

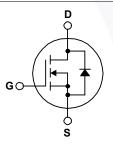
December 2014

FCPF400N60 N-Channel SuperFET[®] II MOSFET

600 V, 10 A, 400 m Ω

Features

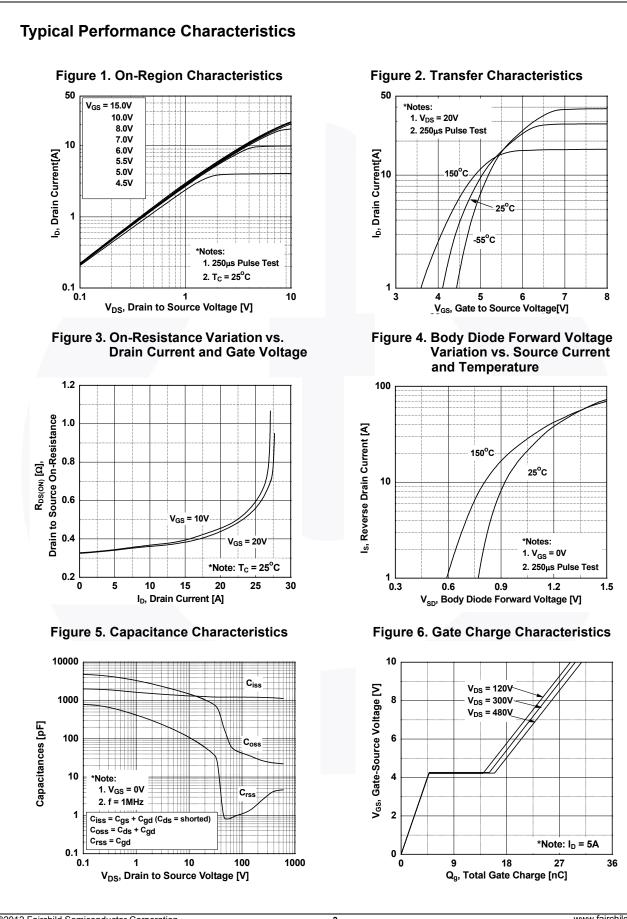
- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 350 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 28 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 90 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- LCD / LED / PDP TV Lighting
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

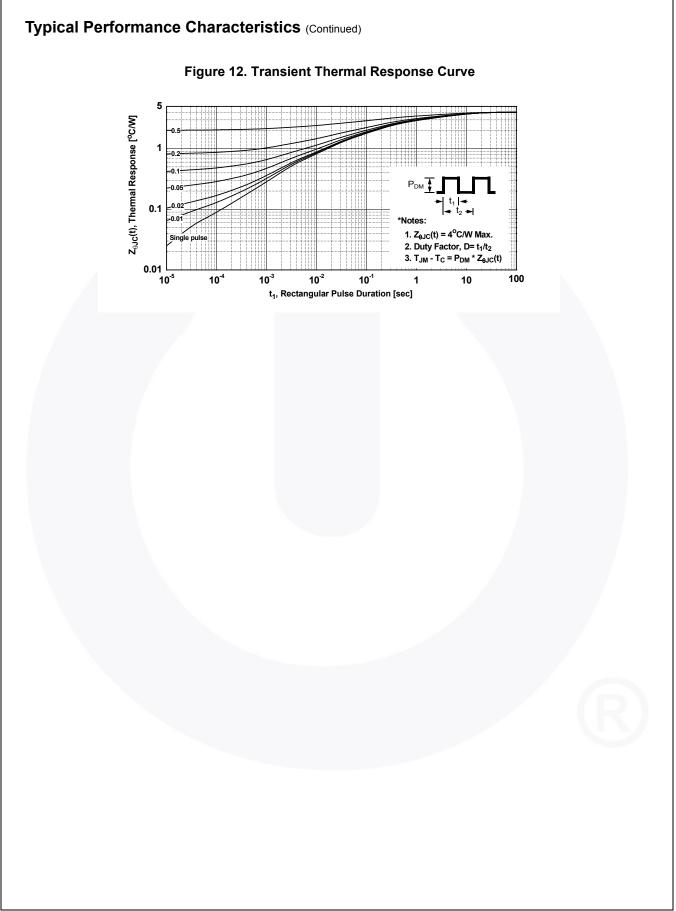

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCPF400N60	Unit	
V _{DSS}	Drain to Source Voltage		600	V		
V _{GSS}	Cata ta Cauraa Valtaga	- DC		±20	V	
	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	V	
ID	Droin Current	- Continuous (T _C = 25°C)		10*		
	Drain Current	- Continuous (T _C = 100 ^o C)		6.3*	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	30*	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		211.6	mJ		
I _{AR}	Avalanche Current (Note 1)		2.3	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)		1.06	mJ		
dv/dt	MOSFET dv/dt			100	1//20	
	Peak Diode Recovery dv/dt (Note 3)			20	V/ns	
P _D	Power Dissipation	(T _C = 25 ^o C)		31	W	
	Fower Dissipation	- Derate Above 25°C		0.25	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	
Drain current lim	ited by maximum junction tempera	ture.				

Thermal Characteristics

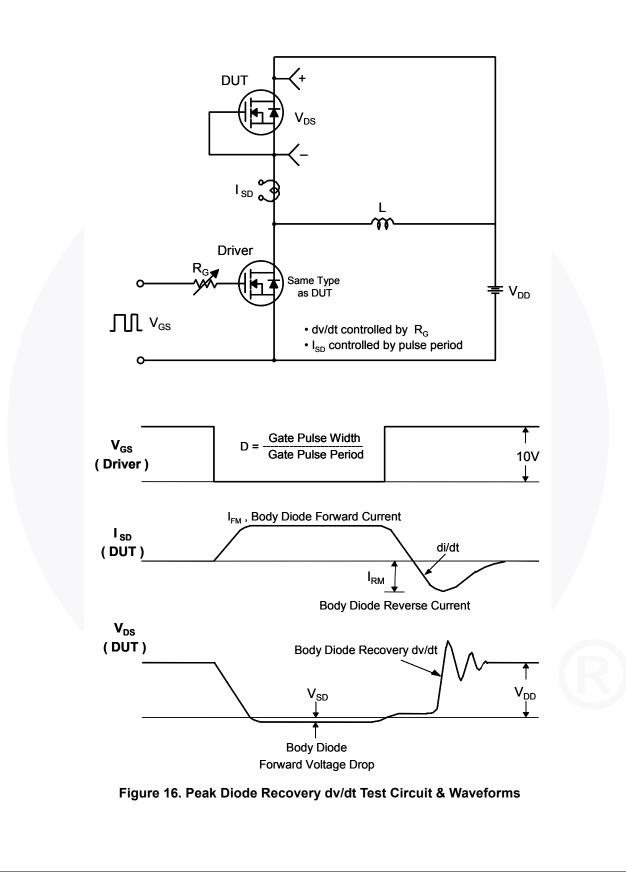
Symbol	Parameter	FCPF400N60	Unit	
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	4.0	°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	0/00	

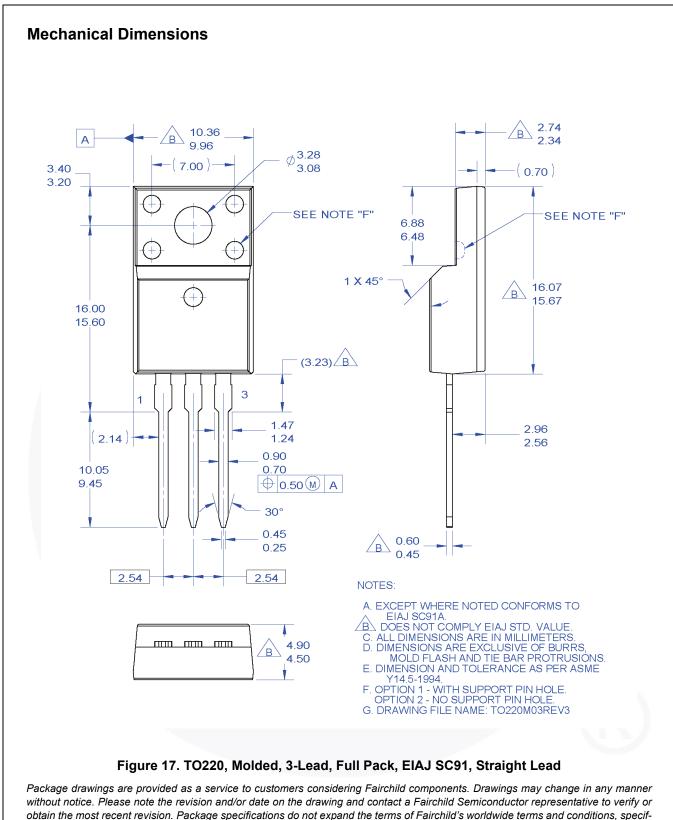
	nber Top Mark	Package	Packing Method R	eel Size	Та	pe Width	Qu	antity	
FCPF400	DN60 FCPF400N60	TO-220F	Tube	N/A		N/A	50	50 units	
Electrical	Characteristics T _C = 2	5°C unless o	therwise noted						
Symbol	Parameter		Test Conditions	Mi	n.	Тур.	Max.	Unit	
Off Charact						.,,,,,			
			V _{GS} = 0 V, I _D = 10 mA, T _J = 2	5°C 60	00	-	-		
BV _{DSS}	Drain to Source Breakdown Voltage		$V_{GS} = 0 V, I_D = 10 mA, T_J = 15$			-	-	V	
ΔΒV _{DSS} /ΔTJ	Breakdown Voltage Temperature Coefficient		I _D = 10 mA, Referenced to 25 ⁶	°C -		0.67	-	V/ºC	
BV _{DS}	Drain-Source Avalanche Breakdown Voltage		V _{GS} = 0 V, I _D = 10 A -			700	-	V	
	Zero Gate Voltage Drain Curren		V _{DS} = 600 V, V _{GS} = 0 V	-		-	1	μA	
DSS	Zero Gale voltage Drain Gurren		$V_{\rm DS} = 480 \text{ V}, \text{ T}_{\rm C} = 125^{\circ}\text{C}$			0.97	-	μΛ	
GSS	Gate to Body Leakage Current		$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-		-	±100	nA	
On Charact	eristics								
V _{GS(th)}	Gate Threshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA	2.	5	-	3.5	V	
R _{DS(on)}	Static Drain to Source On Resis		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$			0.35	0.40	Ω	
9FS	Forward Transconductance		$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5 \text{ A}$			11	-	S	
			50 . 5						
-	haracteristics							1	
C _{iss}	Input Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			1180	1580	pF	
C _{oss}	Output Capacitance					860	1144	pF	
C _{rss}	Reverse Transfer Capacitance			-		43	54	pF	
C _{oss}	Output Capacitance		V _{DS} = 380 V, V _{GS} = 0 V, f = 1			22	-	pF	
C _{oss(eff.)}	Effective Output Capacitance		$V_{DS} = 0 V \text{ to } 480 V, V_{GS} = 0 V$			90	-	pF	
Q _{g(tot)}	Total Gate Charge at 10V		V _{DS} = 380 V, I _D = 5 A,	-		28	38	nC	
Q _{gs}	Gate to Source Gate Charge		V _{GS} = 10 V	-		5	-	nC	
Q _{gd}	Gate to Drain "Miller" Charge			(Note 4) _		10	-	nC	
ESR	Equivalent Series Resistance		f = 1 MHz	-		1	-	Ω	
Switching C	Characteristics								
t _{d(on)}	Turn-On Delay Time		V _{DD} = 380 V, I _D = 5 A,			13	37	ns	
t _r	Turn-On Rise Time					7	24	ns	
t _{d(off)}	Turn-Off Delay Time		V_{GS} = 10 V, R_{G} = 4.7 Ω	-		43	95	ns	
t _f	Turn-Off Fall Time			(Note 4) -		6	21	ns	
Drain Sour	ce Diode Characteristics			·					
		Diada	Farmer 1 Ourse at				10	•	
	Maximum Continuous Drain to S			-		-	10	A	
SM	Maximum Pulsed Drain to Source			-		-	30	A	
V _{SD}	Drain to Source Diode Forward		$V_{GS} = 0 V, I_{SD} = 5 A$	-		-	1.2	V	
t _{rr}	Reverse Recovery Time		V _{GS} = 0 V, I _{SD} = 5 A, dI _⊏ /dt = 100 A/μs	-		240		ns	
Q _{rr}	Reverse Recovery Charge					2.7	-	μC	



200

150


Typical Performance Characteristics (Continued) Figure 7. Breakdown Voltage Variation Figure 8. On-Resistance Variation vs. Temperature vs. Temperature 1.15 3.0 **Drain to Source Breakdown Voltage** 1.10 BV_{DSS}, [Normalized] R_{DS(on)}, [Normalized] 1.05 1.00 0.95 *Notes: *Notes: 0.90 1. V_{GS} = 0V 1. V_{GS} = 10V 2. I_D = 10mA 2. I_D = 5A 0.0 -100 0.85 -50 0 50 100 150 -100 -50 0 50 100 150 200 T_J, Junction Temperature [°C] T_J, Junction Temperature [°C] Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature 100 12 10µs I_D, Drain Current [A] 10 100µs 9 Drain Current [A] 1ms 10ms DC 1 6 **Operation in This Area** is Limited by R DS(on) *Notes: é 0.1 3 1. T_C = 25^oC 2. $T_J = 150^{\circ}C$ 3. Single Pulse 0.01 └ 0.1 0 50 75 100 T_C, Case Temperature [^oC] 1 10 100 1000 25 50 125 V_{DS}, Drain to Source Voltage [V] Figure 11. Eoss vs. Drain to Source Voltage 6 5 E_{oss}, [µJ] « 2 1 0 100 200 300 400 500 V_{DS}, Drain to Source Voltage [V] Ó O 100 500 600 ©2012 Fairchild Semiconductor Corporation 4 FCPF400N60 Rev. C5



FCPF400N60 — N-Channel SuperFET[®] II MOSFET

FCPF400N60 — N-Channel SuperFET[®] II MOSFET

©2012 Fairchild Semiconductor Corporation

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF22S-003

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

ically the warranty therein, which covers Fairchild products.

FCPF400N60 Rev. C5

8

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerF-PFSTMAttitudeEngineFRFET®Awinda®Global Power ResourceAX-CAP®+GreenBridgeBitSiCTMGreen FPSTMBuild it NowTMGreen FPSTM e-SeriesCorePLUSTMGmaxTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMGTOTMCorePOWERTMMarking Small Speakers Sound LoudDual CoolTMMegaBuckTMEdicentMaxTMMicroFETTMEfficentMaxTMMicroFETTMESBCTMMicroPak2TMFairchild®MotionMaxTMFairchild®MotionGrid®FACT Quiet SeriesTMMTI®FAST®MVN®FastvCoreTMMTI®FastvCoreTMOptoHiTTMFFSTMOptoHiTTMFFSTMOPTOLOGIC®	OPTOPLANAR [®]
---	-------------------------

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild directly or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buyet from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 173

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC