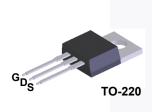
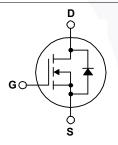


N-Channel SuperFET[®] II Easy-Drive MOSFET

600 V, 37 A, 99 mΩ

Features


- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 87 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 88nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 309 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Telecom / Sever Power Supplies
- Industrial Power Supplies

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET easy-drive series offers slightly slower rise and fall times compared to the SuperFET II MOSFET series. Noted by the "E" part number suffix, this family helps manage EMI issues and allows for easier design implementation. For faster switching in applications where switching losses must be at an absolute minimum, please consider the Super-FET II MOSFET series.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCP099N60E	Unit			
V _{DSS}	Drain to Source Voltage	600	V			
V _{GSS}	Cata ta Causa Malta sa	- DC	- DC		V	
	Gate to Source Voltage	- AC	- AC (f > 1 Hz)			
I _D	Drain Current	- Continuous (T _C = 25 ^o C)		37		
	Drain Current	- Continuous (T _C = 100 ^o C)		24	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	111	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			809	mJ	
I _{AR}	Avalanche Current (Note 1)			6.8	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)			3.57	mJ	
dv/dt	MOSFET dv/dt	100	V/ns			
	Peak Diode Recovery dv/dt	20				
P _D	Dewer Dissinction	(T _C = 25°C)	$(T_{\rm C} = 25^{\rm o}{\rm C})$		W	
	Power Dissipation	- Derate Above 25°C	- Derate Above 25°C		W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	FCP099N60E	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.35	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	62.5	-0/00

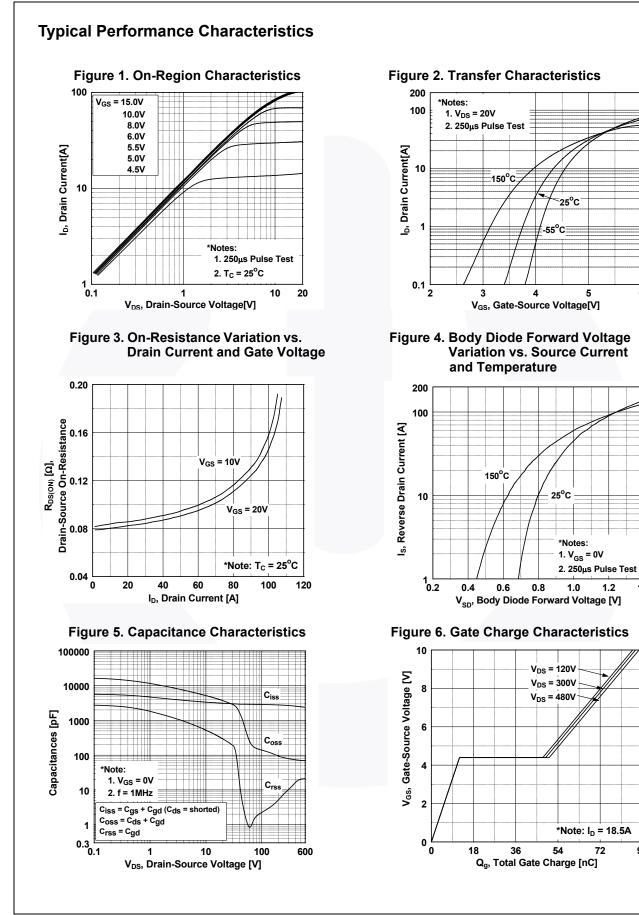
June 2016

1

Part Nu	mber	Top Mark	Package	e Packing Method	Reel Size	Tape Width		Quantity	
FCP099N60E FCP099N60E TO		TO-220	20 Tube N/A		N/A		50 units		
Electrica	l Char	racteristics T _C =	= 25ºC unless	otherwise noted.					
Symbol		Parameter		Test Conditions			Тур.	Max.	Unit
Off Charac	teristic	S							
	Drain to Source Breakdown Voltage			V _{GS} = 0 V, I _D = 10 mA, T _J = 25°C		600	-	-	V
BV _{DSS}			/oltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 150^{\circ}\text{C}$		650	-	-	V
∆BV _{DSS} / ∆T _J	Breakdown Voltage Temperature Coefficient		ture	$I_D = 10 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$		-	0.7	-	V/°C
	Zero Gate Voltage Drain Current		ont	V _{DS} = 600 V, V _{GS} = 0 V		-	-	1	
DSS			CIIL	$V_{DS} = 480 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{T}_{C} = 125^{\circ}\text{C}$		-	2.1	-	μA
I _{GSS}	Gate to Body Leakage Current			V_{GS} = ±20 V, V_{DS} = 0	V	-	-	±100	nA
On Charac	teristic	s							
V _{GS(th)}	Gate TI	hreshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA		2.5	-	3.5	V
R _{DS(on)}	Static D	rain to Source On Re	sistance	V _{GS} = 10 V, I _D = 18.5 A		-	87	99	mΩ
9 _{FS}	Forward Transconductance			V _{DS} = 20 V, I _D = 18.5 A		-	31.4	-	S
Dynamic C	Characte	eristics							
C _{iss}	Input Capacitance					-	2604	3465	pF
C _{oss}	Output	Capacitance		— V _{DS} = 380 V, V _{GS} = 0 V, f = 1 MHz		-	75	100	pF
C _{rss}	Reverse	e Transfer Capacitanc	е			-	13.9	20	pF
C _{oss(eff.)}	Effective Output Capacitance V _{DS} = 0 V to		$V_{DS} = 0 V \text{ to } 480 V, V_{O}$	_{3S} = 0 V	-	309	-	pF	
Q _{g(tot)}	Total Ga	ate Charge at 10V		V _{DS} = 380 V, I _D = 18.5	5 A,	-	88	114	nC
Q _{gs}	Gate to	Source Gate Charge		V _{GS} = 10 V (Note 4)		-	12	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge				-	38	-	nC
ESR	Equival	ent Series Resistance		f = 1 MHz		-	0.6	-	Ω
Switching	Charac	teristics							
t _{d(on)}	Turn-Or	n Delay Time		$V_{DD} = 380 \text{ V}, \text{ I}_{D} = 18.5 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ (Note 4)		-	24	58	ns
t _r	Turn-Or	n Rise Time				-	23	56	ns
t _{d(off)}	Turn-Of	f Delay Time					92	194	ns
t _f	Turn-Of	f Fall Time				-	22	54	ns
Drain-Sou	rce Dio	de Characteristic	s						
I _S	Maximum Continuous Drain to Source Diode Forward Current				-	-	37	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode Fo			orward Current		-	-	111	Α
V _{SD}	Drain to Source Diode Forward Voltage		d Voltage	V _{GS} = 0 V, I _{SD} = 18.5 A		-	-	1.2	V
t _{rr}	Reverse	e Recovery Time		V _{GS} = 0 V, I _{SD} = 18.5 A,		-	387	-	ns
	Reverse Recovery Charge			$dI_F/dt = 100 \text{ A}/\mu \text{s}$		-	7.3	-	μC

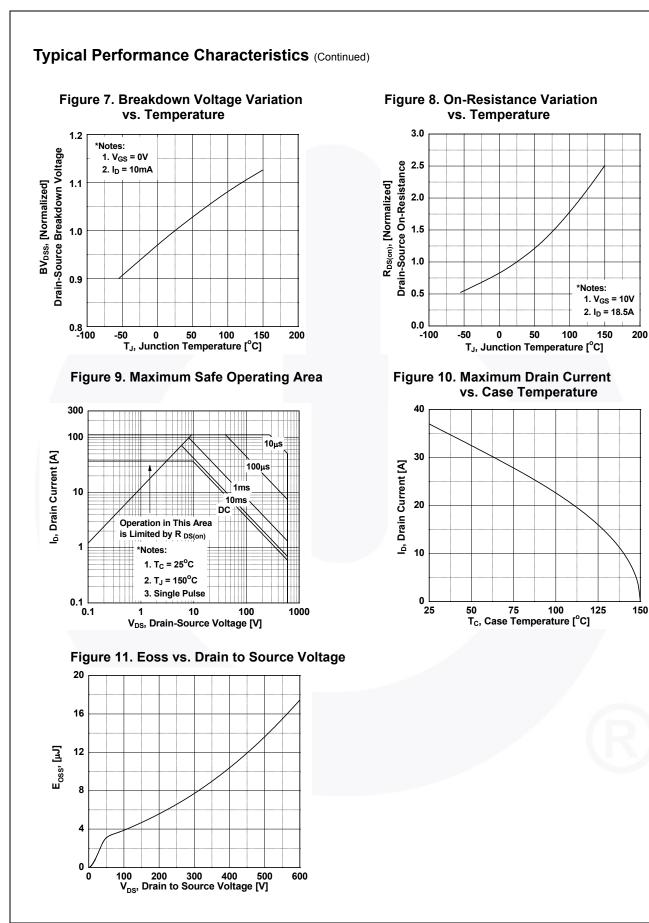
3. I_{SD} \leq 18.5 A, di/dt \leq 200 A/µs, V_{DD} \leq 380 V, Starting T_J = 25°C

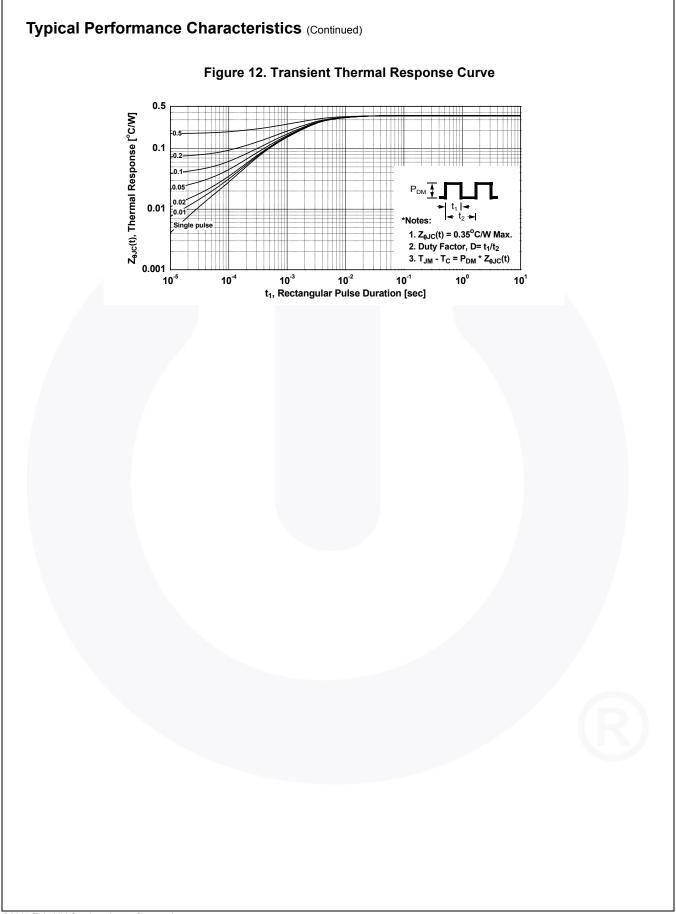
4. Essentially independent of operating temperature.

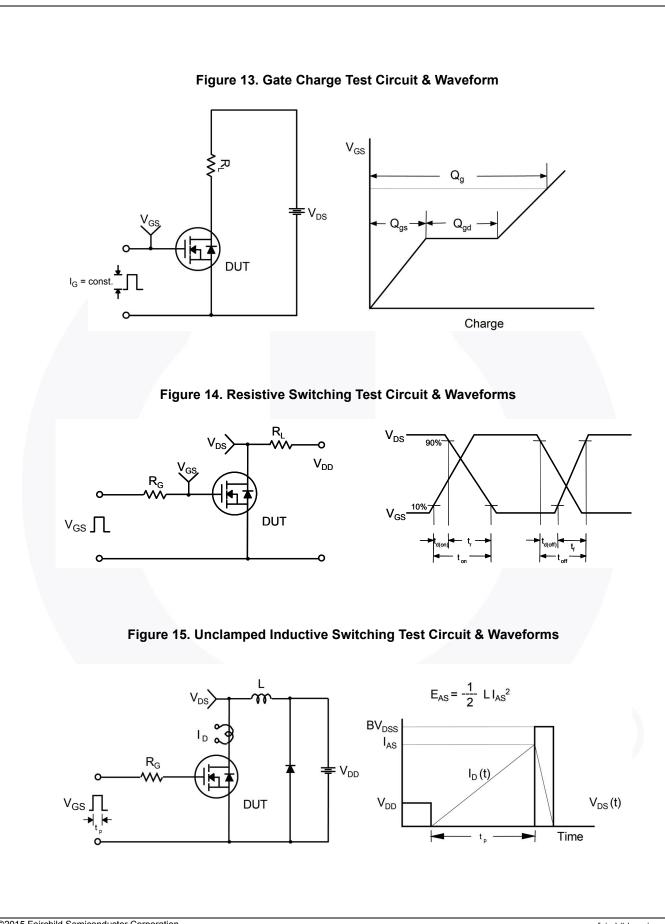

FCP099N60E — N-Channel SuperFET[®] II Easy-Drive MOSFET

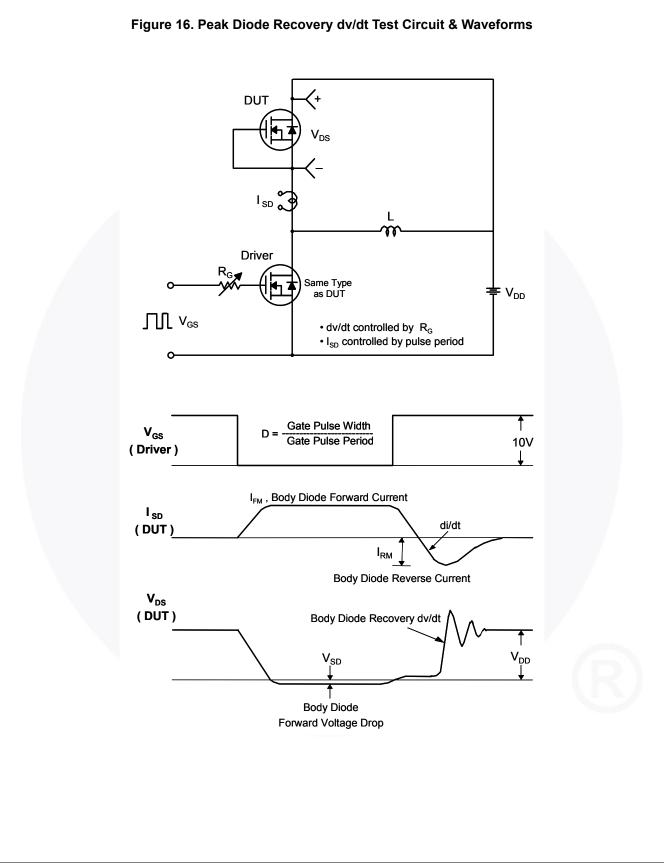
6

1.2

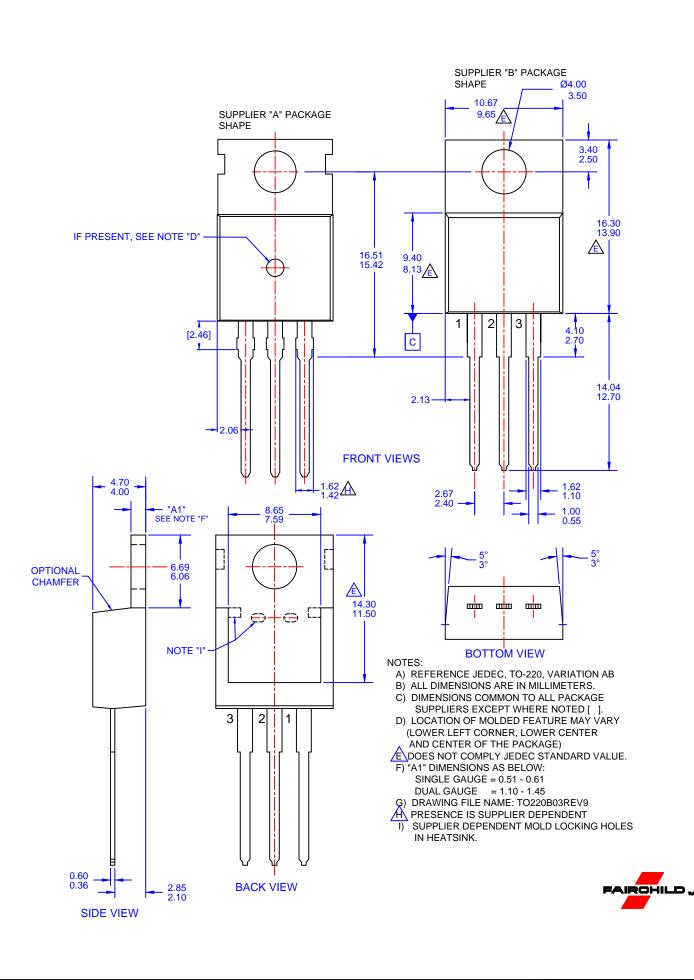

1.4




©2015 Fairchild Semiconductor Corporation FCP099N60E Rev. 1.1


90

FCP099N60E — N-Channel SuperFET[®] II Easy-Drive MOSFET



FCP099N60E — N-Channel SuperFET[®] II Easy-Drive MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC