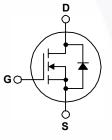
January 2016


Features

- 700 V @ T_J = 150 °C
- Typ. R_{DS(on)} = 59 mΩ
- Ultra Low Gate Charge (Typ. Q_q = 78 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 715 pF)
- 100% Avalanche Tested
- RoHS Compliant

Applications

- Telecom / Sever Power Supplies
- Industrial Power Supplies
- UPS / Solar

SuperFET[®] III MOSFET is Fairchild Semiconductor's brandnew high voltage super-junction (SJ) MOSFET family that is uti-

lizing charge balance technology for outstanding low on-resis-

tance and lower gate charge performance. This advanced

technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt

rate. Consequently, SuperFET III MOSFET is very suitable for

various power system for miniaturization and higher efficiency.

Description

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

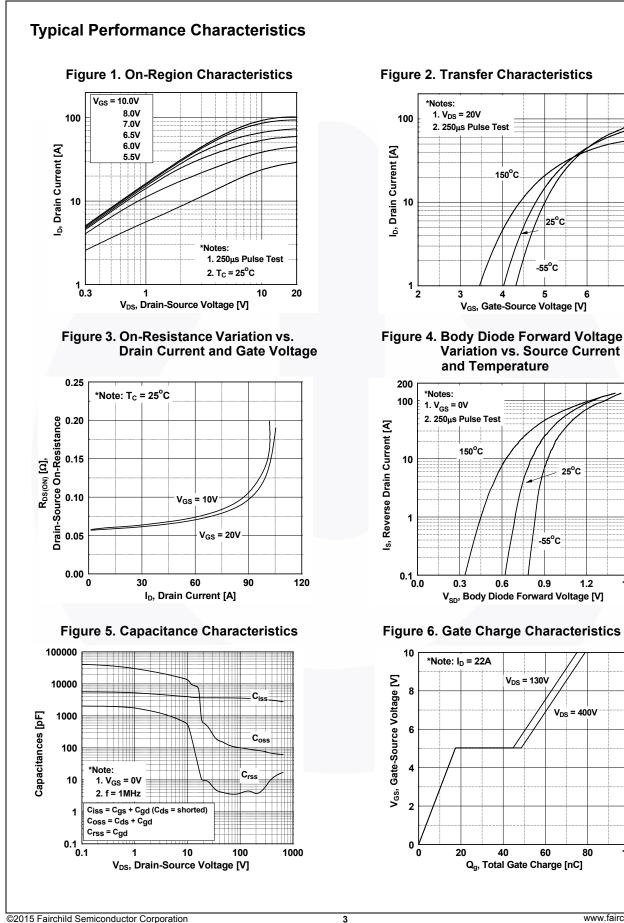
Symbol		FCPF067N65S3	Unit			
V _{DSS}	Drain to Source Voltage	Source Voltage		650	V	
V _{GSS}	Gate to Source Voltage	- DC		±20	V	
ID	Droin Current	- Continuous (T _C = 25 ^o C)		44*	•	
	Drain Current	- Continuous (T _C = 100 ^o C)		28*	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	110*	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1160	mJ		
I _{AR}	Avalanche Current (Note 1)		8.8	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.46	mJ		
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dower Dissinction	(T _C = 25°C)		46	W	
	Power Dissipation	- Derate Above 25°C		0.37	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C		
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		onds	300	°C	

*Drain current limited by maximum junction temperature.

Thermal Characteristics

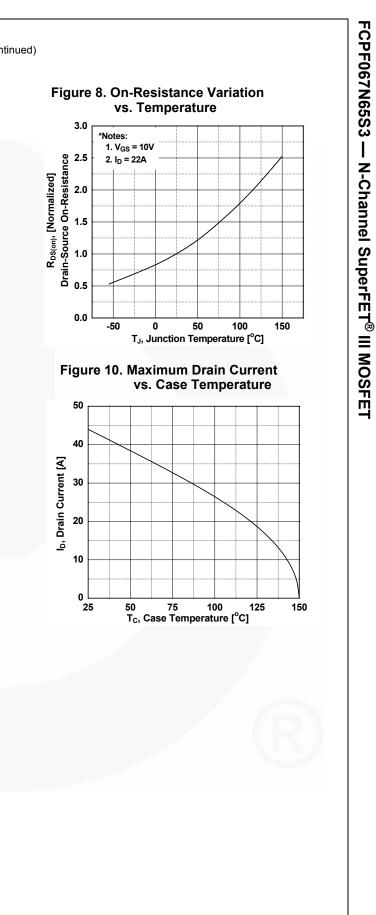
Symbol	Parameter	FCPF067N65S3	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	2.7	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/w

1


Т
$\overline{\mathbf{O}}$
ש
1290
N
165S3
ö
ű
Ĩ
7
Z
$\overline{\mathbf{O}}$
ž
n
nne
Ð
Ĩ
ę
Supe
Ō
٣FE
ΠÏ.
-
⊘
Ξ
Ň
MOSFE
ŝ
щ
Щ.
•

Part Number Top Mark Pa		Package	Packing Method	Reel Siz	e .	Tape Width	n Qu	antity		
FCPF06			TO-220F	Tube	N/A		N/A	50	50 units	
Electrica	I Chara	cteristics T _C = 25	^o C unless oth	nerwise noted.						
Symbol		Parameter		Test Condition	s	Min.	Тур.	Max.	Unit	
Off Charac	teristics									
	Drain to Source Breakdown Voltage		Vo	V_{GS} = 0 V, I_{D} = 1 mA, T_{J} = 25°C		650	-	-	V	
BV _{DSS}				V_{GS} = 0 V, I _D = 1 mA, T _J = 150°C		700	-	-	V	
∆BV _{DSS} / ∆T _J	Breakdow Coefficien	n Voltage Temperature t	I _D	$I_D = 1$ mA, Referenced to 25°C		-	0.72	-	V/ºC	
DSS	Zero Gate	te Voltage Drain Current		V _{DS} = 650 V, V _{GS} = 0 V		-	-	1	μA	
055	2010 0010	Voltago Brain Garroni		_{os} = 520 V, T _C = 125°C	;	-	2.2	-	μι	
GSS	Gate to Bo	ody Leakage Current	Ve	V_{GS} = ±20 V, V_{DS} = 0 V		-	-	±100	nA	
On Charac	teristics									
V _{GS(th)}	Gate Thre	shold Voltage	Vo	_{GS} = V _{DS} , I _D = 4.4 mA		2.5	-	4.5	V	
R _{DS(on)}	Static Dra	in to Source On Resista	ance V _C	_{GS} = 10 V, I _D = 22 A		-	59	67	mΩ	
9fs	Forward T	ransconductance	V	_{DS} = 20 V, I _D = 22 A		-	29	-	S	
Dynamic C	Character	istics								
C _{iss}	Input Capacitance		Vr	V _{DS} = 400V, V _{GS} = 0 V,	-	3090	4120	pF		
C _{oss}	Output Ca	pacitance		= 1 MHz	-	-	68	90	pF	
C _{oss(eff.)}	Effective Output Capacitance		V	$V_{DS} = 0 V \text{ to } 400 V, V_{GS} = 0 V$		-	715	-	pF	
Coss(er.)	Energy Related Output Capacitance		ice V _E	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		-	104	-	pF	
Q _{g(tot)}	Total Gate	Charge at 10V	Vr	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 22 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)		-	78	100	nC	
Q _{gs}	Gate to So	ource Gate Charge				-	18	-	nC	
Q _{gd}	Gate to Dr	ain "Miller" Charge				-	30	-	nC	
ESR	Equivalent	t Series Resistance	f =	= 1 MHz		-	0.6	-	Ω	
Switching	Characte	ristics								
d(on)	Turn-On D	elay Time				-	26	62	ns	
r	Turn-On R		V	_{DD} = 400 V, I _D = 22 A,	-		52	114	ns	
d(off)	Turn-Off D	elay Time	Vc	V _{GS} = 10 V, R _g = 4.7 Ω		-	89	188	ns	
tf	Turn-Off F	all Time			(Note 4)	-	16	42	ns	
Source-Dr	ain Diode	Characteristics						1		
I _S	T	Continuous Drain to So	urce Diode F	orward Current		-	-	44	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode		Diode Forwa			-	-	110	Α	
V _{SD}	Drain to So	ource Diode Forward Vo	oltage V _c	_{SS} = 0 V, I _{SD} = 22 A		-	-	1.2	V	
rr		ecovery Time		_{SS} = 0 V, I _{SD} = 22 A,		-	435	-	ns	
ე _{rr}	Reverse R	ecovery Charge	dl	=/dt = 100 A/μs	-	-	9.2	-	μC	
I _{AS} = 8.8 A, L = I _{SD} ≤ 22 A, di/dt	30 mH, R _G = 25 ≤ 200 A/µs, V _{DD}	ited by maximum junction temp Ω , starting T _J = 25°C. $_{1} \leq 380V$, starting T _J = 25°C. ting temperature typical charac								

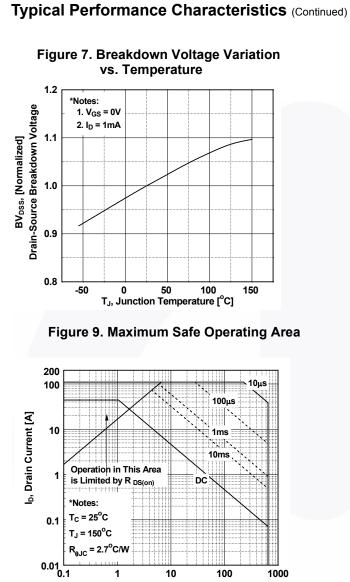
6

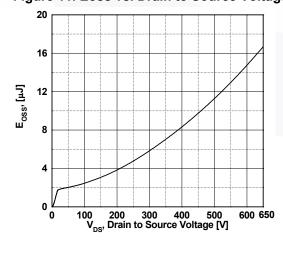

7

1.5

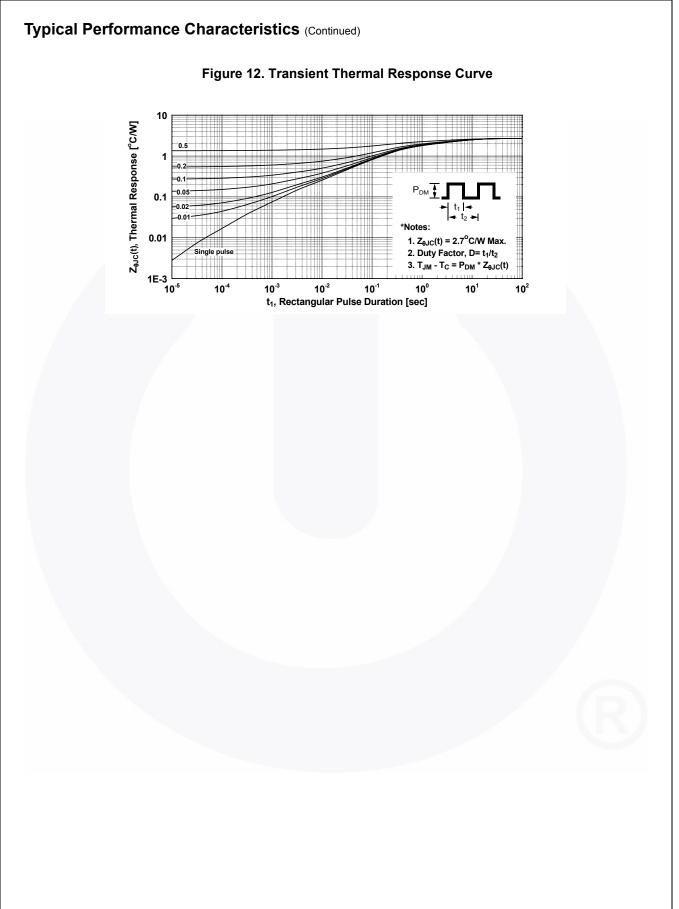
www.fairchildsemi.com

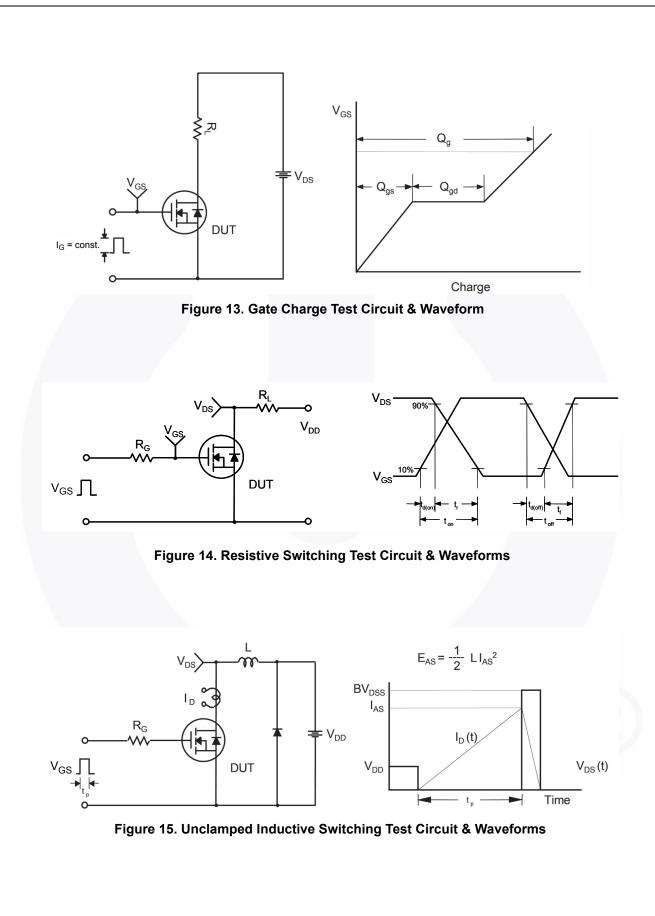
100




Figure 11. Eoss vs. Drain to Source Voltage

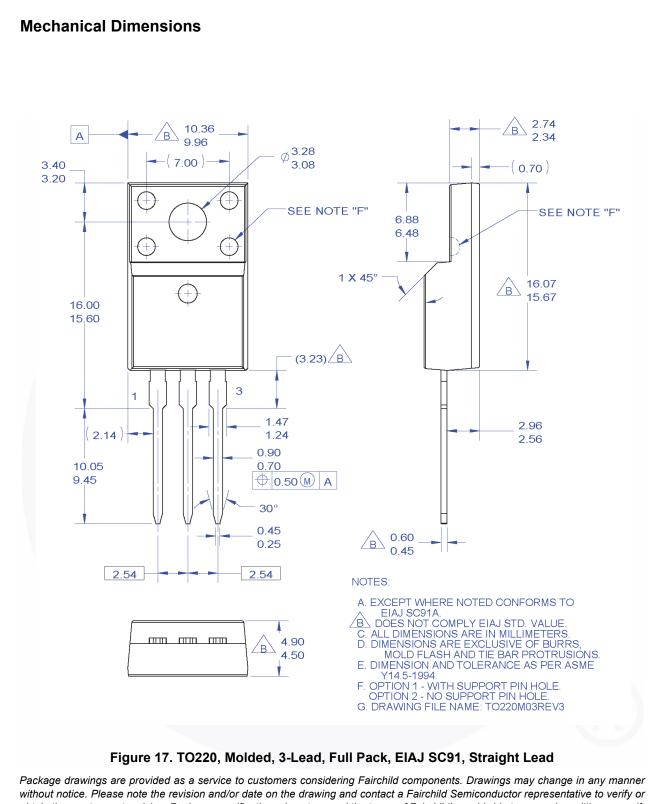
1


10


100

1000

©2015 Fairchild Semiconductor Corporation FCPF067N65S3 Rev. 1.1



FCPF067N65S3 — N-Channel SuperFET[®] III MOSFET

DUT + ۱_{sD} م 0 L Driver R_G, Same Type as DUT V_{DD} ∏∏ v_{gs} - dv/dt controlled by R_G - \mathbf{I}_{SD} controlled by pulse period O Î Gate Pulse Width V_{GS} D = Gate Pulse Period 10V (Driver) T I_{FM} , Body Diode Forward Current I_{SD} di/dt (DUT) I_{RM} Body Diode Reverse Current V_{DS} (DUT) Body Diode Recovery dv/dt V_{DD} V_{SD} Body Diode Forward Voltage Drop Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

©2015 Fairchild Semiconductor Corporation

FCPF067N65S3 Rev. 1.1

obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF22S-003

FCPF067N65S3 — N-Channel SuperFET[®] III MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ GTO™ CROSSVOLT™ IntelliMAX™ Current Transfer Logic™ Marking Small Speakers Sound Louder DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficentMax™ MicroPak™ ESBC™ MicroPak™ Fairchild® MotionGrid® Factr® MT® FACT® MT® FastvCore™ MVN® FastvCore™ MVN® FFTBench™ OptoHiT™ FPS™ OptoHiT™	OPTOPLANAR® $ \begin{array}{c} $	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
--	---	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 176

FCPF067N65S3 — N-Channel SuperFET[®] III MOSFE