

We focus on power.

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

Revision 1.00

13.11.2014

page 1 from 5

General Product Information

Product	Application
852 nm DFB Laser with hermetic TO Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
	THz Generation
	Cs Spectroscopy (Variant0005)

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			270
Reverse Voltage	V_R	V			2
Output Power	P _{opt}	mW			160
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{C}	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	15		40
Forward Current	I _F	mA			250
Output Power	P _{opt}	mW	30		150

Measurement Conditions / Comments	
measured by integrated Thermistor	

Characteristics at T_{LD} = 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F = 250 mA	P _{opt}	mW	150		
Slope Efficiency	η	W/A	0.6	0.8	1.0

Measurement Conditions / Comments				
see images on page 4				

We focus on power.

Revision 1.00

13.11.2014

page 2 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode

Characteristics at T _{amb} 25 °C at Begin Of Life	cont'd

Symbol	Unit	min	typ	max
I _{th}	mA			70
$\Theta_{ }$	0		8	
Θ_{\perp}	0		21	
DOP	%		90	
SMSR	dB	30	45	
B)				
T_LD	° C		25	
P_{opt}	mW		150	
T_{LD}	° C		25	
P_{opt}	mW	30		150
T_{LD}	° C	15		40
P_{opt}	mW	30		150
λ_{C}	nm		852.347	
P_{opt}	mW		150	
	$\begin{array}{c} I_{th} \\ \Theta_{ } \\ \Theta_{\perp} \\ DOP \\ SMSR \\ B) \\ T_{LD} \\ P_{opt} \\ T_{LD} \\ P_{opt} \\ T_{LD} \\ P_{opt} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

parall	el to short axis of the housing (see p. 3)
parall	el to long axis of the housing (see p. 3)
$P_{opt} \! = \!$	150 mW; E field parallel to short axis of housing
$P_{opt} \! = \!$	150 mW
see or	der code scheme on p. 5

wavelength reached within $T_{LD} = 15\ ^{\circ}$ and 40° C

Monitor Diode				
Parameter	Symbol	Unit	min	typ
Monitor Detector Responsivity	I _{mon} /P _{opt}	μΑ/mW	0.5	

Measurement Conditions / Comments
Reverse Voltage $U_{R MD} = 5 V$

i nermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔT	K			50

Measurement Co	onditions / Comments
$P_{opt} = 150 \text{ mW},$	$\Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW},$	$\Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW},$	$\Delta T = 20 \text{ K}$
$P_{opt} = 150 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$

Thermietor	(Standard	NITC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3976	

Measurement Conditions / Comments

max 10

We focus on power.

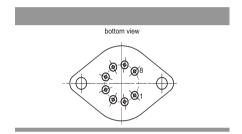
Revision 1.00

13.11.2014

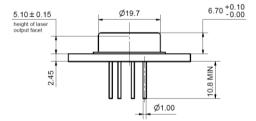
page 3 from 5

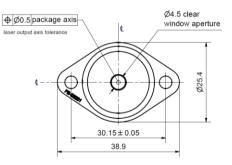
DISTRIBUTED FEEDBACK LASER

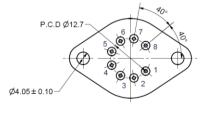
GaAs Semiconductor Laser Diode with integrated grating structure


Package Dimensions

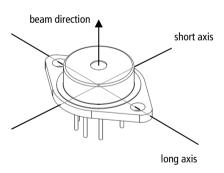
Parameter	Symbol	Unit	min	typ	max
Height of Laser Output above Header	H _L	mm		5.1	
Housing Dimension	l x w x h	mm^3	38	3.9 x 25.4 x	9.3
Pin Length	L	mm	10.8		


Measurement Conditions / Comments					


Package Pinout


1	Thermoelectric Cooler (+)	5	Laser Diode (Anode)
2	Thermistor	6	Photo Diode (Anode)
3	Thermistor	7	Photo Diode (Cathode)
4	Laser Diode (Cathode)	8	Thernoelectric Cooler (-)

Package Drawings



Polarization:

E field parallel to short axis of housing

hermetically sealed Package:

Leak Rate < 5 · 10⁻⁸ atm.cc./s acc. MIL-STD-883E

Z11-SPEC-TOC03-DFB-0000

We focus on power.

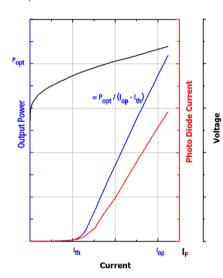
Revision 1.00

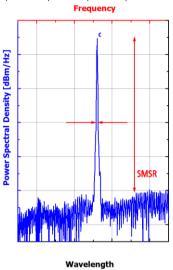
13.11.2014

page 4 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure





Typical Measurement Results

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

We focus on power.

Revision 1.00

13.11.2014

page 5 from 5

DISTRIBUTED FEEDBACK LASER

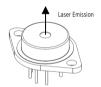
GaAs Semiconductor Laser Diode with integrated grating structure

Order Code Scheme

Mode-hop free Operating Range (Minimum Side Mode Suppression Ratio > 30 dB)

P _{opt} = 150 mW;	$T_{LD} = 25^{\circ}$	(Variant 0)
$P_{opt} = 30 150 \text{ mW};$	$T_{LD} = 25^{\circ}$	(Variant 1)
$P_{opt} = 30 150 \text{ mW};$	$T_{LD}=15^{\circ}\ldots40^{\circ}$ C	(Variant 2)
$P_{opt} = 150 \text{ mW};$	$\lambda_c = 852.347 \text{ nm}$	(Variant 5)

EYP-DFB-0852-00150-1500-TOC03- ()	0	0	x
				0
				1
				2
				5


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

