

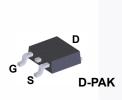
December 2014

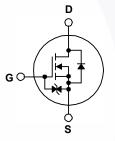
FCD2250N80Z

N-Channel SuperFET[®] II MOSFET

800 V, 2.6 A, 2.25 Ω

Features


- R_{DS(on)} = 1.8 Ω (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 11 nC)
- Low E_{oss} (Typ. 1.1 uJ @ 400V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 51 pF)
- 100% Avalanche Tested
- RoHS Compliant
- ESD Improved Capability


Applications

- AC DC Power Supply
- LED Lighting

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCD2250N80Z	Unit	
V _{DSS}	Drain to Source Voltage			800	V	
V _{GSS}	Cata to Source Vieltage	- DC	- DC		V	
	Gate to Source Voltage	- AC	±30	V		
ID	Drain Current	- Continuous (T _C = 25 ^o C)	2.6	Α		
		- Continuous (T _C = 100 ^o C)		1.7	- A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	6.5	А	
E _{AS}	Single Pulsed Avalanche Ener	21.6	mJ			
I _{AR}	Avalanche Current	(Note 1)	0.52	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1			0.39	mJ	
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dawan Diasinatian	(T _C = 25°C)		39	W	
	Power Dissipation	- Derate Above 25°C		0.31	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	FCD2250N80Z	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	3.2	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	100	°C/W

Electrical CharacterisSymbolParOff Characteristics BV_{DSS} Drain to Source B ΔBV_{DSS} Breakdown Voltag $/ \Delta T_J$ Coefficient I_{DSS} Zero Gate Voltage I_{GSS} Gate to Body LealOn Characteristics $V_{GS(th)}$ Gate Threshold Va $R_{DS(on)}$ Static Drain to Sou g_{FS} Forward TransconDynamic Characteristics C_{iss} Input Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance Q_{gd} Gate to Source Ga Q_{gd} Gate to Drain "MillESREquivalent SeriesSwitching Characteristics $t_{d(on)}$ Turn-On Rise Timu $t_{q(off)}$ Turn-Off Fall Time	rameter Breakdown Volt ge Temperature e Drain Curren akage Current /oltage	tage	V _{GS} =	Tape and Reel erwise noted. Test Conditions $0 \text{ V}, \text{ I}_{\text{D}} = 1 \text{ mA}, \text{ T}_{\text{J}} = 2$ mA, Referenced to 25	330 m 25°C	m Min. 800	16 mm	2: Max.	500 units Unit
SymbolParOff CharacteristicsBV _{DSS} Drain to Source B ΔBV_{DSS} Breakdown Voltag (ΔT_J) Coefficient I_{DSS} Zero Gate Voltage I_{GSS} Gate to Body LeadOn Characteristics $V_{GS(th)}$ Gate Threshold Voltage $B_{DS(on)}$ Static Drain to Sou g_{FS} Forward TranscomDynamic Characteristics C_{oss} Output Capacitance C_{oss} Gate to Source Ga Q_{gd} Gate to Drain "MillESREquivalent SeriesSwitching Characteristics $t_{d(on)}$ Turn-On Delay Tir t_r Turn-On Rise Tim $t_{d(off)}$ Turn-Off Delay Tin t_f Turn-Off Fall Time	rameter Breakdown Volt ge Temperature e Drain Curren akage Current /oltage	tage e	V _{GS} =	Test Conditions	25°C		Тур.	Max.	Unit
SymbolParDff CharacteristicsBV _{DSS} Drain to Source BΔBV _{DSS} Breakdown Voltag(ΔTJ)CoefficientIDSSZero Gate VoltageIGSSGate to Body LeadDn CharacteristicsVGS(th)Gate Threshold VoltagePSSForward TranscomOn CharacteristicsVGS(th)Static Drain to SougFSForward TranscomOynamic CharacteristicsCissInput CapacitanceCossOutput CapacitanceCossOutput CapacitanceCossOutput CapacitanceCossOutput CapacitanceCossGate to Source GaQg(tot)Total Gate ChargeQgsGate to Drain "MillESREquivalent SeriesSwitching Characteristicstd(on)Turn-On Delay TirtrTurn-On Rise Timtd(off)Turn-Off Delay Tirtd(off)Turn-Off Fall Time	rameter Breakdown Volt ge Temperature e Drain Curren akage Current /oltage	tage e	V _{GS} =	Test Conditions	25°C		Тур.	Max.	Unit
BV_{DSS} Drain to Source B ΔBV_{DSS} Breakdown Voltag $/\Delta T_J$ Coefficient I_{DSS} Zero Gate Voltage I_{GSS} Gate to Body LealOn Characteristics $V_{GS(th)}$ Gate Threshold Va $R_{DS(on)}$ Static Drain to Sou g_{FS} Forward Transcon Dynamic Characteristics Criss C_{iss} Input Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance $Q_{g(tot)}$ Total Gate Charge Q_{gd} Gate to Drain "MillESREquivalent SeriesSwitching Characteristics $t_{d(on)}$ Turn-On Delay Tir t_{r} Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Tim t_{f} Turn-Off Fall Time	ge Temperature e Drain Curren akage Current /oltage	e	I _D = 1 i		25°C	800			
BV_{DSS} Drain to Source B ΔBV_{DSS} Breakdown Voltag ΔT_J Coefficient I_{DSS} Zero Gate Voltage I_{GSS} Gate to Body Leal Dn Characteristics $V_{GS(th)}$ Gate Threshold Va $R_{DS(on)}$ Static Drain to Sou g_{FS} Forward Transcon Dynamic Characteristics C_{iss} Input Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance $Q_{g(tot)}$ Total Gate Charge Q_{gd} Gate to Drain "MillESREquivalent Series Switching Characteristics $t_{d(on)}$ Turn-On Delay Tir t_r Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Tim t_f Turn-Off Fall Time	ge Temperature e Drain Curren akage Current /oltage	e	I _D = 1 i		25°C	800			
$\begin{array}{c c} \Delta BV_{DSS} \\ \Delta BV_{DSS} \\ / \Delta T_J \\ \hline \\ \end{tabular} Coefficient \\ \hline \\ \end{tabular} Cerve Gate Voltage \\ \hline \\ \end{tabular} Cases \\ \hline \\ \end{tabular} Cases \\ \hline \\ \end{tabular} Characteristics \\ \hline \\ \end{tabular} Cases \\ \hline \\ \end{tabular} Characteristics \\ \hline \\ \end{tabular} Coss \\ \hline \\ \end{tabular} Characteristics \\ \hline \\ \end{tabular} Coss \\ \hline \\ \end{tabular} Cases \\ \hline \\ \end{tabular} Cases \\ \hline \\ \end{tabular} Characteristics \\ \hline \\ \end{tabular} Cases \\ \hline \end{tabular} Cases \\ \hline \\ \end{tabular} Cases \\ \hline \end{tabular} $	ge Temperature e Drain Curren akage Current /oltage	e	I _D = 1 i				-	-	V
IGSS Gate to Body Lead IGSS Gate to Body Lead On Characteristics VGS(th) Gate Threshold Val RDS(on) Static Drain to Sou gFS Forward Transcon Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Qogs Gate to Source Ga Qgd Gate to Drain "Mill ESR Equivalent Series Switching Characteristics Switching Characteristics td(on) Turn-On Delay Tir tr Turn-Off Delay Tim td(off) Turn-Off Fall Time	akage Current /oltage	t	$V_{\rm DO} =$		5°C	-	0.85	-	V/ºC
On Characteristics $V_{GS(th)}$ Gate Threshold Vol $R_{DS(on)}$ Static Drain to Sou g_{FS} Forward Transcom Dynamic Characteristics C_{iss} Input Capacitance C_{oss} Output Capacitance $Q_{g(tot)}$ Total Gate Charge Q_{gd} Gate to Source Ga Q_{gd} Gate to Drain "MillESREquivalent SeriesSwitching Characteristics $t_{d(on)}$ Turn-On Delay Tir t_r Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Tin t_f Turn-Off Fall Time	/oltage		$V_{DS} = 800 V, V_{GS} = 0 V$ $V_{DS} = 640 V, V_{GS} = 0 V, T_C = 125^{\circ}C$			-	-	25 250	μA
$\begin{array}{c c} V_{\text{GS}(\text{th})} & \text{Gate Threshold Voltage} \\ \hline R_{\text{DS}(\text{on})} & \text{Static Drain to Source } \\ \hline g_{\text{FS}} & \text{Forward Transcond} \\ \hline \textbf{Dynamic Characteristics} \\ \hline \textbf{C}_{\text{iss}} & \text{Input Capacitance} \\ \hline \textbf{C}_{\text{oss}} & \text{Output Capacitance} \\ \hline \textbf{Q}_{\text{g}(\text{tot})} & \text{Total Gate Charge} \\ \hline \textbf{Q}_{\text{gg}} & \text{Gate to Source Gate} \\ \hline \textbf{Q}_{\text{gg}} & \text{Gate to Drain "Mill} \\ \hline \text{ESR} & \text{Equivalent Series} \\ \hline \textbf{Switching Characteristics} \\ \hline \textbf{t}_{d(\text{on})} & \text{Turn-On Delay Tint} \\ \hline \textbf{t}_{r} & \text{Turn-On Rise Time} \\ \hline \textbf{t}_{d(\text{off})} & \text{Turn-Off Fall Time} \\ \hline \textbf{t}_{f} & \text{Turn-Off} \\ \hline \textbf{t}_{f} & Turn-$	-		$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		-	-	±10	μA	
$\begin{array}{c c} V_{GS(th)} & Gate Threshold Voltage (Constraints) and (Co$	-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		Voc =	V _{DS} , I _D = 0.26 mA		2.5	_	4.5	V
$\begin{array}{c c} & Forward Transcon \\ \hline g_{FS} & Forward Transcon \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{oss} & $	urce un Resis	tance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 1.3 \text{ A}$			-	1.87	2.25	Ω
Dynamic Characteristics C_{iss} Input Capacitance C_{oss} Output Capacitance C_{oss} Output Capacitance C_{rss} Reverse Transfer C_{oss} Output Capacitance Q_{oss} Output Capacitance $Q_{g(tot)}$ Total Gate Charge Q_{gd} Gate to Source Gat Q_{gd} Gate to Drain "Mill ESR Equivalent Series Switching Characteristics td(on) t_d(off) Turn-On Delay Tin t_f Turn-Off Delay Tin t_f Turn-Off Fall Time		lanoo	$V_{DS} = 20 \text{ V}, I_D = 1.3 \text{ A}$		-	2.28	-	S	
$\begin{array}{c c} C_{iss} & Input Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{rss} & Reverse Transfer \\ \hline C_{oss} & Output Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{oss(eff.)} & Effective Output C \\ \hline Q_{g(tot)} & Total Gate Charge \\ \hline Q_{gs} & Gate to Source Ga \\ \hline Q_{gd} & Gate to Drain "Mill \\ \hline ESR & Equivalent Series \\ \hline Switching Characteristics \\ \hline t_{d(on)} & Turn-On Delay Tim \\ \hline t_r & Turn-On Rise Timm \\ \hline t_{d(off)} & Turn-Off Delay Tim \\ \hline t_f & Turn-Off Fall Time \\ \hline \end{array}$	7		50						
$\begin{array}{c c} C_{oss} & Output Capacitand \\ C_{rss} & Reverse Transfer \\ C_{oss} & Output Capacitand \\ C_{oss} & Output Capacitand \\ C_{oss(eff.)} & Effective Output C \\ Q_{g(tot)} & Total Gate Charge \\ Q_{gs} & Gate to Source Ga \\ Q_{gd} & Gate to Drain "Mill \\ ESR & Equivalent Series \\ \hline Switching Characteristics \\ t_{d(on)} & Turn-On Delay Tir \\ t_r & Turn-On Rise Time \\ t_{d(off)} & Turn-Off Delay Tir \\ t_f & Turn-Off Fall Time \\ \hline \end{array}$		_				-	440	585	pF
$\begin{array}{c c} C_{rss} & Reverse Transfer\\ \hline C_{oss} & Output Capacitance\\ \hline C_{oss(eff.)} & Effective Output Capacitance\\ \hline Q_{g(tot)} & Total Gate Charge\\ \hline Q_{gs} & Gate to Source Gate Q_{gd} & Gate to Drain "Mill ESR & Equivalent Series\\ \hline Switching Characteristics\\ \hline t_{d(on)} & Turn-On Delay Tirr\\ \hline t_r & Turn-On Rise Tirre\\ \hline t_{d(off)} & Turn-Off Delay Tirre\\ \hline t_f & Turn-Off Fall Time\\ \hline \end{array}$		-	V _{DS} = 100 V, V _{GS} = 0 V,		-	16	22	pr	
$\begin{array}{c c} C_{oss} & Output Capacitance \\ \hline C_{oss} & Effective Output Capacitance \\ \hline C_{oss(eff.)} & Effective Output Capacitance \\ \hline Q_{g(tot)} & Total Gate Charge \\ \hline Q_{gs} & Gate to Source Gate \\ \hline Q_{gd} & Gate to Drain "Mill \\ \hline ESR & Equivalent Series \\ \hline Switching Characteristics \\ \hline t_{d(on)} & Turn-On Delay Tir \\ \hline t_r & Turn-On Rise Time \\ \hline t_{d(off)} & Turn-Off Delay Time \\ \hline t_f & Turn-Off Fall Time \\ \hline \end{array}$			f = 1 M	Hz			0.75	-	pF
$\begin{array}{c} C_{oss(eff.)} & \mbox{Effective Output C} \\ Q_{g(tot)} & \mbox{Total Gate Charge} \\ Q_{gs} & \mbox{Gate to Source Ga} \\ Q_{gd} & \mbox{Gate to Drain "Mill} \\ \mbox{ESR} & \mbox{Equivalent Series} \\ \hline \mbox{Switching Characteristics} \\ \hline \mbox{t}_{d(on)} & \mbox{Turn-On Delay Tin} \\ t_r & \mbox{Turn-On Rise Time} \\ \hline \mbox{t}_{d(off)} & \mbox{Turn-Off Delay Time} \\ \hline \mbox{t}_f & \mbox{Turn-Off Fall Time} \\ \hline \end{array}$	•		Vno =	480 V, V _{GS} = 0 V, f =	1 MHz		8.4	-	pF
$\begin{array}{c c} Q_{g(tot)} & \mbox{Total Gate Charge} \\ Q_{gs} & \mbox{Gate to Source Ga} \\ Q_{gd} & \mbox{Gate to Drain "Mill} \\ ESR & \mbox{Equivalent Series} \\ \hline \mbox{Switching Characteristics} \\ \hline \mbox{Switching Characteristics} \\ \hline \mbox{t}_{d(on)} & \mbox{Turn-On Delay Tirr} \\ t_r & \mbox{Turn-On Rise Time} \\ \hline \mbox{t}_{d(off)} & \mbox{Turn-Off Delay Time} \\ \hline \mbox{t}_f & \mbox{Turn-Off Fall Time} \\ \hline \end{array}$		-		$0 \text{ V to } 480 \text{ V}, \text{ V}_{GS} = 0$		-	51	-	pF
Q _{gs} Gate to Source Gate Q _{gd} Gate to Drain "Mill ESR Equivalent Series Switching Characteristics Gate to Drain "Mill t _{d(on)} Turn-On Delay Tir t _r Turn-On Rise Time t _{d(off)} Turn-Off Delay Tir t _f Turn-Off Fall Time	•		$V_{DS} = 640 \text{ V}, V_{GS} = 640 \text{ V}$ $V_{DS} = 640 \text{ V}, I_D = 2.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4) f = 1 MHz		-	11	14	nC	
g3 Gate to Drain "Mill Qgd Gate to Drain "Mill ESR Equivalent Series Switching Characteristics Gate to Drain "Mill td(on) Turn-On Delay Tir tr Turn-On Rise Time td(off) Turn-Off Delay Tir tf Turn-Off Fall Time		-			-	2.2	-	nC	
gu gu ESR Equivalent Series Switching Characteristics t _{d(on)} Turn-On Delay Tir t _r Turn-On Rise Time t _{d(off)} Turn-Off Delay Time t _f Turn-Off Fall Time	0				-	4.3	-	nC	
Switching Characteristics $t_{d(on)}$ Turn-On Delay Tir t_r Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Tin t_f Turn-Off Fall Time	•					-	2.8	-	Ω
t _{d(on)} Turn-On Delay Tir t _r Turn-On Rise Tim t _{d(off)} Turn-Off Delay Tin t _f Turn-Off Fall Time								<u> </u>	
t _r Turn-On Rise Tim t _{d(off)} Turn-Off Delay Tin t _f Turn-Off Fall Time						-	11	32	ns
t _{d(off)} Turn-Off Delay Tin t _f Turn-Off Fall Time			V_{DD} = 400 V, I _D = 2.6 A, V_{GS} = 10 V, R _g = 4.7 Ω (Note 4)		_	6.7	23	ns	
t _f Turn-Off Fall Time						26	62	ns	
· .						8.7	27	ns	
Drain-Source Diode Char	ractoristics				, ,	/			
I _S Maximum Continu		Source F)iode Fo	orward Current		-	-	2.6	A
0	m Pulsed Drain to Source Diode Forward Current			-	-	6.5	A		
V _{SD} Drain to Source D				0 V, I _{SD} = 2.6 A		-	-	1.2	V
t _{rr} Reverse Recovery						-	260	-	ns
Q _{rr} Reverse Recovery	-		V _{GS} = 0 V, I _{SD} = 2.6 A, dI _F /dt = 100 A/μs		-	2.2	- /	μC	
Notes:	,								

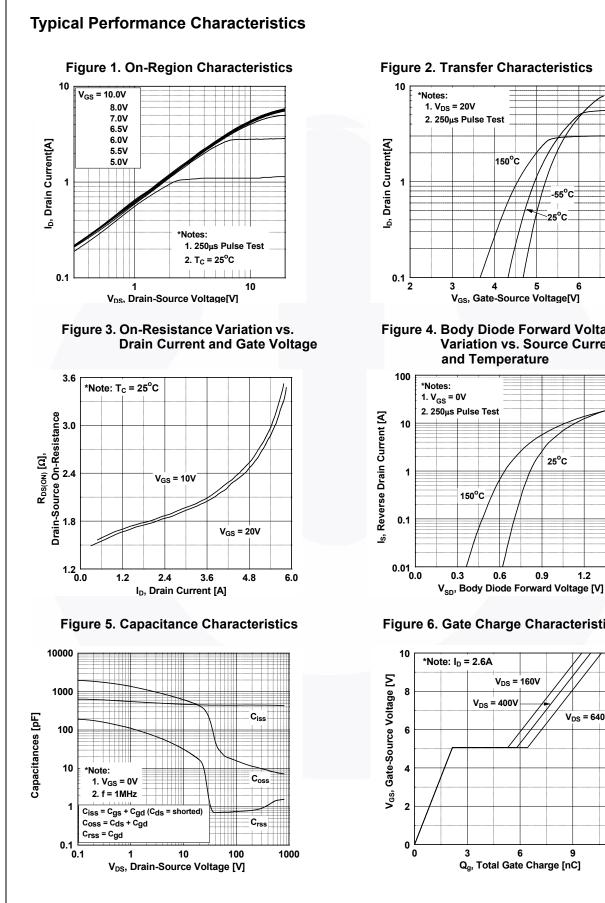
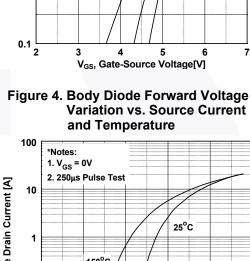
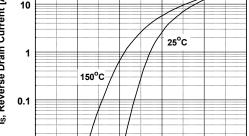
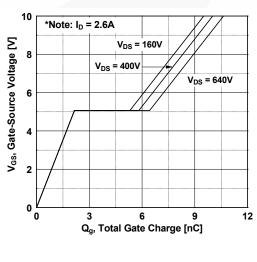
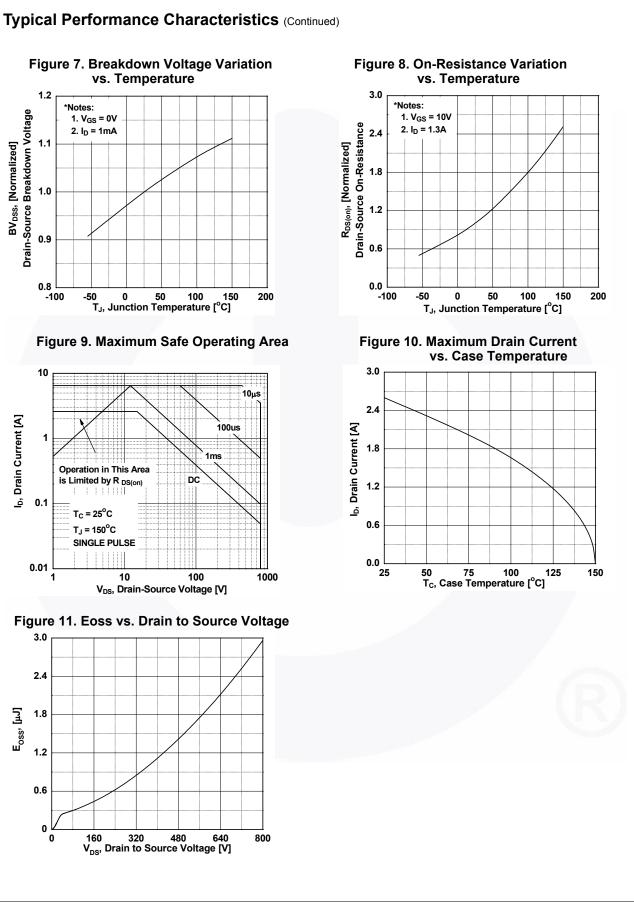




Figure 2. Transfer Characteristics

-55°C 25°C

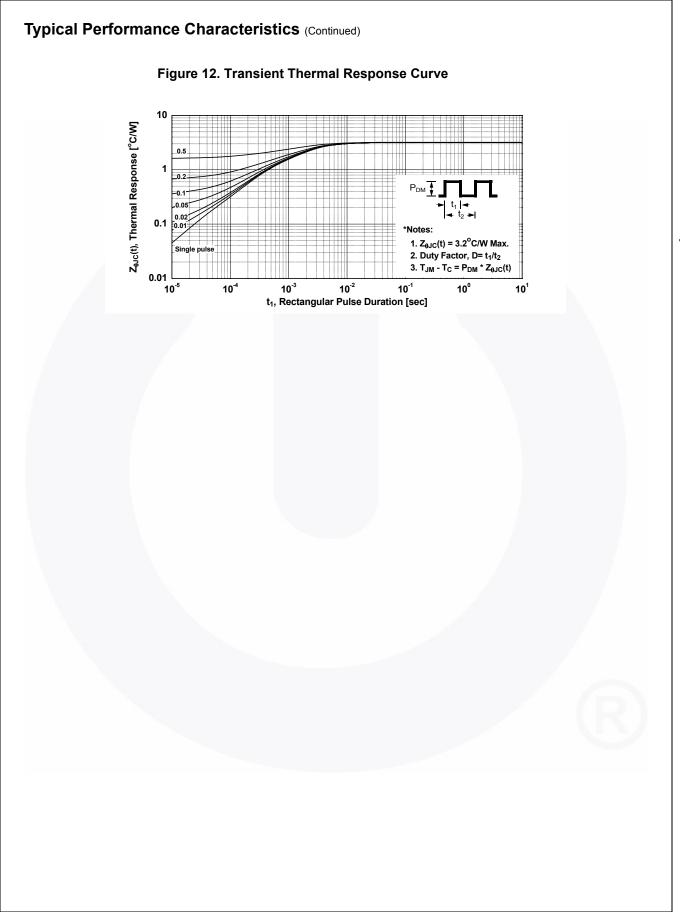


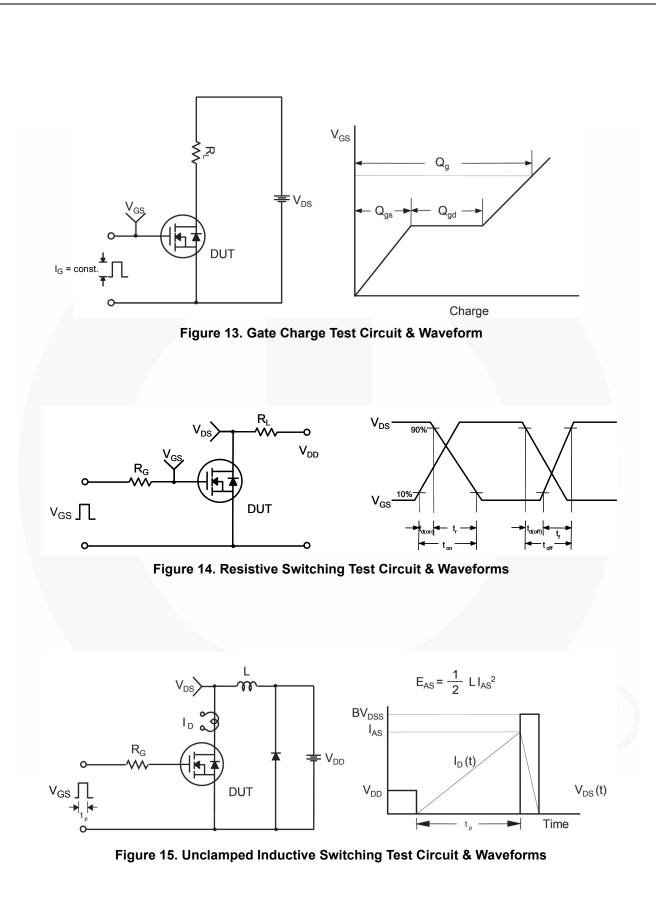

Figure 6. Gate Charge Characteristics

0.9

1.2

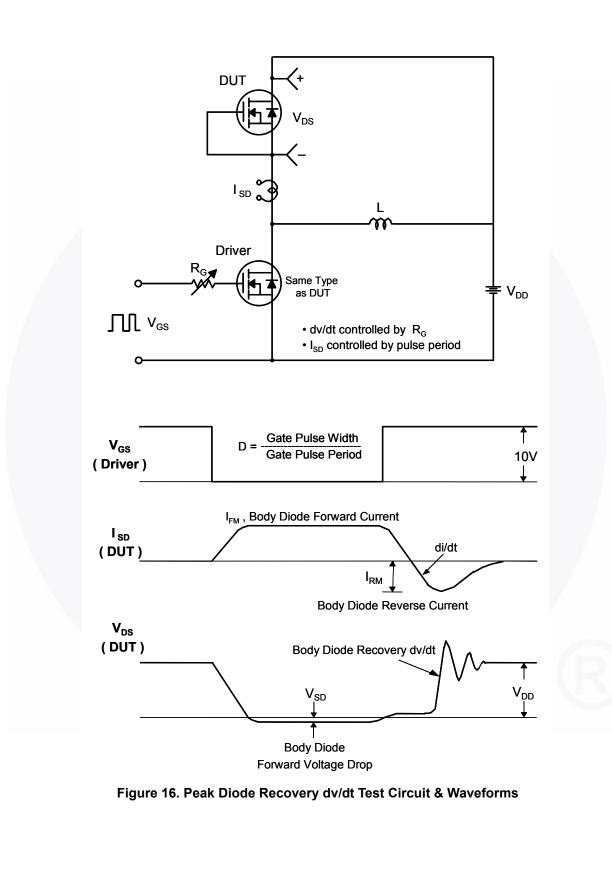
1.5

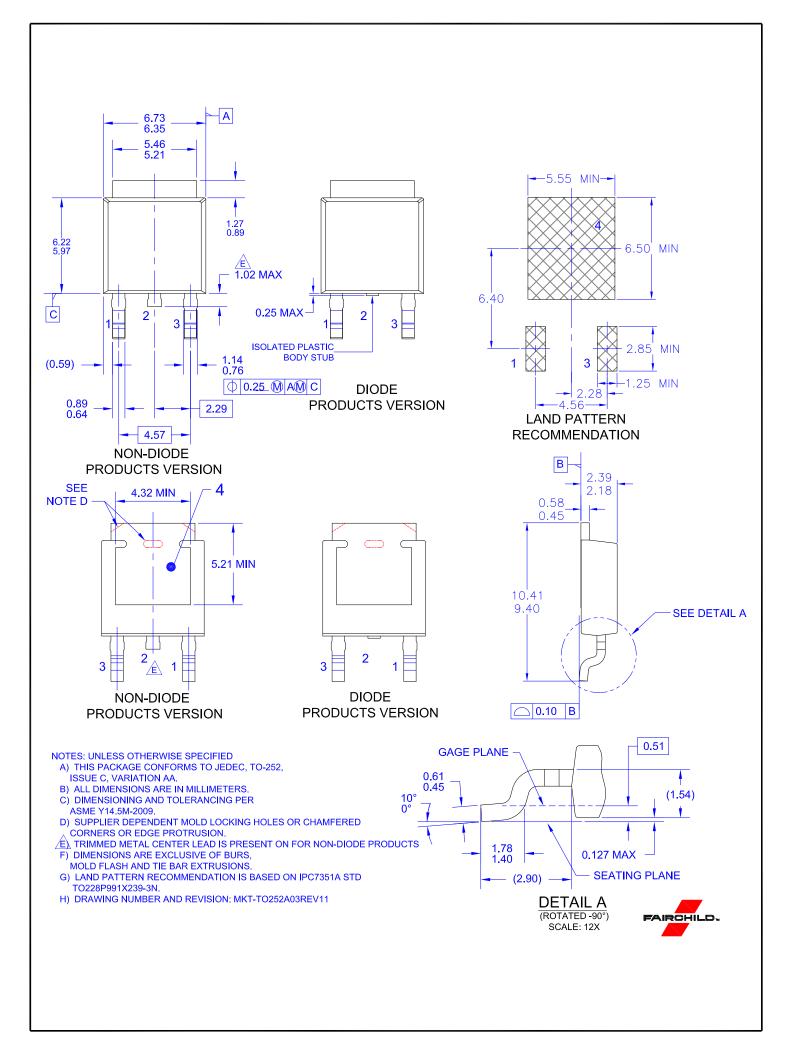



BV_{DSS}, [Normalized]

l_b, Drain Current [A]

E_{oss}, [µJ]




5

FCD2250N80Z — N-Channel SuperFET[®] II MOSFET

FCD2250N80Z — N-Channel SuperFET[®] II MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC