

May 2024

FAN7361, FAN7362 **High-Side Gate Driver**

Features

- Floating Channel Designed for Bootstrap Operation to +600V
- Typically 250mA/500mA Sourcing/Sinking Current **Driving Capability**
- Common-Mode dv/dt Noise Canceling Circuit
- V_{CC} & V_{BS} Supply Range from 10V to 20V
- UVLO Function for V_{BS}
- Output In-phase with Input Signal
- 8-SOP

Applications

- PDP Scan Driver
- Motor Control
- SMPS
- Electronic Ballast

Description

The FAN7361/FAN7362, a monolithic high-side gate drive IC, can drive MOSFETs and IGBTs that operate up to +600V. Fairchild's high-voltage process and commonmode noise canceling techniques provide stable operation of the high-side driver under sign as the noise circumstances. An advanced level shint ircuit there high-side gate driver operation up $V_S = .9.8$ typ .or $V_{BS} = 15V$

The UVLO circuit rev. $_{5}$ malfunction when V_{BS} is lower than the specific this is a voltage of utput drivers typically urc ink 2 mA/500m/\, respectively, which is suitable of flu and later, ballast, PDP scan driver, nd so on

Ordering Information

Part Number	Package	Operating Temperature Range	© Eco Status	Packing Method
FAN7361M ⁽¹⁾				Tube
FAN7361MX ⁽¹⁾	8-SOP	-40°C ~ 125°C RoHS	Dalle	Tape & Reel
FAN7362M ⁽¹⁾			R0H5	Tube
FAN7362MX ⁽¹⁾				Tape & Reel

1. These devices passed wave soldering test by JESD22A-111.

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Typical Application Circuit

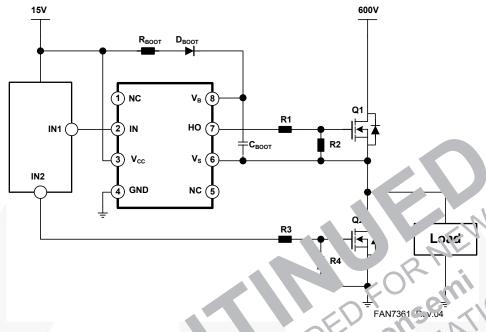


Fig 1. 1 vical A, lication Circuit

Internal Block Diagram

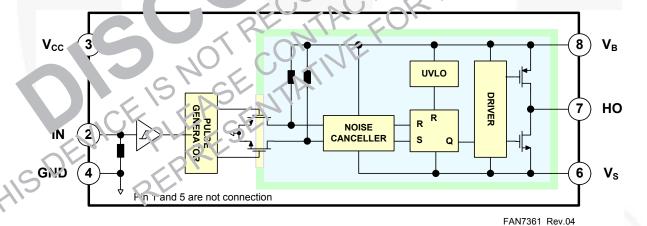


Figure 2. Functional Block Diagram

Pin Assignments

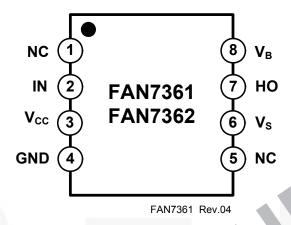


Figure 3. Pin Configuration (Top w)

Pin Definitions

Pin	Name	Fu ction/ Description
1	NC	No Connection
2	IN	Logic Input . h- de Gate Driver Culput
3	V _{CC}	Sti Jy v age
4	GND	Lu ic Grou
5	N′	No muon
6	V	F h-Voltage Floating Supply Return
7	110	ıgh-S'de Driver Ou.o∪
8		High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Offset Voltage	V _B -25	V _B +0.3	
V_{B}	High-Side Floating Supply Voltage	-0.3	625	
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{CC}	Logic Fixed Supply Voltage	-0.3	25	
V _{IN}	Logic Input Voltage	-0.3	V _{CC} .s	
dV _S /dt	Allowable Offset Voltage Slew Rate		±	V/ns
P _D ⁽²⁾⁽³⁾⁽⁴⁾	Power Dissipation		625	V
θ_{JA}	Thermal Resistance, Junction-to-Ambient		200	°C.W
TJ	Junction Temperature		150	°C
T_S	Storage Temperature		+150	°C
T _A	Ambient Temperature	-40	125	°C

Notes:

- 2. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 class e, vy max al).
- 3. Refer to the following standards:
 - JESD51-2: Integral circuits thermal test vironmental conclitions Natural convection JESD51-3: Low effective therm convection vites poard for leaded surface mount packages
- 4. Do not exceed P_D under any clumstan s.

Recommen C erat g Conditions

The Recommended peraling Conditions table defines the conditions for actual device operation. Recommended operating and itions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommended them of designing to Absolute Maximum Ratings.

₹ymb	Pal'ameter	Min.	Max.	Unit
	'High Side Floating Supply Voltage	V _S +10	V _S +20	7
Ve	High-Side Floating Supply Offset Voltage	6-V _{CC}	600	
V _H O	High-Side Output voltage	V _S	V _B	V
S V _{IN}	Logic Input Voltage	GND	V _{CC}	
V _{CC}	Logic Supply Voltage	10	20	

Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are referenced to V_S and are applicable to the respective output HO.

Symbol	Characteristics	Test Conditi	on	Min.	Тур.	Max.	Unit
\/+	V _{BS} Supply Under-Voltage Positive Going	V _{BS} =Sweep	FAN7361	8.2	9.2	10.2	
V _{BSUV} +	Threshold	v _{BS} -Sweep	FAN7362	7.6	8.6	9.6	
V=====	V _{BS} Supply Under-Voltage Negative	V _{BS} =Sweep	FAN7361	7.4	8.6	9.2	V
V _{BSUV} -	Going Threshold	FAI	FAN7362	7.2	8.2	9.2	V
V	V _{BS} Supply Under-Current Lockout	V =Cwoon	FAN7361		0.5		
V _{BSHYS}	Hysteresis	V _{BS} =Sweep	FAN7362		7		
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V				10	
I_{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V			50	80	
I _{QCC}	Quiescent V _{CC} Supply Current	V _{IN} =0V				75	μ/
I _{PBS}	Operating V _{BS} Supply Current	C _L =1nF, f=10kHz			420	.550	,
V _{IH}	Logic "1" Input Voltage		AN73	J.6		4	
VIН	Logic 1 input voitage		F. 176 2	2.3			
V_{IL}	Logic "0" Input Voltage		FAN7361			1.0	V
۷IL	Logic o input voltage		FAN7552			ე.გ	V
V _{OH}	High Level Output Voltage, V _B -V _{HO}	Nc ad		42		9.1	
V _{OL}	Low Level Output Voltage, V _{HC}	No Ic '	0		11	0.1	
I _{IN+}	Logic "1" Input Bias Current	′ _{!N} =5V			50	90	μA
I _{IN-}	Logic "0" Input Bias Cr ent	V _{IN} : 0/;			1.0	2.0	μΑ
I _{O+}	Output High Sh Sirc Pulse urrent	V _{HO} -0V, V _{I,1} =5V, PW	์ ≤ 1∂µร	200	250		mA
I _{O-}	Output Low Nort Circuit Luse Current	V _{HO} =15V, V _{IN} =0V PV.	/ ≤ 10μs	400	500		ША
Vs	Allor Net vive V Pin Voltage for IN Signal P gallor to HO	WELO.			-9.8	-7.0	٧

man : E etrical Characteristics

 V_{Bl} (V_C V_{BS})=15 GV V_S =GND, C_L =1000pi- and T_A = 25°C, unless otherwise specified.

Symool	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Dolay	V _S =0V		120	200	
t _{off}	Turn-off Propagation Delay ⁽⁵⁾	V _S =0V or 600V		90	180	no
t _r	Turn-on Rise Time			70	160	ns
t _f	Turn-off Fall Time			30	100	

Note:

5. This parameter guaranteed by design.

Typical Characteristics

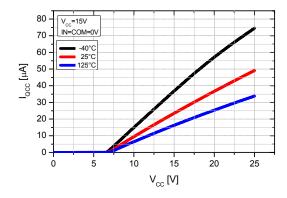
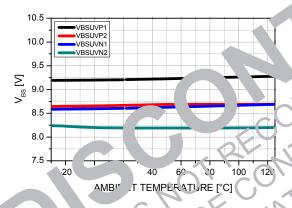



Figure 4. I_{QCC} vs. Supply Voltage

Figure 5. out B. Co. ent vs. Input Voltage

F. are 6. V_{BS} c'VLO vs. Τοιπρ.

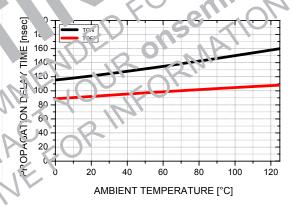


Figure 7. Turn On/Off Propagation Time vs. Temp.

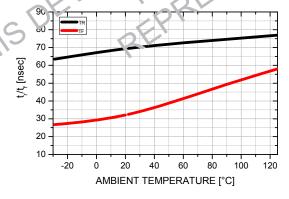


Figure 8. Rising/Falling Time vs. Temp.

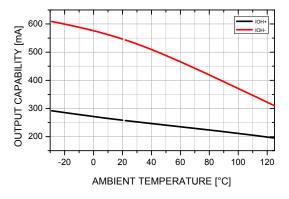
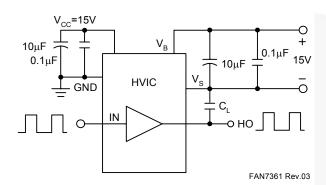
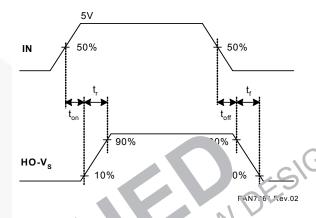
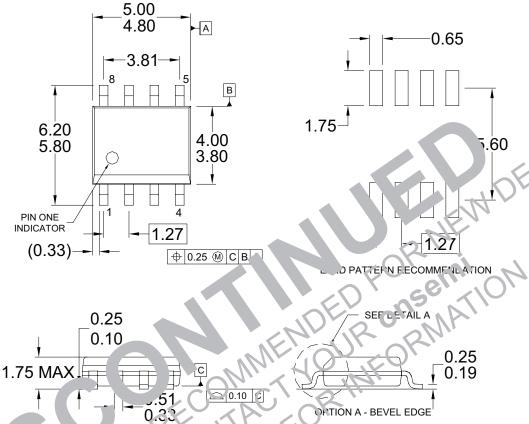
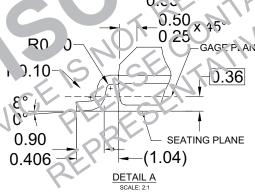


Figure 9. Output Sinking/Sourcing Current vs. Temp.

Switching Time Definition


Figure 10. Switching Time Test Circuit

Fi re Inpu Output Tining Diagram

Physical Dimensions

OPTION B - NO BEVEL EDGE

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA, ISSUE C,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
- E) DRAWING FILENAME: M08AREV13

Figure 12. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

FlashWriter®* Auto-SPM™ **FPS™** Build it Now™ F-PFS™ CorePLUS™ FRFET®

Global Power Resource^{sм} CorePOWER™

GTO™

IntelliMAX™

ISOPLANAR™

MICROCOUPLER™

MegaBuck™

MicroFET™

MicroPak™

MillerDrive™

MotionMa×™

Motion-SPM™

OPTOLOGIC[®]

PDP SPM™

OPTOPLANAR®

CROSSVOLT** Green FPS™

CTL™ Green FPS™ e-Series™ G*m*ax™

Current Transfer Logic™ EcoSPARK[®] EfficientMax™ EZSWITCH™*

DEUXPEED™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST®

FastvCore™

FETBench™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT' QSTM Quiet Series™ RapidConfigure™ O_{TM}

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT**3 SuperSOT™-6 SuperSOT™-8 SupreMOS

Sync TTM TM

The Power Franchise® p wer

TinyBoost™ TinyBuck™ TinyCalc™ TinvLogic®

rînyPo.

TinyPVM WVire ∍etect™ TR. _CURRENT*

SerDes™

اله ال 'Ultra FRFET™ UniFETTM

v sualMax

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO LOCAL TO SWITHOUT FUFTHER NOTICE, CO ANY PRODUCT'S HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILE ON SUME. LIABILITY A RISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOE CONV. AND CENSE UNDER MESPATENT RIGHT'S, NOR THE RIGHT'S OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERM OF FAIR LIDS VORLD MIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCT

LIFE SUPPORT POLICY

ZED FOR USE, AS CRITICAL TO APONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE ILLD SEMICC NUJCTOR COMPORATION. AUTHO FAIRCHILD'S PRODUCT DE N EXPRESS WRITTEN PPROVALC

- 1. Life support levices or a litems are divides or systems which, (a) are for gica. Jant into the body or (b) support or sustain life, and (c) lure to perform when properly used in successionable ith institutions for use provided in the labeling, can be reasonably recter in result in a significant initing of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-CU INTERFEITING POLICY

Fairchild Semi-and utor Corporation's Anti-Counter Fiting Folicy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts ic a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Curtomers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and munifecturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make cha at any time without notice to improve the design.		
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semicon The datasheet is for reference information only.		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 143

^{*} Trademarks of System General Corporation, used under licensh by Fairch Semico, ctor

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative