 VTEX1629_TRIG_SRC_LXI3_POS LXI 3 Positive Edge

6 0x06 VTEX1629_TRIG_SRC_LXI4_POS LXI 4 Positive Edge

7 0x07 VTEX1629_TRIG_SRC_LXI5_POS LXI 5 Positive Edge

8 0x08 VTEX1629_TRIG_SRC_LXI6_POS LXI 6 Positive Edge

9 0x09 VTEX1629_TRIG_SRC_LXI7_POS LXI 7 Positive Edge

10 0x0A VTEX1629_TRIG_SRC_LXI0_NEG LXI 0 Negative Edge

11 0x0B VTEX1629_TRIG_SRC_LXI1_NEG LXI 1 Negative Edge

12 0x0C VTEX1629_TRIG_SRC_LXI2_NEG LXI 2 Negative Edge

13 0x0D VTEX1629_TRIG_SRC_LXI3_NEG LXI 3 Negative Edge

14 0x0E VTEX1629_TRIG_SRC_LXI4_NEG LXI 4 Negative Edge

15 0x0F VTEX1629_TRIG_SRC_LXI5_NEG LXI 5 Negative Edge

16 0x10 VTEX1629_TRIG_SRC_LXI6_NEG LXI 6 Negative Edge

17 0x11 VTEX1629_TRIG_SRC_LXI7_NEG LXI 7 Negative Edge

Immediate (0): an immediate ARM source. After initialization of the trigger system, the trigger state machine will

bypass the ARM layer and will automatically transition into the TRIG layer.

Pattern (1): this arm source allows the EX1629 to accept ARM events on multiple sources. Specifically, the

EX1629 can be configured to accept ARM events on any LXI Trigger Bus channel, any digital I/O channel, on a

timer, or for software arms. The instrument can be configured to accept any combination of these events

simultaneously. The specific pattern is set with the vtex1629_set_pattern_arm_configuration command.

LXI n Positive Edge (2 – 9): these arm sources refer to ARM events coming from the LXI Trigger Bus. More

specifically, these arm sources will cause the EX1629 to arm on the positive edge of signals coming into the LXI

Trigger Bus.

LXI n Negative Edge (10 – 17): these arm sources are referring to ARM events coming from the LXI Trigger Bus.

More specifically, these arm sources will cause the EX1629 to arm on the negative edge of signals coming into the

LXI Trigger Bus.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_arm_source(instrumentHandle, VTEX1629_TRIG_SRC_PATTERN);

VTI Instruments Corp.

238 EX1629 Command Set

vtex1629_set_bridge_limit

FUNCTION PROTOTYPE

ViStatus vtex1629_set_bridge_limit (ViSession vi, ViInt32 numberOfChannels, ViInt32 _VI_FAR channels[],

ViReal64 _VI_FAR min[], ViReal64 _VI_FAR max[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

channels[] = an input integer array containing a list of channel numbers for which the completion resistor

configuration will be set. Valid input values: 0 to 47.

min[] = an array of minimum bridge limit value.

max[] = an array of minimum bridge limit value.

DATA ITEM RESET VALUE

min[] = -infinity (in floating point) max[] = +infinity (in floating point)

DESCRIPTION

This function sets the minimum and maximum bridge limit values for an array of channels. The limit check data is

part of the data page along with the bridge data. If the bridge data exceeds the maximum or minimum limit values

set for any channel, the corresponding flags are set in the limit check result field in a data page.

0 = Bridge data is

less than the MAX

for CH 15

1 = Bridge data is

greater than the

MAX for CH 15

0 = Bridge data is

less than the MAX

for CH 0

1 = Bridge data is

greater than the

MAX for CH 0

0 = Bridge data is

greater than the

MIN for CH 15

1 = Bridge data is

less than the MIN

for CH 15

0 = Bridge data is

greater than the

MIN for CH 0

1 = Bridge data is

less than the MIN

for CH 0

31 015

MSW

(MAX Limit exceeded status)

LSW

(MIN Limit exceeded status)

The “limits” field is a bit-field. This UINT32 has two bits per channel (16-channels per analog board), one to

represent MAX limit exceeded and one to represent MIN limit exceeded. The MSW (upper 16-bits) represent the

MAX Limit Exceeded status for each of the 16-channels, and the LSW (lower 16-bits) represent the MIN Limit

Exceeded status for each of the 16-channels. Bit 0 represents the MIN Limit Exceeded status for channel 0 (channels

0, 16, 32). Bit 16 represents the MAX Limit Exceeded status for Channel 0 (channels 0, 16, 32). Bit 15 represents

the MIN Limit Exceeded status for channel 15 (channels 15, 31, and 47). Bit 31 represents the MAX Limit

Exceeded status for channel 15 (channels 15, 31, and 47). The rest of the channels follow the same pattern.

NOTE The channel-to-bit mapping is constant, regardless of scanlist configuration. For example, whether

or not channels 0 and 1 are enabled in the scanlist, for instance, channel 2’s MIN Limit Exceeded

Bit and MAX Limit Exceeded Bit are always bits 2 and 18, respectively.

This mode is valid for main bridge sampling frequencies of 1 kHz or less. If the sampling frequency exceeds 1 kHz

a value of 0x0 is reported. Also, the bit fields corresponding to inactive channels in the scanlist will be 0.

www.vtiinstruments.com

EX1629 Command Set 239

Limit checking is performed on the output of the EU conversion. So, if the specified EU conversion is in Strain

(Quarter, Half, or Full Bridge) the limit values are in strain (or microstrain). If the specified EU conversion is volts,

then the limit values are in volts.

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 numChannels = MAX_NUMBER_OF_CHANNELS;

ViInt32 channels[MAX_NUMBER_OF_CHANNELS];

ViReal64 minArr[MAX_NUMBER_OF_CHANNELS];

ViReal64 maxArr[MAX_NUMBER_OF_CHANNELS];

int i = 0;

for(i = 0; i < MAX_NUMBER_OF_CHANNELS; i++) {

 channels[i] = i;

 minArr[i] = (-1.0);

 maxArr[i] = 2.0;

}

status = vtex1629_set_bridge_limit(instrumentHandle,

 numChannels,

 channels,

 minArr,

 maxArr);

VTI Instruments Corp.

240 EX1629 Command Set

vtex1629_set_bridge_limit_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_set_bridge_limit_enabled (ViSession vi, ViBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

enabled = a Boolean input value setting the enabled status of the excitation source. A value of VI_TRUE enables

the excitation source. A value of VI_FALSE disables the excitation source.

DATA ITEM RESET VALUE

enabled = VI_FALSE

DESCRIPTION

This function sets the enabled status of the bridge limit function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViBoolean enable = VI_TRUE;

status = vtex1629_set_bridge_limit_enabled(instrumentHandle, enable);

www.vtiinstruments.com

EX1629 Command Set 241

vtex1629_set_cal_out

FUNCTION PROTOTYPE

ViStatus _VI_FUNC vtex1629_set_cal_out (ViSession vi, ViInt32 outMode);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

outMode = an integer input value that indicates the desired output of the calibration source. See the Description

section below for more information.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sets the calibration input source to a specified voltage. Possible values for the outMode parameter are:

VTEX1629_CAL_OFF (turns the calibration source off)

VTEX1629_CAL_ON (turns the calibration source on)

VTEX1629_CAL_SHORT (shorts the calibration source jacks)

VTEX1629_CAL_VREF (outputs precision calibration voltage source)

The vtex1629_set_cal_source function is used to configure the precision calibration voltage source.

NOTE This function is intended for factory use only.

VTI Instruments Corp.

242 EX1629 Command Set

vtex1629_set_cal_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_cal_source (ViSession vi, ViInt32 calSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

calSource = an integer input value that indicates the desired voltage of the calibration source. Valid input values:

VTEX1629_CALSRC_0 to VTEX1629_CALSRC_N_14_0. See the Description section below for allowed values.

DATA ITEM RESET VALUE

calSource = 0 (VTEX1629_CALSRC_0)

DESCRIPTION

This function sets the calibration input source to a specified voltage. Valid input values for the calSource parameter

are:

Decimal

Value

Hex

Value
#define Symbol Nominal Voltage (V)

0 0x00 VTEX1629_CALSRC_0 0

1 0x01 VTEX1629_CALSRC_P_0_07 +0.07

2 0x02 VTEX1629_CALSRC_N_0_07 -0.07

3 0x03 VTEX1629_CALSRC_P_0_11 +0.11

4 0x04 VTEX1629_CALSRC_N_0_11 -0.11

5 0x05 VTEX1629_CALSRC_P_0_14 +0.14

6 0x06 VTEX1629_CALSRC_N_0_14 -0.14

7 0x07 VTEX1629_CALSRC_P_0_7 +0.7

8 0x08 VTEX1629_CALSRC_N_0_7 -0.7

9 0x09 VTEX1629_CALSRC_P_1_1 +1.1

10 0x0A VTEX1629_CALSRC_N_1_1 -1.1

11 0x0B VTEX1629_CALSRC_P_1_4 +1.4

12 0x0C VTEX1629_CALSRC_N_1_4 -1.4

13 0x0D VTEX1629_CALSRC_P_7_0 +7.0

14 0x0E VTEX1629_CALSRC_N_7_0 -7.0

15 0x0F VTEX1629_CALSRC_P_11_0 +11.0

16 0x10 VTEX1629_CALSRC_N_11_0 -11.0

17 0x11 VTEX1629_CALSRC_P_14_0 +14.0

18 0x12 VTEX1629_CALSRC_N_14_0 -14.0

NOTE This function is intended for factory use only.

www.vtiinstruments.com

EX1629 Command Set 243

vtex1629_set_completion_resistor

FUNCTION PROTOTYPE

ViStatus vtex1629_set_completion_resistor (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32

numberOfChannels, ViInt32 completionResistorMode);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the completion resistor

configuration will be set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

completionResistorMode = an integer input value indicating the desired completion resistor mode. See Description

below for possible values. Valid input values: 0, 3, 4, 120, or 350.

DATA ITEM RESET VALUE

completionResistorMode = 0 (Full)

DESCRIPTION

This function sets the mode of the completion resistor for a list of channels. The acceptable values for the

completionResistorMode parameter are as follows:

Decimal

Value

Hex

Value
#define Symbol Resistor Mode calibratedValue

0 0x00 VTEX1629_COMPRES_FULL Full 0.0 (N/A)

3 0x03 VTEX1629_COMPRES_USER User-Defined Actual value installed, 0.0 (N/A) otherwise

4 0x04 VTEX1629_COMPRES_OFF OFF 0.0 (N/A)

120 0x78 VTEX1629_COMPRES_120 120 Ω Actual value

350 0x15E VTEX1629_COMPRES_350 350 Ω Actual value

Referring to the “Full” completion resistor is a bit of a misnomer – it really represents a short in the leg of the bridge

circuit that contains the completion resistor. It is used in Full- and Half-Bridge mode.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0, 1, 2, 3, 4, 5, 6, 7};

ViInt32 numberOfChannels = 8;

…

status = vtex1629_set_completion_resistor(instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_COMPRES_350);

VTI Instruments Corp.

244 EX1629 Command Set

vtex1629_set_conf_scanlist

FUNCTION PROTOTYPE

ViStatus vtex1629_set_conf_scanlist (ViSession vi, ViInt32 _VI_FAR confElements[],ViInt32

numConfElements);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

confElements = an integer input array indicating which confidence data elements will be measured. Valid input

values: 0 to 12.

numConfElements = the size of the confElements list. Valid input values: 0 to 12.

DATA ITEM RESET VALUE

confElements = None

DESCRIPTION

This function sets the list of confidence data elements that will be measured and returned along with the main bridge

data. The confidence data elements are the following:

Decimal

Value

Hex

Value
#define Symbol confElements Description

0 0x00 VTEX1629_CONFSRC_BRIDGE_POS Bridge (+)

1 0x01 VTEX1629_CONFSRC_BRIDGE_COMM Bridge (common mode)

2 0x02 VTEX1629_CONFSRC_BRIDGE_NEG Bridge (-)

3 0x03 VTEX1629_CONFSRC_EXCITE_POS Excite (+)

4 0x04 VTEX1629_CONFSRC_EXCITE_NEG Excite (-)

5 0x05 VTEX1629_CONFSRC_EXCITE_NEG_SENSE Excite Sense (-)

6 0x06 VTEX1629_CONFSRC_EXCITE_POS_SENSE Excite Sense (+)

7 0x07 VTEX1629_CONFSRC_EXCITE_POS_CURR Excite Current (+)

8 0x08 VTEX1629_CONFSRC_EXCITE_NEG_CURR Excite Current (-)

9 0x09 VTEX1629_CONFSRC_POS_CAL Calibration Bus (+)

10 0x0A VTEX1629_CONFSRC_NEG_CAL Calibration Bus (-)

11 0x0B VTEX1629_CONFSRC_GND Ground

12 0x0C VTEX1629_CONFSRC_EXCITEOUT_BUFF Excite Out (Buffered)

NOTES 1) Confidence elements 9 through 11 are for system diagnostic use only and should not be

 employed during normal operation.

 2) Confidence element 12 can only be used on EX1629 with firmware version 1.0 or later.

In order to clear the confidence scan list, a value of 0 should be set for the numConfElements parameter. In this

case, the value of the confElements parameter is arbitrary.

NOTE The confidence data is filtered by a transfer function represented by the following differential

equation: y(n) = 0.01x(n) + 0.99y(n-1), where y(n) is the filtered confidence data and x(n) is the

measured confidence data. This function serves to reduce noise variance.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 confchannels[] = {3, 4, 5, 6};

ViInt32 numberOfChannels = 4;

…

status = vtex1629_set_conf_scanlist (instrumentHandle,

 confchannels,

 numberOfChannels);

www.vtiinstruments.com

EX1629 Command Set 245

vtex1629_set_confidence_limit

FUNCTION PROTOTYPE

ViStatus vtex1629_set_confidence_limit (ViSession vi, ViInt32 confSrcEnum, ViInt32 numberOfChannels,

ViInt32 _VI_FAR channelsArray[], ViReal64 _VI_FAR min[], ViReal64 _VI_FAR max[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

confSrcEnum = confidence source for which to set the minimum and maximum limits. Valid input values: 0 to 12.

numberOfChannels = a return integer value indicating the number of channels currently included in the scan list.

Valid return values: 1 to 48.

channelsArray[] = the size of the confElements list. Valid input values: 0 to 12.

min[] = an array of minimum confidence limit values.

max[] = an array of minimum confidence limit values.

DATA ITEM RESET VALUE

min[] = -infinity (in floating point) max[] = +infinity (in floating point)

DESCRIPTION

This function sets the minimum and maximum values for confidence data limit checking. Confidence limit checking

mode is only valid for main bridge sampling frequencies less than 1 kHz. Returned values in the datapage

correspond to the confidence channels for channels in the active scanlist. There exists a confidence limit check result

summary field (shown in the diagram below) which indicates if any of the limits on all active confidence sources for

a particular channel were exceeded or not. This is a 16-bit field, stored in the least-significant 16 bits of a UINT32

variable.

0 = Confidence Data within Limits

1 = Confidence Data Limit

exceeded for CH 15

0 = Confidence Data

within Limits

1 = Confidence Data

Limit exceeded for CH 0

31 015

MSW

(Unused)

LSW

(Confidence Limit exceeded status)

Confidence Limit Check Result summary (Available per Analog Board)

A detailed confidence limit check result (shown in the diagram below) is also available which returns two bits per

channel per confidence source – that is, MAX Limit Exceeded and MIN Limit Exceeded, per channel, per

confidence source. There is one UINT32 entry per bridge channel in the bridge scanlist. This UINT32 has two bits

per confidence source (CONF_NUM_SRC sources per bridge channel), one to represent MAX limit exceeded and

one to represent MIN limit exceeded. The MSW (lower CONF_NUM_SRC of the upper 16-bits) represent the MAX

Limit Exceeded status for each of the CONF_NUM_SRC confidence sources, and the LSW (lower

CONF_NUM_SRC bits of the lower 16-bits) represent the MIN Limit Exceeded status for each of the

CONF_NUM_SRC confidence sources. Bit 0 represents the MIN Limit Exceeded status for source 0. Bit 16

represents the MAX Limit Exceeded status for source 0. Bit (CONF_NUM_SRC-1) represents the MIN Limit

Exceeded status for source (CONF_NUM_SRC-1). Bit (16+CONF_NUM_SRC-1) represents the MAX Limit

Exceeded status for source CONF_NUM_SRC. The rest of the sources follow the same pattern.

VTI Instruments Corp.

246 EX1629 Command Set

0 = Conf. data is less

than the MAX for

Conf. Source 0

1 = Conf. data is

greater than the MAX

for Conf. Source 0

0 = Conf. data is

greater than the MIN

for Conf. Source 0

1 = Conf. data is less

than the MIN for

Conf. Source 0

31 015

MSW

(MAX Limit exceeded status)

LSW

(MIN Limit exceeded status)

Confidence Limit Check Detailed Result (Available per Bridge channel)

NOTE The source-to-bit mapping is constant, regardless of confidence scanlist configuration. For

example, whether or not sources 0 and 1 are enabled in the confidence scanlist, for instance,

source 2’s MIN Limit Exceeded Bit and MAX Limit Exceeded Bit are always bits 2 and 18,

respectively.

The confidence source mapping follows the same ordering as the source # define in vtex1629.h i.e. if sources 3, 8,

and 10 are selected then they are reported in that order. Confidence sources that are not part of the confidence

scanlist are not reported and will have their bit-fields set to 0.

Confidence values are reported at a maximum frequency of 500 Hz. This mode is supported up to 1 kHz sampling

rate. Hence, at 1 kHz, every other packet will contain confidence information. The datapage size is 248 words when

it has full confidence information i.e. confidence data and full limit check values, and is 24 words when it has no

confidence information. Hence, the total data rate = ((248+24)/2)*4*8*1000 samples/second= 4.352 Mb/s.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 confSrcEnum = 0;

ViInt32 numChannels = MAX_NUMBER_OF_CHANNELS;

ViInt32 channels[MAX_NUMBER_OF_CHANNELS];

ViReal64 minArr[MAX_NUMBER_OF_CHANNELS];

ViReal64 maxArr[MAX_NUMBER_OF_CHANNELS];

int i = 0;

for(i = 0; i < MAX_NUMBER_OF_CHANNELS; i++) {

 channels[i] = i;

 minArr[i] = (-2.0);

 maxArr[i] = 4.0;

}

status = vtex1629_set_confidence_limit(instrumentHandle,

 confSrcEnum,

 numChannels,

 channels,

 minArr,

 maxArr);

www.vtiinstruments.com

EX1629 Command Set 247

vtex1629_set_confidence_reporting_mode

FUNCTION PROTOTYPE

ViStatus vtex1629_set_confidence_reporting_mode (ViSession vi, ViInt32 mode);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

mode = sets the reporting mode for confidence limit checking. Valid input values: 0 through 2.

DATA ITEM RESET VALUE

mode = VTEX1629_CONF_LIMIT_DISABLE_REPORT (0)

DESCRIPTION

This function sets the reporting mode for confidence limit checking. Valid input values for the mode parameter are

as follows:

Decimal

Value

Hex

Value
#define Symbol mode Description

0 0x00 VTEX1629_CONF_LIMIT_DISABLE_REPORT Reporting disabled

1 0x01 VTEX1629_CONF_LIMIT_SUMMARY_REPORT_ONLY Summary report mode selected

2 0x02 VTEX1629_CONF_LIMIT_DETAILED_REPORT Detailed report mode selected

If set to VTEX1629_CONF_LIMIT_DISABLE_REPORT, the EX1629 will not collect confidence limit checking

data. If set to VTEX1629_CONF_LIMIT_SUMMARY_REPORT_ONLY, an array will be created which indicates

the channels that exceeded their limits. VTEX1629_CONF_LIMIT_DETAILED_REPORT, by contrast, provides an

array that indicates if the minimum or maximum limit of a channel has been exceeded.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 mode = VTEX1629_CONF_LIMIT_SUMMARY_REPORT_ONLY;

status = vtex1629_set_confidence_reporting_mode(instrumentHandle, mode);

VTI Instruments Corp.

248 EX1629 Command Set

vtex1629_set_dio_bank0_direction

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_bank0_direction (ViSession vi, ViInt32 direction);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

direction = an integer input value indicating the desired direction of bank zero of the digital I/O. Valid input values:

0 or 1.

DATA ITEM RESET VALUE

direction = 0 (input)

DESCRIPTION

This function sets the direction of bank zero of the digital I/O as input or output. The direction parameter is defined

as follows:

VTEX1629_DIO_DIRECTION_IN (0) = input VTEX1629_DIO_DIRECTION_OUT (1) = output

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_dio_bank0_direction(instrumentHandle,

 VTEX1629_DIO_DIRECTION_OUT);

www.vtiinstruments.com

EX1629 Command Set 249

vtex1629_set_dio_bank0_pullup

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_bank0_pullup (ViSession vi, ViInt32 pullup);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pullup = an integer input value that indicates the desired pull-up mode for bank zero of the digital I/O. Valid input

values: 0 or 1.

DATA ITEM RESET VALUE

pullup = 0 (passive pull-up mode)

DESCRIPTION

This function sets the pull-up mode for bank zero of the digital I/O to active or passive. The pullup parameter is

defined as follows:

VTEX1629_PASIVE_PULLUP (0) = passive pull-up mode

VTEX1629_ACTIVE_PULLUP(1) = active pull-up mode

NOTE Active versus passive pullup applies only to banks that are in output mode.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_dio_bank0_pullup(instrumentHandle,

 VTEX1629_ACTIVE_PULLUP);

VTI Instruments Corp.

250 EX1629 Command Set

vtex1629_set_dio_bank1_direction

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_bank1_direction (ViSession vi, ViInt32 direction);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

direction = an integer input value indicating the desired direction of bank one of the digital I/O. Valid input values:

0 or 1.

DATA ITEM RESET VALUE

direction = 0 (input)

DESCRIPTION

This function sets the direction of bank one of the digital I/O as input or output. The direction parameter is defined

as follows:

VTEX1629_DIO_DIRECTION_IN (0) = input VTEX1629_DIO_DIRECTION_OUT (1) = output

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_dio_bank1_direction(instrumentHandle,

 VTEX1629_DIO_DIRECTION_OUT);

www.vtiinstruments.com

EX1629 Command Set 251

vtex1629_set_dio_bank1_pullup

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_bank1_pullup (ViSession vi, ViInt32 pullup);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

pullup = an integer input value that indicates the desired pull-up mode for bank one of the digital I/O. Valid input

values: 0 or 1.

DATA ITEM RESET VALUE

pullup = 0 (passive pull-up mode)

DESCRIPTION

This function sets the pull-up mode for bank one of the digital I/O to active or passive. The pullup parameter is

defined as follows:

VTEX1629_PASIVE_PULLUP (0) = passive pull-up mode

VTEX1629_ACTIVE_PULLUP(1) = active pull-up mode

NOTE Active versus passive pullup applies only to banks that are in output mode.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_dio_bank1_pullup(instrumentHandle,

 VTEX1629_ACTIVE_PULLUP);

VTI Instruments Corp.

252 EX1629 Command Set

vtex1629_set_dio_config_events

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_config_events (ViSession vi, ViInt32 inputLine, ViInt32 inputTrigType, ViInt32

numActions, ViInt32 _VI_FAR outputLineArr[], ViInt32 _VI_FAR outputActionTypeArr[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

inputLine = defines the DIO input line whose configuration is being queried. Valid input values: 0 through 7.

inputTrigType = defines the input trigger type. Valid input values: 0 (high-to-low transition) or 1 (low-to-high

transition).

numActions = defines the size of the outputLineArr[] and outputActionTypeArr[] arrays. Valid input values: 0

through 8.

outputLineArr[] = an integer array containing a list of digital output lines that are affected by the inputLine and

inputTrigType combination. Valid input values: 0 through 7.

outputActionTypeArr[] = an integer array containing a list of the output action that will occur based on the

inputLine and inputTrigType parameters. Valid input values: 0 through 3.

DATA ITEM RESET VALUE

pullup = 0 (passive pull-up mode)

DESCRIPTION

This function sets the conditions under which DIO event transitions will occur.

The numActions parameter defines the size of both the outputLineArr[] and outputActionTypeArr[] arrays.

Although any value 0 through 8 is acceptable, to avoid possible errors, it is recommended that this parameter be set

to 8.

The outputActionTypeArr[] parameter is an array which contains a list of output actions that will occur based on

events that occur on the specified inputLine. Note that each element of this array corresponds to the equivalent

index in the outputLineArr[] parameter. For example, the action type at element i in this array corresponds to (i.e.

will occur on) the line designated in element i of the outputLineArr[] array. This parameter has the following

acceptable values:

Decimal

Value

Hex

Value
#define Symbol

outputActionTypeArr

Description
0 0x00 DO_LOW Low

1 0x01 DO_HIGH High

2 0x02 DO_PULSE Pulse

3 0x03 DO_TOGGLE Toggle

The DIO Event-Action items are saved in the configuration XML file as shown below:

<dioeventactions_0>

 <numActions> x </numActions>

 <inputLine> x </inputLine>

 <inputTriggerType> x </inputTriggerType>

 <outputLine_0> x </outputLine_0>

 :

 <outputLine_7> x </outputLine_7>

</dioeventactions_0>

:

<dioeventactions_15>

:

</dioeventactions_15>

www.vtiinstruments.com

EX1629 Command Set 253

EXAMPLE

ViSession instrumentHandle;

ViStatus status = VI_SUCCESS;

ViInt32 inputLine = 0;

ViInt32 inputTrigType = 0;

ViInt32 numActions = MAX_DIO_CHANNELS;

ViInt32 outputLineArr[MAX_DIO_CHANNELS];

ViInt32 outputActionTypeArr[MAX_DIO_CHANNELS];

ViInt32 i = 0;

for(i = 0; i < MAX_DIO_CHANNELS; i++) {

 outputLineArr[i] = i;

 outputActionTypeArr[i] = 0;

}

status = vtex1629_set_dio_config_events(instrumentHandle,

 inputLine,

 inputTrigType,

 numActions,

 outputLineArr,

 outputActionTypeArr);

VTI Instruments Corp.

254 EX1629 Command Set

vtex1629_set_dio_output

FUNCTION PROTOTYPE

ViStatus vtex1629_set_dio_output (ViSession vi, ViInt32 dioOut);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

dioOut = an integer input value indicating the programmed output state of the digital I/O. See the Description below

for more information concerning this parameter. Valid input values: 0 to 65535.

DATA ITEM RESET VALUE

dioOut = 0

DESCRIPTION

This function sets the programmed output state for both digital I/O banks. The dioOut parameter is an integer value

that represents the desired state of the digital I/O. This binary value is constructed through the assignment of the

eight most significant bits to the eight channels of bank one (channels 8-15) and the eight least significant bits to the

eight channels of bank zero (channels 0-7). This is illustrated below.

bank one

channel #

bank zero

dioOut

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

For example, if a user wants to configure digital I/O channels 2 and 3 of bank zero and digital I/O channels 14 and

15 of bank one as high outputs, then dioOut should be set to the following:

dioOut = 11000000 00001100b → 0xC00C → 49164

NOTE The control of the digital I/O programmed output state and its direction are disjoint operations.

Thus, the setting of a nonzero output state only affects its actual state if the direction of the

appropriate bank is set to output. This is done with the vtex1629_set_dio_bank0_direction and

vtex1629_set_dio_bank1_direction functions.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_dio_output(instrumentHandle, 0x0000C00C);

www.vtiinstruments.com

EX1629 Command Set 255

vtex1629_set_EU_conversion

FUNCTION PROTOTYPE

ViStatus vtex1629_set_EU_conversion (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels,

ViInt32 EUConversionType);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the EU conversion type will be set.

Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

EUConversionType = an integer input value indicating the desired type of EU conversion for the indicated

channels. See Description below for more information. Valid input values: 0 to 10.

DATA ITEM RESET VALUE

EUConversionType = 0 (voltage)

DESCRIPTION

This function sets the EU conversion type for a given list of channels. The EUConversionType parameter values

correspond to the following conversion types:

Decimal

Value

Hex

Value
#define Symbol EU ConversionType Description

0 0x00 VTEX1629_EUCONV_VOLT_OUTPUT Voltage

1 0x01 VTEX1629_EUCONV_QTR_BRIDGE_120 Quarter-Bridge 120

2 0x02 VTEX1629_EUCONV_QTR_BRIDGE_350 Quarter-Bridge 350

3 0x03 VTEX1629_EUCONV_QTR_BRIDGE_USER Quarter-Bridge User

4 0x04 VTEX1629_EUCONV_HALF_BRIDGE_BEND Half-Bridge Bending

5 0x05 VTEX1629_EUCONV_HALF_BRIDGE_POIS Half-Bridge Poisson

6 0x06 VTEX1629_EUCONV_FULL_BRIDGE_BEND Full-Bridge Bending

7 0x07 VTEX1629_EUCONV_FULL_BRIDGE_POIS Full-Bridge Poisson

8 0x08 VTEX1629_EUCONV_FULL_BRIDGE_BPOIS Full-Bridge Bending Poisson

9 0x09 VTEX1629_EUCONV_RATIOMETRIC Ratiometric

10 0x0A VTEX1629_EUCONV_LINEAR Linear

Setting the EU Conversion for a channel automatically configures the completion resistor and input multiplexer for

the most common usage of the specified EU Conversion. See the Engineering Unit (EU) Conversion section in

Section 3 for more details.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0, 1, 2, 3, 4, 5, 6, 7};

ViInt32 numberOfChannels = 8;

…

/*

 configure first 8 channels for quarter bridge, 120 ohm mode

*/

status = vtex1629_set_EU_conversion(instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_EUCONV_QTR_BRIDGE_120);

VTI Instruments Corp.

256 EX1629 Command Set

vtex1629_set_euconv_dynamic_excitation_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_set_euconv_dynamic_excitation_enabled (ViSession vi, ViInt32 channnelsArraySize, ViInt32

_VI_FAR channels[], ViBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channelsArraySize = the size of the channel[] array. Valid input values: VTEX1629_MIN_SCANLIST_LENGTH

(1) to VTEX1629_MAX_SCANLIST_LENGTH (48).

channel[] = an integer input array that specifies the channel for which the configuration will be returned. Valid input

values: 0 to 47.

enabled = a Boolean input value indicating whether dynamic excitation EU is enabled on the listed channels. If

enabled equals VI_TRUE, then dynamic excitation EU will be enabled on the channels listed in the channels[]

array.

DATA ITEM RESET VALUE

enabled = VI_TRUE (1)

DESCRIPTION

This function sets the dynamic excitation EU conversion state. In this mode of operation, the EX1629 uses the

excitation voltage measured by the confidence ADC (in real time) in its calculations. This mode is available for

bridge sampling frequencies (fs) less than or equal to 1 kHz. While in this mode, it is advised to give the confidence

filters at least 1.5 s to settle, from the time the confidence source for excitation voltage is enabled or the excitation

value is changed.

The vtex1629_measure_excitation_voltage interface uses the confidence subsystem to measure the excitation

voltage. It returns these voltages to the calling function. Optionally, it can update the excitation voltage value used

for the strain EU conversion. The dynamic excitation EU conversion is slightly different. It is a mode of operation

that essentially does the same operations as vtex1629_measure_excitation_voltage, measuring the excitation voltage

using the confidence subsystem and updating the excitation voltage value used in the EU conversion in real-time.

This is a Boolean mode of operation, selectable per channel. If the user enables this mode, the set excitation voltage

EU function should return an error (users should not be able to manually set the excitation voltage EU value when in

this automatic mode). If the user queries the excitation voltage EU value, the result is the latest, real-time value.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channelsArraySize = MAX_CHANNELS;

ViInt32 channels[MAX_CHANNELS];

ViBoolean set_enabled = VI_TRUE;

…

status = vtex1629_set_euconv_dynamic_excitation_enabled(vi,

 channelsArraySize,

 channels,

 set_enabled);

www.vtiinstruments.com

EX1629 Command Set 257

vtex1629_set_euconv_excitation

FUNCTION PROTOTYPE

ViStatus vtex1629_set_euconv_excitation (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32

numberOfChannels, ViReal64 euConversionVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the EU conversion excitation

voltage will be set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

euConversionVoltage = a real input value, in volts, that indicates the value that should be used in EU conversions

for the excitation voltage. Valid input values: 0.00000 to +16.00000.

DATA ITEM RESET VALUE

euConversionVoltage = 0.000000

DESCRIPTION

This function sets the excitation voltage to be used in EU conversions for a particular list of channels.

NOTE The conventional method of providing a non-nominal value of the excitation voltage to the EU

conversion is to conduct an excitation voltage measurement using the

vtex1629_measure_excitation_voltage function. This function provides a manual method that is

normally only used for system diagnostic purposes.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

status = vtex1629_set_euconv_excitation(instrumentHandle,

 channels,

 numberOfChannels,

 2.0);

VTI Instruments Corp.

258 EX1629 Command Set

vtex1629_set_excitation

FUNCTION PROTOTYPE

ViStatus vtex1629_set_excitation (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels,

ViReal64 positiveExcitationVoltage, ViReal64 negativeExcitationVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the programmed excitation voltage

will be set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

positiveExcitationVoltage = a real input value, in volts, indicating the programmed positive excitation voltage.

Valid input values: 0.000000 through 8.000000.

negativeExcitationVoltage = a real input value, in volts, indicating the programmed negative excitation voltage.

Valid input values: -8.000000 through 0.000000.

DATA ITEM RESET VALUE

positiveExcitationVoltage = 0.000000 negativeExcitationVoltage = 0.000000

DESCRIPTION

This function sets the programmed excitation voltages for a given list of channels. The excitation value is quantized

with a 14-bit DAC. Hence, the actual value can be queried with the vtex1629_get_excitation function. Additionally,

the accuracy specifications (EX1629 Specifications) for the instrument require that the excitation voltage be

measured (see vtex1629_measure_excitation_voltage) prior to taking strain gage readings.

Providing separate positive and negative excitation supply control permits the mid-point of each half of the bridge to

be at a voltage other than 0. This is achieved by using asymmetric excitation voltages (e.g., +5.0 V and -1.0 V will

produce 2.0 V at the mid-point of each half of the bridge.

NOTES 1) Due to hardware limitations, the setting of excitation voltages with a magnitude less than

 100 mV may be imprecise. However, since the excitation voltage must be measured and the EU

 conversion variables updated prior to taking strain measurements, per the instrument

 specifications (EX1629 Specifications), this imprecision does not effect the accuracy of the

 strain gage readings.

 2) The control of the excitation voltage values and their enabling are separate operations. Thus,

 setting a non-zero value for either parameter does not guarantee that the excitation source is

 enabled. That must be set with the vtex1629_set_excitation_enabled function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

status = vtex1629_set excitation(instrumentHandle,

 channels,

 numberOfChannels,

 2.0,

 -2.0);

www.vtiinstruments.com

EX1629 Command Set 259

vtex1629_set_excitation_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_set_excitation_enabled (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32

numberOfChannels, ViBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the excitation voltage will be

enabled or disabled. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

enabled = a Boolean input value which controls the enabling or disabling of the excitation voltage for a given list of

channels. Valid input values: 0 or 1.

DATA ITEM RESET VALUE

enabled = 0

DESCRIPTION

This function enables or disables the excitation voltages for a list of channels. Setting the enabled parameter to

VI_TRUE (1) enables excitation voltages, while setting it to VI_FALSE (0) disables excitation voltages. An

excitation source that is not enabled will output 0 V, regardless of its programmed value (please see Note 1 of the

vtex1629_set_excitation function for information regarding excitation precision).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

status = vtex1629_set_excitation_enabled(instrumentHandle,

 channels,

 numberOfChannels,

 VI_TRUE);

VTI Instruments Corp.

260 EX1629 Command Set

vtex1629_set_gain

FUNCTION PROTOTYPE

ViStatus vtex1629_set_gain (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels, ViReal64

gain);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the gain will be set. Valid input

values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

gain = a real input value indicating the desired gain value for the given set of channels. Valid input values: 1.00,

10.0, or 100.0.

DATA ITEM RESET VALUE

gain = 1.0

DESCRIPTION

This function sets the signal conditioning gain for a given list of channels.

Decimal

Value

Hex

Value
#define Symbol gain Description

1 0x00 VTEX1629_GAIN_ONE 1

10 0x0A VTEX1629_GAIN_TEN 10

100 0x64 VTEX1629_GAIN_HUNDRED 100

NOTE While defined as a real parameter, gain has only three valid values, corresponding to discrete

hardware gain configurations. The gain cannot be arbitrarily set.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

status = vtex1629_set_gain(instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_GAIN_HUNDRED);

www.vtiinstruments.com

EX1629 Command Set 261

vtex1629_set_gauge_factor

FUNCTION PROTOTYPE

ViStatus vtex1629_set_gauge_factor (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32 numberOfChannels,

ViReal64 gageFactor);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the gage factor will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

gageFactor = a real input value indicating the desired gage factor.

DATA ITEM RESET VALUE

gageFactor = 2.000000

DESCRIPTION

This function sets the gage factor for a list of channels. This is one of the parameters used in EU conversion

calculations.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

status = vtex1629_set_gauge_factor(instrumentHandle,

 channels,

 numberOfChannels,

 2.01);

…

VTI Instruments Corp.

262 EX1629 Command Set

vtex1629_set_half_bridge_lead_wire_desensitization

FUNCTION PROTOTYPE

ViStatus vtex1629_set_half_bridge_lead_wire_desensitization (ViSession vi, ViInt32 channelsArraySize, ViInt32

_VI_FAR channels[], ViReal64 _VI_FAR factor[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channelsArraySize = the size of the channel[] array. Valid input values: VTEX1629_MIN_SCANLIST_LENGTH

(1) to VTEX1629_MAX_SCANLIST_LENGTH (48).

channel[] = an integer input array that specifies the channels to which the factor parameter will apply. Valid input

values: 0 to 47.

factor = an input array of values which set the desensitization error for the channels indicated in the channels[]

array. Valid input values are number greater than 1.

DATA ITEM RESET VALUE

factor = 1

DESCRIPTION

This function sets the lead wire desensitization factor for a given list of channels. The factor parameter is defined as

follows:

gage

lead

R

R
factor 1

where Rlead represents the resistance of the lead and Rgage is the resistance of the strain gage.

NOTE Early EX1629s do not have hardware which supports this functionality. Implementation of direct

lead wire measurement is not possible on first generation units.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channelsArraySize = MAX_CHANNELS;

ViInt32 channels[MAX_CHANNELS];

ViReal64 factor[MAX_CHANNELS];

ViInt32 i = 0;

for(i = 0; i < channelsArraySize; i++) {

 channels[i] = i;

}

status = vtex1629_set_half_bridge_lead_wire_desensitization(vi,

 channelsArraySize,

 channels,

 factor);

www.vtiinstruments.com

EX1629 Command Set 263

vtex1629_set_IIR_filter_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_set_IIR_filter_configuration (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32

numberOfChannels, ViInt32 filterType, ViReal64 cutoffFreq, ViInt32 transform, ViInt32 filterOrder);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the IIR filter configuration will be

set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

filterType = an integer input value indicating the type of filter to be used for the indicated channels. See Description

below for more information. Valid input values: 0, 1, or 2.

cutoffFreq = a real input value indicating the filter's cutoff frequency in hertz (Hz), which is only relevant for

Bessel and Butterworth filter types. See Description below for more information.

transform = an integer input value indicating the type of filter transform to be employed , which is only relevant for

Bessel and Butterworth filter types. Valid input values: 0 or 1.

filterOrder = an integer input value indicating the order of this filter. Valid input values: 1 to 10 for the Bessel

filter, 0 to 10 for the Butterworth filter.

DATA ITEM RESET VALUE

filterType = 1 (Butterworth) cutoffFreq = 10

transform = 0 (bilinear) filterOrder = 6

DESCRIPTION

This function configures the IIR filters for a given list of channels. The filterType parameter has three allowed

values:

Decimal

Value

Hex

Value
#define Symbol filterType Description

0 0x00 VTEX1629_IIR_FILT_NONE None

1 0x01 VTEX1629_IIR_FILT_BUTTERWORTH Butterworth

2 0x02 VTEX1629_IIR_FILT_BESSEL Bessel

The cutoffFreq parameter defines the cutoff (-3 dB) frequency for the low-pass filter indicated above. The EX1629

will locate this parameter in the range [fs/1000, fc max] (see Table B-1), where fs is the current sampling frequency.

Note that this value can change if the sampling frequency is altered. The actual value can be queried with the

vtex1629_get_IIR_filter_configuration function.

NOTE If the user sets the filter frequency a value below fs/1000 or higher than fc max, the EX1629 will

automatically set the filter frequency to fs/1000 or fc max, respectively. No error or warning is

provided when this occurs.

The transform parameter provides for two modes of transformation:

Decimal

Value

Hex

Value
#define Symbol transform Description

0 0x00 VTEX1629_TRANSFORM_BILINEAR Bilinear

1 0x01 VTEX1629_TRANSFORM_MATCHEDZ Matched-Z

The filterOrder parameter defines the desired order of the filter. When the filterType is set to Butterworth, there is

an additional option of 0. This corresponds to an automatic option, whereby the EX1629 will assign an order based

on an analog prototype Butterworth design given the sampling frequency, cutoff frequency, and a -200 dB

attenuation at the Nyquist frequency. The actual order can be determined using the

vtex1629_get_IIR_filter_configuration function.

VTI Instruments Corp.

264 EX1629 Command Set

NOTE When setting channel filters on the EX1629, it is highly recommended that the same filter setting

be used for each group of sixteen channels (0 through 15, 16 through 31, and 32 through 47) as

this ensures the tightest relative timing between channels. For more information on IIR filtering

delays, please see the Group Delay discussion in Appendix B.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

/*

configure IIR filtering on channel 0, with a 5th order Bessel filter with a cutoff

frequency of 50Hz, using the bilinear transform

*/

status = vtex1629_set_IIR_filter_configuration (instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_IIR_FILT_BESSEL,

 50.0,

 VTEX1629_TRANSFORM_BILINEAR,

 5);

…

// disable IIR filtering on channel 0

status = vtex1629_set_IIR_filter_configuration (instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_IIR_FILT_NONE,

 0.0,

 VTEX1629_TRANSFORM_BILINEAR,

 0);

www.vtiinstruments.com

EX1629 Command Set 265

vtex1629_set_input_multiplexer

FUNCTION PROTOTYPE

ViStatus vtex1629_set_input_multiplexer (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32

numberOfChannels, ViInt32 muxInValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels[] = an input integer array containing a list of channel numbers for which the linear scaling coefficients will

be set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

muxInValue = the input multiplexer source. Valid input values: 0 to 4

DATA ITEM RESET VALUE

muxInValue = 0

DESCRIPTION

This function sets the input multiplexer source. The muxInValue parameter can be set to the following values:

Decimal

Value

Hex

Value
#define Symbol muxInValue Description

0 0x00 VTEX1629_INPUTMUX_BRIDGE_TYPE_FULL Full Bridge

1 0x01 VTEX1629_INPUTMUX_BRIDGE_TYPE_HALF Half Bridge

2 0x02 VTEX1629_INPUTMUX_BRIDGE_TYPE_QUARTER Quarter Bridge

3 0x03 VTEX1629_INPUTMUX_BRIDGE_TYPE_CAL Cal

4 0x04 VTEX1629_INPUTMUX_BRIDGE_TYPE_GND Gnd

NOTE This function provides a manual method that is normally only used for specialized cases like doing

voltage measurements in quarter bridge mode. The vtex1629_set_EU_conversion command is the

preferred way of setting up the input mux, completion resistors, and the EU conversion.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

ViInt32 numberOfChannels = 1;

…

/*

configure input multiplexer for channel 0 to be in quarter bridge mode

*/

status = vtex1629_set_input_multiplexer (instrumentHandle,

 channels,

 numberOfChannels,

 VTEX1629_INPUTMUX_BRIDGE_TYPE_QUARTER);

VTI Instruments Corp.

266 EX1629 Command Set

vtex1629_set_lead_wire_resistance

FUNCTION PROTOTYPE

ViStatus vtex1629_set_lead_wire_resistance (ViSession vi, ViInt32 channelsArraySize, ViInt32 _VI_FAR

channels[], ViReal64 resistance);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channelsArraySize = the size of the channel[] array. Valid input values: VTEX1629_MIN_SCANLIST_LENGTH

(1) to VTEX1629_MAX_SCANLIST_LENGTH (48).

channel[] = an integer input array that specifies the channels to which the factor parameter will apply. Valid input

values: 0 to 47.

resistance = sets the lead wire resistance value. Valid input values are numbers greater than 0.

DATA ITEM RESET VALUE

resistance = 0.

DESCRIPTION

This function sets the resistance of the lead wire.

NOTE Early EX1629s do not have hardware which supports this functionality. Implementation of direct

lead wire measurement is not possible on first generation units.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channelsArraySize = MAX_CHANNELS;

ViInt32 channels[MAX_CHANNELS];

ViReal64 resistance;

ViInt32 i = 0;

for(i = 0; i < channelsArraySize; i++) {

 channels[i] = i;

}

memset(resistance, 0x00, sizeof(resistance));

status = vtex1629_set_lead_wire_resistance(vi,

 channelsArraySize,

 channels,

 resistance);

www.vtiinstruments.com

EX1629 Command Set 267

vtex1629_set_linearscaling_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_set_linearscaling_configuration (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32

numberOfChannels, ViReal64 m, ViReal64 b);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the linear scaling coefficients will

be set. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

m = a real input value indicating the gain factor, m, in the linear equation y = mx + b.

b = a real input value indicating the offset value, b, in the linear equation: y = mx + b.

DATA ITEM RESET VALUE

m = 2.000000 b = 0.000000

DESCRIPTION

This function sets the slope (m) and intercept (b) parameters for a channel when configured for linear EU

conversion (x being in volts).

NOTE The m parameter (slope) is stored in the same location as the gage factor and the b parameter

(intercept) is stored in the same location as the unstrained voltage. Since the linear scaling EU

conversion and the strain EU conversions are mutually exclusive, this is never an issue in practice.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {24};

…

status = vtex1629_set_linearscaling_configuration(instrumentHandle,

 channels,

 1,

 1.0,

 0.0);

VTI Instruments Corp.

268 EX1629 Command Set

vtex1629_set_lxi_limit_event_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_set_lxi_limit_event_enabled (ViSession vi, ViInt32 lxi, ViUInt32 enabled0,

ViUInt32 enabled1, ViUInt32 enabled2);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxi = the number of the LXI Trigger Bus line to configure. Valid input values: 0 to 7.

enabled1 = the limit mask for the channels 0 through 15, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

enabled2 = the limit mask for the channels 16 through 31, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

enabled3 = the limit mask for the channels 32 through 47, where the lower 16 bits are minimums for these channels,

while the upper 16 bits are maximums.

DATA ITEM RESET VALUE

Enabled0 = 0 Enabled1 = 0

Enabled2 = 0

DESCRIPTION

This function enables measurement channels for Limit Events on the specified LXI Trigger Bus line. Each of the

eight LXI Trigger Bus lines can have a minimum and/or maximum limit defined for any and all of the 48 bridge

measurement channels. When an over-limit condition occurs, the trigger line is driven high. Because the limit

comparison is performed after filtering, the group delay of the chosen filter also delays trigger assertion. When all

filters are disabled and at a sample rate of 1 kSa/s, the typical delay is 14 ms.

NOTE In order to set any bits in the three enabledX masks to 1, the line indicated by the lxi parameter

must be configured via vtex1629_set_lxibus_configuration with the inOut parameter equal to

VTEX1629_LXI_INPUT or an error message will be returned. This is because the triggers are

driven by the acquisition engine, rather than the main logic board. Additionally, tnhe

transmitionScope should be set to VTEX1629_LXI_INTERNAL_EXTERNAL so that the triggers

reach the rear panel.

Implemented in firmware version 1.4.0.

EXAMPLE

 ViStatus status;

status = vtex1629_set_lxi_limit_event_enabled(vi, 0, 0x10001, 0, 0);

 status = vtex1629_set_lxi_limit_event_enabled(vi, 1, 0, 0x10001, 0);

www.vtiinstruments.com

EX1629 Command Set 269

vtex1629_set_lxi_limit_event_latch

FUNCTION PROTOTYPE

ViStatus vtex1629_set_lxi_limit_event_latch (ViSession vi, ViInt32 latches);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

latches = an 8-bit mask that indicates which of the eight corresponding LXI Trigger Bus lines will be latched when

an over-limit condition is met.

DATA ITEM RESET VALUE

latches = 0

DESCRIPTION

This function sets LXI Trigger Bus lines that will be latched for LXI Limit Event outputs. When latching is enabled,

the trigger line is driven high when the first over-limit condition occurs and remains high until the instrument is reset

or until the next measurement sequence is initiated. When latching is disabled, the state of the trigger line is decided

once per scan and. when all chosen limit conditions are satisfied, the line is driven low. Implemented in firmware

version 1.4.0.

EXAMPLE

ViStatus status;

status = vtex1629_set_lxi_limit_event_latch(vi, 0x02);

VTI Instruments Corp.

270 EX1629 Command Set

vtex1629_set_lxibus_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_set_lxibus_configuration (ViSession vi, ViInt32 lxiLine, ViInt32 inOut, ViInt32

transmissionScope);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiLine = an integer input value that indicates which LXI Trigger Bus channel the function will configure. Valid

input values: 0 to 7.

inOut = an integer input value that indicates whether the specified LXI Trigger Bus channel will be configured for

input or output. Valid input values: 0 or 1.

transmissionScope = an integer input value indicating whether transmissions on the specified channel will be input

from an output to the external LXI bus, or will be kept internal to the EX1629. Valid input values: 0 or 1.

DATA ITEM RESET VALUE

inOut = 0 transmissionScope = 0

DESCRIPTION

This function configures several characteristics of a specific LXI Trigger Bus channel. Specifically, it configures

channel direction and the scope of transmissions.

Decimal

Value

Hex

Value
#define Symbol lxiLine Description

0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

The inOut parameter configures the direction of the LXI Trigger Bus channel. The permissible values indicate the

following:

Decimal

Value

Hex

Value
#define Symbol inOut Description

0 0x00 VTEX1629_LXI_INPUT Input

1 0x01 VTEX1629_LXI_OUTPUT Output

The transmissionScope parameter indicates whether the specified LXI channel is configured to communicate with

other devices on the external LXI bus or simply configured to communicate on the internal LXI bus. In the case of

an output, the transmissionScope indicates whether the output will be driven out onto the external LXI bus in

addition to being driven on the internal LXI bus. In the case of an input, the transmissionScope determines if the

input is read from the external bus or read from the internal bus. The permissible values indicate the following:

Decimal

Value

Hex

Value
#define Symbol transmissionScope Description

0 0x00 VTEX1629_LXI_INTERNAL LXI bus signal routed internally

1 0x01 VTEX1629_LXI_INTERNAL_EXTERNAL LXI bus signal routed internally and

externally

www.vtiinstruments.com

EX1629 Command Set 271

EXAMPLE

ViSession master_instrumentHandle;

ViSession slave_instrumentHandle;

ViStatus status;

…

/*

 portion of configuring a master instrument for distribution of clock and sync

signals (LXI0, LXI1) for a master/slave configuration */

status = vtex1629_set_lxibus_configuration(master_instrumentHandle,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

status = vtex1629_set_lxibus_configuration(master_instrumentHandle,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_OUTPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

/* portion of configuring a slave instrument for distribution of clock and sync

signals (LXI0, LXI1) for a master/slave configuration */

status = vtex1629_set_lxibus_configuration(slave_instrumentHandle,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

status = vtex1629_set_lxibus_configuration(slave_instrumentHandle,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_INPUT,

 VTEX1629_LXI_INTERNAL_EXTERNAL);

VTI Instruments Corp.

272 EX1629 Command Set

vtex1629_set_lxibus_output

FUNCTION PROTOTYPE

ViStatus vtex1629_set_lxibus_output (ViSession vi, ViInt32 output);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

output = an integer input value that configures the output state of each LXI Trigger Bus channel. Valid input values:

0 to 255.

DATA ITEM RESET VALUE

output = 0

DESCRIPTION

This function configures the output state of each of the LXI Trigger Bus channels. This function only sets what will

be output by the bus, but does not actually enable the outputs. See vtex1629_set_lxibus_configuration for

information on enabling the output.

The output parameter is an 8-bit integer where the least significant bit of the integer corresponds to LXI Trigger

Bus channel zero and the most significant bit corresponds to LXI Trigger Bus channel seven. For example, if a user

wants to configure the LXI Trigger Bus to output high signals on channels zero and seven and low on all the rest of

the LXI Trigger Bus channels, then this corresponds to the 8-bit number 10000001b → 0x81→ 129.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_lxibus_output(instrumentHandle, 0x81);

www.vtiinstruments.com

EX1629 Command Set 273

vtex1629_set_pattern_arm_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_set_pattern_arm_configuration (ViSession vi, ViInt16 _VI_FAR lxiTrigLines[], ViInt16

_VI_FAR dioLines[], ViBoolean timer, ViInt32 lxiOutput, ViInt32 lxiInput);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiTrigLines[] = an integer input array specifying the LXI Trigger Bus channel states that will be accepted as arm

events. This includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

dioLines = an integer input array specifying the digital I/O channels that will be accepted as arm events. This

includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

timer = a Boolean input value that indicates whether the EX1629 will generate ARM events based on the internal

timer. Setting this parameter to VI_TRUE (1) will cause arm events to be generated. Valid input values: VI_FALSE

(0) or VI_TRUE(1).

lxiOutput = this parameter specifies which LXI Trigger Bus line will be used to output the ARM event signals.

Valid input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN,

VTEX1629_LXI_LINE_NONE.

lxiInput = this parameter specifies which LXI Trigger Bus line will be used to input the ARM event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

lxiTrigLines[] = [0, 0, 0, 0] dioLines = [0, 0, 0, 0]

timer = 0 lxiOutput= 8 (VTEX1629_LXI_LINE_NONE)

lxiInput = 8 (VTEX1629_LXI_LINE_NONE)

DESCRIPTION

This function configures the EX1629’s pattern arm operation mode. This mode allows the EX1629 to accept arm

events from multiple sources. While in pattern mode, the instrument can accept arm events from the LXI Trigger

Bus, digital I/O bus, internal timer, and the software ARM command. There is no need to explicitly enable the

software arm source – it is always available for use while in pattern arm mode.

The lxiTrigLines[] parameter is an array of four elements with each array element being an unsigned 8-bit integer.

Each bit of this integer corresponds to an LXI Trigger Bus channel. Specifically, the least significant bit corresponds

to LXI Trigger Bus channel zero and the most significant bit corresponds to LXI Trigger Bus channel seven. Each

element specifies which events the EX1629 will accept as arm events on the LXI Trigger Bus for different edges or

states. If a user wants to specify a channel to for arm events, the corresponding bit should be set to “1”. The

individual array elements specify the following:

0 = lxiTrigLines (Positive Edge) 1 = lxiTrigLines (Negative Edge)

2 = lxiTrigLines (Positive Level) 3 = lxiTrigLines (Negative Level)

For example, if a user wishes to arm the EX1629 on a negative edge signal coming into the LXI Trigger Bus on

channel 0 and a positive level on channels 3 and 6, then: lxiTrigLines[1] = 00000001b = 0x01 = 1 and

lxiTrigLines[2] = 01001000b = 0x48 = 72.

The dioLines parameter is an array of four elements with each array element being an unsigned 16-bit integer. Each

bit of this integer corresponds to a digital I/O channel. Specifically, the least significant bit corresponds to a digital

I/O channel zero, and the most significant bit corresponds to digital I/O channel seven. Each element specifies which

events the EX1629 will accept as arm events on the digital I/O bus for different clock edges or states. If a user wants

to specify a channel to for arm events, the corresponding bit should be set to “1”. Specifically, the individual array

elements specify the following:

0 = dioLines[0] Positive Edge 1 = dioLines[1] Negative Edge

2 = dioLines[2] Positive Level 3 = dioLines[3] Negative Level

VTI Instruments Corp.

274 EX1629 Command Set

For example, if a user wishes to arm the EX1629 on a negative edge signal coming into the digital I/O bus on

channels 0 and 3, then: dioLines[1] = 00001001b = 0x0009 = 9.

With regard to the lxiOutput parameter, it is important to note that since the EX1629 can simultaneously accept arm

events from multiple sources, it is necessary to reserve one of the LXI Trigger Bus line to communicate these events

within the device and to other devices in a multi-device configuration. If the EX1629 is a master driving arm to

peripheral slaves, the lxiOutput parameter specifies the LXI Trigger Bus line that will be used to communicate the

ARM event to the slave devices. It is also necessary to configure this LXI Trigger Bus line to be used as an output

(see vtex1629_set_lxibus_configuration).

The lxiInput parameter specifies which trigger bus line the master device uses for its arm events. Although this

parameter is often set to the same value as lxiOutput, there are cases where it might be set to a different value. For

instance, when the device is configured as a master device in a star multi-box configuration, the master might output

the ARM event on LXI2 and input it back in on LXI6.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

8 0x08 VTEX1629_LXI_LINE_NONE None

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 triglines[VTEX1629_MAX_LINES];

ViInt16 diolines[VTEX1629_MAX_LINES];

…

triglines[0] = 0x00;

triglines[1] = 0x01;

triglines[2] = 0x48;

triglines[3] = 0x00;

diolines[0] = 0x0000;

diolines[1] = 0x0009;

diolines[2] = 0x0000;

diolines[3] = 0x0000;

status = vtex1629 vtex1629_set_pattern_arm_configuration (instrumentHandle,

 triglines,

 diolines,

 VI_FALSE,

 VTEX1629_LXI_LINE_TWO,

 VTEX1629_LXI_LINE_TWO);

www.vtiinstruments.com

EX1629 Command Set 275

vtex1629_set_pattern_trig_configuration

FUNCTION PROTOTYPE

ViStatus vtex1629_set_pattern_trig_configuration (ViSession vi, ViInt16 _VI_FAR lxiTrigLines[], ViInt16

_VI_FAR dioLines[], ViBoolean timer, ViInt32 lxiOutput, ViInt32 lxiInput);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

lxiTrigLines[] = an integer input array specifying the LXI Trigger Bus channel states that will be accepted as trigger

events. This includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

dioLines = an integer input array specifying the digital I/O channels that will be accepted as trigger events. This

includes both levels (high and low) and edges (rising and falling). Valid input values: 0 to 255.

timer = a Boolean input value that indicates whether the EX1629 will generate TRIG events based on the internal

timer. Setting this parameter to VI_TRUE(1) will cause TRIG events to be generated. Valid input values:

VI_FALSE(0) or VI_TRUE(1).

lxiOutput = this parameter specifies which LXI Trigger Bus line will be used to output the trigger event signals.

Valid input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN,

VTEX1629_LXI_LINE_NONE.

lxiInput = this parameter specifies which LXI Trigger Bus line will be used to input the trigger event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

lxiTrigLines[] = [0, 0 ,0 ,0] dioLines = [0, 0 ,0 ,0]

timer = 0 lxiOutput = VTEX1629_LXI_LINE_NONE

lxiInput = VTEX1629_LXI_LINE_NONE

DESCRIPTION

This function configures the EX1629’s pattern trigger mode of operation. This mode allows the EX1629 to accept

trigger events from multiple sources. While in pattern mode, the instrument can accept trigger events from the LXI

Trigger Bus, digital I/O bus, internal timer, and the software trigger command. There is no need to explicitly enable

the software trigger source – it is always available for use while in pattern trigger mode. All of the conditions

specified must be met for a trigger event to be generated. If multiple conditions are specified for the same LXI or

DIO line, any of the conditions for that line can be met to satisfy the trigger pattern requirements for that line.

The lxiTrigLines[] parameter is an array of four elements with each array element being an unsigned 8-bit integer.

Each bit of this integer corresponds to an LXI Trigger Bus channel. Specifically, the least significant bit corresponds

to LXI Trigger Bus channel zero and the most significant bit corresponds to LXI Trigger Bus channel seven. Each

element specifies which events the EX1629 will accept as trigger events on the LXI Trigger Bus for different edges

or states. If a user wants to specify a channel to for trigger events, the corresponding bit should be set to “1”. The

individual array elements specify the following:

0 = lxiTrigLines (Positive Edge) 1 = lxiTrigLines (Negative Edge)

2 = lxiTrigLines (Positive Level) 3 = lxiTrigLines (Negative Level)

For example, if a user wishes to trigger the EX1629 on a negative edge signal coming into the LXI Trigger Bus on

channel 0 and a positive level on channels 3 and 6, then: lxiTrigLines[1] = 00000001b = 0x01 = 1 and

lxiTrigLines[2] = 01001000b = 0x48 = 72.

VTI Instruments Corp.

276 EX1629 Command Set

The dioLines parameter is an array of four elements with each array element being an unsigned 8-bit integer. Each

bit of this integer corresponds to a digital I/O channel. Specifically, the least significant bit corresponds to a digital

I/O channel zero, and the most significant bit corresponds to digital I/O channel seven. Each element specifies which

events the EX1629 will accept as trigger events on the digital I/O bus for different clock edges or states. If a user

wants to specify a channel for trigger events, the corresponding bit should be set to “1”. Specifically, the individual

array elements specify the following:

0 = dioLines[0] Positive Edge 1 = dioLines[1] Negative Edge

2 = dioLines[2] Positive Level 3 = dioLines[3] Negative Level

For example, if a user wishes to trigger the EX1629 on a negative edge signal coming into the digital I/O bus on

channels 0 and 3, then: dioLines[1] = 00001001 = 0x09 = 9.

With regard to the lxiOutput parameter, it is important to note that since the EX1629 can simultaneously accept

trigger events from multiple sources, it is necessary to reserve one of the LXI Trigger Bus line to communicate these

events within the device and to other devices in a multi-device configuration. If the EX1629 is a master driving

trigger events to peripheral slaves, the lxiOutput parameter specifies the LXI Trigger Bus line that will be used to

communicate the trigger event to the slave devices. It is also necessary to configure this LXI Trigger Bus line to be

used as an output (see vtex1629_set_lxibus_configuration).

The lxiInput parameter specifies which trigger bus line the master device uses for its trigger events. Although this

parameter is often set to the same value as lxiOutput, there are cases where it might be set to a different value. For

instance, when the device is configured as a master device in a star multi-box configuration, the master might output

the trigger event on LXI2 and input it back in on LXI6.

Decimal

Value

Hex

Value
#define Symbol

lxiOutput/lxiInput

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

8 0x08 VTEX1629_LXI_LINE_NONE None

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 triglines[VTEX1629_MAX_LINES];

ViInt16 diolines[VTEX1629_MAX_LINES];

…

triglines[0] = 0x00;

triglines[1] = 0x01;

triglines[2] = 0x48;

triglines[3] = 0x00;

diolines[0] = 0x0000;

diolines[1] = 0x0009;

diolines[2] = 0x0000;

diolines[3] = 0x0000;

status = vtex1629 vtex1629_set_pattern_trigger_configuration (instrumentHandle,

 triglines,

 diolines,

 VI_FALSE,

 VTEX1629_LXI_LINE_THREE,

 VTEX1629_LXI_LINE_THREE);

www.vtiinstruments.com

EX1629 Command Set 277

vtex1629_set_poisson_ratio

FUNCTION PROTOTYPE

ViStatus vtex1629_set_poisson_ratio (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels,

ViReal64 poissonRatio);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the Poisson ratio will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

poissonRatio = a real input value indicating the Poisson ratio to be set for all the given channels.

DATA ITEM RESET VALUE

poissonRatio = 0.300000

DESCRIPTION

This function sets the Poisson ratio for a list of channels. This is one of the parameters used in some strain gage EU

conversion calculations.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0,1,2,3};

…

status = vtex1629_set_poisson_ratio(instrumentHandle, channels, 4, 0.301);

VTI Instruments Corp.

278 EX1629 Command Set

vtex1629_set_sample_clock_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_sample_clock_source (ViSession vi, ViInt32 sampleClockMode, ViInt32 inLine, ViInt32

outLine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

sampleClockMode = an integer input value that determines whether the EX1629 is operating as a master or slave.

Valid input values: VTEX1629_SAMP_CLK_MODE_MASTER or VTEX1629_SAMP_CLK_MODE_SLAVE.

inLine = an integer input value that determines the trigger bus line configured to use for sample clock input. Valid

input values: VTEX1629_LXI_LINE_ZERO, VTEX1629_LXI_LINE_FOUR, or VTEX1629_LXI_LINE_NONE.

outLine = an integer input value that determines the trigger bus line configured to output sample clock events. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

inLine = VTEX1629_LXI_LINE_NONE outLine = VTEX1629_LXI_LINE_NONE

sampleClockMode = VTEX1629_SAMP_CLK_MODE_MASTER

DESCRIPTION

This function sets the sample clock source for the device.

The sampleClockMode parameter indicates whether the EX1629 is configured as a master device that outputs a

sample clock for itself and other devices or as a slave device that receives its sample clock from another device.

When operating in standalone mode, sampleClockMode should be configured as a master.

The inLine parameter indicates the LXI line that should be used as the sample clock input. This value is applicable

regardless of whether the device is configured as a master or a slave. When inLine is set to

VTEX1629_LXI_LINE_NONE, a special, internal sample clock line is used.

The outLine parameter indicates the LXI line that should be used as the sample clock output. This value is only

applicable when the device is configured as a master. When outLine is set to VTEX1629_LXI_LINE_NONE, the

sample clock is output on a special, internal sample clock line. When in Slave mode, no output line can be used, so

VTEX1629_LXI_LINE_NONE must be specified.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

8 0x08 VTEX1629_LXI_LINE_NONE None

When in master mode, the inLine and outLine values may be the same or they may be different. One case where

they would be different is if the master is outputting the sample clock on one LXI line and receiving it back in from

an LXI Trigger Bus hub on another line. When in standalone mode, inLine and outLine will always be the same.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_sample_clock_source(instrumentHandle,

 VTEX1629_SAMP_CLK_MODE_MASTER,

 VTEX1629_LXI_LINE_ZERO,

 VTEX1629_LXI_LINE_ZERO);

www.vtiinstruments.com

EX1629 Command Set 279

vtex1629_set_sample_count

FUNCTION PROTOTYPE

ViStatus vtex1629_set_sample_count (ViSession vi, ViInt32 preTrigSampleCount, ViInt32

postTrigSampleCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

preTrigSampleCount = an integer input value indicating the desired pre-trigger sample count. Valid input values:

0 to 400000000.

postTrigSampleCount = an integer input value indicating the desired post-trigger sample count. Valid input values:

0 to 400000000.

DATA ITEM RESET VALUE

preTrigSampleCount = 0 postTrigSampleCount = 1000

DESCRIPTION

This function sets both the pre-trigger and the post-trigger sample count for the EX1629. Specifically, this is the

number of samples that will be taken per trigger event. If the postTrigSampleCount is set to “0” the sample count

will be infinite.

NOTE Pre-trigger sampling is not currently supported. Setting the preTrigSampleCount to a value other

than zero (0) will result in an error.

EXAMPLE

ViStatus status;

…

status = vtex1629_set_sample_count(instrumentHandle, 0, 10000);

VTI Instruments Corp.

280 EX1629 Command Set

vtex1629_set_sample_frequency

FUNCTION PROTOTYPE

ViStatus vtex1629_set_sample_frequency (ViSession vi, ViReal64 sampleFrequency)

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

sampleFrequency = a real input value that specifies, in hertz (Hz), the desired sampling frequency of the EX1629.

DATA ITEM RESET VALUE

sampleFrequency = 1000.00000

DESCRIPTION

This function sets the sampling frequency of all channels of the EX1629. The EX1629 offers a discrete number of

sample frequencies. Programmed values that fall between valid values will be rounded to the closest valid value. See

Sampling Rate in Section 3 for a list of the valid values. The actual sample frequency can be queried with the

vtex1629_get_sample_frequency command.

As changing the sampleFrequency parameter effects the actual values of the arm and trigger delay calls, it is best

practice to perform vtex1629_get_arm_delay and vtex1629_get_trigger_delay calls after making a

vtex1629_set_sample_frequency call to determine if these delays have been effected.

EXAMPLE

ViStatus status;

…

status = vtex1629_set_sample_frequency(instrumentHandle, 100.0);

www.vtiinstruments.com

EX1629 Command Set 281

vtex1629_set_scanlist

FUNCTION PROTOTYPE

ViStatus vtex1629_set_scanlist (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels)

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an integer input array indicating which channels will be included in the scan list. Valid input values: 0 to

47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

DATA ITEM RESET VALUE

channels = 0 to 47

DESCRIPTION

This function defines a list of channels which will be sampled in the data acquisition process. The term scanlist is

used, although all channels are sampled synchronously, and in parallel (not “scanned” as in a multiplexed ADC

system). The scanlist must include at least one channel and may not include any duplicate channels.

NOTE Regardless of the order of the elements in the array, when data is retrieved using

vtex1629_read_fifo or vtex1629_read_fifoEx, the data will be organized in ascending order with

respect to the elements in the scan list.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0,1,2,3};

…

status = vtex1629_set_scanlist(instrumentHandle, channels, 4);

VTI Instruments Corp.

282 EX1629 Command Set

vtex1629_set_shunt_enabled

FUNCTION PROTOTYPE

ViStatus vtex1629_set_shunt_enabled (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32 numberOfChannels,

ViBoolean enabled);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the shunt resistors will be

enabled/disabled. Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

enabled = a Boolean input value indicating whether to enable the shunt resistors for the given list of channels.

VI_TRUE(1) will enable the shunt resistors for the given list of channels and VI_FALSE(0) will disable the shunt

resistors for the given list of channels..

DATA ITEM RESET VALUE

enabled = 0 (disabled)

DESCRIPTION

This function enables or disables the shunt resistors for a particular list of channels, based on the currently

configured shunt source for each channel. A shunt source that is not enabled will not actually be applied in

hardware.

NOTE The configuration of the shunt source and its enabling are separate operations. Thus, setting a

shunt source using the vtex1629_set_shunt_source function does not guarantee that the shunt

source is enabled. That must be set with the vtex1629_set_shunt_enabled command.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0,1,2,3};

…

status = vtex1629_set_shunt_enabled(instrumentHandle, channels, 4, VI_TRUE);

www.vtiinstruments.com

EX1629 Command Set 283

vtex1629_set_shunt_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_shunt_source (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32 numberOfChannels,

ViInt32 shuntSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the shunt source will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

shuntSource = an integer input value indicating the shunt source to be set for the given list of channels. Valid input

values: 0 to 4.

DATA ITEM RESET VALUE

shuntSource = VTEX1629_INTERNAL_REMOTE

DESCRIPTION

This function sets the shunt source for a given list of channels. The following values are valid for the shuntSource

parameter:

Decimal

Value

Hex

Value
#define Symbol shuntSource Description

0 0x00 VTEX1629_SHUNT_SOURCE_FPS_REMOTE Front panel remote

1 0x01 VTEX1629_SHUNT_SOURCE_FPS_LOCAL Front panel local

2 0x02 VTEX1629_SHUNT_SOURCE_IS_REMOTE Internal remote

3 0x03 VTEX1629_SHUNT_SOURCE_IS_LOCAL Internal local

4 0x04 VTEX1629_SHUNT_SOURCE_TEDS TEDS remote

Local and Remote refer to how the shunt resistor is connected to the bridge. For “Local”, the connection is made

within the EX1629. For “Remote”, the connection is made externally, using the ±RCal signals.

Front Panel, Internal, and TEDS, refer to the three types of shunt sources supported. “Front Panel” refers to the

shunt resistors that may be connected directly to the front panel of the EX1629, which are shared by 16 channels (0

through 15, 16 through 31, and 32 through 47). Only one channel may be connected to the Front Panel shunt at a

time. “Internal” refers to the internal, per-channel shunt resistor. Since each channel has its own, all channels may be

shunted simultaneously when configured for Internal Remote or Internal Local. “TEDS” refers to a special shunt

resistor/TEDS (1-Wire) configuration. Only one channel may be shunted via the TEDS shunt at a time.

Bridge Type TEDS FPS – Local FPS – Remote IS – Local IS – Remote TEDS/ Remote

Quarter
No X X

Yes X X X

Half
No X X

Yes X

Full
No X X

Yes X

NOTE: “X” denotes legal mode of operation.

NOTE The configuration of the shunt source and its enabling are separate operations. Thus, setting a

shunt source using the vtex1629_set_shunt_source function does not guarantee that the shunt

source is enabled. That must be set with the vtex1629_set_shunt_enabled command.

VTI Instruments Corp.

284 EX1629 Command Set

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0,1,2,3};

…

status = vtex1629_set_shunt_source (instrumentHandle,

 channels, 4,

 SHUNT_SOURCE_TEDS);

Optional LED

390 W

390 W

Rshunt

DS2430AP

2

1

-RCAL

User Bridge

+RCAL

GND

DATA

TEDS Shunt Schematic

www.vtiinstruments.com

EX1629 Command Set 285

vtex1629_set_shunt_value

FUNCTION PROTOTYPE

ViStatus vtex1629_set_shunt_value (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32 numberOfChannels,

ViInt32 shuntSource, ViReal64 shuntValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the shunt value will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

shuntSource = a integer input value indicating the shunt source for which the value is to be set. Valid input values:

0 to 4.

shuntValue = a real input value that defines the value of the specified shunt.

DATA ITEM RESET VALUE

shuntValue (source 0, 1, 4) = 0.00000

DESCRIPTION

This function sets the value of a shunt resistor based on a given channel and shunt source. The following values are

allowed for the shuntSource parameter:

Decimal

Value

Hex

Value
#define Symbol shuntSource Description

0 0x00 VTEX1629_FRONT_PANEL_REMOTE Front panel remote

1 0x01 VTEX1629_FRONT_PANEL_LOCAL Front panel local

2 0x02 VTEX1629_INTERNAL_REMOTE Internal remote

3 0x03 VTEX1629_INTERNAL_REMOTE Internal local

4 0x04 VTEX1629_TEDS_REMOTE TEDS remote

Local and Remote refer to how the shunt resistor is connected to the bridge. For “Local”, the connection is made

within the EX1629. For “Remote”, the connection is made externally, using the ±RCal signals.

Front Panel, Internal, and TEDS, refer to the three types of shunt sources supported. “Front Panel” refers to the

shunt resistors that may be connected directly to the front panel of the EX1629, which are shared by 16 channels

(0 through 15, 16 through 31, and 32 through 47). Only one channel may be connected to the Front Panel shunt at a

time. “Internal” refers to the internal, per-channel shunt resistor. Since each channel has its own, all channels may be

shunted simultaneously. “TEDS” refers to a special shunt resistor/TEDS (1-Wire) configuration. Only one channel

may be shunted via the TEDS shunt at a time.

While the internal shunt sources are valid function parameters, their values are provided from the calibration file and

are not user alterable.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0,1,2,3};

…

status = vtex1629_set_shunt_value(instrumentHandle,

 channels,

 4,

 SHUNT_SOURCE_FPS_LOCAL,

 50000.0);

VTI Instruments Corp.

286 EX1629 Command Set

vtex1629_set_strain_units

FUNCTION PROTOTYPE

ViStatus vtex1629_set_strain_units (ViSession vi, ViInt32 _VI_FAR channels[],ViInt32 numberOfChannels,

ViBoolean microStrain);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the strain units will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

microStrain = a Boolean input value indicating whether strain measurements will be returned in units of strain (ε)

or microstrain (µε). Passing a value of VI_TRUE (1) will configure the instrument to return microstrain while

passing a value of VI_FALSE(0) will configure the instrument to return strain.

DATA ITEM RESET VALUE

microStrain = VI_FALSE(0) (strain)

DESCRIPTION

This function determines whether the EX1629 will return strain measurements in units of strain (ε) or microstrain

(µε) for a given list of channels. Each channel can be configured to return strain measurements in strain or

microstrain (1 strain (ε) = 1x106 microstrain (µε)). This setting has no effect for non-strain EU conversions.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};

…

status = vtex1629_set_strain_units(instrumentHandle, channels, 16, VI_TRUE);

www.vtiinstruments.com

EX1629 Command Set 287

vtex1629_set_synch_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_synch_source (ViSession vi, ViInt32 synchMode, ViInt32 inLine, ViInt32 outLine);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

synchMode = an integer input value that indicates whether the EX1629 is operating as a master, slave, or as a

standalone. Valid input values: VTEX1629_SYNC_MODE_MASTER or VTEX1629_SYNC_MODE_SLAVE.

inLine = an integer input value that indicates the trigger bus line to receive synch events. Valid input values:

VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

outLine = an integer input value that indicates the trigger bus line to output synch events. Valid input values:

VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

synchMode = VTEX1629_SYNC_MODE_MASTER inLine = VTEX1629_LXI_LINE_NONE

outLine = VTEX1629_LXI_LINE_NONE

DESCRIPTION

This function sets the synchronization source.

The synchMode value indicates whether the EX1629 is configured as a master device that outputs a synch signal for

itself and other devices or as a slave device that receives its synch signal from another device. When operating in

standalone mode, synchMode should be configured as a master.

The inLine value indicates the LXI line that should be used as the synch input. This value is applicable regardless of

whether the device is configured as a master or a slave. When inLine is set to VTEX1629_LXI_LINE_NONE, the

special, internal synch line is used.

The outLine value indicates the LXI line that should be used as the synch output. This value is only applicable when

the device is configured as a master. When outLine is set to VTEX1629_LXI_LINE_NONE, the synch signal is

output on the special, internal synch line only. When in Slave mode, no output line can be used, so

VTEX1629_LXI_LINE_NONE must be specified.

Decimal

Value

Hex

Value
#define Symbol

inLine/outLine

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

8 0x08 VTEX1629_LXI_LINE_NONE None

When in master mode, the inLine and outLine values may be the same or they may be different. One case where

they would be different is if the master is outputting the synch signal on one LXI line and receiving it back in from a

LXI Trigger Bus hub on another line. When in standalone mode, inLine and outLine should always be

VTEX1629_LXI_LINE_NONE.

VTI Instruments Corp.

288 EX1629 Command Set

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_synch_source(instrumentHandle,

 VTEX1629_SYNC_MODE_MASTER,

 VTEX1629_LXI_LINE_ONE,

 VTEX1629_LXI_LINE_ONE);

www.vtiinstruments.com

EX1629 Command Set 289

vtex1629_set_tare

FUNCTION PROTOTYPE

ViStatus vtex1629_set_tare (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32 numberOfChannels, ViReal64

tareValue);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the tare value will be set. Valid

input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

tareValue = a real input value indicating the tare value to set for all the indicated channels.

DATA ITEM RESET VALUE

tareValue = 0.00000

DESCRIPTION

This function sets the tare values for a list of channels. The tare value is subtracted from the output of the EU

conversion. It is used to provide a user-selectable offset value for a channel.

NOTE The tare value is not linked to the units setting. For correct results, the EU conversion and units

(ε or µε, if using a strain EU conversion) should be set first, followed by any tare value.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

…

status = vtex1629_set_tare (instrumentHandle, channels, 1, 0.01);

VTI Instruments Corp.

290 EX1629 Command Set

vtex1629_set_teds_data

FUNCTION PROTOTYPE

ViStatus vtex1629_set_teds_data (ViSession vi, ViInt32 channel, ViInt16 _VI_FAR tedsID[], ViInt32 maxLength,

ViInt16 _VI_FAR tedsInfo[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the tare value will be set. Valid

input values: 0 to 47.

tedsID[] = an integer input array specifying the unique id of the TEDS device to be set. Each element of the array

represents a byte of data from the ID register of the TEDS device. The size of this array is equal to

VTEX1629_TEDS_IDSIZE.

maxLength = an integer input value that specifies the maximum number of bytes that will be written to the TEDS

device. Valid input values: 0 to 32.

tedsInfo[] = an integer input array specifying the TEDS data to be written. Each element of this array specifies a

byte of TEDS data, and the array should not contain any more bytes than specified by the maxLength parameter.

The maximum size for this array is VTEX1629_TEDS_DATASIZE.

DATA ITEM RESET VALUE

Not applicable for this function.

DESCRIPTION

This function writes data to the TEDS device indicated by the channels parameter. The only EEPROM supported is

the DS2430A.

The tedsID parameter must be equal to the value in the component connected to the channel. This parameter can be

queried by using the vtex1629_get_teds_data function.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt16 tedsID[VTEX1629_TEDS_IDSIZE];

ViInt32 maxlen;

ViInt16 tedsinfo[VTEX1629_TEDS_DATASIZE];

…

…

status = vtex1629_get_teds_data(instrumentHandle,

 47,
 tedsID,
 VTEX1629_TEDS_DATASIZE,
 tedsinfo);

memset(tedsinfo, 0x0, sizeof(tedsinfo)); // clear device memory

status = vtex1629_set_teds_data(instrumentHandle,

 47,
 tedsID,
 VTEX1629_TEDS_DATASIZE,
 tedsinfo);

www.vtiinstruments.com

EX1629 Command Set 291

vtex1629_set_trigger_count

FUNCTION PROTOTYPE

ViStatus vtex1629_set_trigger_count (ViSession vi, ViInt32 trigCount);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

trigCount = an integer input value that specifies the trigger count for the EX1629. Valid input values: 1 to (231-1).

Setting this parameter to “0” makes the trigCount infinite.

DATA ITEM RESET VALUE

trigCount = 1

DESCRIPTION

This function sets the trigger count for the EX1629. Specifically, this is the number of times the EX1629 will wait

for triggers after being armed before it will return to the Arm layer of the trigger state machine.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_trigger_count(instrumentHandle, 5);

VTI Instruments Corp.

292 EX1629 Command Set

vtex1629_set_trigger_delay

FUNCTION PROTOTYPE

ViStatus vtex1629_set_trigger_delay (ViSession vi, ViReal64 delay);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

delay = a real input value, in seconds, indicating the desired trigger delay. Valid input values: 0 s to 4294.967295 s.

DATA ITEM RESET VALUE

delay = 0.000000000

DESCRIPTION

This function sets the trigger delay for the EX1629. Specifically, this is the amount of time, in seconds, that the

EX1629 will wait after receiving a TRIG event before it begins to acquire data.

The actual delay exhibited by the EX1629 is dependent on the sample frequency, set by calling the

vtex1629_set_sample_frequency function. The actual delay will be a multiple of the sample time. For example, if

the sample frequency is 1 kHz, the sample time is 1 ms. If the trigger delay is set to a value less than 0.5 ms, the

EX1629 will experience no delay. If the trigger delay is set to a value between 0.5 ms and 1.49 ms, the delay

exhibited will be 1 ms.

As a result, it is best practice to perform a vtex1629_get_arm_delay call after a vtex1629_set_trigger_delay or a

vtex1629_set_sample_frequency call is performed to determine the actual delay.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_trigger_delay(instrumentHandle, 0.01);

www.vtiinstruments.com

EX1629 Command Set 293

vtex1629_set_trigger_source

FUNCTION PROTOTYPE

ViStatus vtex1629_set_trigger_source (ViSession vi, ViInt32 triggerSource);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

triggerSource = an integer input value that indicates the desired source to be monitored for trigger events. Valid

input values: 0 to 17.

DATA ITEM RESET VALUE

triggerSource = 0 (immediate)

DESCRIPTION

This function sets the trigger source on the EX1629. Possible values for the trigger source include:

Decimal

Value

Hex

Value
#define armSource Description

0 0x00 VTEX1629_TRIG_SRC_IMMEDIATE Immediate

1 0x01 VTEX1629_TRIG_SRC_PATTERN Pattern

2 0x02 VTEX1629_TRIG_SRC_LXI0_POS LXI 0 Positive Edge

3 0x03 VTEX1629_TRIG_SRC_LXI1_POS LXI 1 Positive Edge

4 0x04 VTEX1629_TRIG_SRC_LXI2_POS LXI 2 Positive Edge

5 0x05 VTEX1629_TRIG_SRC_LXI3_POS LXI 3 Positive Edge

6 0x06 VTEX1629_TRIG_SRC_LXI4_POS LXI 4 Positive Edge

7 0x07 VTEX1629_TRIG_SRC_LXI5_POS LXI 5 Positive Edge

8 0x08 VTEX1629_TRIG_SRC_LXI6_POS LXI 6 Positive Edge

9 0x09 VTEX1629_TRIG_SRC_LXI7_POS LXI 7 Positive Edge

10 0x0A VTEX1629_TRIG_SRC_LXI0_NEG LXI 0 Negative Edge

11 0x0B VTEX1629_TRIG_SRC_LXI1_NEG LXI 1 Negative Edge

12 0x0C VTEX1629_TRIG_SRC_LXI2_NEG LXI 2 Negative Edge

13 0x0D VTEX1629_TRIG_SRC_LXI3_NEG LXI 3 Negative Edge

14 0x0E VTEX1629_TRIG_SRC_LXI4_NEG LXI 4 Negative Edge

15 0x0F VTEX1629_TRIG_SRC_LXI5_NEG LXI 5 Negative Edge

16 0x10 VTEX1629_TRIG_SRC_LXI6_NEG LXI 6 Negative Edge

17 0x11 VTEX1629_TRIG_SRC_LXI7_NEG LXI 7 Negative Edge

Immediate (0): an immediate trigger source. After receiving the arm event, the trigger state machine will bypass the

trigger layer and will automatically begin to acquire data.

Pattern (1): this trigger source allows the EX1629 to accept trigger events from multiple sources. The EX1629 can

be configured to accept trigger events on LXI Trigger Bus channels, digital I/O channels, a timer, and software

triggers. The EX1629 can simultaneously accept any combination of these events. The specific pattern is set with the

vtex1629_set_pattern_trig_configuration command.

LXI n Positive Edge (2 – 9): these trigger sources refer to trigger events coming from the LXI Trigger Bus and will

cause the EX1629 to trigger on the positive edge of signals coming into the LXI Trigger Bus.

LXI n Negative Edge (10 – 17): these trigger sources refer to trigger events coming from the LXI Trigger Bus and

will cause the EX1629 to trigger on the negative edge of signals coming into the LXI Trigger Bus.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_trigger_source(instrumentHandle, VTEX1629_TRIG_SRC_LXI4_POS);

VTI Instruments Corp.

294 EX1629 Command Set

vtex1629_set_trigger_source_timer

FUNCTION PROTOTYPE

ViStatus vtex1629_set_trigger_source_timer (ViSession vi, ViReal64 timerPeriod, ViInt32 lxiOutput, ViInt32

lxiInput);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

timerPeriod = a real input value indicating the time, in seconds, the EX1629 will wait in between generating TRIG

events. Valid input values: 0 s to 167 s.

lxiOutput = this parameter specifies which LXI Trigger Bus line will be used to output the arm event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

lxiInput = this parameter specifies which LXI Trigger Bus line will be used to input the arm event signals. Valid

input values: VTEX1629_LXI_LINE_ZERO to VTEX1629_LXI_LINE_SEVEN, VTEX1629_LXI_LINE_NONE.

DATA ITEM RESET VALUE

timerPeriod = 0 lxiOutput = 8 (VTEX1629_LXI_LINE_NONE)

lxiInput = 8 (VTEX1629_LXI_LINE_NONE)

DESCRIPTION

This is a convenience functions that configures the EX1629 to operate in pattern trigger mode using the trigger timer

as the only source and configuring the trigger timer period.

With regard to the lxiOutput parameter, it is important to note that since the EX1629 can simultaneously accept

trigger events from multiple sources, it is necessary to reserve one of the LXI Trigger Bus line to communicate these

events within the device and to other devices in a multi-device configuration. If the EX1629 is a master driving

trigger events to peripheral slaves, the lxiOutput parameter specifies the LXI Trigger Bus line that will be used to

communicate the trigger event to the slave devices. It is also necessary to configure this LXI Trigger Bus line to be

used as an output (see vtex1629_set_lxibus_configuration).

The lxiInput parameter specifies which trigger bus line the master device uses for its trigger events. Although this

parameter is often set to the same value as lxiOutput, there are cases where it might be set to a different value. For

instance, when the device is configured as a master device in a star multi-box configuration, the master might output

the trigger event on LXI2 and input it back in on LXI6.

Decimal

Value

Hex

Value
#define Symbol

lxiOutput/lxiInput

Description
0 0x00 VTEX1629_LXI_LINE_ZERO LXI LINE 0

1 0x01 VTEX1629_LXI_LINE_ONE LXI LINE 1

2 0x02 VTEX1629_LXI_LINE_TWO LXI LINE 2

3 0x03 VTEX1629_LXI_LINE_THREE LXI LINE 3

4 0x04 VTEX1629_LXI_LINE_FOUR LXI LINE 4

5 0x05 VTEX1629_LXI_LINE_FIVE LXI LINE 5

6 0x06 VTEX1629_LXI_LINE_SIX LXI LINE 6

7 0x07 VTEX1629_LXI_LINE_SEVEN LXI LINE 7

8 0x08 VTEX1629_LXI_LINE_NONE None

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_trigger_source_timer(instrumentHandle,

 10.0,

 VTEX1629_LXI_LINE_TWO,

 VTEX1629_LXI_LINE_TWO);

www.vtiinstruments.com

EX1629 Command Set 295

vtex1629_set_trigger_timer

FUNCTION PROTOTYPE

ViStatus vtex1629_set_trigger_timer (ViSession vi, ViReal64 timer);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

timer = a real input value indicating the time, in seconds, to which to set the trigger system timer. Valid input

values: 0 s to 4294.967295 s.

DATA ITEM RESET VALUE

timer = 0

DESCRIPTION

This function sets the trigger timer period for the EX1629. This is the amount of time, in seconds, that the EX1629

will wait before generating successive timer events, which can be used as an arm source or a trigger source, but not

both.

The timer is specified as the arm or trigger source using the “pattern” source mechanism (see

vtex1629_set_arm_source, vtex1629_set_pattern_arm_configuration, vtex1629_set_trigger_source, and

vtex1629_set_pattern_trig_configuration).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_set_trigger_timer(instrumentHandle, 1.0);

VTI Instruments Corp.

296 EX1629 Command Set

vtex1629_set_unstrained_voltage

FUNCTION PROTOTYPE

ViStatus vtex1629_set_unstrained_voltage (ViSession vi, ViInt32 _VI_FAR channels[], ViInt32

numberOfChannels, ViReal64 unstrainedVoltage);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer array containing a list of channel numbers for which the unstrained voltage will be set.

Valid input values: 0 to 47.

numberOfChannels = the size of the channels list. Valid input values: 1 to 48.

unstrainedVoltage = a real input value that indicates the unstrained voltage to set for the given list of channels.

DATA ITEM RESET VALUE

unstrainedVoltage = 0.000000

DESCRIPTION

This function sets the unstrained voltage for a list of channels. This is one parameter in the EU calculations.

NOTE The conventional method of providing an unstrained voltage value to the EU conversion is to

conduct an unstrained voltage measurement using the vtex1629_measure_unstrained_voltage

function. This function provides a manual method that is normally only used for system diagnostic

purposes.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 channels[] = {0};

…

status = vtex1629_set_unstrained_voltage(instrumentHandle, channels, 1, 0.01);

www.vtiinstruments.com

EX1629 Command Set 297

vtex1629_soft_arm

FUNCTION PROTOTYPE

ViStatus vtex1629_soft_arm (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sends a software generated arm event to the EX1629. Note, a software arm is only legal when the arm

source is configured as pattern (see vtex1629_set_arm_source).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_soft_arm(instrumentHandle);

VTI Instruments Corp.

298 EX1629 Command Set

vtex1629_soft_synch

FUNCTION PROTOTYPE

ViStatus vtex1629_soft_synch (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sends a software generated synchronization event to the device. This is only valid when the device is a

synch master (see vtex1629_set_synch_source).

NOTE The signal conditioning path is reset on a sync event, which means that acquisition data will not

reflect the input signals until the digital filters settled. See vtex1629_get_settling_time for more

information.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_soft_synch(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 299

vtex1629_soft_trig

FUNCTION PROTOTYPE

ViStatus vtex1629_soft_trig (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function sends a software-generated trigger event to the EX1629.

A software trigger is only legal when the trigger source is configured as pattern (see vtex1629_set_trigger_source).

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_soft_trig(instrumentHandle);

VTI Instruments Corp.

300 EX1629 Command Set

vtex1629_store_current_config

FUNCTION PROTOTYPE

ViStatus vtex1629_store_current_config (ViSession vi, ViInt32 digestArraySize, ViInt8 _VI_FAR digest[],

ViPInt32 digestActualSize);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

digestArraySize = contains the size of the allocated digest array. For consistency, the client application should

allocate VTEX1629_MAX_DIGEST_LENGTH bytes.

digest[] = the stored configuration’s digest.

digestActualSize = the actual size of the configuration digest.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function stores the current configuration of the instrument in the nonvolatile storage. A digest of the stored

configuration is returned. The digest is a digital signature representing the actual configuration data.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 digestActualSize;

ViInt8 digest[VTEX1629_MAX_DIGEST_LENGTH];

…

status = vtex1629_store_current_config(instrumentHandle,

 VTEX1629_MAX_DIGEST_LENGTH,

 digest,

 &digestActualSize);

www.vtiinstruments.com

EX1629 Command Set 301

vtex1629_trig_init

FUNCTION PROTOTYPE

ViStatus vtex1629_trig_init (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function initiates the trigger system. Specifically, calling this function moves the trigger state machine from the

Idle layer into the Init layer.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_trig_init(instrumentHandle);

VTI Instruments Corp.

302 EX1629 Command Set

vtex1629_unlock

FUNCTION PROTOTYPE

ViStatus vtex1629_unlock (ViSession vi);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function unlocks the EX1629 instrument, if the user is the owner of the lock. The EX1629 can then be accessed

by another user or another session.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

…

status = vtex1629_unlock(instrumentHandle);

www.vtiinstruments.com

EX1629 Command Set 303

vtex1629_write_teds_MLAN

FUNCTION PROTOTYPE

ViStatus vtex1629_write_teds_MLAN (ViSession vi, ViInt32 channel, ViInt32 bufferArraySize, ViInt8 _VI_FAR

buffer[]);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

channels = an input integer value that specifies the channel number for the TEDS device to which the MLAN buffer

should be written. Valid input values: 0 to 47.

bufferArraySize = an input integer indicating the size of the array that holds the MLAN command bytes. Its value

should be less than VTEX1629_MAX_MLAN_DATA_LEN.

buffer[] = an input array that contains the TEDS MLAN data. Its size should be less than or equal to

VTEX1629_MAX_MLAN_DATA_LEN.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function writes a variable sized block of MLAN commands and data to the TEDS EEPROM indicated by the

channel parameter. The vtex1629_read_teds_MLAN command can be used to read the response back from the

device. The commands and data in the buffer must comply with the MicroLAN specification in IEEE 1451.4-2004

Annex G.

NOTES 1) Details of the MLAN specification can be found at http://www.maxim-

 ic.com/products/ibutton/applications/ and other sites.

 2) The bytes returned in ‘buffer’ need to be interpreted by the application in accordance with the

 MLAN specification.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt8 mlanData[VTEX1629_MAX_MLAN_DATA_LEN];

…

 <prepare the command bytes in the mlanData array>

status = vtex1629_write_teds_MLAN (instrumentHandle,

 15,

 VTEX1629_MAX_MLAN_DATA_LEN,

 mlanData);

If (status < VI_SUCCESS)

{

 <inform the user the API call failed>

}

VTI Instruments Corp.

304 EX1629 Command Set

vtex1629_zero_cal

FUNCTION PROTOTYPE

ViStatus vtex1629_zero_cal (ViSession vi, ViPInt32 overRide, ViPInt32 recommendedUpTime, ViPInt32

currentUpTime);

FUNCTION PARAMETERS

vi = contains a session handle to the instrument. This handle is obtained by the function and remains valid until the

session is closed.

overRide = a returned integer value indicating the over ride value.

recommendedUpTime = an integer return value indicating the recommended amount of time, in seconds, the

EX1629 should be powered up attempting a zero calibration.

currentUpTime = an integer return value indicating the amount of time, in seconds, that the EX1629 has been

powered up.

DATA ITEM RESET VALUE

Not applicable to this function.

DESCRIPTION

This function resets the offset values of the unit before a measurement is taken. It is designed to be a shorter

calibration process than self-calibration.

The overRide parameter is used in the case where a zero calibration is attempted on a unit that has not been

powered on for a sufficient amount of time. In this special case, the first call to this function will return an error, but

will also populate this over ride variable with a unique integer value in memory. The vtex1629_self_cal_init

function can then be called a second time using this unique value. The second call to the function will successfully

initiate a self-calibration on a unit that has not been powered up for the recommended duration of time.

EXAMPLE

ViSession instrumentHandle;

ViStatus status;

ViInt32 overRide = 0;

ViInt32 recommendedUpTime = 0;

ViInt32 currentUpTime = 0;

status = vtex1629_zero_cal(instrumentHandle,

 &overRide,

 &recommendedUpTime,

 ¤tUpTime);

www.vtiinstruments.com

EX1629 Command Set 305

ERROR MESSAGES

Each function in this instrument driver returns a status code that either indicates success or

describes an error or warning condition. Programs should examine the status code from each call

to an instrument driver function to determine if an error occurred. The general meaning of the

status code is as follows:

Value Meaning

VI_SUCCESS (0) Success

Positive Values Warnings

Negative Values Errors

The following table lists possible error codes and their meanings which may be returned by driver

functions. The following error codes, in hexadecimal, may be encountered while operating the

EX1629. The corresponding error messages’ text can be obtained by using the

vtex1629_error_message function.

Error Code Error Message Meaning

FFBFFC09F0 VTEX1629_ERROR_RUNTIME Runtime error.

FFBFFC09F1 VTEX1629_ERROR_MEM_ALLOC Memory allocation error.

FFBFFC09F2 VTEX1629_ERROR_RPC RPC error.

FFBFFC09F3 VTEX1629_ERROR_INVALID_RESOURCE Not a valid LXI resource.

FFBFFC09F4 VTEX1629_ERROR_ID_MISMATCH ID mismatch.

FFBFFC09F5 VTEX1629_ERROR_ID_QUERY ID query.

FFBFFC09F6 VTEX1629_ERROR_SYNCHRONIZATION Synchronization error.

FFBFFC09F7 VTEX1629_ERROR_MAX_INSTRUMENT Max instrument exceeded.

FFBFFC09F8 VTEX1629_ERROR_CLNT_CREATE Could not create the client. Please
ensure you have the latest firmware
version.

FFBFFC09F9 VTEX1629_ERROR_INSUFFICIENT_FIRMWARE_REV Insufficient firmware revision

FFBFFC09FA VTEX1629_WARNING_FUNC_SLF_TST_NOTSUPP WARNING: Self-test function not yet
supported.

FFBFFC09FB VTEX1629_ERROR_VXI_11 VXI-11 Error.

FFBFFC09FC VTEX1629_ERROR_TRIGGER_SYSTEM_ERROR Trigger system error.

FFBFFC09FD VTEX1629_ERROR_OUT_OF_LINK_IDS Link ID failure.

FFBFFC09FE VTEX1629_ERROR_INVALID_LINK_ID Invalid link ID.

FFBFFC09FF VTEX1629_ERROR_UNKNOWN_FIRMWARE_ERROR Unknown firmware error.

FFBFFC0A00 VTEX1629_ERROR_INVALID_NUM_CHANNELS Invalid number of channels.

FFBFFC0A01 VTEX1629_ERROR_INVALID_CHANNEL Invalid channel number.

FFBFFC0A02 VTEX1629_ERROR_READ_FIFO_TIMEOUT Timeout reading FIFO data.

FFBFFC0A03 VTEX1629_ERROR_INVALID_EXITE_VOLT_RANGE Excite voltage must be within an
absolute range of 16.00 V.

FFBFFC0A04 VTEX1629_ERROR_INVALID_EXITE_VOLT_NEG_RANGE Negative excite voltage must be within
the range of 0.0 V and -8.00 V.

FFBFFC0A05 VTEX1629_ERROR_INVALID_EXITE_VOLT_POSS_RANGE Positive excite voltage must be within
the range of 0.0 V and 8.00 V.

FFBFFC0A06 VTEX1629_ERROR_INVALID_GAIN_VALUE Acceptable gain values are 1.

FFBFFC0A07 VTEX1629_ERROR_INVALID_COMPRES_VALUE Invalid value for completion resistor type.

FFBFFC0A08 VTEX1629_ERROR_INVALID_INPUT_MUX_VALUE Input multiplexer set value must be
between 0 and 3.

FFBFFC0A09 VTEX1629_ERROR_INVALID_INPUT_CAL_SOURCE Cal source input value must be between
the range of 0 and 12.

FFBFFC0A0A VTEX1629_ERROR_INVALID_BOOLEAN Invalid Boolean value in parameter.

FFBFFC0A0B VTEX1629_ERROR_INVALID_CAL_OUT_MODE Invalid value for routing the calibration
source.

FFBFFC0A0C VTEX1629_ERROR_INVALID_EU_CONVERSION Invalid EU conversion type.

FFBFFC0A0D VTEX1629_ERROR_INVALID_FILTER_TYPE Invalid filter type.

FFBFFC0A0E VTEX1629_ERROR_INVALID_FILTER_TRANSFORM Invalid filter transform.

FFBFFC0A0F VTEX1629_ERROR_INVALID_FILTER_ORDER Invalid filter order.

VTI Instruments Corp.

306 EX1629 Command Set

Error Code Error Message Meaning

FFBFFC0A10 VTEX1629_ERROR_STRMING_DATA_ENABLED Streaming data already enabled.

FFBFFC0A11 VTEX1629_ERROR_ENABLING_STRMING_DATA Problem enabling streaming data.

FFBFFC0A12 VTEX1629_ERROR_INVALID_BOARD Hardware related ERROR: Front analog
boards.

FFBFFC0A13 VTEX1629_ERROR_INVALID_TRIGGER_SOURCE Invalid trigger source parameter.

FFBFFC0A14 VTEX1629_ERROR_INVALID_BIT_MASK_VALUE Invalid bit mask value.

FFBFFC0A15 VTEX1629_ERROR_INVALID_LXI_LINE Invalid LXI line number.

FFBFFC0A16 VTEX1629_ERROR_INVALID_SHUNT_SOURCE Invalid shunt source value.

FFBFFC0A17 VTEX1629_ERROR_INVALID_SAMPLE_CLOCK Invalid sample clock source value.

FFBFFC0A18 VTEX1629_ERROR_DISABLING_STRMING_DATA Problem disabling streaming data.

FFBFFC0A19 VTEX1629_ERROR_INVALID_LXI_LINE_DIRECTION Invalid LXI line transmission direction.

FFBFFC0A1A VTEX1629_ERROR_INVALID_LXI_TRANS_SCOPE Invalid LXI transmission scope.

FFBFFC0A1B VTEX1629_ERROR_INVALID_LXI_MASK_VALUE Invalid LXI mask value.

FFBFFC0A1C VTEX1629_ERROR_UNABLE_TO_OPEN_LOG Unable to initialize logging utility.

FFBFFC0A1D VTEX1629_ERROR_SYSTEM_FAILURE System Failure.

FFBFFC0A1E VTEX1629_ERROR_OUT_OF_MEMORY Out of memory.

FFBFFC0A1F VTEX1629_ERROR_CONNECT Connection error.

FFBFFC0A20 VTEX1629_ERROR_IO_ERROR I/O failure.

FFBFFC0A21 VTEX1629_ERROR_TIMEOUT Device timeout.

FFBFFC0A22 VTEX1629_ERROR_DEVICE_ERROR Device error.

FFBFFC0A23 VTEX1629_ERROR_DEVICE_LOCKED Some operations cannot be executed on
a locked device.

FFBFFC0A24 VTEX1629_ERROR_DEVICE_NOT_LOCKED Some operations cannot be executed on
a device that is not locked.

FFBFFC0A25 VTEX1629_ERROR_ACQUISITION_IN_PROGRESS Some operations cannot be performed
while there is an acquisition in progress.

FFBFFC0A26 VTEX1629_ERROR_APP_UNKNOWN_STATUS Unknown status code.

FFBFFC0A27 VTEX1629_ERROR_APP_UNSUPPORTED_PROC Unsupported remote procedure call

FFBFFC0A28 VTEX1629_ERROR_DATA_FIFO_ERROR Error storing data in the FIFO.

FFBFFC0A29 VTEX1629_ERROR_SAMPLE_COUNT Invalid sample Count.

FFBFFC0A2A VTEX1629_ERROR_INCORRECT_TEDS_ID Invalid TEDS ID.

FFBFFC0A2B VTEX1629_ERROR_INVALID_ARG Invalid function argument.

FFBFFC0A2C VTEX1629_ERROR_INVALID_SAMPLING_RATE Invalid sampling rate.

FFBFFC0A2D VTEX1629_ERROR_INVALID_BRIDGE_CONFIG Invalid bridge configuration.

FFBFFC0A2E VTEX1629_ERROR_INVALID_SHUNT_SRC_FOR_BRIDGE_TYPE Invalid shunt source for current bridge
configuration.

FFBFFC0A2F VTEX1629_ERROR_INVALID_CONFSRC_TYPE Invalid confidence source type.

FFBFFC0A30 VTEX1629_ERROR_INVALID_CONFGAIN_SETTING Invalid confidence gain setting.

FFBFFC0A31 VTEX1629_ERROR_BOX_ALREADY_LOCKED_U This device has already been locked by
you.

FFBFFC0A32 VTEX1629_ERROR_BOX_ALREADY_LOCKED_NU This device is already locked by another
user.

FFBFFC0A33 VTEX1629_ERROR_BOX_ALREADY_UNLOCKED This device is not locked at this time.

FFBFFC0A34 VTEX1629_ERROR_INVALID_NUM_CONF_ELEMENTS Invalid number of confidence data
elements in scanlist.

FFBFFC0A35 VTEX1629_ERROR_INVALID_CONF_ELEMENT Invalid confidence data element number
in scanlist.

FFBFFC0A36 VTEX1629_ERROR_BESSEL_REQUIRES_ORDER Bessel filter type requires a filter order.

FFBFFC0A37 VTEX1629_ERROR_IIR_ORDER_OUT_OF_RANGE IIR filter order out of range.

FFBFFC0A38 VTEX1629_ERROR_INVALID_TRANSFORM_TYPE Invalid filter transform type.

FFBFFC0A39 VTEX1629_ERROR_IIR_PARM_FAILURE IIR filter parameter failure.

FFBFFC0A3A VTEX1629_ERROR_INVALID_EU_BRIDGE_TYPE Invalid bridge type.

FFBFFC0A3B VTEX1629_ERROR_TEDS_DEVICE_NOT_PRESENT TEDS device is not present.

FFBFFC0A3C VTEX1629_ERROR_TEDS_CHKSUM_FAIL TEDS check sum failure.

FFBFFC0A3D VTEX1629_TEDS_WRITE_FAIL Failure writing to TEDS device.

FFBFFC0A3E VTEX1629_ERROR_XML_SAVE_FILE Writing calibration file.

FFBFFC0A3F VTEX1629_ERROR_XML_LOAD_FILE Loading calibration file.

FFBFFC0A40 VTEX1629_ERROR_XML_MALFORMED Corrupted calibration file.

FFBFFC0A41 VTEX1629_ERROR_XML_INVALID_PARM Invalid parameter for calibration.

www.vtiinstruments.com

EX1629 Command Set 307

Error Code Error Message Meaning

FFBFFC0A42 VTEX1629_ERROR_CAL_UNSET_VALUES Missing calibration data.

FFBFFC0A43 VTEX1629_ERROR_CAL_FILENAME_TOO_LONG Calibration file name too long.

FFBFFC0A44 VTEX1629_ERROR_CAL_NOMINAL_CAL_NOT_PRESENT Calibration file missing.

FFBFFC0A45 VTEX1629_ERROR_INVALID_CUTOFF_FREQ Invalid filter cutoff frequency.

FFBFFC0A46 VTEX1629_ERROR_SHUNT_FP_VAL_UNEQUAL Front panel resistor value is not equal for
blocks of 16 channels.

FFBFFC0A47 VTEX1629_ERROR_LXI_INPUT_CONFIG_CONFLICT LXI input configuration conflicts with an
existing output.

FFBFFC0A48 VTEX1629_ERROR_LXI_OUTPUT_CONFIG_CONFLICT LXI output configuration conflicts with an
existing input.

FFBFFC0A49 VTEX1629_ERROR_LXI_INPUT_MISCONFIGURATION The specified LXI input line is not
configured as an input.

FFBFFC0A4A VTEX1629_ERROR_LXI_OUTPUT_MISCONFIGURATION The specified LXI output line is not
configured as an output.

FFBFFC0A4B VTEX1629_ERROR_LXI_OUTPUT_CONFLICT The specified LXI output conflicts with
another output.

FFBFFC0A4C VTEX1629_ERROR_INVALID_MODE_FOR_SOFT_TRIGGERARM Software arm and trigger is only
available in trigger pattern mode.

FFBFFC0A4D VTEX1629_ERROR_PRETRIGGER_NOT_SUPPORTED_YET Pre-trigger samples are not yet
supported.

FFBFFC0A4E VTEX1629_ERROR_NO_SERIAL_NUMBER No serial number programmed on
device.

FFBFFC0A4F VTEX1629_ERROR_FIFO_STREAMING_ENABLED Read FIFO not valid. Streaming interface
is enabled.

FFBFFC0A50 VTEX1629_ERROR_INSUFFICIENT_UPTIME_FOR_CAL Insufficient instrument uptime to perform
calibration. Please see User's Manual for
more details.

FFBFFC0A51 VTEX1629_ERROR_CAL_SELF_CAL_NOT_PRESENT Self-calibration file not present.

FFBFFC0A51 VTEX1629_ERROR_CAL_SELF_CAL_NOT_PRESENT Self-calibration data is not present.

FFBFFC0A52 VTEX1629_ERROR_FPGA_TRIGINIT_NOT_IN_IDLE_STATE Trigger state machine is not in the idle
state.

FFBFFC0A53 VTEX1629_ERROR_FPGA_TRIGINIT_IDLE_TO_ACQ_TIMEOUT Time out in trigger system.

FFBFFC0A54 VTEX1629_ERROR_NO_MAC_ADDR No MAC Address programmed on
device.

FFBFFC0A55 VTEX1629_ERROR_CAL_IN_PROGRESS Some operations cannot be performed
while self-calibration is in progress.

FFBFFC0A56 VTEX1629_ERROR_CAL_BLOCKS_PRESENT Calibration blocks detected.

FFBFFC0A57 VTEX1629_ERROR_XML_REQUIRE_TEDS Required TEDS ID not available.

FFBFFC0A58 VTEX1629_ERROR_TRIGINIT_FPGA_ADC_INTR_OFF A soft sync is required before trigger
initialization can be performed.

FFBFFC0A59 VTEX1629_ERROR_SHUNT_FPS_ENABLED_ON_MULTIPLE_CHANNELS Within sixteen channel blocks

FFBFFC0A5A VTEX1629_ERROR_INVALID_TRIGGER_COUNT Trigger/arm count must be greater than
zero.

FFBFFC0A5B VTEX1629_ERROR_SET_INT_SHUNT_VALUE Internal shunt resistor is not user
defined.

FFBFFC0A5C VTEX1629_ERROR_INVALID_PULLUP_VALUE Invalid pullup value.

FFBFFC0A5D VTEX1629_ERROR_INVALID_DIO_DIRECTION Invalid DIO direction.

FFBFFC0A5E VTEX1629_ERROR_INVALID_URN_SIZE Invalid MLAN URN size.

FFBFFC0A5F VTEX1629_ERROR_INVALID_USER_DATA Invalid user data.

FFBFFC0A60 VTEX1629_ERROR_CONFIG_FILE_NOT_PRESENT Specified configuration file not present.

FFBFFC0A61 VTEX1629_ERROR_INCONSISTENT_CONF_WT Confidence weight is not consistent
across all channels.

FFBFFC0A62 VTEX1629_ERROR_INCONSISTENT_TRIGGER_TIMESTAMP Trigger timestamp is not consistent
across all channels.

FFBFFC0A63 VTEX1629_ERROR_INCONSISTENT_SYNC_TIMESTAMP Sync timestamp is not consistent across
all channels.

FFBFFC0A64 VTEX1629_ERROR_MLAN_BUFFER_OVERFLOW MicroLAN buffer overflow.

FFBFFC0A65 VTEX1629_ERROR_MLAN_BUFFER_LEN_MISMATCH MicroLAN buffer length mismatch.

FFBFFC0A66 VTEX1629_ERROR_UNSUPPORTED_TEDS_DEVICE Unsupported TEDS device.

VTI Instruments Corp.

308 EX1629 Command Set

Error Code Error Message Meaning

FFBFFC0A67 VTEX1629_ERROR_INCORRECT_TEDS_ID_LEN Incorrect TEDS device ID length.

FFBFFC0A68 VTEX1629_ERROR_INCORRECT_TEDS_DATA_LEN Incorrect TEDS data length.

FFBFFC0A69 VTEX1629_ERROR_TEDS_DATA_READBACK_FAILURE TEDS device readback failure.

FFBFFC0A6A VTEX1629_ERROR_FIFO_OVERFLOW Data FIFO overflowed.

FFBFFC0A6B VTEX1629_ERROR_EXTERNAL_ADC_MASTER_CLOCK_LOST External ADC master clock was lost.

FFBFFC0A6C VTEX1629_ERROR_INVALID_CONF_FILTER_WT Invalid confidence filter weight.

FFBFFC0A6D VTEX1629_ERROR_IIR_NOT_SUPPORTED_FOR_CURR_FS IIR filter is not supported for the current
sample frequency.

FFBFFC0A6E VTEX1629_ERROR_CAL_FACTORY_MODE_REQUIRED The system must be in factory mode to
perform this action.

FFBFFC0A6F VTEX1629_ERROR_FS_NOT_SUPPORTED_WHEN_CONF_EN This sample frequency is not supported
when confidence sources are enabled.

FFBFFC0A70 VTEX1629_ERROR_CONF_OPS_NOT_SUPPORTED_FOR_CURR_FS Confidence operations are not supported
at this sample frequency.

FFBFFC0A71 VTEX1629_ERROR_INVALID_VI_SESSION Invalid or null session to the instrument
passed as parameter to function.

FFBFFC0A72 VTEX1629_ERROR_RUNTIME_INVALID_PARAMETER Invalid or null parameter passed to
function.

FFBFFC0A73 VTEX1629_ERROR_ILLEGAL_TRIGGER_SAMPLE_COUNT_SPECIFIED Illegal trigger sample count.

FFBFFC0A74 VTEX1629_ERROR_ILLEGAL_PRETRIGGER_SAMPLE_COUNT_SPECIFIED Illegal pretrigger sample count.

FFBFFC0A75 VTEX1629_ERROR_INVALID_ARM_SOURCE Invalid arm source parameter.

FFBFFC0A76 VTEX1629_ERROR_INVALID_ARM_COUNT Invalid arm count parameter.

FFBFFC0A77 VTEX1629_ERROR_INVALID_EXCITATION_SRC Invalid excitation source. Use
VTEX1629_EXCITE_SRC_LOCAL or
VTEX1629_EXCITE_SRC_REMOTE.

FFBFFC0A78 VTEX1629_ERROR_INVALID_SYNCH_SOURCE Invalid synch source parameter.

FFBFFC0A79 VTEX1629_ERROR_INVALID_TRIGGER_DELAY Invalid trigger delay parameter.

FFBFFC0A7A VTEX1629_ERROR_INVALID_TIMER_PERIOD Invalid timer period parameter.

FFBFFC0A7B VTEX1629_ERROR_INVALID_MLAN_DATA_LEN Invalid MLAN data length parameter.

FFBFFC0A7C VTEX1629_ERROR_CALCULATING_SETTLING_TIME Error while calculating settling time.

FFBFFC0A7D VTEX1629_ERROR_INVALID_ARM_DELAY Invalid arm delay parameter.

FFBFFC0A7E VTEX1629_ERROR_RESERVED_CODE_1220 Reserved Error Code 0x1220.

FFBFFC0A7F VTEX1629_ERROR_INCONSISTENT_SAMP_CLK_SRC Clock source is not consistent across all
channels and digital backend.

FFBFFC0A80 VTEX1629_ERROR_HD_INVALID_STATE_TRANSITION Improper sequence of hard disk
commands.

FFBFFC0A81 VTEX1629_ERROR_HD_MOUNT_FAIL Error mounting hard disk.

FFBFFC0A82 VTEX1629_ERROR_HD_UNMOUNT_FAIL Error unmounting hard disk.

FFBFFC0A83 VTEX1629_ERROR_HD_FILE_EXISTS Hard disk file exists.

FFBFFC0A84 VTEX1629_ERROR_HD_NO_DATA_FILE No data file.

FFBFFC0A85 VTEX1629_ERROR_HD_NO_INDEX_FILE No index file.

FFBFFC0A86 VTEX1629_ERROR_HD_FILE_OPEN_FAIL Failure when attempting to open file.

FFBFFC0A87 VTEX1629_ERROR_HD_NOT_SUPPORTED Hard disk not supported.

FFBFFC0A88 VTEX1629_ERROR_HD_HANG Hard disk hang.

FFBFFC0A89 VTEX1629_ERROR_NET_HANG Network hang.

FFBFFC0A8A VTEX1629_ERROR_INVALID_EUCONV_EXCITATION_VOLT_SRC Illegal mode parameter.

FFBFFC0A8B VTEX1629_ERROR_ARG_OUT_OF_RANGE Argument out of range.

FFBFFC0A8C VTEX1629_ERROR_INVALID_FS_FOR_THIS_SCANLIST Maximum sample rate exceeded for
current scanlist. Maximum is 12.5 kSa/s
on 16 channels constrained to a bank of
1-15.

FFBFFC0A8D VTEX1629_ERROR_INVALID_SCANLIST_FOR_THIS_FS Maximum channels in scanlist exceeded
for current sample rate. Maximum is 16
channels constrained to a bank of 1-15.

FFBFFC0A8E VTEX1629_ERROR_DIO_NO_INPUT_BANK_CONFIGURED Digital error. No input bank configured.

FFBFFC0A8F VTEX1629_ERROR_DIO_NO_OUTPUT_BANK_CONFIGURED Digital error. No output bank configured.

FFBFFC0A90 VTEX1629_ERROR_DIO_CONFLICT_OUTPUT_IN_USE Digital IO conflict because output is in
use.

www.vtiinstruments.com

EX1629 Command Set 309

Error Code Error Message Meaning

FFBFFC0A91 VTEX1629_ERROR_DIO_CONFLICT_DUPLICATE_ENTRY Requested event configuration conflicts
with existing configuration for the input
event and/or output action specified.

FFBFFC0A92 VTEX1629_ERROR_DIO_INVALID_INPUT_LINE Invalid digital input line.

FFBFFC0A93 VTEX1629_ERROR_DIO_INVALID_OUTPUT_LINE Invalid digital output line.

FFBFFC0A94 VTEX1629_ERROR_DIO_INVALID_INPUT_EVENT Invalid input event.

FFBFFC0A95 VTEX1629_ERROR_DIO_INVALID_OUTPUT_ACTION Invalid output action.

FFBFFC0A96 VTEX1629_ERROR_QTR_BRIDGE_NOT_SELECTED Channel is not in quarter bridge
configuration.

FFBFFC0A97 VTEX1629_ERROR_TRIGINIT_NEED_SOFTSYNC Triginit needs softsync first.

FFBFFC0A98 VTEX1629_ERROR_FS_NOT_SUPPORTED_FOR_DYNAMIC_EXCITATION_EU Sampling frequency greater than 1 kHz
not supported while in current mode.

FFBFFC0A99 VTEX1629_ERROR_DYNAMIC_EXCITATION_EU_NOT_SUPPORTED_AT_CURR_FS This mode is not supported while
sampling rate is greater than 1 kHz.

FFBFFC0A9A VTEX1629_ERROR_DYNAMIC_EXCITATION_EU_CONF_EXCITEOUT_SRC_NOT_ENABLED The confidence sources
VTEX1629_CONFSRC_EXCITE_POS
and
VTEX1629_CONFSRC_EXCITE_NEG
must be in the confidence scanlist in
order to enable dynamic excitation EU.

FFBFFC0A9B VTEX1629_ERROR_DYNAMIC_EXCITATION_EU_NEEDS_CONF_EXCITEOUT_SRC Can not disable confidence excitation
source while dynamic EU conversion is
in progress.

FFBFFC0A9C VTEX1629_ERROR_CONF_LIMIT_INVALID_REPORTING_TYPE Invalid reporting type.

FFBFFC0A9D VTEX1629_ERROR_BRIDGE_LIMIT_NOT_SUPPORTED_AT_CURR_FS Can not enable bridge limit checking
when the bridge sampling frequency is
greater than 1 kHz.

FFBFFC0A9E VTEX1629_ERROR_FS_NOT_SUPPORTED_FOR_BRIDGE_LIMIT_CHECKING Can not set sampling frequency greater
than 1 kHz while in the current mode.

FFBFFC0A9F VTEX1629_ERROR_CONF_LIMIT_NOT_SUPPORTED_AT_CURR_FS Summary reporting or detailed reporting
not supported for sampling frequency
greater than 1 kHz.

FFBFFC0AA0 VTEX1629_ERROR_FS_NOT_SUPPORTED_FOR_CONF_LIMIT_CHECKING Can not set sampling frequency greater
than 1 kHz while in current mode.

FFBFFC0AA1 VTEX1629_ERROR_HW_DOES_NOT_SUPPORT_CONF_EXCITEOUT_BUFF_SRC Current hardware prohibits enabling
EXCITEOUT_BUFF. This is only
available on newer hardware revisions.

FFBFFC0AA2 VTEX1629_ERROR_CAL_FILE_NOT_PRESENT Calibration file not present.

FFBFFC0AA3 VTEX1629_ERROR_CAL_FILE_TOO_LARGE Calibration file too large.

FFBFFC0AA4 VTEX1629_VXI11_ERROR_NO_ERROR VXI11 No error.

FFBFFC0AA5 VTEX1629_VXI11_ERROR_SYNTAX_ERROR VXI11 Syntax error.

FFBFFC0AA6 VTEX1629_VXI11_ERROR_DEVICE_NOT_ACCESSIBLE VXI11 Device not accessible.

FFBFFC0AA7 VTEX1629_VXI11_ERROR_INVALID_LINK_IDENTIFIER VXI11 Invalid link identifier.

FFBFFC0AA8 VTEX1629_VXI11_ERROR_PARAMETER_ERROR VXI11 Parameter error.

FFBFFC0AA9 VTEX1629_VXI11_ERROR_CHANNEL_NOT_ESTABLISHED VXI11 Channel not established.

FFBFFC0AAA VTEX1629_VXI11_ERROR_OPERATION_NOT_SUPPORTED VXI11 Operation not supported.

FFBFFC0AAB VTEX1629_VXI11_ERROR_OUT_OF_RESOURCES VXI11 Out of resources.

FFBFFC0AAC VTEX1629_VXI11_ERROR_DEVICE_LOCKED_BY_ANOTHER_LINK VXI11 Device locked by another link.

FFBFFC0AAD VTEX1629_VXI11_ERROR_NO_LOCK_HELD_BY_THIS_LINK VXI11 No lock held by this link.

FFBFFC0AAE VTEX1629_VXI11_ERROR_IO_TIMEOUT VXI11 IO timeout.

FFBFFC0AAF VTEX1629_VXI11_ERROR_IO_ERROR VXI11 IO error.

FFBFFC0AB0 VTEX1629_VXI11_ERROR_INVALID_ADDRESS VXI11 Invalid address.

FFBFFC0AB1 VTEX1629_VXI11_ERROR_ABORT VXI11 Abort.

FFBFFC0AB2 VTEX1629_VXI11_ERROR_CHANNEL_ALREADY_ESTABLISHED VXI11 Channel already established.

FFBFFC0AB3 VTEX1629_ERROR_BRIDGE_LIMIT_CHECKING_NOT_SUPPORTED_AT_CURR_FS Bridge limit checking not supported at
current sampling frequency.

FFBFFC0AB4 VTEX1629_ERROR_FS_NOT_SUPPORTED_WHEN_BRIDGE_LIMIT_CHECKING_ENABLED Sample frequency not supported when
bridge limit checking is enabled.

VTI Instruments Corp.

310 EX1629 Command Set

Error Code Error Message Meaning

FFBFFC0AB5 VTEX1629_ERROR_CONF_LIMIT_CHECKING_NOT_SUPPORTED_AT_CURR_FS Confidence limit checking not supported
at current sampling frequency.

FFBFFC0AB6 VTEX1629_ERROR_FS_NOT_SUPPORTED_WHEN_CONF_LIMIT_CHECKING_ENABLED Sample frequency not supported when
confidence limit checking is enabled.

FFBFFC0AB7 VTEX1629_ERROR_INVALID_COEFFICIENT_SELECTOR Invalid coefficientSelector.

FFBFFC0AB8 VTEX1629_ERROR_XML_PARSE_ERROR Error parsing XML file. File structure
might be incorrect.

FFBFFC0AB9 VTEX1629_ERROR_FAILED_TO_LOAD_FACTORY_CAL Unable to download nominal factory
calibration file from instrument for use in
reporting self-calibration coefficients.

FFBFFC0ABA VTEX1629_ERROR_PASSED_IN_ARRAYS_NOT_LARGE_ENOUGH The passed in array(s) are not large
enough to store all the requested data
from the instrument.

FFBFFC0ABB VTEX1629_ERROR_SENSOR_LED_LIT_UP_ON_ANOTHER_CHANNEL Only one sensor LED can be on at a
time.

FFBFFC0ABC VTEX1629_ERROR_TEDS_OPS_NOT_SUPPORTED_DURING_SENSOR_IDENTIFY TEDS operations not allowed on the
same analog board (channels 1-15).

FFBFFC0ABD VTEX1629_ERROR_FRONT_PANEL_SHUNT_ACTIVE Sensor identification not allowed on the
same analog board (channels 1-15).

FFBFFC0ABE VTEX1629_ERROR_TEDS_SHUNT_ACTIVE Sensor identification not allowed on the
same analog board (channels 1-15).

FFBFFC0ABF VTEX1629_ERROR_INTERNAL_SHUNT_REMOTE_ACTIVE Sensor identification not allowed on the
same analog board (channels 1-15).

FFBFFC0AC0 VTEX1629_ERROR_SENSOR_LED_ACTIVE Operation not allowed when the sensor
identification LED is on.

FFBFFC0AC1 VTEX1629_ERROR_TEDS_SHUNT_ENABLED_ON_MULTIPLE_CHANNELS TEDS shunt is enabled on multiple
channels belonging to the same analog
board (channels 1-15).

FFBFFC0AC2 VTEX1629_ERROR_TEDS_OPS_NOT_SUPPORTED_WHEN_USING_TEDS_SHUNT TEDS operation not supported when the
TEDS shunt is enabled on the same
analog board (channels 1-15).

FFBFFC0AC3 VTEX1629_ERROR_SCANLIST_CONTAINS_BAD_CHANNEL Scanlist contains channels that failed
calibration.

FFBFFC0AC7 VTEX1629_ERROR_INVALID_LID Invalid link ID.

FFBFFC0AC8 VTEX1629_ERROR_NOT_CONNECTED Error: Not connected.

FFBFFC0AC9 VTEX1629_ERROR_ALREADY_STREAMING Error: Already streaming.

FFBFFC0ACA VTEX1629_ERROR_APP_QUERY_RESPONSE_MISMATCH Application query response mismatch.

FFBFFC0ACA VTEX1629_ERROR_APP_QUERY_RESPONSE_MISMATCH Application query response mismatch.

FFBFFC0ACB VTEX1629_ERROR_DATA_READER_THREAD_ERROR Data reader thread error.

FFBFFC0ACB VTEX1629_ERROR_DATA_READER_THREAD_ERROR Data reader thread error.

FFBFFC0ACC VTEX1629_ERROR_INCONSISTENT_CONF_SCANLIST Inconsistent confidence scanlist.

FFBFFC0ACC VTEX1629_ERROR_INCONSISTENT_CONF_SCANLIST Inconsistent confidence scanlist.

FFBFFC0ACD VTEX1629_ERROR_INVALID_CHANNEL_LIST_LENGTH Invalid channel list length.

FFBFFC0ACE VTEX1629_ERROR_INVALID_GAIN Invalid gain.

FFBFFC0ACF VTEX1629_ERROR_INVALID_CONVERSION_CONFIG Invalid conversion configuration.

FFBFFC0AD1 VTEX1629_ERROR_INVALID_CONF_SCANLIST_LENGTH Invalid confidence scanlist length.

FFBFFC0AD2 VTEX1629_ERROR_INVALID_CONF_SCANLIST_ENTRY Invalid confidence scanlist entry.

FFBFFC0AD3 VTEX1629_ERROR_INVALID_PARAMETER_LIST_LENGTH Invalid parameter list length.

FFBFFC0AD4 VTEX1629_ERROR_INVALID_LEADWIRE_RESISTANCE_VALUE Invalid lead wire resistance value.

FFBFFC0AD5 VTEX1629_ERROR_INVALID_LEADWIRE_DESENSITIZATION_FACTOR Invalid lead wire desensitization factor.

FFBFFC0AD6 VTEX1629_ERROR_INVALID_EXCITE_POS_VOLT Invalid positive excitation voltage.

FFBFFC0AD7 VTEX1629_ERROR_INVALID_EXCITE_NEG_VOLT Invalid negative excitation voltage.

FFBFFC0AD8 VTEX1629_ERROR_INVALID_GAIN_SETTING Invalid gain setting.

FFBFFC0AD9 VTEX1629_ERROR_INVALID_COMPRES_TYPE Invalid completion resistor type.

FFBFFC0ADA VTEX1629_ERROR_INVALID_SHUNT_SRC Invalid shunt source.

FFBFFC0ADB VTEX1629_ERROR_CONF_TOO_MANY_ENTRIES Too many conf entries.

FFBFFC0ADC VTEX1629_ERROR_FPGA_TRIGABORT_ACQ_TO_IDLE_TIMEOUT FPGA acquisition to idle timeout.

FFBFFC0ADD VTEX1629_ERROR_TEDS_INFO_CRC_FAILURE TEDS info CRC failure.

FFBFFC0ADE VTEX1629_ERROR_TEDS_ID_CRC_FAILURE TEDS ID CRC failure.

www.vtiinstruments.com

EX1629 Command Set 311

Error Code Error Message Meaning

FFBFFC0ADF VTEX1629_ERROR_TEDS_WRITE_SCRATCHPAD_RDBK TEDS write scratchpad readback error.

FFBFFC0AE0 VTEX1629_ERROR_TEDS_WRITE_INFO_RDBK TEDS write info readback error.

FFBFFC0AE1 VTEX1629_ERROR_CAL_FACTORY_CAL_NOT_PRESENT Factory calibration not present.

FFBFFC0AE2 VTEX1629_ERROR_CAL_INCOMPLETE_CAL Incomplete calibration.

FFBFFC0AE3 VTEX1629_ERROR_INVALID_MODE_FOR_SOFT_TRIGGER Invalid mode for soft trigger.

FFBFFC0AE4 VTEX1629_ERROR_INVALID_MODE_FOR_SOFT_ARM Invalid mode for soft arm.

FFBFFC0AE5 VTEX1629_ERROR_INPUT_BRIDGE_NOT_COMPLETE Input bridge not complete.

FFBFFC0AE6 VTEX1629_WARNING_CAL_BUFFERSIZE_SMALLER_THAN_ACTUAL_SIZE Warning: the passed in buffer / buffer
size are not large enough to hold all of
the cal data. Only buffer size amount
was stored in the buffer.

FFBFFC0AED VTEX1629_ERROR_PTP_NOT_RUNNING Error: PTP not running.

FFBFFC0AEE VTEX1629_ERROR_PROFILING_NOT_ENABLED Error: Profiling not enabled.

FFBFFC0AEF VTEX1629_ERROR_DYNAMIC_EXCITATION_EU_ENABLED Can not set EU conversion on a channel
where dynamic excitation EU conversion
mode is enabled.

FFBFFC0AF0 VTEX1629_TEMP_DIR_WRITE_PROTECTED Error: The temporary directory C:\Temp
either does not exist or is write-
protected.

None VI_WARN_NSUP_SELF_TEST WARNING: Self-Test not supported.

None VI_WARN_NSUP_ERROR_QUERY WARNING: Error Query not supported.

VTI Instruments Corp.

312 EX1629 Command Set

www.vtiinstruments.com

EX1629 Multi-Instrument Operation 313

 APPENDIX A

MULTI-INSTRUMENT OPERATION

INTRODUCTION

While a single EX1629 provides a sophisticated strain gage instrument, the ability to connect

multiple instruments together as an ensemble, creating a single, high sample-rate, high channel-

count acquisition system provides enormous power. This section describes how configure such

systems. Please refer to Synchronizing Multiple Instruments for a detailed example with software.

In a multi-instrument configuration, one device is selected as a master and one or more devices are

slaves. The master device sources (outputs) its sample clock and synchronization signal. These

signals allow the master and slave(s) to synchronize their ADCs so that sampled data is phase-

aligned and coherently acquired. In addition, depending on the triggering needs, the master device

may output an arm and/or a trigger signal. This section describes some common multi-instrument

configurations.

Distributing Sample Clock and Synchronization Signals

To guarantee that all instruments in a multi-instrument configuration acquire coherent, phase-

aligned data, a single instrument (the “master”) is chosen by the application designer to share its

internal sample clock and synchronization signals with one or more slave instruments. These

signals are distributed to the slaves via the LXI Trigger Bus.

NOTE The sample clock and synchronization signals may only be distributed via the LXI Trigger Bus.

Further, only an EX1629 instrument can provide these signals – no external oscillators or

synchronization signals are supported.

Due to hardware constraints, only certain LXI Trigger Bus lines may be used to distribute the

sample clock and synchronization signals (see vtex1629_set_sample_clock_source and

vtex1629_set_synch_source for more detailed information). Each instrument has two LXI Trigger

Bus Connectors that are connected together internally – they are functionally identical. When the

LXI Trigger Bus is used, both connectors must be attached to either an LXI Trigger Bus Cable or

a Trigger Bus Terminator. All LXI Trigger Bus configurations must involve two LXI Trigger Bus

Terminators, one at each end of the bus.

NOTE When the LXI Trigger Bus is not being used (e.g., standalone mode) no LXI Trigger Bus

Terminators are needed.

Generally, there are two topologies for distributing these signals: Daisy-Chain and Star. In the

daisy-chain topology, devices are connected serially, with two LXI Trigger Bus Cables connected

to each instrument, except the two instruments at the ends of the daisy-chain, both of which have

only a single LXI Trigger Bus Cable connected, with an LXI Trigger Bus Terminator on the other

connector. The Daisy-Chain configuration is suitable for smaller ensembles of instruments, two to

twenty.

VTI Instruments Corp.

314 EX1629 Multi-Instrument Operation

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET
10/100 BASE-T

DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

Master

Slave 2

Slave 1

Slave n

Terminator

Terminator

FIGURE A-0-1: DAISY-CHAIN CONFIGURATION

NOTE Due to signal integrity concerns, the maximum number of EX1629s that should be connected in a

daisy-chain configuration is 20.

The Star topology connects the Master and Slave(s) in parallel. In the Star topology, an LXI

Trigger Bus Hub or Switch (e.g., EX2108) is used to distribute the LXI Trigger Bus signals. The

Star topology has two potential advantages over the Daisy-Chain configuration: it can provide

better cable-length matching (and thus signal propagation time matching), and more instruments

can be connected together. In the Daisy-Chain topology, slave devices are connected to the master

at various points along the shared bus, with differing amounts of cable between them and the

master device. This causes signals to reach each of the slaves at slightly different times (a good

rule of thumb is that electrical signals travel along cables at approximately 1 ft/ns).

www.vtiinstruments.com

EX1629 Multi-Instrument Operation 315

90-264 VAC
50 / 60 Hz

25VA MAX.

POWER

TRIGGER PORT 7

TRIGGER PORT 6

TRIGGER PORT 5

TRIGGER PORT 4

TRIGGER PORT 3

TRIGGER PORT 2

TRIGGER PORT 1

MASTER PORT

VXI Technology

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC
50 / 60 Hz

200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET
10/100 BASE-T

DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

90-264 VAC

50 / 60 Hz
200VA MAX.

WIDEBAND OUT CH 0-15 WIDEBAND OUT CH 16-31 WIDEBAND OUT CH 32-47

A
C

I
N
P
U
T

TRIGGER
BUS

RESET

ETHERNET

10/100 BASE-T
DIGITAL I/O

VXI Technology
LO HI

CALIBRATION SENSE

Terminator

Terminator

Terminator

Terminator

Trigger Bus Hub

Master - Inputs on LXI 0 - 3, Outputs on LXI 4 - 7

Slave 2 - Inputs on LXI 4 - 7

Slave 1 - Inputs on LXI 4 - 7

Slave - Inputs on LXI 4 - 7n

FIGURE A-0-2: STAR CONFIGURATION

For the tightest correlation between instruments, LXI Trigger Bus Cables can be length matched,

and the slave devices connected via an LXI Trigger Bus Hub/Switch. By suitably configuring the

LXI Trigger Bus Hub/Switch, and using the lxiOutput and lxiInput parameters of the functions

used to configure the sample clock, synchronization, arm and trigger signals, even the propagation

times as seen by the Master can be addressed. By configuring the Master device to output a signal

(lxiOutput) on an LXI Trigger Bus line, and accept the signal (lxiInput) on a different line, the

Master device can be made to see the same timing as the Slave devices. For example, the sample

clock may be output on LXI Line 0 and input on LXI Line 4, with the LXI Trigger Bus

Hub/Switch connecting LXI Line 0 to LXI Line 4. For more on configuration configuring the

signals, see the vtex1629_set_sample_clock_source, vtex1629_set_synch_source,

vtex1629_set_pattern_arm_configuration, and vtex1629_set_pattern_trig_configuration functions.

VTI Instruments Corp.

316 EX1629 Multi-Instrument Operation

In addition, the Star topology may allow a larger number of instruments to be connected together,

through the repeater capability of the LXI Trigger Bus Hub/Switch. Signals passing through the

LXI Trigger Bus Hub/Switch are actively driven with transceivers, so the signal integrity issues

that limit the number of devices that may be connected via the Daisy-Chain topology are

mitigated.

In a “pure” Star topology, each instrument is directly connected to the LXI Trigger Bus

Hub/Switch. In a “hybrid” Star (aka Star/Daisy-Chain) topology, an LXI Trigger Bus Hub/Switch

is used to connect a number of Daisy-Chains together, allowing hundreds of EX1629 instruments

to be connected together. It should be noted that in these Star/Daisy-Chain topologies, it is not

possible to perfectly match propagation time, as in the Daisy-Chain configuration. For many

applications, though, the small variations in propagation delays are not important. For very large

acquisition systems, the sample rates are typically low (typically on the order of a few hundred

samples per second), so the small propagation delay induced phase errors are negligible.

Triggering

NOTE The discussion of triggering below applies equally to arming as well.

There are several triggering modes that may be used in a multi-instrument configuration,

depending on the application’s needs. Fundamentally, all trigger and arm events are transmitted

across the EX1629’s internal LXI Trigger Bus to the actual acquisition hardware. The events may

come from the external LXI Trigger Bus, or from other trigger domains, such as DIO, Timer, and

software. Events from these other trigger domains may be transformed into LXI Trigger Bus

events via the “pattern” trigger source. This “pattern” source is useful in several situations,

including software triggering an ensemble of instruments.

The simplest triggering mode is to configure all instruments to accept an external LXI Trigger Bus

event, such as a positive (rising) edge on LXI Line 3. The Master and the Slave(s) instruments are

configured identically and some external device is used to generate an LXI Trigger Bus event.

The next simplest mode, which works well for a large number of data acquisition applications, is

to trigger the Master device under software control, the Master device being configured to trigger

the slaves, in turn. For this mode of operation, the Master device is configured with a trigger

source of “pattern” (vtex1629_set_trigger_source). No DIO, LXI, or timer events are configured

as part of the pattern; only the lxiInput and lxiOutput parameters need to be specified

(vtex1629_set_pattern_trig_configuration). Since the Software Trigger is always valid while in

pattern mode, it can be used to trigger the pattern. When the pattern is triggered, via the

vtex1629_soft_trig function, an edge is generated on the lxiOutput line configured in the pattern.

The Master device acquisition is triggered based on the lxiInput setting – it may be the same as

lxiOutput, or different, depending on if an LXI Trigger Bus Hub/Switch is being used to route

signals. Slave devices are configured with a non-pattern trigger source equal to the LXI line

specified in the lxiOutput configuration of the Master. To trigger the ensemble of instruments in

this configuration, a vtex1629_soft_trig function is used on the Master instrument. All

instruments’ Trigger subsystems must be initialized (vtex1629_trig_init) prior to the software

trigger.

Another common configuration handles the situation when the trigger source is a TTL signal. For

simplicity, this signal can be routed to the Master instrument and the Master instrument can be

configured to generate an event on the LXI Trigger Bus to trigger itself and the Slave instruments.

This configuration is similar to the above, software-triggered configuration, except that the

Master’s trigger pattern is configured with a DIO event or level appropriate to the external TTL

event. The Master device, upon receiving the DIO event will generate a rising edge on the LXI

line specified in the pattern’s lxiOutput signal. Slaves are configured to trigger on a positive

(rising) edge.

www.vtiinstruments.com

EX1629 Filtering 317

 APPENDIX B

EX1629 FILTERING

INTRODUCTION

The diagram below details the filter chain present in the EX1629 channels, which contains both

analog and digital components. These components are discussed sequentially in the following

sections.

FPGA

CIC

(R=1-10000,

N=5, M=1)

6th order

modulator

ADC
ADS1271

fso50 kSa/s
Analog

Ant-Aliasing

Filter

(1-pole RC)

CIC

compensation

filter and FIR

decimation

filter

Butterworth/

Bessel IIR

filters with

variable fc

C6713

DSP

fsFIR

100dB stopband

attn.

ripple=0.005dB

where fso = input frequency to FIR decimator, fs = user sample rate

FIGURE B-8-1: EX1629 FILTER CHAIN

Analog Anti-Aliasing Filter

The analog anti-aliasing filter consists of a single-pole RC filter with R = 5.62 kΩ and C = 470 pF,

which has a -3 dB point of fc = 1/(2π*RC), or 60.254 kHz.

The rejection at 6.25 MHz (the ADC sigma delta modulator sampling rate) is:


















2
1

1

cf

f
f = -40.52426 dB

VTI Instruments Corp.

318 EX1629 Filtering

DIGITAL FILTERS

The following table provides detailed information concerning the digital filters used by the ADC

of the EX1629. For more information on digital filtering, Discrete-Time Signal Processing (2nd

Edition) by Alan Oppenheim could be used as a reference.

fs fc max

CIC

dec

FIR

dec

60 Hz

rejection

(dB)

GD for IIR

N=4 (samples)

GD for IIR

N=6 (samples)

GD for IIR

N=8 (samples)

GD for IIR

N=10 (samples)

Delay up to

IIR

(samples)

50000 22650 1 1 39.00000

25000 11500 1 2 51.00000

12500 5255 1 4 25.62000

10000 4005 1 5 20.50000

6250 2130 1 8 12.81200

5000 1505 1 10 10.25000

3125 937.50 2 8 9.71875

2500 970.00 4 5 15.02500

2000 776.00 5 5 14.66000

1250 485.00 8 5 14.11250

1000 388.00 10 5 0.949274 1.403572 1.862067 2.322195 13.93000

833.33 323.33 12 5 0.479686 0.709252 0.940938 1.173450 13.80833

625 242.50 16 5 0.479686 0.709252 0.940938 1.173450 13.65625

500 194.00 20 5 0.479686 0.709252 0.940938 1.173450 13.56500

400 155.20 25 5 0.479686 0.709252 0.940938 1.173450 13.49200

250 97.00 40 5 0.479686 0.709252 0.940938 1.173450 13.38250

200 77.60 50 5 0.479686 0.709252 0.940938 1.173450 13.34600

166.67 64.67 60 5 0.479686 0.709252 0.940938 1.173450 13.32167

125 48.50 80 5 0.479686 0.709252 0.940938 1.173450 13.29125

100 38.80 100 5 0.479686 0.709252 0.940938 1.173450 13.27300

80 31.04 125 5 0.479686 0.709252 0.940938 1.173450 13.25840

50 19.40 200 5 0.479686 0.709252 0.940938 1.173450 13.23650

40 15.52 250 5 0.479686 0.709252 0.940938 1.173450 13.22920

33.33 12.93 300 5 0.479686 0.709252 0.940938 1.173450 13.22433

25 9.70 400 5 0.479686 0.709252 0.940938 1.173450 13.21825

20 7.76 500 5 >100 dB 0.479686 0.709252 0.940938 1.173450 13.21460

16 6.21 625 5 >100 dB 0.479686 0.709252 0.940938 1.173450 13.21168

10 3.88 1000 5 >100 dB 0.479686 0.709252 0.940938 1.173450 13.20730

8 3.10 1250 5 >100 dB 0.479686 0.709252 0.940938 1.173450 13.20584

5 1.94 2000 5 >100 dB 0.479686 0.709252 0.940938 1.173450 13.20365

4 1.55 2500 5 Infinite 0.479686 0.709252 0.940938 1.173450 13.20292

2 0.78 5000 5 Infinite 0.479686 0.709252 0.940938 1.173450 13.20146

1 0.39 10000 5 Infinite 0.479686 0.709252 0.940938 1.173450 13.20073

TABLE B-1: DIGITAL FILTER DATA

www.vtiinstruments.com

EX1629 Filtering 319

As shown in Figure B-8-1, the CIC (Cascaded Integrator-Comb) and FIR (Finite Impulse

Response) filters are responsible for decimation of the ADC data. The sample rates available are

shown in Table B-1. The corresponding CIC and FIR decimations are shown as well as the

maximum passband frequencies.

Decimation has been divided into two stages in order to provide a “low” passband droop and a

high alias rejection at frequencies close to the Nyquist rate. The CIC filter cannot achieve this

alone. The scheme employed ensures that the passband droop is no more than ±0.01 dB and that

the alias rejection is at least 100 dB.

If the user requires a smaller passband than the one passband indicated in the table for a particular

fs or if they must reject specific frequencies, the user can make use of the IIR filters explained later

in this section.

CIC Filter

The CIC filter in the FPGA receives input from the anti-alias filter decimates the data by the

factors shown in Figure B-8-2. The max_fc parameter, shown in Table B-1, is less than or equal to

sof05.0 . Stopband attenuation is greater than -110 dB.

FIGURE B-8-2: ALIAS REJECTION AS A FUNCTION OF DECIMATION

DSP Filters

CIC compensation filter

This filter compensates for the droop in the passband of the CIC. Six tap FIR filters are designed

to compensate for the variable droop as a function of sampling rates. The need to have more than

one filter arises due to the wide range of decimation factors. The CIC droop after compensation is

bounded by ±0.0002. The group delay of this filter is 2.5 samples. Filtering operations done in

floating point.

VTI Instruments Corp.

320 EX1629 Filtering

FIR decimation filter

There are up to 128 tap filters that decimate up to a factor of 10. These filters can operate in the

linear range of the CIC response. Hence, the CIC filter is used to decimate frequencies up to

max_fc*20 or more, then the FIR filter is used to further decimate the data such that a passband

close to the Nyquist frequency is achieved. The ripple of this filter for fs ≥ 3125 is 0.01 dB and for

fs < 3125 is 0.001 dB with an alias rejection of 100 dB.

FIR filtering is done in floating point.

IIR filters

The IIR filters are designed on-the-fly in the DSP. Given the following:

 filter type (i.e. Butterworth or Bessel)

 sampling frequency, fs

 cutoff fc – -3 dB point can be, at most, max_fc to operate in the linear region of the decimating

filters

 transform type (Bilinear/Matched Z)

 IIR filter order – supported ranges are 1-10. For the Butterworth filter type, if the filter order

is set to 0, the DSP determines the order by assuming attenuation of 200 dB in stopband. The

filter order MUST be specified for Bessel filters.

 the DSP designs a filter implemented as biquad sections. The maximum filter order is 10. The

DSP also determines the risetime, overshoot, and group delay of the filter.

IIR filtering operations are done in double-precision floating point.

Filtering Limitations

 IIR filtering is done only at rates 10 kHz and below due to DSP processing constraints

Group Delay

FIR filters

The group delay (τg) through the FIR filters is constant over frequency and are calculated as

follows:

τg FIR = (Ntaps-1)/2, where Ntaps is the number of taps.

The settling time of a FIR filter is twice the group delay (2τg FIR).

In the EX1629, the ADC and the CIC are FIR filters. Their group delays are:

ADC = 39 samples @ 50 kSa/s

2

)1(


RMN
CIC @ 50 kSa/s

 Where R=decimation

 N=number of stages = 5

 M=differential delay = 1

FIR filter: (fir_Ntaps-1)/2 @ CIC output rate, where fir_ntaps is the number of taps of the FIR

filter.

Hence, the total delay through the FIRs at the ADC sample rate (50 kHz) is:

τg FIR =
 

   sdeccicNtapsfir
deccic

20_1_
2

1_539



.

www.vtiinstruments.com

EX1629 Filtering 321

The settling time is double this time (2τg FIR).

IIR filters

The group delay through the Bessel or Butterworth IIR filters is a function of cutoff frequency,

sampling frequency, and the number of poles. The group delay for the dc component is calculated

and reported to the digital board (τg IIR).

The total delay through the IIR = τg IIR *cic_dec*fir_dec*20 µs

The group delay will be provided to the end user. The samples will be group delay compensated.

Although it is possible to set each channel’s IIR filter individually, it is highly recommended that

the channels on each digital board (channels 0 through 15, 16 through 31, and 32 through 47) be

configured to use the same filter. Currently, each EX1629 digital board calculates group delay

corrections based on the setting of the first channel (channels 0, 16, and 32), regardless of whether

these channels are included in a scan list. As a result, any channel that uses a different filter will

have data that has been incorrectly delay compensated.

It is possible to post-process the data from the EX1629 and compensate for group delay on a per

channel (per filter) basis. The group delay of all channels can be queried using the

vtex1629_get_IIR_filter_configuration() function. Group delay values for channels 0, 16, and 32

can then be used along with the group delays for the other channels to compute the additional

group delay (in samples) that data from each channel should be delayed or advanced.The data shift

can be calculated by using the following formula:

Data Shift = (Dx_- D0), where Dx is the delay for the channel and D0 is the group delay for the first

channel in the group (channel 0, 16, or 32).

TRANSFORMATIONS

The EX1629 utilizes two types of transformations: bilinear and matched Z. Both transformations

are discussed below.

The Bilinear Transform

The bilinear transformation (BLT) used in the EX1629 maps the entire jw axis in the s plane

exactly once to the unit circle in the z plane:

1

1

1

1









z

z
cs

dc (s = 0) maps to dc (z = 1). As for the finite difference approximation (FDA), infinite frequency

(s = ∞) maps to half the sampling rate (z = -1) instead of z = 0 for the FDA. As a result:

 damping characteristics are better preserved

 no aliasing (mapping is one-to-one)

 frequency axis remains warped away from dc

The real constant c > 0 allows one nonzero frequency (at s = jwα) to map exactly to any desired

digital frequency (at
Tjwdez ). All other frequencies are warped, or distorted in a non-linear

fashion:




















2
tan

1

1 Tw
jc

e

e
cjw d

Tjw

Tjw

d

d



VTI Instruments Corp.

322 EX1629 Filtering

The Matched Z-transform

Under most circumstances, the BLT is superior to the matched Z-transform (MZT). The

principal disadvantage of the BLT is that the frequency scale is “warped” so that, for a low-pass

filter:

0 Hz In the analog domain maps to 0 Hz in the digital domain

fc In the analog domain maps to fc in the digital domain

∞ Hz In the analog domain maps to fs/2 in the digital domain

where fc is the corner frequency and fs is the sampling frequency

Typically, this is what is desired of a low-pass or bandpass filter: a response which is exactly zero

at the Nyquist frequency (fs/2). For a high-pass filter, a response equal to unity at this frequency is

also desirable.

The one exception to this is the Bessel filter. The advantage of a Bessel filter over a Butterworth

or Chebyshev filter is that the phase response is nearly linear throughout the passband (the group

delay is almost constant throughout the passband). The “warping” inherent in the BLT method

upsets this linearity. The MZT does not warp the frequency scale, so a digital Bessel filter

designed by this method will have a near-linear phase characteristic.

In fact, a low-pass filter designed by MZT is impulse-invariant with the analog prototype. With

the same impulse response, it behaves identically to the corresponding analog filter. This stands

true only if aliasing is ignored. If the response of the digital low-pass filter is not negligible at fs/2,

the response in the vicinity of this frequency will be disturbed by the spurious response at

frequencies above fs/2, which are folded down into the band below fs/2. This is why it is advisable

to check the frequency response graphs carefully if this method is used.

A further advantage of the MZT is that the number of zeros is reduced, in comparison with the

BLT. A low-pass filter designed by MZT has no z-plane zeros.

To summarize: matched Z-transform may be used if:

 a Bessel filter is required with an optimally linear phase response; or

 efficiency is more of a concern than the quality of the frequency response.

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 323

 APPENDIX C

MICROLAN (MLAN) PRIMER

INTRODUCTION

The MicroLAN specification details five major functions that are the centerpiece of any operations

involving TEDS devices. These five functions are:

 Read serial/URN from device (GET_URN)

 Write to volatile memory scratchpad (READ_SCRATCHPAD)

 Read from volatile memory scratchpad (WRITE_SCRATCHPAD)

 Copy volatile scratchpad to nonvolatile memory (COPY_SCRATCHPAD)

 Read from non-volatile memory (READ_MEMORY)

The GET_URN command is a vital precursor to any of the other four operations. If the URN of

the TEDS (1-Wire) device is not queried before the other operations are called, these operations

will fail.

In general, there can be multiple 1-Wire devices per 1-Wire bus master (MLAN repeater) and the

MLAN responder in the unit holds the state of the device being addressed. To interact with a 1-

Wire device, the URN of the device is used as an address, allowing a single device to be selected.

Each channel on the EX1629 has a 1-Wire bus master. Under typical operation on the EX1629,

only a single 1-Wire device will be connected to each channel.

The GET_URN function is designed to identify a single 1-Wire TEDS device and return its unique

64-bit URN value. Sample code for how this function is implemented is provided. A variant of the

GET_URN function can be used to search through multiple devices in order to select a specific

device, but the example version of this function only supports one device per channel.

Once the 1-Wire device has been addressed, the MLAN responder will store its address, and it will

not need to be referenced again until it is necessary to change devices. Any of the other commands

can now be used to view or change data.

The READ_MEMORY function is probably the most commonly used MLAN command. It allows

the user to query the non-volatile memory of any 1-Wire device and read back its contents.

Currently, the maximum size of the EX1629 MLAN buffer is 48 bytes, but, because of packet

overhead, this sample code limits data reads to 32 bytes. For some devices, notably the DS2431,

the READ_MEMORY function may return multiple MLAN packets.

The “scratchpad” is a volatile buffer on a 1-Wire device where data is written before it is copied to

memory. In order to write data to the main memory, it must first be written to the scratchpad.

After writing to the scratchpad, the data can then be copied to the main memory.

WARNING The scratchpad will be erased if you unplug your MLAN device, power off the EX1629, or wait

a significant amount of time between commands. VTI Instruments recommends performing

scratchpad operations in a production environment using the “write_and_copy” atomic command

which is discussed in detail later.

VTI Instruments Corp.

324 EX1629 MicroLAN (MLAN) Primer

The WRITE_SCRATCHPAD command can be used to write arbitrary data to the scratchpad of a

1-Wire device. Unlike the GET_URN function, WRITE_SCRATCHPAD (and all other MLAN)

functions are specific to the type of MLAN device being used. In the example code,

write_scratchpad_2430() and write_scratchpad_2431() functions are used to represent the

differences between the DS2430 and DS2431 devices. Be careful of the size differences between

various devices’ scratchpad buffers. In the case of the DS2431, 8 bytes of data, aligned on an

8-byte address, must be written together – that is, all memory writes involve 8 bytes. To modify a

single byte of memory requires that the 8-byte block be read back from the device, the byte in

question modified, and the resulting 8 bytes written back. The datasheet for the 1-Wire component

in use should serve as the ultimate guide in programming the device.

The READ_SCRATCHPAD function can be used to read back a device’s scratchpad. For

example, it is always a good idea to do this after a WRITE_SCRATCHPAD call and before a

COPY_SCRATCHPAD call to verify that the write was completed successfully and that the data

was entered correctly before permanently overwriting main memory. As previously noted, using

the individual functions for WRITE, READ, and COPY can cause data loss and the recommended

method is to use the WRITE_AND_COPY command and read main memory.

COPY_SCRATCHPAD allows the user to transfer the scratchpad buffer on the MLAN device to

the non-volatile memory of the device. This permanently overwrites the addressed non-volatile

memory, so care should be exercised when doing so.

PROGRAMMING MLAN

Below, we will discuss the example code for each function of the 2430 and 2431. First, however,

there are some constants which should be discussed.

//MLAN commands

#define CMD_RESET 0x84

#define DATA_SEARCH_STATE 0x01

#define DATA_SEARCH_CMD 0x02

#define CMD_ML_DATA 0x0A

#define CMD_ML_RESET 0x80

#define CMD_ML_SEARCH 0x81

#define DATA_ID 0x00

#define CMD_GETBUF 0x85

#define CMD_ML_ACCESS 0x82

#define CMD_DELAY 0x0B

#define CMD_ML_BIT 0x09

#define DELAY_128 0x02

#define DELAY_MS 0x80

These #defines are commands that are sent to the MLAN controller. They do not modify the data

on the device, but allow a device to be selected, tells the controller to return a buffer with the

result, or sets up a delay on the MLAN line. They will be explained when they are used in the

example code. These commands are defined by the MLAN specification. In general, these

commands are targeted at the MLAN repeater (1-Wire bus master) itself, not the 1-Wire, TEDS

devices.

//Functions that modify TEDS data

#define WRITE_SCRATCHPAD 0x0F

#define READ_SCRATCHPAD 0xAA

#define COPY_SCRATCHPAD 0x55

#define READ_MEMORY 0xF0

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 325

These are the actual opcodes for four of the five functions we outlined above. They are 1-Wire bus

commands that are sent to the 1-Wire (TEDS) devices. The GET_URN function is not listed

because it is not a single opcode that modifies data on the device or returns data except for the

serial number/URN.

//Device-specific values

#define DS2430_SCRATCHPAD_LEN 32

#define DS2431_SCRATCHPAD_LEN 8

#define DS2430_MEMORY_LEN 32

#define DS2431_MEMORY_LEN 144

#define EX1629_MAX_TEDS_READ 32

These are the values that will be seen in the code, and are fairly self explanatory. The

EX1629_MAX_TEDS_READ is an artifact of implementation – the minimum MLAN buffer is

48 bytes, which is what is supported by the EX1629. To avoid overruns, however, our example

code will only read 32 bytes at a time, plus some MLAN overhead which will be explained later.

uint8_t SendPkt[256];

uint8_t RecPkt[256];

These are global buffers which will be used to store the sent and received packets.

Before beginning with the listed functions, a short example will be examined and described in

detail.

int example_function(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 SendPkt[sendLen++] = CMD_RESET;

 SendPkt[sendLen++] = CMD_GETBUF;

 SendPkt[0] = sendLen - 1;

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

This function performs an MLAN bus master reset, that is, it resets the MLAN repeater inside the

EX1629. As can be seen, the first byte of the packet is reserved for the length of the packet. This

not only defines a maximum size for an MLAN packet, but also tells the controller how much

space to allocate for it. This is done for every packet sent. The controller also uses the first byte as

the length of every packet received. Command and data bytes are appended to the byte array, with

a post-increment of the index (sendLen).

The first command sent is CMD_RESET, or 0x84. This is the command that performs the bus

master reset. The next command is CMD_GETBUF, or 0x84. This returns the response buffer

from the repeater.

Here is the program’s output, given just this function:

sent packet without errors

Packet length: 3

02 84 85

got a packet without errors on receive

Packet length: 3

02 84 00

The first line indicates that the driver call used to send the data was successful. The second

indicates how long the packet sent was: 3 bytes, which is what was expected. The next line is the

printout of the packet. The first byte in the packet, as previously stated, is the length of the packet.

VTI Instruments Corp.

326 EX1629 MicroLAN (MLAN) Primer

In this case, 2 bytes (this length does not include the length byte). The other bytes are the

CMD_RESET and CMD_GETBUF commands, in that order.

It is sometimes necessary to allocate space for a return buffer in the sent packet. All MLAN

commands will send back at least two bytes: the command performed and the response to that

command. Additional components may also be included, such as CRC bytes, data echo, or an error

message, but two bytes is the minimum.

In this instance, three bytes were returned: the length of the data, the command performed, and the

response to the command. As before, the length of the packet does not include the length byte. The

two bytes returned are “84” and “00”, where “84” is from the sent packet, the CMD_RESET

command. This is the bus master echoing the command to confirm what was sent. The “00” byte

is the response to that command, in this case ML_SUCCESS. The CMD_GETBUF is not echoed

back in the response, nor is there an error code returned, as this information would be superfluous.

This indicates that the MLAN repeater received the bus master reset and that it was successful. If

an error was encountered during this process, it might look like this:

sent packet without errors

Packet length: 3

02 84 85

got a packet without errors on receive

Packet length: 3

03 84 86 02

This time, 3 bytes were received. The “84” for CMD_RESET, and then “86 02”. From

IEEE 1451.4, Annex G, “86” is the code for CMD_ERROR. This buffer was not processed

successfully, and we have not reset the bus master. The “02” is also in Annex G, and means

“RET_BUSY, previous buffer has not been processed yet.” It will be necessary to wait until the

last command completes before processing this one. Note that this error is purely hypothetical, but

illustrates the typical format for an MLAN error.

With some basic programming completed, the more complex functions required to access a

1-Wire device can be examined.

The GET_URN function, below, is the simplest function in many ways, and the most generic.

int get_urn(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // clear the search state so we find the 'first' device

 SendPkt[sendLen++] = CMD_RESET;

 // do a reset,search and then read results

 SendPkt[sendLen++] = CMD_ML_RESET;

 SendPkt[sendLen++] = CMD_ML_SEARCH;

 SendPkt[sendLen++] = DATA_ID;

 SendPkt[sendLen++] = 0;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

As in the pervious example, the first byte is reserved for length and increments our index as

commands are inserted into the packet.

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 327

First, an MLAN Bus Master Reset is performed. This allows ceases compunction with any other

MLAN devices that were previously addressed, and uses the new one. The CMD_ML_SEARCH

and DATA_ID commands tell the controller to find the next device and obtain its ID, respectively.

If multiple CMD_ML_SEARCH and DATA_ID pairs were sent, it would be possible to determine

how many devices were on this channel. CMD_ML_SEARCH returns 0x01 when no more

devices are found.

The GET_URN() function, above, is equivalent to the vtex1629_read_teds_URN() function of the

instrument driver. It is included for clarity and as one of the simpler examples of MLAN

programming.

NOTE The EX1629 supports only one device per channel in 0.4.x and previous firmware revisions.

Here is an example output from the GET_URN function using the example code:

sent packet without errors

Packet length: 7

06 84 80 81 00 00 85

got a packet without errors on receive

Packet length: 17

10 84 00 80 00 81 00 00 08 14 29 70 D3 01 00 00 60

The “14” in the response denotes the “family code” of the device, in this case, indicating that it is

a DS2430. The “14” is the first byte of the unique serial number, and the “08” before it is the

length of that serial number. The DS2431’s family code is “2D”.

DS2430 COMMANDS

WRITE_SCRATCHPAD_2430

The function used in writing data to an MLAN device is the WRITE_SCRATCHPAD function. It

is important that the 1-Wire device be selected using the GET_URN function prior to using the

remaining functions. The CMD_ML_ACCESS command to the MLAN repeater uses the address

(URN) of the last selected device for all subsequent operations.

int write_scratchpad_2430(const char* data, int channel)

{

 int sendLen, recLen = 0;

 int i = 0;

 char byte[2];

 if(strlen(data) != ((DS2430_SCRATCHPAD_LEN * 2) +

(DS2430_SCRATCHPAD_LEN-1)))

 {

 printf("Data was not the right length (wanted 95, got %i)\n",

strlen(data)); //(SCRATCHPAD_LEN*2)+(SCRATCHPAD_LEN-1) = 95

 return -1;

 }

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3+DS2430_SCRATCHPAD_LEN; // block length

 SendPkt[sendLen++] = 2+DS2430_SCRATCHPAD_LEN; // data length

 // send the write scratchpad command

 SendPkt[sendLen++] = WRITE_SCRATCHPAD;

 // send the address byte

 SendPkt[sendLen++] = 0;

 // the bytes of data to write

VTI Instruments Corp.

328 EX1629 MicroLAN (MLAN) Primer

 for (i = 0; i < ((2*DS2430_SCRATCHPAD_LEN) +

(DS2430_SCRATCHPAD_LEN-1)); i+=3)

 {

 strncpy(byte, &data[i],2);

 SendPkt[sendLen++] = (uint8_t)strtoul(byte, NULL, 16); //convert

to hex

 }

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

When the ASCII data format used in the example code is seen., the reason for the

(SCRATCHPAD_LEN * 2) + (SCRATCHPAD_LEN - 1) code segment becomes more

clear. For the DS2430, a data string for the example code might look like this:

"01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1F 20 21"

For each hex byte, there are two characters (LEN * 2), plus one space for all but the last one

(LEN-1). This example code uses this format for easy parsing.

Once again, the first byte is reserved for the length of the packet, and then two very common

MLAN commands are sent, CMD_ML_ACCESS and CMD_ML_DATA. The ML_ACCESS

command allows the user to access a 1-Wire device which was previously searched for and

discovered. ML_DATA tells the controller that data operations are going to begin on that device –

that is, 1-Wire bus transactions will be performed.

The next command, 3+DS2430_SCRATCHPAD_LEN, is actually the length of the command that

is being sent to the device. Since the entire scratchpad length is being written, that must be

included. Then, the data length block, the WRITE_SCRATCHPAD command itself, and the

“0”, which is the address in memory that the scratchpad will write to, must be added. Since data

written to the scratchpad will ultimately end up in the non-volatile memory, the target address in

the non-volatile memory must be provided when writing the data to the scratchpad. This provides

a measure of error detection, when the address is later provided in the copy scratchpad operation,

as well as allowing the device to return an error if the target memory is write-protected. The

CMD_GETBUF is not part of this block, as it is a separate command.

Note that data length block is 2+DS2430_SCRATCHPAD_LEN. The reason for this is that, when

writing to the scratchpad, the controller sends back what was written so that it can be verified. For

any MLAN command, two must be added to the length of the data that is expected to be returned

(for the command sent and command result to be returned), and the scratchpad data is the only

data we expect to be returned.

On the DS2430, address 0 is always written to after the WRITE_SCRATCHPAD command, as

the DS2430 scratchpad is the same size as the memory. Therefore, by writing a single scratchpad,

the entire memory will be overwritten. This will not always be the case, and, in fact, is not on the

DS2431, which will be seen later.

The “for” loop that is next in the code translates the ASCII text string “data”, which was passed in

(see the example data string above), into its hexadecimal equivalent to be sent to the controller.

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 329

The last command tells the controller to read back the result of the previous command. This is

invaluable, as it allows error codes to be viewed, if errors are returned. The last steps are to send

the completed packet and retrieve the response.

Here is how the output for a WRITE_SCRATCHPAD for the DS2430 looks when using the

example code:

sent packet without errors

Packet length: 40

27 82 0A 23 22 0F 00 AA 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F 20 21 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 0F 00 AA 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F 20 21

As can be seen, WRITE_SCRATCHPAD echoes the data written to it as well, which is why space

was allocated for it.

READ_SCRATCHPAD_2430

The READ_SCRATCHPAD command is nearly identical between the DS2430 and DS2431, but

some differences exist. The DS2430 will be covered first.

int read_scratchpad_2430(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3; // block length

 SendPkt[sendLen++] = 2+DS2430_SCRATCHPAD_LEN; // data length of

read

 // send the read scratchpad command

 SendPkt[sendLen++] = READ_SCRATCHPAD;

 // send the address byte

 SendPkt[sendLen++] = 0;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

The first three commands are the same as the WRITE_SCRATCHPAD command. The device

must still be accessed and the controller must be put into data access mode. The block length, this

time, is only 3, because the expected buffer size, the READ_SCRATCHPAD command, and the

address to read from (always “0” for this example, but if less than the scratchpad length is read,

this could be incremented and read multiple times) is all that must be sent.

The expected data length is 2+SCRATCHPAD_LEN. See WRITE_SCRATCHPAD_2430 for why

this length is used.

VTI Instruments Corp.

330 EX1629 MicroLAN (MLAN) Primer

Here is some example output from READ_SCRATCHPAD using the example code:

sent packet without errors

Packet length: 8

07 82 0A 03 22 AA 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 AA 00 AA 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14

 15 16 17 18 19 1A 1B 1C 1D 1F 20 21

This is identical to what was written with the WRITE_SCRATCHPAD command, so the data was

written properly. Again, recall that the non-atomic operations cannot be guaranteed, as the 1-Wire

devices are powered down between MLAN commands, which erases the scratchpads.

COPY_SCRATCHPAD_2430

The COPY_SCRATCHPAD command is the only method for writing data to the memory of a

MLAN device; it copies the data in the scratchpad to the non-volatile memory. Like

READ_SCRATCHPAD, the command is fairly simple, as the data already exists and only needs

to be moved.

int copy_scratchpad_2430(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3; // block length

 SendPkt[sendLen++] = 2; // data length

 // send the copy scratchpad command

 SendPkt[sendLen++] = COPY_SCRATCHPAD;

 // send the validation key

 SendPkt[sendLen++] = 0xA5;

 // delay for 128ms

 SendPkt[sendLen++] = CMD_DELAY;

 SendPkt[sendLen++] = 1;

 SendPkt[sendLen++] = DELAY_128 | DELAY_MS;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

Once again, the first three bytes are the same as WRITE_SCRATCHPAD and

READ_SCRATCHPAD. Our block length is 3, as the expected response length, the

COPY_SCRATCHPAD command, and the “validation key” that ensures we are not writing to the

wrong device are sent. Each “family” of MLAN device has a different validation key. This will be

seen with the DS2431. Note that the expected response length is the minimum 2 bytes. Since the

COPY_SCRATCHPAD command does not actually return data to us, space does not have to be

allocated in the return buffer.

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 331

Once the copy command is sent, a delay is sent to the MLAN controller to allow time for the copy

to finish. The “1” sent after CMD_DATA is the length, in bytes, of the delay command which is

on the next line. A ‘bitwise or’ function is used to combine the units of delay with the delay length

– if a shorter or longer delay time is required, the 1-Wire specification defines several delay

lengths and several different time units which can be used.

Here is an example output from the COPY_SCRATCHPAD command using the example code:

sent packet without errors

Packet length: 11

0A 82 0A 03 02 55 A5 0B 01 82 85

got a packet without errors on receive

Packet length: 7

06 82 00 0A 02 55 A5

As there is no user data returned, the reply to this command is short.

READ_MEMORY_2430

Although the READ_MEMORY command is probably the most useful of the MLAN command, it

is discussed here as this is where the commands would logically appear in code.

int read_memory_2430(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3; // block length

 SendPkt[sendLen++] = (2+DS2430_MEMORY_LEN); // data length with 32

bytes of reads

 // send the read memory command

 SendPkt[sendLen++] = READ_MEMORY;

 // send the address byte

 SendPkt[sendLen++] = 0;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

Again, the first three are the same as those seen in previous examples. The block length is the

return buffer size, the READ_MEMORY command, and the address offset. Since the whole

address space can be read at once on the DS2430, the address offset is always zero. This in not

always the case for the DS2431’s, as the DS2431 has a much larger memory space. See the

READ_MEMORY_2431command for an example of this.

Note that the return buffer size does have to be big enough to hold the whole address space, so the

standard two bytes of MLAN data are added to the DS2430’s address space size.

VTI Instruments Corp.

332 EX1629 MicroLAN (MLAN) Primer

Here is an example output from the READ_MEMORY command using the example code:

sent packet without errors

Packet length: 8

07 82 0A 03 22 F0 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 00 AA 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F 20 21

This is the same string that was in the WRITE_SCRATCHPAD, now has been transferred into

non-volatile memory.

WRITE_AND_COPY_SCRATCHPAD_2430

As noted above, the scratchpad is a volatile memory location. Between MLAN commands, the

1-Wire devices are powered down, and, hence, will lose all their scratchpad (volatile) data. In

example code below, the commands occur fast enough that power is not lost to the 1-Wire devices

and no data loss is experienced. This, however, is not recommended for a production environment.

As a consequence, the WRITE_AND_COPY command set is recommended. These commands are

atomic operations – they perform the write and the copy in a single MLAN command. Because the

read and write is accomplished in a single command, data integrity cannot be verified before it is

copied to memory (e.g. a READ_SCRATCHPAD command cannot be performed in the middle of

a WRITE_AND_COPY command set to verify the scratchpad write). However, the main memory

can still be checked after the write, in a separate series of MLAN operations to ensure that what

was written is correct.

int write_and_copy_scratchpad_2430(const char* data, int channel)

{

 int sendLen, recLen = 0;

 int i = 0;

 char byte[3];

 if(strlen(data) != ((DS2430_SCRATCHPAD_LEN * 2) +

(DS2430_SCRATCHPAD_LEN-1)))

 {

 printf("Data was not the right length (wanted 95, got %i)\n",

strlen(data));

 return -1;

 }

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3+DS2430_SCRATCHPAD_LEN; // block length

 SendPkt[sendLen++] = 4+DS2430_SCRATCHPAD_LEN; // data length

 // send the write scratchpad command

 SendPkt[sendLen++] = WRITE_SCRATCHPAD;

 // send the address byte

 SendPkt[sendLen++] = 0;

 // the bytes of data to write

 for (i = 0; i < ((2*DS2430_SCRATCHPAD_LEN) +

(DS2430_SCRATCHPAD_LEN-1)); i+=3)

 {

 strncpy(byte, &data[i],2);

 byte[2] = '\0';

 SendPkt[sendLen++] = (uint8_t)strtoul(byte, NULL, 16); //convert

to hex

 }

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 333

 //here is the copy:

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3; // block length

 SendPkt[sendLen++] = 2; // data length

 // send the copy scratchpad command

 SendPkt[sendLen++] = COPY_SCRATCHPAD;

 // send the validation key

 SendPkt[sendLen++] = 0xA5;

 // delay for 128ms

 SendPkt[sendLen++] = CMD_DELAY;

 SendPkt[sendLen++] = 1;

 SendPkt[sendLen++] = DELAY_128 | DELAY_MS;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

If one looks closely, it becomes obvious that the WRITE_AND_COPY command is simply a

WRITE and a COPY command combined. There are multiple block length and data length bytes,

multiple commands, and all operations are performed that each of these commands did

individually. However, since they are issued in a single MLAN buffer, the device will not be

powered down and will not have a chance to lose its volatile data.

The example output of the WRITE_AND_COPY command is fairly long, but, like the code that

generates it, is very similar to an amalgamation of the WRITE_SCRATCHPAD and

COPY_SCRATCHPAD commands.

sent packet without errors

Packet length: 49

30 82 0A 23 24 0F 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14

 15 16 17 18 19 1A 1B 1C 1D 1F 20 21 82 0A 03 02 55 A5 0B 01 82 85

got a packet without errors on receive

Packet length: 47

2E 82 00 0A 24 0F 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14

 15 16 17 18 19 1A 1B 1C 1D 1F 20 21 FF FF 82 00 0A 02 55 A5

DS2431 COMMANDS

WRITE_SCRATCHPAD_2431

The DS2431 has the same command set as the DS2430, but some of the commands are different,

and some give more arguments to the MLAN controller. Some examples of these difference can

be seen in the WRITE_SCRATCHPAD command.

int write_scratchpad_2431(const char* data, int channel, int address)

{

 int sendLen, recLen = 0;

 int i = 0;

 char byte[3];

 if(strlen(data) != ((DS2431_SCRATCHPAD_LEN * 2) +

(DS2431_SCRATCHPAD_LEN-1)))

VTI Instruments Corp.

334 EX1629 MicroLAN (MLAN) Primer

 {

 printf("Data was not the right length (wanted 23, got %i)\n",

strlen(data));

 return -1;

 }

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 4+DS2431_SCRATCHPAD_LEN; // block length

 SendPkt[sendLen++] = 5+DS2431_SCRATCHPAD_LEN; // data length

 // send the write scratchpad command

 SendPkt[sendLen++] = WRITE_SCRATCHPAD;

 // send the address byte

 if (address > (DS2431_MEMORY_LEN-DS2431_SCRATCHPAD_LEN) || address

< 0)

 {

 printf("Invalid scratchpad address, must be between 0 and 88

hex\n");

 return -1;

 }

 SendPkt[sendLen++] = address;

 SendPkt[sendLen++] = 0;

 // the 5 bytes of data to write

 for (i = 0; i < ((2*DS2431_SCRATCHPAD_LEN) +

(DS2431_SCRATCHPAD_LEN-1)); i+=3)

 {

 strncpy(byte, &data[i],2);

 byte[2]='\0';

 SendPkt[sendLen++] = (uint8_t)strtoul(byte, NULL, 16); //convert

to hex

 }

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 CRCcalc(SendPkt, 6, 11);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

Notice first that, in comparison to the DS2430 scratchpad write, the length of the data string that is

checked is much smaller, although it uses the same formula,. This is because the DS2431 has only

an 8-byte scratchpad, whereas the DS2430 has 32 bytes. The same format of data string is used to

submit data, however. Here is an example of a data string for the DS2431:

"01 02 03 04 05 06 07 08"

Even on a different device, however, the basic format remains unchanged. The first byte received

is for length and the next two are CMD_ML_ACCESS and CMD_ML_DATA, just like in the

DS2430’s command.

The block size is our first indicator that the DS2430 and DS2431, although similar, have slightly

different programming requirements. This block size is one byte larger than the DS2430’s block

size, and the reason is readily apparent three commands down: there are two address registers

instead of one. The first address register, T1, is the beginning offset, and T2 is the address. As can

be seen in the example, T1 is used to offset the data within the main memory, allowing users to

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 335

write to any address between the bytes 0h an 136e. From the 136th byte, users can write all the way

to the end of the memory.

The data length is also different. We add several bytes to the DS2430’s command length, and two

of these are the CRC16 value that the DS2431 device returns to us. The CRC uses the entire

command, from WRITE_SCRATCHPAD all the way to the end of the data buffer, to generate its

CRC. Notice, too, that a CRC is run on the packet, passing in the offset of the

WRITE_SCRATCHPAD command in the packet and the length of the command plus the data.

This function is explained in the Additional Notes section.

NOTE If the CRC returned is not the same as the calculated CRC given by this program, the data write

was corrupted in transmission. Re-access the device and try the write again.

The same code is used as with the DS2430 to turn the data string into hexadecimal and to tell the

controller to send the response back with the CMD_GETBUF command.

The example output for the WRITE_SCRATCHPAD command for the DS2431 is very similar to

the WRITE_SCRATCHPAD for the DS2430, with the exception that the data is shorter:

sent packet without errors

Packet length: 17

10 82 0A 0C 0D 0F 00 00 AA 02 03 04 05 06 07 08 85

CRC16: 74E4

got a packet without errors on receive

Packet length: 18

11 82 00 0A 0D 0F 00 00 AA 02 03 04 05 06 07 08 74 E4

This indicates that this write was successful, as the last two bytes returned are the same as the

calculated CRC.

READ_SCRATCHPAD_2431

int read_scratchpad_2431(int channel)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 3; // block length

 SendPkt[sendLen++] = 6+DS2431_SCRATCHPAD_LEN; // data length of

read

 // send the read scratchpad command

 SendPkt[sendLen++] = READ_SCRATCHPAD;

 // send the address byte

 SendPkt[sendLen++] = 0;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 CRCcalc(RecPkt, 6, 12);

 return recLen;

}

VTI Instruments Corp.

336 EX1629 MicroLAN (MLAN) Primer

Some differences from the DS2430 version are also seen here. Aside from using the

DS2431_SCRATCHPAD_LEN instead of the DS2430_SCRATCHPAD_LEN, a much larger

buffer is used for the data length. This is because the echo from the command being sent and a 2-

byte CRC calculated on the returned data stream are expected in addition to the data in the

scratchpad. It can also be seen that this is also passed into our the CRC calculating function so that

the CRC can be verified. See the note in the WRITE_SCRATCHPAD_2431 section for what to do

if the CRCs do not match.

Here is some example output from this command:

sent packet without errors

Packet length: 8

07 82 0A 03 0E AA 00 85

got a packet without errors on receive

Packet length: 19

12 82 00 0A 0E AA 00 00 07 AA 02 03 04 05 06 07 08 F9 19

CRC16: F919

The CRC again checks properly.

COPY_SCRATCHPAD_2431

int copy_scratchpad_2431(int channel, int address)

{

 int sendLen, recLen = 0;

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 5; // block length

 SendPkt[sendLen++] = 4; // data length

 // send the copy scratchpad command

 SendPkt[sendLen++] = COPY_SCRATCHPAD;

 // send the validation key

 if (address > (DS2431_MEMORY_LEN-DS2431_SCRATCHPAD_LEN) || address

< 0)

 {

 printf("Invalid scratchpad address, must be between 0 and 88

hex\n");

 return -1;

 }

 SendPkt[sendLen++] = address;

 SendPkt[sendLen++] = 0;

 SendPkt[sendLen++] = 0x07;

 // delay for 128ms

 SendPkt[sendLen++] = CMD_DELAY;

 SendPkt[sendLen++] = 1;

 SendPkt[sendLen++] = DELAY_128 | DELAY_MS;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

The COPY_SCRATCHPAD command for the DS2431 is more complicated than the DS2430

command. Here, the scratchpad address must be passed in or the device will assume it is receiving

incorrect instructions and an error will occur. (The address should be the same address passed in to

WRITE_SCRATCHPAD). The ES register must also be passed in, which should be “07”,

identical to its value in the READ_SCRATCHPAD command (if the original write was

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 337

successful). If this value is not “07” on the device, or if a number other than 07 is passed in, it is

assumed that the communication with this device was accidental and the copy will not occur.

Please refer to the DS2431 data sheet for more information on the ES register.

Here is some more example MLAN output:

sent packet without errors

Packet length: 12

0B 82 0A 05 04 55 00 00 07 0B 01 82

got a packet without errors on receive

Packet length: 9

08 82 00 0A 04 55 00 00 07

READ_MEMORY_2431

Since the EX1629 can only read a buffer roughly corresponding to the size of the DS2430

memory and the DS2431 has almost five times that amount, reads of the DS2431 must be done in

segments. The read is actually done by making four calls to Send and Receive. If a larger receive

buffer were present, fewer calls could be made by increasing the returned data.

int read_memory_2431(int channel)

{

 int sendLen, recLen = 0;

 int totRecLen = 0;

 int i = 0;

 for (i=0; i< (((float)DS2431_MEMORY_LEN) /

((float)EX1629_MAX_TEDS_READ)) ; i++)

 {

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 4; // block length

 SendPkt[sendLen++] = (2+EX1629_MAX_TEDS_READ); // data length

with 32 bytes of reads

 // send the read memory command

 SendPkt[sendLen++] = READ_MEMORY;

 // send the address byte

 SendPkt[sendLen++] = (i * EX1629_MAX_TEDS_READ);

 SendPkt[sendLen++] = 0;

 // request the result buffer as the last command

 SendPkt[sendLen++] = CMD_GETBUF;

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 recLen = MLanHostPacketReceive(RecPkt, channel,

MLAN_PACKET_SIZE);

 totRecLen+=recLen;

 }

 return totRecLen;

}

Each command is similar to the READ_MEMORY command for the DS2430. The only real

difference is the extra address field for offset, which is set to (i* EX1629_MAX_TEDS_READ).

This creates a loop through that increases the offset by 32 each time, and continues until the entire

memory is read. Once the end of the memory is reached, the device returns all “FF” bytes.

VTI Instruments Corp.

338 EX1629 MicroLAN (MLAN) Primer

While it could be arranged for this example code to stop returning data once the end of the

memory is reached, the code would be significantly harder to read, and, therefore, it is up to the

user to determine where their memory ends. The example code is intended to be a starting point.

The READ_MEMORY output for this device is very long, as 144 bytes of data must be returned:

sent packet without errors

Packet length: 9

08 82 0A 04 22 F0 00 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 00 00 AA 02 03 04 05 06 07 08 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

sent packet without errors

Packet length: 9

08 82 0A 04 22 F0 20 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

sent packet without errors

Packet length: 9

08 82 0A 04 22 F0 40 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

sent packet without errors

Packet length: 9

08 82 0A 04 22 F0 60 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

sent packet without errors

Packet length: 9

08 82 0A 04 22 F0 80 00 85

got a packet without errors on receive

Packet length: 39

26 82 00 0A 22 F0 80 00 00 00 00 00 00 55 00 00 00 00 00 00 00 00 02

0C FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This device is empty except for the 8 bytes written in the example, so there are many empty

segments. Notice the “55” near the end of the device – many of the registers near the end of

memory control advanced uses of the device, such as write-protecting data. Please refer to the

DS2431 data sheet for more information on the device features.

WRITE_AND_COPY_SCRATCHPAD_2431

Like all 1-Wire devices, the DS2431 chips are powered down between MLAN commands on the

EX1629. This can cause the volatile scratchpads to lose data, and, as such, the individual

WRITE_SCRATCHPAD and COPY_SCRATCHPAD commands are only recommended for

demonstration purposes.

The combined WRITE_AND_COPY command set issues a single MLAN buffer and has the

advantage if being an atomic operation, meaning the device will not lose data in the middle. The

disadvantage is that data verification is not possible until after the write has occurred.

int write_and_copy_scratchpad_2431(const char* data, int channel, int

address)

{

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 339

 int sendLen, recLen = 0;

 int i = 0;

 char byte[3];

 if(strlen(data) != ((DS2431_SCRATCHPAD_LEN * 2) +

(DS2431_SCRATCHPAD_LEN-1)))

 {

 printf("Data was not the right length (wanted 23, got %i)\n",

strlen(data));

 return -1;

 }

 sendLen = 1; // reserve first byte for length

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 4+DS2431_SCRATCHPAD_LEN; // block length

 SendPkt[sendLen++] = 5+DS2431_SCRATCHPAD_LEN; // data length

 // send the write scratchpad command

 SendPkt[sendLen++] = WRITE_SCRATCHPAD;

 // send the address byte

 if (address > (DS2431_MEMORY_LEN-DS2431_SCRATCHPAD_LEN) || address

< 0)

 {

 printf("Invalid scratchpad address, must be between 0 and 88

hex\n");

 return -1;

 }

 SendPkt[sendLen++] = address;

 SendPkt[sendLen++] = 0;

 // the 5 bytes of data to write

 for (i = 0; i < ((2*DS2431_SCRATCHPAD_LEN) +

(DS2431_SCRATCHPAD_LEN-1)); i+=3)

 {

 strncpy(byte, &data[i],2);

 byte[2]='\0';

 SendPkt[sendLen++] = (uint8_t)strtoul(byte, NULL, 16); //convert

to hex

 }

 //The copy command:

 // access the current device with address in DATA_ID

 SendPkt[sendLen++] = CMD_ML_ACCESS;

 // construct a block of communication to MicroLAN

 SendPkt[sendLen++] = CMD_ML_DATA;

 SendPkt[sendLen++] = 5; // block length

 SendPkt[sendLen++] = 4; // data length

 // send the copy scratchpad command

 SendPkt[sendLen++] = COPY_SCRATCHPAD;

 // send the validation key

 if (address > (DS2431_MEMORY_LEN-DS2431_SCRATCHPAD_LEN) || address

< 0)

 {

 printf("Invalid scratchpad address, must be between 0 and 88

hex\n");

 return -1;

 }

 SendPkt[sendLen++] = address;

 SendPkt[sendLen++] = 0;

 SendPkt[sendLen++] = 0x07;

 // delay for 128ms

 SendPkt[sendLen++] = CMD_DELAY;

 SendPkt[sendLen++] = 1;

 SendPkt[sendLen++] = DELAY_128 | DELAY_MS;

VTI Instruments Corp.

340 EX1629 MicroLAN (MLAN) Primer

 // set the length

 SendPkt[0] = sendLen - 1;

 // send and receive the frame

 MLanHostPacketSend(SendPkt, channel);

 CRCcalc(SendPkt, 6, 11);

 recLen = MLanHostPacketReceive(RecPkt, channel, MLAN_PACKET_SIZE);

 return recLen;

}

This follows the same format as the DS2430’s command as it is a concatenation of the

WRITE_SCRATCHPAD and COPY_SCRATCHPAD commands. The CRC16 is calculated on

the sent packet, and the returned result still contains the CRC bytes. However, as the results are

already written to memory, a bad write will only be evident after the fact.

Here is some example output from this command:

sent packet without errors

Packet length: 27

1A 82 0A 0C 0D 0F 00 00 AA 02 03 04 05 06 07 08 82 0A 05 04 55 00 00

07 0B 01 82

CRC16: 74E4

got a packet without errors on receive

Packet length: 26

19 82 00 0A 0D 0F 00 00 AA 02 03 04 05 06 07 08 74 E4 82 00 0A 04 55

00 00 07

We can again see the CRC returned at the end of the WRITE_SCRATCHPAD portion of the

WRITE_AND_COPY command, and that it matches what was calculated, indicating a successful

write.

ADDITIONAL NOTES

Checksums

It should be noted that a “page” in the main memory of 1-Wire device consists of 32 bytes

according to the IEEE 1451.4 specification. Each page of memory is supposed to have a one-byte

checksum as the first bit, which when added to the other 31 bits in the page (dropping any carry)

makes the result 0. In the example code (and in the EX1629 driver used to implement it) there are

no checks made to ensure that the user inserts a checksum properly. If the user wishes to

implement checksums (and, therefore, be fully compliant with the IEEE 1451.4 standard), a proper

checksum should be written to the first page of memory, updated when memory is updated, and

the checksums should be calculated and verified on reads.

Sending & Receiving

The “MLanHostPacketReceive” and “MLanHostPacketSend” functions are not defined

in the above examples. This is because the implementations of these functions are specific to the

interface to the device. The example code does, however, provide definitions of these functions

which work with the EX1629 instrument driver. These are below:

int MLanHostPacketReceive(uint8_t *receive_packet, int channel, int

len)

{

 int result = 0;

 int data = NULL;

 ViChar error[256];

 #define MLANBUFLEN 48

 // add platform/protocol specific code here

www.vtiinstruments.com

EX1629 MicroLAN (MLAN) Primer 341

 if (len < MLANBUFLEN)

 {

 printf("Error, buffer size not large enough to hold MLAN

response");

 return -1;

 }

 result = vtex1629_read_teds_MLAN(vi, channel, MLANBUFLEN,

receive_packet, &data);

 if (result != 0)

 {

 vtex1629_error_message(vi, result, error);

 printf("error when receiving from driver: %s\n", error);

 }

 else

 {

 printf("got a packet without errors on receive\n");

 PrintPacket(receive_packet);

 }

 // return the length in bytes of the packet including length byte

 return receive_packet[0] + 1;

}

void MLanHostPacketSend(uint8_t *send_packet, int channel)

{

 int result = 0;

 ViChar error[256];

 // add platform/protocol specific code here

 result = vtex1629_write_teds_MLAN(vi, channel, (send_packet[0]+1),

send_packet);

 if(result != 0)

 {

 vtex1629_error_message(vi,result,error);

 printf("Error sending packet to driver: (%s)\n", error);

 }

 else

 {

 printf("sent packet without errors\n");

 PrintPacket(send_packet);

 }

 return;

}

These functions are fairly simple and only act as device-specific wrappers around the sending and

receiving of commands.

Printing Packets

The function that prints the packet is called from the sender & receiver, just to make it easier to

determine which (sender vs. receiver) was doing the printing. Here is the code for the PrintPacket

function.

void PrintPacket(uint8_t* pkt)

{

 int len = pkt[0]+1;

 int i = 0;

 printf("Packet length: %i\n", len);

 for (i=0 ; i< len ; i++)

VTI Instruments Corp.

342 EX1629 MicroLAN (MLAN) Primer

 {

 printf("%02X ", pkt[i]);

 }

 printf("\n");

 return;

}

CRC Checking

The CRC check function is called to calculate a CRC16 for the written data and the read data on

the DS2431. Here is the code for, and a brief explanation of, this function:

unsigned int CRCcalc(uint8_t *pkt, int offset, int len)

{

 int i,j,k;

 uint8_t byte;

 unsigned int r = 0;

 for (k = (offset-1); k < ((offset + len)-1) ; k++) {

 //CRC16 CALCULATION

 byte = pkt[k];

 for(i=0;i!=8;byte>>=1,i++)

 {

 j=(byte^r)&1;

 r>>=1;

 if(j)

 r^=0xa001;

 }

 }

 r = (((r & 0x00FF) << 8) | ((r & 0xFF00) >> 8)); //bit-swapping

for endian-ness

 r = (uint16_t)~r; //inverting to match MLAN

 printf("CRC16: %02X\n", r);

 return r;

}

The function first calculates a normal CRC16 and then does a bit-shift operation to swap the top

and bottom halves of the CRC bytes (due to platform endian-ness) before inverting the CRC.

This is what the MLAN bus master will return to us on a little-endian host computer, like an x86

CPU (Intel or AMD): a byte-swapped, inverted CRC16. This way, the CRC16 value can be

visually compared instead of having to do bitwise operations on what the MLAN device gives us.

Version Information

The last function which has not yet been discussed is the REPEATER_TEST function. The

purpose of this function is to query the MLAN command repeater inside the EX1629 and retrieve

several items of data from it, including the version of the MLAN protocol it implements and the

vendor identification string.

NOTE The version and vendor strings will both come back as null-terminated strings of hexadecimal

digits, as the same PrintPacket function is used to print them as is used for the rest of the packets.

For reference, the ML100 MLAN version string should appear as 4D 4C 31 30 30 00.

www.vtiinstruments.com

EX1629 Onboard Memory 343

 APPENDIX D

ONBOARD MEMORY

ONBOARD MEMORY AND CLEARING PROCEDURE

The EX1629 contains onboard memory which stores various information about the unit as well as

data acquired. Table D-1 details the memory components and provided a procedure for clearing

the memory.

Component Volatile? Contains

User

Writeable? Clear Procedure

128 Mb Flash

(Intel

JS28F128J3D75)

No Kernel and

File System

No N/A

Time

Config

Yes Go to webpage, change values

Factory cal

coeffecients

Yes Cannot clear, can overwrite by running factory cal again

Stored self-

cal

coeffecients

Yes Use function call:

vtex1629_self_cal_clear

Network

Config

Yes Go to webpage, change values

User

Config

Yes Use function call:

vtex1629_clear_stored_config

4 Mb Flash

(Micron Tech,

M29W400BT90N1)

No FPGA

image

No N/A

SDRAM

(Micron Tech,

MT46V32M8TG-

5B:K)

Yes Temporary

self-cal and

User FIFO

Data

Yes Power cycle

TABLE D-1: ONBOARD MEMORY AND CLEARING PROCESS

www.vtiinstruments.com

EX1629 Index 345

INDEX

1

1-Wire ..See MLAN

A

acquisition data...68
ADC clock ...69

ADC sample clock configuration ...82

ADC synchronization ...83
anti-alias filter .. 317

ARM layer ...68

AutoIP .. 39, 73

B

bilinear transformation ... 321

bridge configuration diagrams

full-bridge ...35
half-bridge ..34

quarter-bridge ...33

C

calibration

self-calibration .. 16, 25, 59

shunt ... 16, 19, 23, 27, 58
CIC filters .. See digital filtering

clock ..69, 82, 84, 85, 119, 180, 191, 278

completion resistor ...52
default settings ..53

confidence data...69

confidence measurement system .. 60, 69
configuration storage ..61

connecting and disconnecting AC line power30

connecting and disconnecting DC line power30
COPY_SCRATCHPAD

DS2430 ... 330

DS2431 ... 336

D

daisy-chain configuration ... 313

DC power cable ..30
declaration of conformity ...11

default configuration

completion resistor..53
input multiplexer ...53

DEVICE layer ..68

DHCP ... 38, 73
digest .. 61, 113, 145, 189

digital filters ...57

CIC ... 319
FIR .. 57, 319

IIR ..57

digital I/O ...63
pin assignments...63

DIO ... See digital I/O

bank .. 63, 85, 151, 152, 254
driver .. 38, 79

DSP filters

CIC compensation filter .. 319
FIR decimation filter ... 320

IIR filters .. 320

E

engineering unit conversion ... 47

engineering unit conversion calculations

full-bridge bending Poisson strain .. 51
full-bridge bending strain ... 50

full-bridge Poisson strain.. 50

half-bridge bending strain .. 49
half-bridge Poisson strain ... 49

linear .. 51

nonstandard .. 51
quarter-bridge strain ... 48

ratiometric .. 51

voltage .. 51
error messages ... 305

EU ... See engineering unit conversion

excitation source .. 54
excitation source measurement .. 55

explanation of specifications .. 23

F

factory default settings ... 77

FIFO .. 68

filtering
analog anti-aliasing .. 317

IIR ... 57, 163, 167, 263, 318

limitations .. 320
FIR filters ... See digital filters

firmware upgrade ... 76

full-bridge ... 19, 23, 24, 35, 49, 50, 51, 54
function calls ... 97

function return value .. 97

function set .. 102

function tree ... 97

G

gage factor ... 53
equation .. 53

gain ...18, 54, 160, 260

gain error ... 23, 24
gauge factor ... See gage factor

GET_URN ... 323, 326, 327

group delay .. 320

H

half-bridge ... 34, 48, 49, 54

I

IIR .. 163, 167, 263, 318
Index web page .. 72

infinite impulse response filtering .. See IIR

initialize acquisition ... 96
input multiplexer .. 52

default settings ... 53

installation location .. 29
instrument driver .. 79

IP .. See network configuration

VTI Instruments Corp.

346 EX1629 Index

L

LAN Configuration Initialize ... 39, 66, 73
LAN Instrument Connection and Upgrade utility 31, 71

LCI .. See LAN Configuration Initialize

lead wire ... 23, 24, 26
LInC-U See LAN Instrument Connection and Discovery utility

locking ...60

LXI Trigger Bus ...64
pin assignments...64

M

MAC address..73

MAC address..39
matched-Z transformation .. 322

maximizing measurement performance ..25

measurement range ...54
memory clearing... 343

MicroLAN ..See MLAN

MLAN .. 64, 323

checksums .. 340

CRC checking ... 342

printing packets... 341
receiving ... 340

sending.. 340

version information ... 342
multi-instrument operation ... 70, 313

daisy-chain configuration.. 313
master 15, 70, 82, 85, 180, 191, 278, 287, 314

slave 15, 70, 82, 85, 180, 191, 278, 287, 314

star configuration .. 314
star/daisy-chain ... 316

synchronization ... 313

triggering .. 316
multiplexer ... See input multiplexer

N

network configuration ..38

resetting See LAN configuration initialize
troubleshooting ...39

network configuration web page ..73

NTP ..75

O

onboard memory .. 343

P

pattern
arm .. 84, 85, 128, 175, 237, 273

trigger ... 84, 177, 196, 275, 293

plug&play driver ..79
Poisson ratio ...53

equation ..53

preventive maintainence ...44

Q

quarter-bridge ... 24, 32, 47, 52

R

READ_MEMORY

DS2430 ... 331

DS2431 ... 333, 337
READ_SCRATCHPAD ... 323, 324

DS2430 ... 329

DS2431 ... 335
reboot web page ...73

reset

network configuration .. 66
reset web page ... 73

retreiving data .. 89

asynchronous streaming data interface 91
read FIFO ... 89

S

sample clock ...82, 83, 180, 278

sample code
closing a session ... 79

configuring the acquisition channels 80, 81, 82, 95

multiple instrument configuration .. 86
opening a session.. 79

standalone configuration .. 85

sample rates ... 56
sampling rate ... 18

scan list configuration .. 56

scanlist
confidence .. See confidence scanlist

self-calibration .. See calibration

self-test ... 100, 230, 231, 232
shunt calibration ... See calibration

shunt calibration configuration .. 58

SNTP ... 75
software installation ... 31

specifications
bridge completion... 18

bridge excitation ... 18

confidence measurements ... 19
confidence trigger bus .. 21

digital I/O ... 21

environmental... 21
filtering... 20

full-bridge strain measurements ... 19

general .. 18
input characteristics .. 20

mechanical ... 22

power requirements .. 21
quarter-bridge strain measurements .. 19

shunt calibration ... 19

voltage measurements .. 20
wideband output ... 21

star configuration ... 314

starting acquisition ... 96
stopping acquisition ... 96

strain .. 47

full-bridge .. 35, 49, 50, 51
function .. 18

half-bridge .. 34, 48, 49

quarter-bridge ... 24, 32, 47, 52
units.. 190, 286

strain conversions units .. 57

strain gage connector ... 31
streaming data

advanced .. 94

basic ... 92
callback function .. 93

synchronization signal ... 69

T

tare ... 57

TCP... See network configuration

TEDS ... 64, See MLAN
wiring schematic .. 65

time configuration .. 75

transducer electronic data sheets See TEDS

www.vtiinstruments.com

EX1629 Index 347

transformations ... 321

bileniar .. 321
matched z .. 322

TRIG event ... See triggering

TRIG layer ...68
trigger initialize .. 58, 68

trigger model ..67

trigger source programming ...84
triggering .. 67, 316

troubleshooting

multiple network cards.. 39, 42

U

unstrained voltage measurement ..55

using multiple network cards ..42

V

voltage measurement configuration diagrams

floating input ..36

grounded input ..37
vtex1629_abort ... 107

vtex1629_allow_all_channels .. 108

vtex1629_break_lock ... 109
vtex1629_check_lock ... 110

vtex1629_clear_stored_config.. 111

vtex1629_close ... 112
vtex1629_compare_digests .. 113

vtex1629_dio_clear_event .. 114
vtex1629_dio_clear_events_all .. 115

vtex1629_disable_logging .. 116

vtex1629_disable_streaming_data .. 117
vtex1629_enable_logging .. 118

vtex1629_enable_streaming_data... 119

vtex1629_enable_streaming_dataEx .. 121
vtex1629_erase_teds_data .. 122

vtex1629_error_message .. 123

vtex1629_error_query .. 124
vtex1629_findinstr ... 125

vtex1629_get_arm_count ... 126

vtex1629_get_arm_delay ... 127
vtex1629_get_arm_source .. 128

vtex1629_get_bridge_limit... 130

vtex1629_get_bridge_limit_enabled .. 132
vtex1629_get_cal_coefficients ... 133

vtex1629_get_cal_file .. 136

vtex1629_get_cal_file_size .. 138
vtex1629_get_cal_source ... 139

vtex1629_get_completion_resistor ... 140

vtex1629_get_conf_scanlist ... 141
vtex1629_get_confidence_limit ... 142

vtex1629_get_confidence_reporting_mode 144

vtex1629_get_current_config ... 145
vtex1629_get_dio_ output .. 152

vtex1629_get_dio_bank0_direction ... 146

vtex1629_get_dio_bank0_pullup ... 147
vtex1629_get_dio_bank1_direction ... 148

vtex1629_get_dio_bank1_pullup ... 149

vtex1629_get_dio_config_events ... 150
vtex1629_get_dio_input ... 151

vtex1629_get_dsp_version ... 153

vtex1629_get_EU_conversion.. 154
vtex1629_get_euconv_dynamic_excitation_enabled.................. 155

vtex1629_get_euconv_excitation ... 156

vtex1629_get_excitation .. 157
vtex1629_get_excitation_enabled .. 158

vtex1629_get_fifo_count .. 159

vtex1629_get_gain ... 160
vtex1629_get_gauge_factor ... 161

vtex1629_get_half_bridge_lead_wire_desensitization 162

vtex1629_get_IIR_filter_configuration...................................... 163

vtex1629_get_input_multiplexer ... 165
vtex1629_get_instrument_serial_number 166

vtex1629_get_lead_wire_resistance... 167

vtex1629_get_linearscaling_configuration 168
vtex1629_get_lxi_limit_event_enabled 169, 268

vtex1629_get_lxi_limit_event_latch 170, 269

vtex1629_get_lxibus_configuration ... 171
vtex1629_get_lxibus_input .. 173

vtex1629_get_lxibus_output .. 174

vtex1629_get_pattern_arm_configuration 175
vtex1629_get_pattern_trig_configuration 177

vtex1629_get_poisson_ratio .. 179

vtex1629_get_sample_clock_source .. 180
vtex1629_get_sample_count .. 181

vtex1629_get_sample_frequency ... 182

vtex1629_get_scanlist .. 183
vtex1629_get_selfcal_status .. 184

vtex1629_get_shunt_enabled ... 186

vtex1629_get_shunt_source ... 187

vtex1629_get_shunt_value .. 188

vtex1629_get_stored_config_digest... 189

vtex1629_get_strain_units ... 190
vtex1629_get_synch_source .. 191

vtex1629_get_tare.. 192

vtex1629_get_teds_data ... 193
vtex1629_get_trigger_count .. 194

vtex1629_get_trigger_delay .. 195
vtex1629_get_trigger_source ... 196

vtex1629_get_trigger_timer ... 197

vtex1629_get_unstrained_voltage.. 198
vtex1629_identify_sensor .. 199

vtex1629_init ... 200

vtex1629_load_stored_config .. 201
vtex1629_lock ... 202

vtex1629_measure_confidence .. 203

vtex1629_measure_excitation_voltage 205
vtex1629_measure_lead_wire_resistance 207

vtex1629_measure_unstrained_voltage 209

vtex1629_read_fifo .. 210
vtex1629_read_fifoEx ... 212

vtex1629_read_teds_MLAN .. 214

vtex1629_read_teds_URN ... 215
vtex1629_reset ... 216

vtex1629_reset_fifo ... 217

vtex1629_reset_tare ... 218
vtex1629_reset_trigger_arm .. 219

vtex1629_revision_query ... 220

vtex1629_self_cal_clear .. 221
vtex1629_self_cal_clear_stored ... 222

vtex1629_self_cal_get_status .. 223

vtex1629_self_cal_init ... 224
vtex1629_self_cal_is_running ... 226

vtex1629_self_cal_is_stored .. 227

vtex1629_self_cal_load ... 228
vtex1629_self_cal_store .. 229

vtex1629_self_test ... 230

vtex1629_self_test_get_status ... 231

vtex1629_self_test_init .. 232

vtex1629_send_dio_pulse .. 233

vtex1629_send_lxibus_pulse ... 234
vtex1629_set_arm_count ... 235

vtex1629_set_arm_delay ... 236

vtex1629_set_arm_source.. 237
vtex1629_set_bridge_limit .. 238

vtex1629_set_bridge_limit_enabled .. 240

vtex1629_set_cal_source ... 241, 242
vtex1629_set_completion_resistor ... 243

vtex1629_set_conf_scanlist ... 244

vtex1629_set_confidence_limit ... 245

VTI Instruments Corp.

348 EX1629 Index

vtex1629_set_confidence_reporting_mode 247

vtex1629_set_dio_bank0_direction .. 248
vtex1629_set_dio_bank0_pullup .. 249

vtex1629_set_dio_bank1_direction .. 250

vtex1629_set_dio_bank1_pullup .. 251
vtex1629_set_dio_config_events ... 252

vtex1629_set_dio_output ... 254

vtex1629_set_EU_conversion .. 255
vtex1629_set_euconv_dynamic_excitation_enabled 256

vtex1629_set_euconv_excitation .. 257

vtex1629_set_excitation ... 258
vtex1629_set_excitation_enabled ... 259

vtex1629_set_gain .. 260

vtex1629_set_gauge_factor .. 261
vtex1629_set_half_bridge_lead_wire_desensitization 262

vtex1629_set_IIR_filter_configuration 263

vtex1629_set_input_multiplexer .. 265
vtex1629_set_lead_wire_resistance ... 266

vtex1629_set_linearscaling_configuration 267

vtex1629_set_lxi_bus_output ... 272

vtex1629_set_lxibus_configuration .. 270

vtex1629_set_pattern_arm_configuration 273

vtex1629_set_pattern_trig_configuration 275
vtex1629_set_poisson_ratio ... 277

vtex1629_set_sample_clock_source ... 278

vtex1629_set_sample_count ... 279
vtex1629_set_sample_frequency .. 280

vtex1629_set_scanlist ... 281
vtex1629_set_shunt_enabled .. 282

vtex1629_set_shunt_source .. 283

vtex1629_set_shunt_value ... 285
vtex1629_set_strain_units .. 286

vtex1629_set_synch_source ... 287

vtex1629_set_tare .. 289
vtex1629_set_teds_data.. 290

vtex1629_set_trigger_count ... 291

vtex1629_set_trigger_delay ... 292
vtex1629_set_trigger_source .. 293

vtex1629_set_trigger_source_timer ... 294

vtex1629_set_trigger_timer .. 295
vtex1629_set_unstrained_voltage... 296

vtex1629_soft_arm ... 297

vtex1629_soft_synch .. 298
vtex1629_soft_trig ... 299

vtex1629_store_current_config .. 300

vtex1629_trig_init .. 301
vtex1629_unlock .. 302

vtex1629_write_teds_MLAN ... 303

vtex1629_zero_cal ... 304
VXI-11 device discovery ..75

W

warm-up time ...30
Web Page Operation ...71

webpage password..73

WEEE ..12
wideband output ... 37, 61

configuration diagram ...38

differential input digitizer ...37
pin assignments...62

single-ended input digitizer ...37

WRITE_AND_COPY_SCRATCHPAD
DS2430 ... 332

DS2431 ... 338

WRITE_SCRATCHPAD
DS2430 ... 327

DS2431 ... 333

