

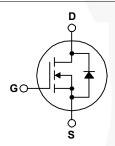
December 2013

FCP4N60

N-Channel SuperFET[®] MOSFET 600 V, 3.9 A, 1.2 Ω

Features


- 650 V @ T_J = 150°C
- Typ. $R_{DS(on)}$ = 1.0 Ω
- Ultra Low Gate Charge (Typ. Q_g = 12.8 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 32 pF)
- 100% Avalanche Tested
- · RoHS Compliant


Application

- · LCD / LED / PDP TV and Monitor Lighting
- · Solar Inverter
- · AC-DC Power Supply

Description

SuperFET® MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter Drain-Source Voltage		FCP4N60	Unit V
V _{DSS}			600	
I _D	Drain Current - Continuous ($T_C = 25$ °C) - Continuous ($T_C = 100$ °C)		3.9 2.5	A A
I _{DM}	Drain Current - Pulsed	(Note 1)	11.7	А
V _{GSS}	Gate-Source voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Not		128	mJ
I _{AR}	Avalanche Current	(Note 1)	3.9	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P_D	Power Dissipation (T _C = 25°C) - Derate Above 25°C		50 0.4	W W/°C
$T_{J_i}T_{STG}$	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds.		300	°C

Thermal Characteristics

Symbol	Parameter	FCP4N60	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	2.5	°C/W
	Thermal Resistance, Junction to Ambient, Max.	83	* C/VV

 $R_{\theta JA}$

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCP4N60	FCP4N60	TO-220	Tube	N/A	N/A	50 units

Electrical Characteristics T_C = 25°C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics			I		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_J = 25^{\circ}\text{C}$				V
		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_J = 150^{\circ}\text{C}$		650		V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.6		V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 3.9 A		700		V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V V _{DS} = 480 V, T _C = 125°C			1 10	μA μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Charac	teristics			I.		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 2.0 A		1.0	1.2	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 2.0 A	\	3.2		S
Dynamic C	Characteristics			I.		
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		415	540	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		210	275	pF
C _{rss}	Reverse Transfer Capacitance			19.5		pF
C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1.0 MHz		12	16	pF
C _{oss} eff.	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		32		pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 3.9 A		16	45	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$	/	45	100	ns
t _{d(off)}	Turn-Off Delay Time			36	85	ns
t _f	Turn-Off Fall Time	(Note 4)		30	70	ns
Qg	Total Gate Charge	V _{DS} = 480 V, I _D = 3.9 A		12.8	16.6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		2.4		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		7.1		nC
Drain-Soul	rce Diode Characteristics and Maximur	n Ratings			70	10
I _S	Maximum Continuous Drain-Source Diode Forward Current				3.9	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				11.7	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 3.9 \text{ A}$			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 3.9 A		277		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100 A/μs		2.07		μС

Notes

^{1.} Repetitive rating: pulse-width limited by maximum junction temperature.

^{2.} I $_{AS}$ = 1.9 A, V $_{DD}$ = 50 V, R $_{G}$ = 25 Ω , starting T $_{J}$ = 25°C.

 $^{3.~}I_{SD} \leq 3.9~A,~di/dt \leq 200~A/\mu s,~V_{DD} \leq BV_{DSS},~starting~T_J = 25^{\circ}C.$

^{4.} Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

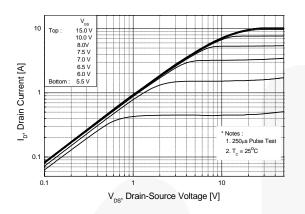


Figure 2. Transfer Characteristics

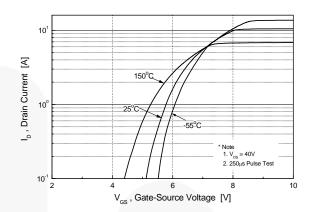
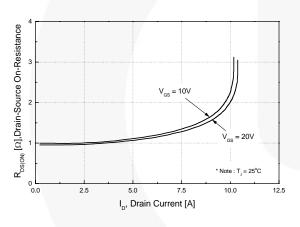
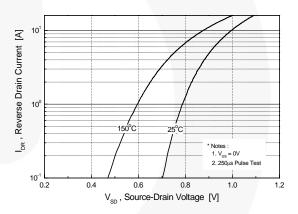


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

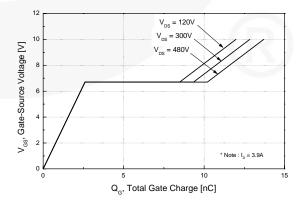

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

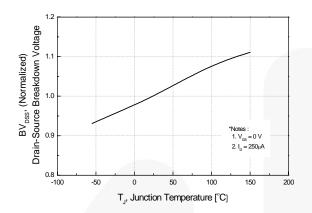


Figure 8. On-Resistance Variation vs. Temperature

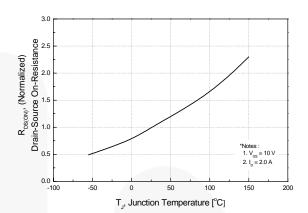


Figure 9. Maximum Safe Operating Area

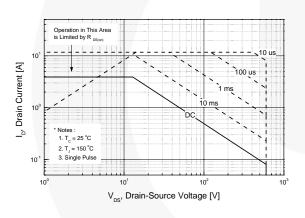


Figure 10. Maximum Drain Current vs. Case Temperature

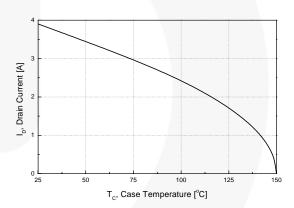
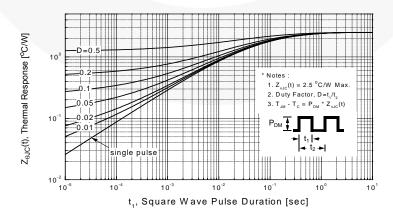



Figure 11. Transient Thermal Response Curve

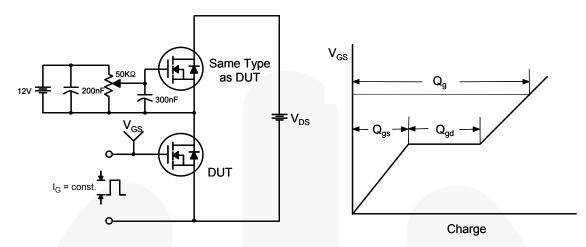


Figure 12. Gate Charge Test Circuit & Waveform

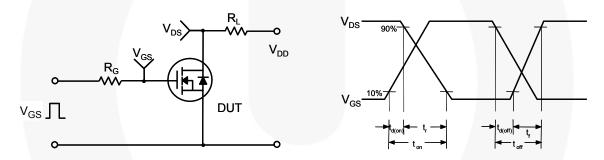


Figure 13. Resistive Switching Test Circuit & Waveforms

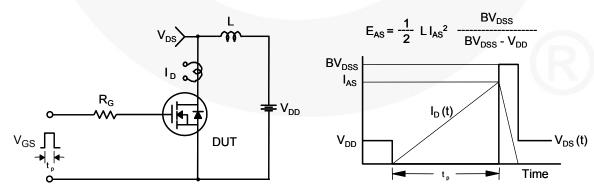


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

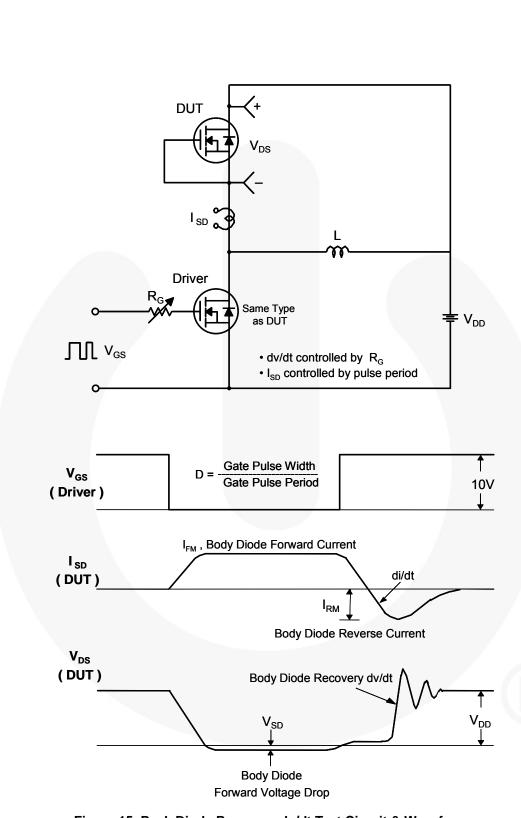
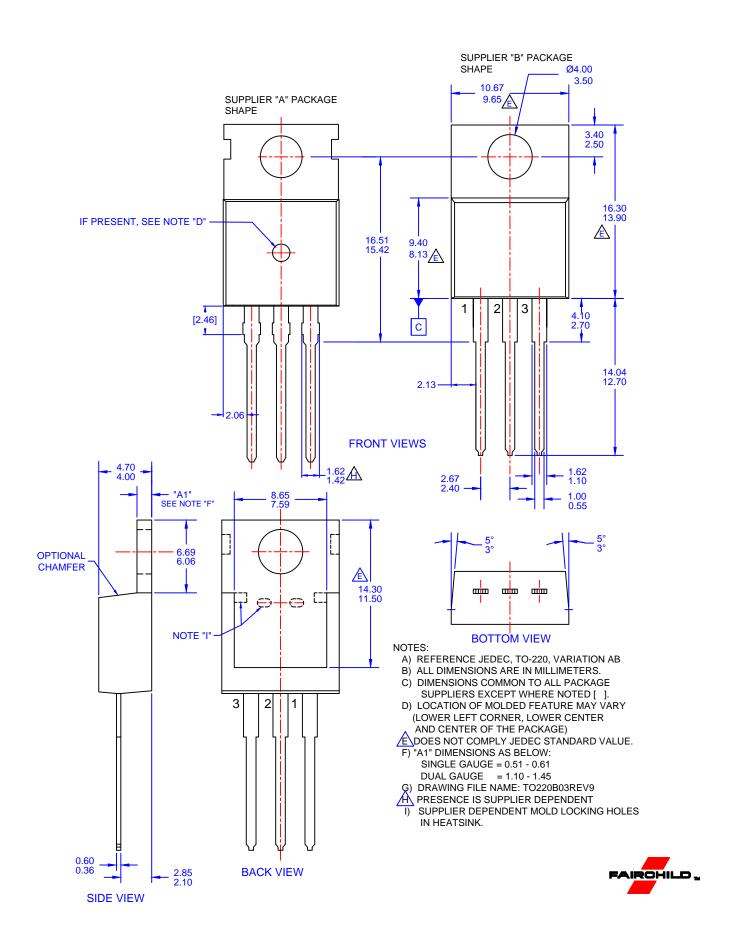



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative