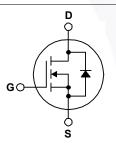
December 2014

FCH110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

FCH110N65F N-Channel SuperFET[®] II FRFET[®] MOSFET 650 V, 35 A, 110 m Ω

Features

- 700 V @ T_J = 150°C
- Typ. R_{DS(on)} = 96 mΩ (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 98 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 464 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- LCD / LED / PDP TV
 Telecom / Server Power Supplies
- Solar Inverter
 AC DC Power Supply

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET II FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCH110N65F_F155	Unit
V _{DSS}	Drain to Source Voltage		650	V	
V _{GSS}	Gate to Source Voltage	- DC	- DC		V
		- AC	(f > 1 Hz)	±30	v
ID	Drain Current	- Continuous (T _C = 25 ^o C)		35	А
		- Continuous (T _C = 100 ^o C)		24	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	105	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		809	mJ	
I _{AR}	Avalanche Current (Note 1)		8	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)		3.57	mJ	
dv/dt	MOSFET dv/dt			100	Mag
	Peak Diode Recovery dv/dt (Note 3)			50	V/ns
P _D	Rower Dissinction	(T _C = 25°C)		357	W
	Power Dissipation	- Derate Above 25°C		2.86	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

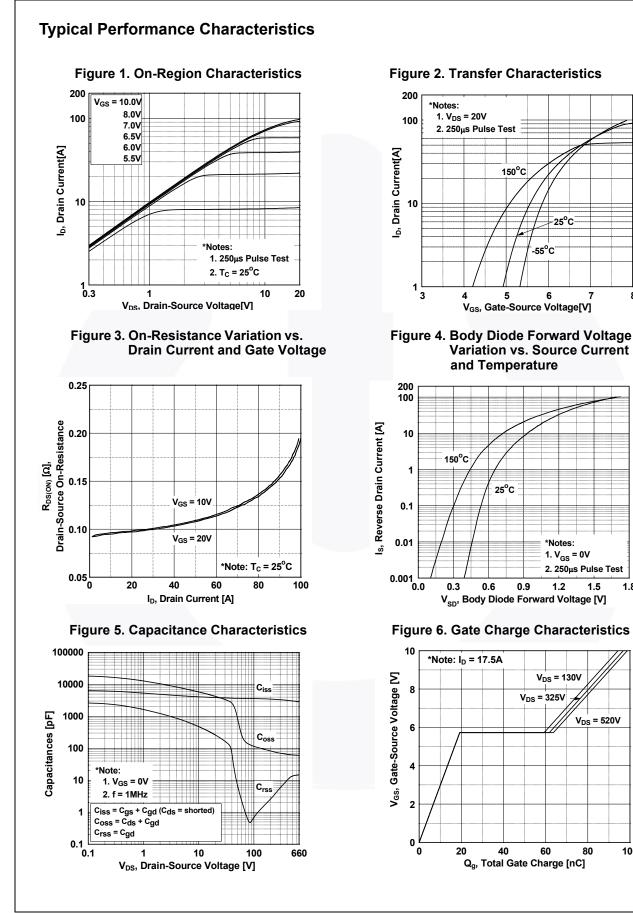
Thermal Characteristics

Symbol	Parameter	FCH110N65F_F155	Unit	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.35	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	40	°C/W	

FCH110N65	nber	Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Qua	ntity
			TO-247G03	Tube	N/A		N/A	30 units	
Electrical	Chara	acteristics T _c =	: 25 ⁰ C unless (therwise noted					
Symbol	Undre	Parameter	20 0 0 0 0 0 0	Test Conditi	ions	Min.	Тур.	Max.	Unit
Off Charact	hariation			Test oonun	0113		Typ.	Max.	onn
UII Charact) 		$V_{00} = 0 V_{10} = 10 mA$	T. = 25°C	650	-		
BV _{DSS}	Drain to	rain to Source Breakdown Voltage		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}, \text{ T}_{J} = 25^{\circ}\text{C}$ $V_{GS} = 0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$		700	-	-	V
ΔΒV _{DSS} / ΔΤ.	Breakdown Voltage Temperature		ure	$V_{GS} = 0$ V, $I_D = 10$ mA, $T_J = 150$ C $I_D = 10$ mA, Referenced to 25°C		-	0.72	-	V/ºC
, , , ,				V _{DS} = 650 V, V _{GS} = 0	V	-	-	10	
DSS	Zero Gate Voltage Drain Current		ent	V _{DS} = 520 V, T _C = 125	5°C	-	110	u/	
I _{GSS}	Gate to E	Gate to Body Leakage Current		$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	V	-	-	±100	nA
On Charact	eristics								
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} = V _{DS} , I _D = 3.5 m	A	3	-	5	V
R _{DS(on)}		ain to Source On Res	sistance	V _{GS} = 10 V, I _D = 17.5 /		-	96	110	mΩ
9 _{FS}	Forward	Transconductance		V _{DS} = 20 V, I _D = 17.5 /	A	-	30	-	S
Dynamic Cl	haracte	ristics							
C _{iss}		pacitance					3680	4895	pF
C _{oss}	-	Capacitance		V _{DS} = 100 V, V _{GS} = 0	V,		110	145	pF
C _{rss}		Transfer Capacitance	e.	f = 1 MHz	-	-	0.65	-	pF
C _{oss}		Capacitance		V _{DS} = 380 V, V _{GS} = 0 V, f = 1 MHz		-	65	-	pF
C _{oss(eff.)}	-	e Output Capacitance		$V_{\rm DS} = 0 \text{ V to } 400 \text{ V}, V_{\rm GS} = 0 \text{ V}$		-	464	_	pF
Q _{g(tot)}		te Charge at 10V		V _{DS} = 380 V, I _D = 17.5 A,		-	98	145	nC
Q _{gs}		Source Gate Charge		$V_{GS} = 10 V$	-	20	-	nC	
Q _{gd}		Drain "Miller" Charge			(Note 4)	-	43	-	nC
ESR	Equivale	uivalent Series Resistance		f = 1 MHz		-	0.7	-	Ω
Switching (Charact	eristics							
-		Delay Time					31	72	ns
t _{d(on)} t _r		Rise Time		V_{DD} = 380 V, I _D = 17.5 A, V _{GS} = 10 V, R _g = 4.7 Ω			21	52	ns
t _{d(off)}		Delay Time					89	188	ns
- <u>d(011)</u> t _f		Fall Time			(Note 4)	7 -	5.7	21	ns
	oo Diod	e Characteristic	•						1
				Forward Current				25	•
	IVIAXIIIIUII	n Pulsed Drain to Sou		le Forward Current		-	-	35 105	A
I _S	Movimum		I'CE DIQUE FOI			-	-	1.2	
I _S I _{SM}				$V_{ab} = 0 V _{ab} = 175 /$	Δ	_			
Drain-Sourd I _S I _{SM} V _{SD} t _{rr}	Drain to S	Source Diode Forwar Recovery Time		$V_{GS} = 0 V, I_{SD} = 17.5 V$ $V_{GS} = 0 V, I_{SD} = 17.5 V$		-	- 133	1.2	V ns

2

8

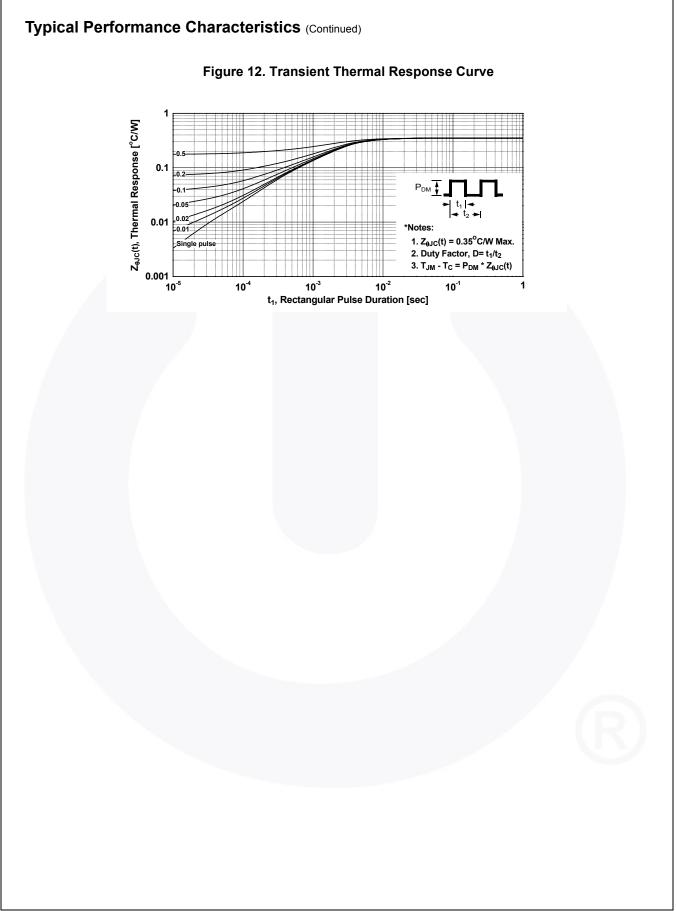

7

1.5

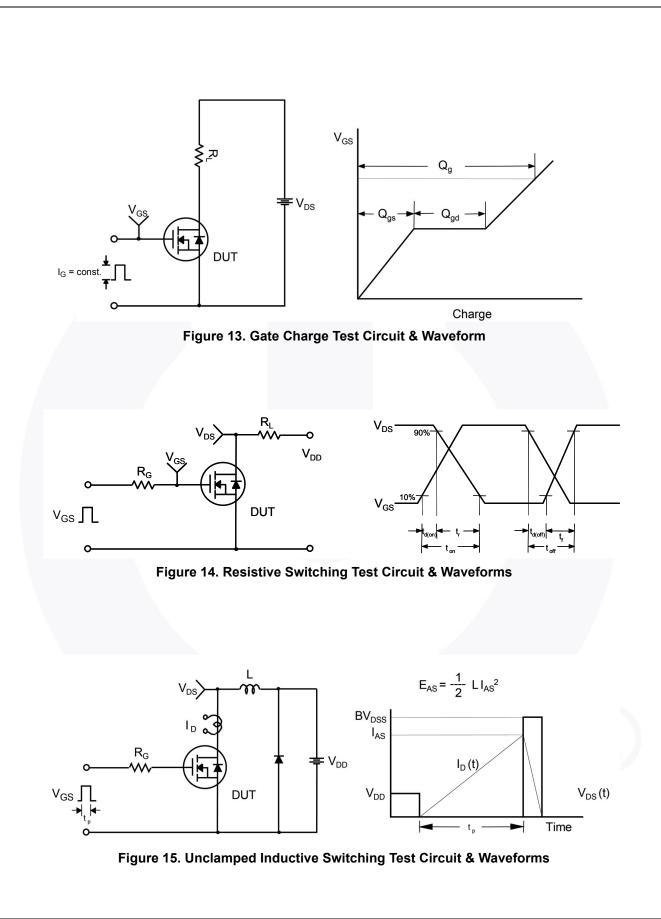
V_{DS} = 520V

80

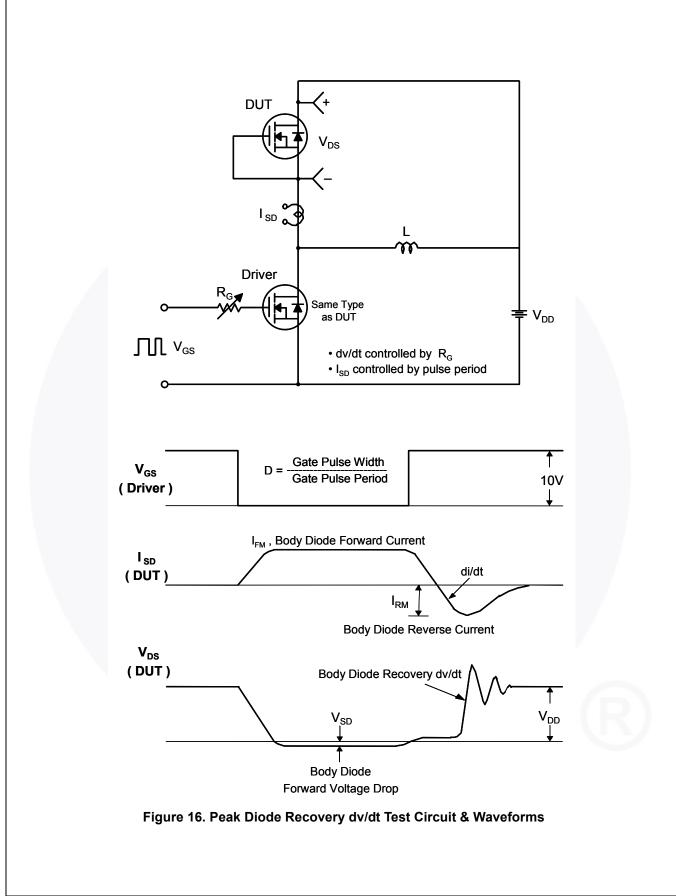
1.8

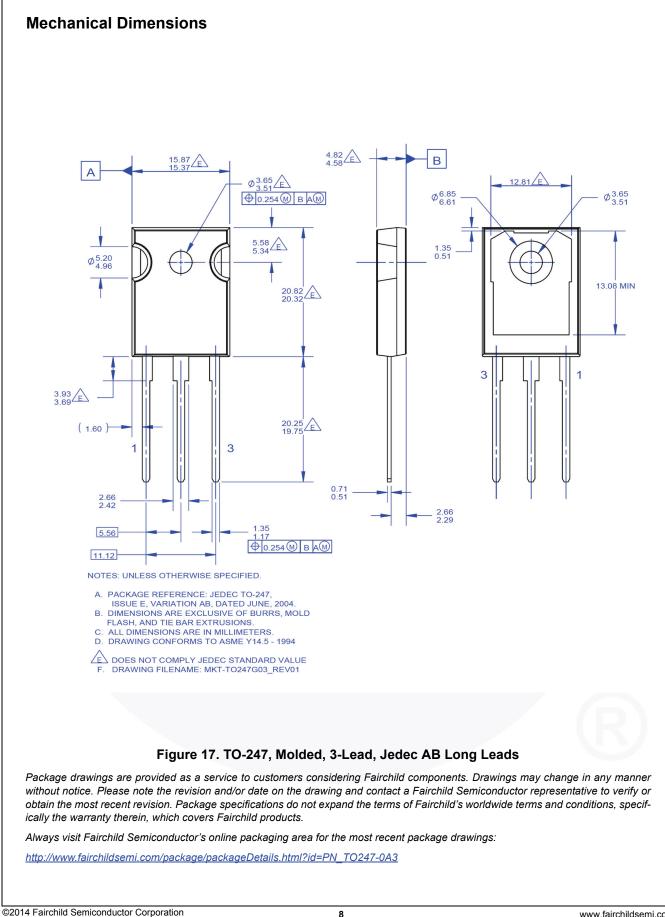

Figure 2. Transfer Characteristics

©2014 Fairchild Semiconductor Corporation FCH110N65F Rev. C2


3

100


Typical Performance Characteristics (Continued) Figure 7. Breakdown Voltage Variation Figure 8. On-Resistance Variation vs. Temperature vs. Temperature 2.5 1.15 *Notes: *Notes: Drain-Source Breakdown Voltage 1. V_{GS} = 10V 1. V_{GS} = 0V Drain-Source On-Resistance 0. 2.1 0. 2.1 2. I_D = 17.5A 2. I_D = 10mA 1.10 R_{DS(on)}, [Normalized] BV_{DSS}, [Normalized] 1.05 1.00 0.95 0.5 └─ -100 0.90 L -100 -50 0 50 100 150 200 0 50 100 150 200 -50 T_J, Junction Temperature [°C] T_J, Junction Temperature [^oC] Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature 300 40 100 10µs 100µs l_b, Drain Current [A] 30 I_D, Drain Current [A] 10 1ms 20 DC 1 **Operation in This Area** is Limited by R DS(on) Notes: 10 1. T_C = 25°C 0.1 2. T_J = 150^oC 3. Single Pulse 0.01 └─ 0.1 0 ∟ 25 10 100 1000 50 75 100 125 150 1 T_c, Case Temperature [°C] V_{DS}, Drain-Source Voltage [V] Figure 11. Eoss vs. Drain to Source Voltage 20 16 Е_{oss}, [µJ] 12 8 4 0 132 264 396 528 V_{DS}, Drain to Source Voltage [V] 660



FCH110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

FCH110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CorePOWER TM CROSSVOLT TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore TM FETBench TM FPS TM	F-PFS [™] FRFET [®] Global Power Resource SM Green Bridge [™] Green FPS [™] e-Series [™] Gmax [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Loude and Better [™] MegaBuck [™] MICROCOUPLER [™] MicroPak ² [™] MicroPak ² [™] MicroPak ² [™] MicroPak ² [™] MicroPak ² [™] MicroPak ² [™] MicroGrid [®] MTi [®] MTx [®] MVN [®] mWSaver [®] OptoHiT [™] OPTOLOGIC [®]	OPTOPLANAR [®] WeverTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] T Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperFET [®] SuperSOT [™] -6 SuperMOS [®] SyncFET [™] Sync-Lock [™]	FinyBoost® TinyBoost® TinyUcalc™ TinyLogic® TINYOPTO™ TinyWire™ Transic™ TrifFalt Detect™ TRUECURENT®* JBODES™ UHC® UHC® UITA FRFET™ VOItagePlus™ VoitagePlus™ Xsens™ Main Main Transic™ TriFault Detect™ TRUECURENT®* µSerDes™ VisualMax™ VoitagePlus™ Xsens™ Main
---	---	---	--

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild directly or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC