

June 2006

FAN7532 Ballast Control IC

Features

- Floating Channel Designed for Bootstrap Operation to +600V
- Lower di/dt Gate Driver for Better Noise Immunity
- Driver Current Capability: 250mA/500mA (Typ.)
- Low Start-up and Operating Current: 120µA, 6.4mA
- Under-Voltage Lockout (UVLO) with 1.8V of Hysteresis
- Programmable Preheat Time and Frequency
- Programmable Run Frequency
- Protection from Failure to Strike
- Lamp Filament Sensing and Protection
- Automatic Restart for Lamp Exchange
- High-Accuracy Oscillator
- 16-Pin SOP

Applications

■ General Purpose Ballast IC

Description


The FAN7532 provides simple and high-performance electronic ballast control functions. Optimized for an electronic ballast, the FAN7532 requires a minimum board area and reduces component counts. The FAN7532 is intended to drive two power MOSFETs in the classical half-bridge topology with all the features needed to properly drive and control a fluorescent lamp. The FAN7532 has many comprehensive protection features that work through filament failure, failure of a lamp to strike, and automatic restarts. A dedicated timing section in the FAN7532 allows the user to set the necessary parameters to preheat, ignite, and run the lamp properly.

Ordering Information

Part Number	Package	Pb-Free	Operating Temperature Range	Packing Method
FAN7532M	16-SOP	Yes	-25°C ~ 125°C	TUBE
FAN7532MX	10-30F	162	-23 0 ~ 123 0	TAPE & REEL

 $\mathsf{FPS}^{\mathsf{TM}} \text{ is a trademark of Fairchild Semiconductor Corporation}.$

Internal Block Diagram

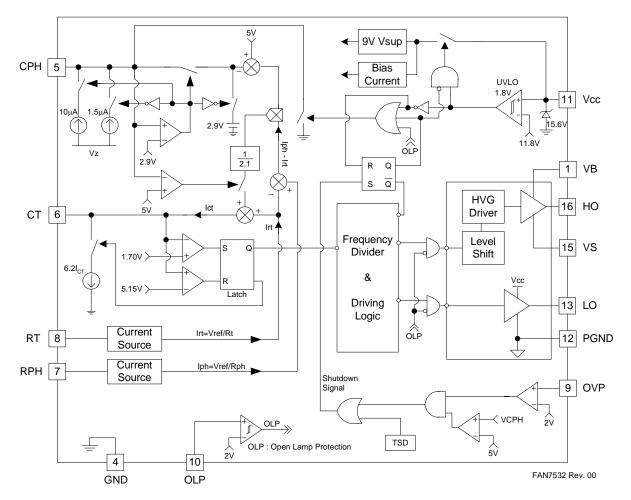


Figure 2. Functional Block Diagram of FAN7532

Pin Configuration

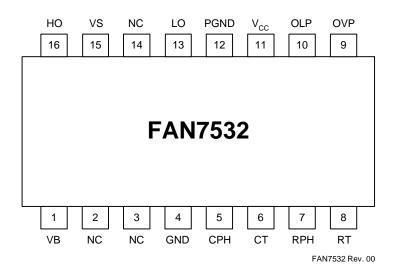


Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin Number	Pin Name	Pin Function Description	
1	VB	High-Side Floating Supply Voltage	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	GND	Ground	
5	CPH	Preheat Time Set Capacitor	
6	СТ	Oscillator Frequency Set Capacitor	
7	RPH	Preheat Frequency Set Resistor	
8	RT	Oscillator Frequency Set Resistor	
9	OVP	Over-Voltage Protection, Latch Mode	
10	OLP	Open Lamp Protection, Only Output Disable Mode	
11	V _{CC}	Supply Voltage	
12	PGND	Power Ground	
13	LO	Low-Side Gate Driver Output	
14	N.C.	No Connection	
15	VS	High-Side Floating Supply Return	
16	НО	High-Side Gate Driver Output	

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation. ($T_A = 25$ °C, unless otherwise specified.)

Symbol	Characteristics	Min.	Max.	Unit
I _{CC}	Supply Current (See Caution Below)	-	25	mA
V _S	High-Side Floating Supply Offset Voltage	V _B -25	V _B +0.3	
V _B	High-Side Floating Supply Voltage	-0.3	625	V
V _{HO}	High-Side Floating Output Voltage, HO	V _S -0.3	V _S +0.3	
I _{OH}	Drive Output Source Current		250	mA
I _{OL}	Drive Output Sink Current		500	IIIA
V _{IN}	CPH, CT, RT, and RPH Pins Input Voltage	-0.3	6	V
dV _S /dt	Allowable Offset Voltage Slew Rate	-	50	V/ns
Topr	Operating Temperature Range	-25	125	°C
Tstg	Storage Temperature Range	-65	150	
Pd	Power Dissipation	-	0.94	W
Rθja	Thermal Resistance (Junction-to-Air)	-	100	°C/W

Caution:

You must not supply a low-impedance voltage source to the internal clamping zener diode that is between the GND and the V_{CC} pin of this device.

Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	11 to V _{CL}	V
V _S	High-Side Floating Offset Supply Voltage	600	V
V _B	High-Side Floating Supply Voltage	V _S +11 to V _S +20	V
V_{HO}	High-Side Floating Output Voltage, HO	V_S to V_B	V

Temperature Characteristics (-25°C \leq T_A \leq 125°C)

Symbol	Parameter	Value	Unit
∆fos (Typ)	Temperature Stability for Operating Frequency (fos)	3	%

ESD Level

Parameter	Pins	Conditions	Level	Unit
Human Body Model (HBM)	GND, CPH, CT, RPH, RT, OVP, OLP, LO	$R = 1.5k\Omega$, C = 100pF	±1000	
	VB, VS, HO	C = 100pr		V
Machine Model (MM)	LO	C=200pF	±250	

Note

ESD immunity for all pins, except for condition noted above, is guaranteed up to 2000V (Human Body Model) and 300V (Machine Model).

Electrical Characteristics

 $V_{CC} = V_{BS} = 14V$, $T_A = 25$ °C unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit	
SUPPLY	LY VOLTAGE SECTION						
V _{TH(st)}	Start Threshold Voltage	V _{CC} Increasing	11	11.8	12.6	V	
HY(st)	UVLO Hysteresis		0.8	1.8	2.8	V	
V_{CL}	Supply Clamping Voltage	I _{CC} = 12mA	14.7	15.6	16.5	V	
I _{ST}	Start-Up Supply Current	V _{CC} = 10V	-	120	180	μΑ	
I _{CC}	Operating Supply Current	Output Not Switching	-	6.4	9.5	mA	
I _{DCC}	Dynamic Operating Supply Current: (I _{CC} +I _{QBS})	50kHz, C _L = 1nF	-	8.2	10.5	mA	
OSCILLA	ATOR SECTION						
I_{CPHL}	CPH Pin Charging Current 1	V _{CPH} = 2V	1	1.5	2	μΑ	
I _{CPHH}	CPH Pin Charging Current 2	V _{CPH} = 4V	7.7	10	12.3	μΑ	
V_{CLAMP}	CPH Pin Clamp Voltage		5.1	5.65	6.2	V	
f _{PH}	Preheating Frequency	$V_{CPH} = 0V$, RPH = $20k\Omega$, CT = 1nF	75	85	95	kHz	
t _{PD}	Preheating Dead Time	$V_{CPH} = 0V$, RPH = $20k\Omega$, CT = 1nF	0.75	1.20	1.55	μs	
fosc	Operating Frequency	V_{CPH} = Open, RT = 18k Ω , CT = 1nF	48	50	52	kHz	
t _{OD}	Operating Dead Time	V_{CPH} = Open, RT = 18k Ω , CT = 1nF	1.5	2	2.3	μs	
ΔV_{CT}	Differential Threshold Voltage on CT		3	3.45	4	V	
Ich	CT Charging Current	V _{CT} = 1.5V	400	460	510	μΑ	
Idisch	CT Discharging Current	V _{CT} = 5.5V	1.95	2.4	2.8	mΑ	
$\Delta f/\Delta V$	Voltage Stability	$12.7V \le V_{CC} \le V_{CL}$	-	-	3	%	
OUTPUT	SECTION	•	•		•		
I _{LO1}	Low-Side Driver Source Current	$V_{LO} = V_{CC}$	200	250	-	mA	
I _{LO2}	Low-Side Driver Sink Current	V _{LO} = GND	400	500	-	mA	
I _{HO1}	High-Side Driver Source Current	$V_{HO} = V_{B}$	200	250	-	mA	
I _{HO2}	High-Side Driver Sink Current	$V_{HO} = V_{S}$	400	500	-	mA	
t _r	High/Low-Side Rising Time	C _L = 1nF	-	90	150	ns	
t _f	High/Low-Side Falling Time	C _L = 1nF	-	40	100	ns	
HIGH-VO	HIGH-VOLTAGE SECTION						
I_{LK}	Offset Supply Leakage Current	VB = VS = 600V	-	-	10	μΑ	
I_{QBS}	Quiescent V _{BS} Supply Current		10	48	90	μΑ	
PROTEC	TION SECTION						
Vth_com	OVP/OLP Comparator Threshold Voltage	е	1.8	2	2.3	V	
Vhy_com			0.6	0.92	1.3	V	
llatch	Latch Mode Quiescent Current		-	0.35	0.45	mA	
T _{SD}	Thermal Shutdown Junction Temperature	e	-	150	-	°C	

Typical Performance Characteristics

These characteristic graphs are normalized at T_A = 25°C.

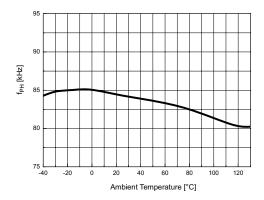


Figure 4. Preheating Frequency vs. Temp.

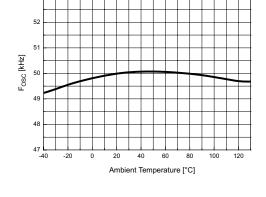


Figure 5. Operating Frequency vs. Temp.

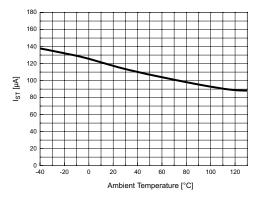


Figure 6. Turn-off Propagation Delay vs. Temp.

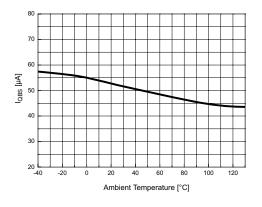


Figure 7. Dynamic Operating Current vs. Temp.

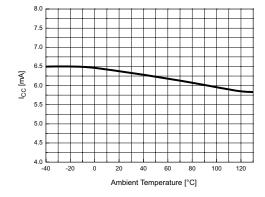


Figure 8. Dynamic Operating Current vs. Temp.

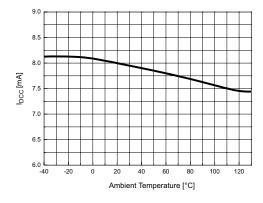


Figure 9. Dynamic Operating Current vs. Temp.

Typical Performance Characteristics (Continued)

These characteristic graphs are normalized at T_A = 25°C.

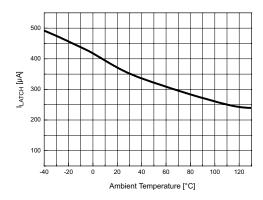
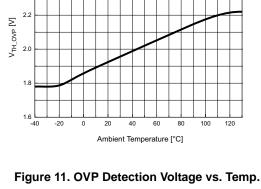



Figure 10. Latch Mode Current vs. Temp.

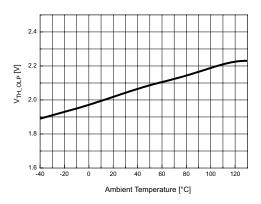


Figure 12. OLP Detection Voltage vs. Temp.

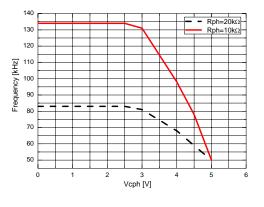


Figure 13. Preheating Frequency vs. Rph

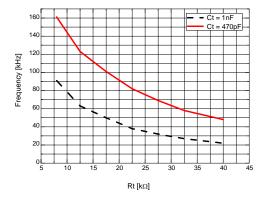


Figure 14. Run Frequency vs. Rt and Ct

Application Information

1. Start-up Circuit

The start-up current is supplied to the IC through the start-up resistor (Rst). To reduce the power dissipation in Rst, Rst is connected to the full-wave, rectified output voltage. The size of Rst can be determined by equations (1) and (2).

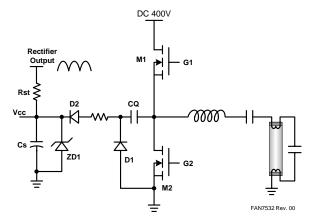


Figure 15. Start-up Circuit

$$R_{st} = \frac{V_{in(ac)} \times \sqrt{2} - V_{th(st).max}}{I_{st,max}}$$

$$= \frac{85 \times \sqrt{2} - 12.4}{0.18 \times 10^{-3}} = 599 [k\Omega]$$

$$R_{st} = \frac{(V_{in(ac,max)} \times \sqrt{2} - V_{cc})^{2}}{R_{st}} \le 0.5 [W]$$

$$R_{st} \ge 2 \times (V_{in(ac,max)} \times \sqrt{2} - V_{cc})^{2}$$

$$\ge 260 [k\Omega]$$

$$\therefore 260 [k\Omega] \le R_{st} \le 599 [k\Omega]$$

The size of supply capacitor (Cs) is normally determined by the start-up time and the operating current which is built up by the auxiliary operating current source. The turn-off snubber capacitor (CQ) and two diodes (D1, D2) constitute the auxiliary operating current source for the IC. The charging current through the CQ flows into the IC and charges the supply capacitor. If the size of CQ is increased, the V_{CC} voltage on the Cs is also increased.

2. Under-Voltage Lockout (UVLO)

The UVLO mode of the FAN7532 is designed to maintain an ultra low supply current of less than $120\mu A$, and to guarantee that the IC is fully functional before two output drivers are activated.

3. Oscillator

The gate drive output frequency is half that of the triangular waveform on timing capacitor (CT) at pin #6. In normal operating mode, the timing capacitor charging current is 4•Irt (=Vref/RT). The discharging current is 6.2 times the charging current. During the charging period of the timing capacitor (CT), the MOSFET alternatively turns on. During the discharging period of the timing capacitor (CT), both MOSFETs are off.

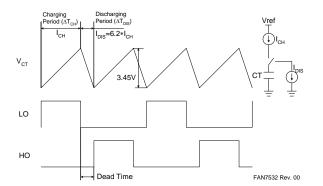


Figure 16. CT & Output Waveforms

The FAN7532 has three operating modes according to V_{CPH} , as shown in Figure 17.

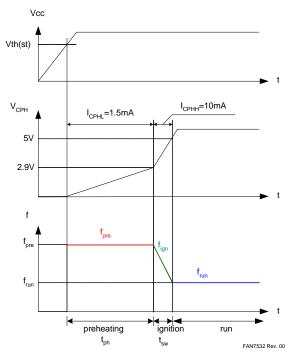


Figure 17. Operating Modes

$$\begin{split} &0V \leq V_{CPH} \leq 2.9V, \; ; Preheating \; Frequency \\ &I_{CT} = I_{RT} + \frac{I_{PH} - I_{RT}}{\left(5V - 2.9V\right)} \left(5V - 2.9V\right) = I_{PH} \\ &2.9V \leq V_{CPH} \leq 5V, \quad ; Ignition \; Frequency \\ &I_{CT} = I_{RT} + \frac{I_{PH} - I_{RT}}{\left(5V - 2.9V\right)} \left(5V - V_{CPH}\right) \end{split}$$

4. Preheating Mode

The preheating mode is defined as the IC's internal status when the V_{CPH} is between 0V and 2.9V. During preheating, the current that flows through the ballast circuit heats the lamp filaments. This is necessary for maximizing lamp life and reducing the required ignition voltage. When the V_{CC} exceeds the UVLO high threshold, the preheating time set-up capacitor, CPH, starts being charged by the internal 1.5 μ A current source until the V_{CPH} reaches 2.9V. Until the VCPH reaches 2.9V, the switching frequency throughout the preheating mode is determined by CT and RPH.

The preheating time is determined by the CPH and the 1.5μ A current source. Therefore, the preheating time is determined by equation (3):

$$t_{pre} = CPH \times \frac{V_{CPH}}{I_{charaina}}$$
 (3)

The preheating frequency is determined by the amount of charging and discharging current to the CT capacitor. The charging and discharging current during preheating mode is decided by equation (4):

$$I_{pre_ch} = 4 \times \frac{V_{ref}}{R_{PH}}$$

$$I_{pre_disch} = 4 \times \frac{(6.25 \times V_{ref})}{R_{PH}}, \ \ Vref = 4V \ \ (Constant)$$

The charging and discharging time of the CT capacitor during preheating mode is decided by equation (5):

$$t_{pre_ch} = C_T \times \frac{dV_{CT}}{I_{pre_ch}}$$

$$t_{pre_disch} = C_T \times \frac{dV_{CT}}{I_{pre_disch}}, \quad dVCT=3.45V \text{ (Constant)}$$

Finally, the FAN7532's preheating frequency in the preheating period is determined by equation (6):

$$f_{pre} = \frac{1}{2 \times \left(t_{pre_ch} + t_{pre_disch}\right)} \tag{6}$$

5. Ignition Mode

The ignition mode is defined as the IC's internal status when V_{CPH} is approximately between 2.9V and 5V. During ignition, the operating frequency is decreased to a pre-determined value. At the same time, a very highvoltage for igniting the lamp is established across the lamp. When the $V_{\mbox{\footnotesize{CPH}}}$ exceeds 2.9V, the FAN7532 enters the ignition mode. Once V_{CPH} exceeds 5V, the device enters the run mode described in the following section. In the ignition period, the internal 10mA current source charges the external preheating timing capacitor (CPH) to increase noise immunity with the sharp slope of the V_{CPH}. The ignition time is determined by the CPH and internal 10mA current source ($\Delta T_{Ign} = C_{PH} \times \frac{\Delta V_{CPH}}{I_{CPH}}$). In this mode, the switching frequency is determined by CT, RPH, and RT. Therefore, the charging and discharging currents change according to V_{CPH} and are determined by equation (7).

$$I_{CT} = I_{RT} + \frac{I_{PH} - I_{RT}}{(5V - 2.9V)} (5V - V_{CPH})$$
 (7)

6. Run Mode

After the lamp has successfully ignited, the FAN7532 enters run mode. The run mode is defined as the IC's internal status when V_{CPH} is higher than 5V. In this mode, the lamp is being driven with a normal power level after the lamp is discharged. The run mode switching frequency is determined by the timing resistor RT and the timing capacitor CT. When the V_{CPH} exceeds 5V, the protection-masking mode is disabled and the IC can enter the protection mode. The running frequency is determined by the amount of charging and discharging current to CT capacitor.

The charging and discharging currents during preheating mode are decided by the equation (8):

$$I_{run_ch} = 2 \times \frac{V_{ref}}{R_T}$$
(8)
$$I_{run_disch} = 2 \times \frac{(6.25 \times V_{ref})}{R_T}, Vref=4V (Constant)$$

$$t_{run_ch} = C_T \times \frac{dV_{CT}}{I_{run_ch}}$$
(9)
$$t_{run_disch} = C_T \times \frac{dV_{CT}}{I_{run_disch}}, dVCT=3.45V (Constant)$$

Finally, the preheating frequency in the preheating period using the FAN7532 is determined by the equation (10):

$$f_{run} = \frac{1}{2 \times \left(t_{run_ch} + t_{run_disch}\right)} \tag{10}$$

7. Protection Modes

The FAN7532 has two types of protection modes.

1) Over-Voltage Protection (OVP) Mode

The OVP pin is normally connected to the external components that detect lamp voltage between a lamp's cathodes. This voltage is always maintained under 2V in normal operation. If the lamp enters the end-lamp-life or abnormal condition, the lamp does not turn-on even if there is enough voltage supplied between two cathodes. Normally, this condition means that one of the cathodes

is broken, deactivated, or the lamp is deeply blackened around the cathodes. In this state, the ballast constantly generates very high voltage between two cathodes to ignite according to a specific procedure in the control IC. When the voltage of OVP pin exceeds 2V, the IC instantly enters the protection mode. To exit this mode, the $V_{\rm CC}$ must be recycled below the UVLO low threshold.

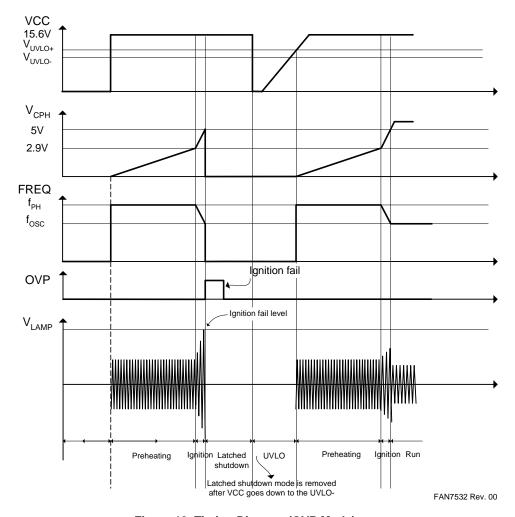


Figure 18. Timing Diagram (OVP Mode)

2) Open Lamp Protection (OLP) Mode

After the lamp has successfully ignited, the FAN7532 enters run mode. In this mode, if one of the cathodes isn't correctly connected to the ballast, the ballast stops operation for safety until the lamp is changed and a new one is connected between the lamp and the ballast. As soon as the voltage of OLP pin exceeds 2V, the IC

enters the protection mode. However, the FAN7532 outputs are only disabled in this mode. To exit protection mode, the lamp must be replaced or correctly connected to the ballast.

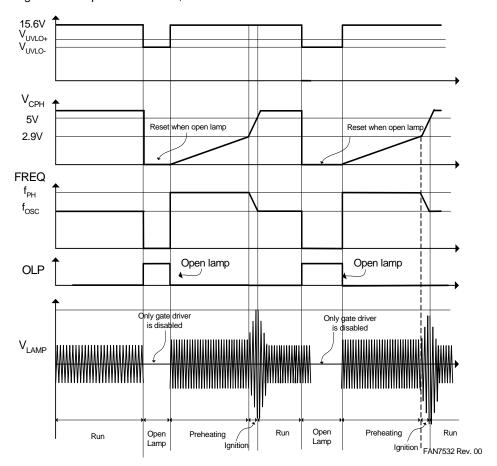


Figure 19. Timing Diagram (OLP Mode)

8. PCB Layout Guides

Component selection and placement on the PCB is very important when using power control ICs. Bypass the V_{CC} to GND as close to the IC terminals as possible with a low ESR/ESL capacitor, as shown in Figure 20. This bypassed capacitor can reduce the noise from the power supply parts, such as a startup resistor and a charge pump. The GND lead should be directly connected to the low-side power MOSFET using an individual PCB trace. In addition, the ground return path of the timing components (CPH, CT, RPH, RT) and V_{CC} decoupling capacitor should be connected directly to the IC GND lead and not via separate traces or jumpers to other ground traces on the board. These connection techniques prevent high-current ground loops from interfering with sensitive timing component operations and allow the entire control

circuit to reduce common-mode noise due to output switching.

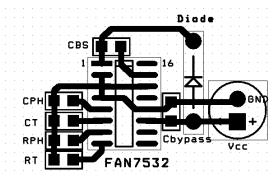


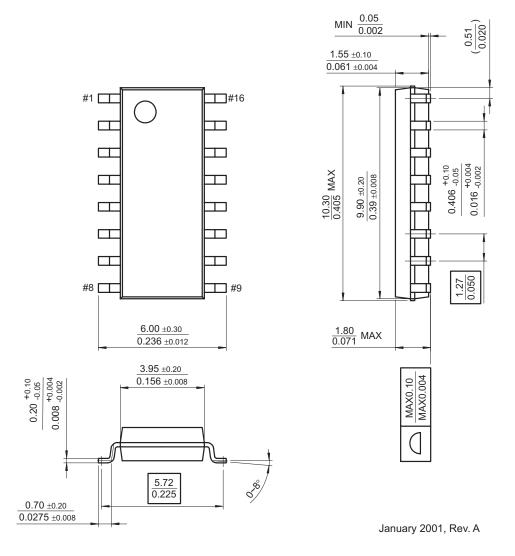
Figure 20. PCB Layout

Components List

(for Wide-Range 32W× 2 Lamps Application)

Part number	Value	Note	Manufacturer			
	INPUT PART					
F1	250V, 3A	Fuse				
CX1	47nF, 275Vac	Box-Cap				
CX2	150nF, 275Vac	Box-Cap				
CY1, CY2	2200pF, 3000V	Y-Cap				
TNR	470V	471				
NTC	10Ω	10D09				
D10, D11, D12, D13	400V, 1A	1N4004	Fairchild Semiconductor			
LF1	45mH					
	PFC	PART				
R1, R2, R8	910kΩ	Ceramic, 1206				
R3	22kΩ	Ceramic, 1206				
R4	22kΩ	Ceramic, 1206				
R5	10Ω	Ceramic, 1206				
R6	22kΩ	Ceramic, 1206				
R7	0.47Ω	1W				
R9	100kΩ	Ceramic, 1206				
R10	2.2kΩ	Ceramic, 1206				
R11	220kΩ	1W				
R12	150kΩ	1W				
R13	4.7Ω	Ceramic, 1206				
R14	0Ω	Ceramic, 1206				
VR1	10kΩ	Variable Resistor				
C1	0.22µF, 630V	Mylar-Cap				
C2	47μF, 450V	Electrolytic				
C3	10μF, 50V	Electrolytic				
C4	105	Ceramic, 0805				
C5	102	Ceramic, 0805				
C6	105	Ceramic, 0805				
L1	0.9mH (80T:6T)	El2820				
D1, D4	600V, 1A, Ultrafast	UF4005	Fairchild Semiconductor			
D2	Schottky Diode	MBR0540	Fairchild Semiconductor			
D3	Small Signal Diode	FDLL4148	Fairchild Semiconductor			
M1	500V, 6A, Power MOSFET	FQP6N50C, FQPF6N50C	Fairchild Semiconductor			
U1	PFC IC	FAN7527B	Fairchild Semiconductor			


Components List (Continued)


Part number	Value	Note	Manufacturer		
BALLAST PART					
R50	390kΩ	1W			
R51, R53	39Ω	Ceramic, 1206			
R52, R54	47kΩ	Ceramic, 1206			
R55	5.6Ω	1W			
R56, R57	68kΩ	Ceramic, 0805			
RPH	27kΩ	Ceramic, 1206, 1%			
RT	18kΩ	Ceramic, 1206, 1%			
R100, R104, R200, R204	910kΩ	Ceramic, 1206			
R101, R105, R201, R205	300kΩ	Ceramic, 1206			
R102, R202	5.1kΩ	Ceramic, 1206			
R103, R203	68kΩ	Ceramic, 1206			
R106, R206	30kΩ	Ceramic, 1206			
C50	10μF, 50V	Electrolytic			
C51	105	Ceramic, 0805			
C52	104	Ceramic, 1206			
C53	681, 630V	Miller-Cap			
C54, C55, C56, C57,C103,C203	104	Ceramic, 0805			
CT	1nF	Ceramic, 0805, 5%			
CPH	680nF	Ceramic, 0805			
C100, C101, C200, C201	6.8nF, 630V	Mylar-Cap			
C102, C202	3.3nF, 1000V	Mylar-Cap			
L100, L200	3.2mH (120T)	EE2820			
M50, M51	500V, 5A, Power MOSFET	FQP5N50C, FQPF5N50C	Fairchild Semiconductor		
ZD50,ZD51	Zener Diode	1N5245	Fairchild Semiconductor		
D50,D51,D52	600V,1A,Ultrafast	UF4005	Fairchild Semiconductor		
D100, D101, D200, D201	Small Signal Diode	FDLL4148	Fairchild Semiconductor		
U2	Ballast IC	FAN7532	Fairchild Semiconductor		

Package Dimensions

16-SOP

Dimensions in millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
$CROSSVOLT^{TM}$	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™ _
DOME™	HiSeC™	MSX™	Quiet Series™	TinyLogic [®]
EcoSPARK™	I^2C^{TM}	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX^{TM}	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect™	OCXPro™	µSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC [®]	ScalarPump™	UniFET™
FACT Quiet Serie	s™	OPTOPLANAR™	SILENT SWITCHER®	UltraFET [®]
Across the board. Around the world.™		PACMAN™	SMART START™	VCX^{TM}
The Power Franchise®		POP™	SPM™	Wire™
Programmable Active Droop™		Power247™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I19