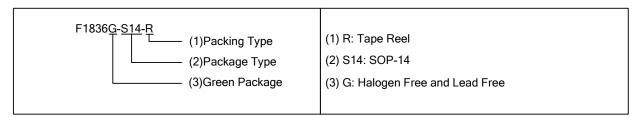

UTC UNISONIC TECHNOLOGIES CO., LTD

F1836

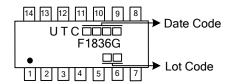
LINEAR INTEGRATED CIRCUIT

LOW-SATURATION, TWO-CHANNEL **BIDIRECTIONAL MOTOR** DRIVER IC FOR USE IN LOW-VOLTAGE APPLICATIONS

DESCRIPTION

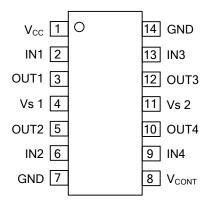

The UTC F1836 is a bipolar stepper-motor driver IC for use in low-voltage applications. And, It is a low-saturation two-channel bidirectional motor driver IC which is ideal for use in cameras, printers, and other portable devices.

FEATURES


- * Operating under low voltage range (Minimum: 2.5V)
- * Low saturation voltage (only 0.48V for 0.4A)
- * Parallel connection (only 0.5V for 0.8A)
- * Built-in Spark killer diodes
- * Built-in Thermal shutdown Protection Function
- * Separate motor power supply and logic power supply
- * Brake function
- * Compact package

ORDERING INFORMATION

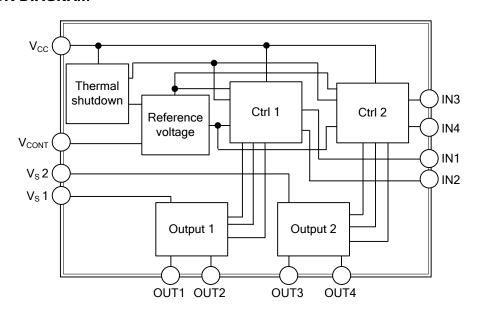
Ordering Number	Package	Packing
F1836G-S14-R	SOP-14	Tape Reel



MARKING

www.unisonic.com.tw 1 of 6

■ PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{CC}	Power Supply
2	IN1	The input of the channel 1
3	OUT1	The output of the channel 1
4	V _S 1	The power supply of channel 1
5	OUT2	The output of the channel 1
6	IN2	The input of the channel 1
7, 14	GND	Ground The ground potential of the IC
8	V_{CONT}	The output of a reference voltage
9	IN4	The input of the channel 2
10	OUT4	The output of the channel 2
11	V _S 2	The power supply of channel 2
12	OUT3	The output of the channel 2
13	IN3	The input of the channel 2

■ TRUTH TABLE

IN 1, 3	IN 2, 4	OUT 1, 3	OUT 2, 4	Mode
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake
L	L	OFF	OFF	Standby

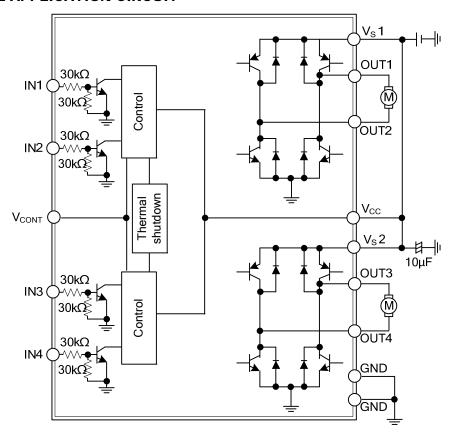
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	-0.3~+10.5	V
		V_S	-0.3~+10.5	V
Output Voltage		V_{OUT}	V_S + V_{SF}	V
Input Voltage		V_{IN}	-0.3~+10	V
Ground Pin Flow-Out current	Per channel	I _{GND}	1.0	Α
Power Dissipation	With board (Note 2)	P _D	800	mW
Operating Temperature		Topr	-20~+75	°C
Storage Temperature		Тsтg	-40~+125	°C

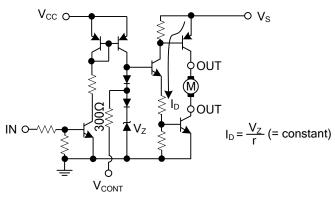
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ALLOWABLE OPERATING RANGES (T_A=25°C)

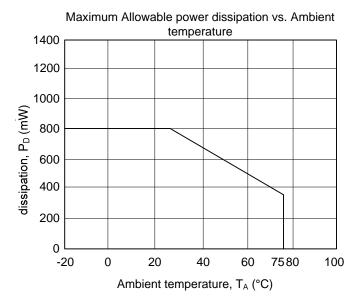

PARAMETER	SYMBOL	RATINGS	UNIT
Cumple Maltage	V _{CC}	2.5~9.0	V
Supply Voltage	Vs	1.8~9.0	V
Input High-Level Voltage	V _{IH}	1.8~9.0	V
Input Low-Level Voltage	V _{IL}	-0.3~+0.7	V

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, V_{CC}=V_S=3V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current	I _{CC} 0	V _{IN} 1, 2, 3, 4=0V, I _{CC} +I _S		0.1	10	μΑ
	I _{CC} 1	V _{IN} 1=3V, V _{IN} 2, 3, 4=0V, I _{CC} +I _S		14	20	mΑ
	I _{CC} 2	V _{IN} 1, 2=3V, V _{IN} 3, 4=0V, I _{CC} +I _S		34	38	mΑ
Output Saturation Voltage	V _{OUT} 1	I _{OUT} =200mA		0.24	0.35	V
	V _{OUT} 2	I _{OUT} =400mA		0.48	0.70	V
	$V_{OUT}3$	I _{OUT} =400mA, parallel connection		0.25	0.40	V
	$V_{OUT}4$	I _{OUT} =800mA, parallel connection		0.50	0.80	V
Output Sustaining Voltage	$V_{O(SUS)}$	I _{OUT} =400mA	9			V
Input Current	I _{IN}	$V_{IN} = 2V, V_{CC} = 6V$			80	μΑ
Spark Killer Diode Reverse Current	I _{S(LEAK)}	V _{CC} 1, 2=9V			30	μΑ
Spark Killer Diode Forward Voltage	V_{SF}	I _{OUT} =400mA			1.7	V


^{2.} Mounted on 30×30×1.5 mm³ glass epoxy PCB

■ TYPICAL APPLICATION CIRCUIT


Note: There are no restrictions on the relationship of each voltage level in comparison with the others (regarding which is higher or lower), as long as the voltages applied to V_{CC} , V_S1 , V_S2 , and IN1 through IN4 are within the limits set by the absolute maximum ratings. (Ex: V_{CC} =3V, V_S1 , 2=2V, IN1 to IN4=5V)

V_{CONT} Pin

As shown in the above diagram, the V_{CONT} pin outputs the voltage of the band gap Zener V_Z+V_F (= 1.93 V). In normal use, this pin is left open.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.